EP1712787B1 - Machine hydraulique à pistons axiaux avec système de synchronisation - Google Patents

Machine hydraulique à pistons axiaux avec système de synchronisation Download PDF

Info

Publication number
EP1712787B1
EP1712787B1 EP06112267.7A EP06112267A EP1712787B1 EP 1712787 B1 EP1712787 B1 EP 1712787B1 EP 06112267 A EP06112267 A EP 06112267A EP 1712787 B1 EP1712787 B1 EP 1712787B1
Authority
EP
European Patent Office
Prior art keywords
axis
rotation
machine according
drive surface
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06112267.7A
Other languages
German (de)
English (en)
Other versions
EP1712787A1 (fr
Inventor
Gilles Vicentini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poclain Hydraulics France SA
Original Assignee
Poclain Hydraulics France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poclain Hydraulics France SA filed Critical Poclain Hydraulics France SA
Publication of EP1712787A1 publication Critical patent/EP1712787A1/fr
Application granted granted Critical
Publication of EP1712787B1 publication Critical patent/EP1712787B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2092Means for connecting rotating cylinder barrels and rotating inclined swash plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49236Fluid pump or compressor making

Definitions

  • GB 1 140 167 discloses a machine of this type, in which the synchronization system comprises a driving part which is fixed with respect to the sliding disk and which, for each connecting rod, has a cell through which the connecting rod passes, this cell exhibiting the shape of a radial slot, open on the outer periphery of the drive part.
  • the connecting rod which passes through a cell intermittently comes into contact with the faces of the slot forming this cell, which keeps the rod in a position such that its axis is approximately contained in a normal radial plane, containing the second axis of rotation and a radius extending from this axis and passing through the center of the spherical joint corresponding to this rod.
  • the axis of each connecting rod is held approximately in a normal radial plane, so that the rotation of the sliding disk of the second axis of rotation is synchronized with the rotation of the cylinder block about the first axis.
  • the synchronization delay between the moment when, under the effect of the rotation of the cylinder block, a connecting rod tends to deviate from a position in which its axis is contained in the normal radial plane containing the center of its second spherical joint and that where this spacing is thwarted by the contact between the rod and a face of the slot, thus maintaining the axis of this rod approximately in this normal radial plane, is a function of the respective dimensions of the slot and the rod engaged in it. More specifically, this time depends on the reference gap between the first driving surface formed on the rod and the second driving surface formed by the wall of the slot, this reference set being that which is measured between said surfaces when the The axis of the connecting rod is in its normal radial plane.
  • the slits of the driving part serve to make up the tangential deflections of the connecting rods, but, insofar as they are open on the outer periphery of the driving part, these tangential deflections are not limited when the radial deflections increase.
  • the synchronization system serves to maintain the axis of each connecting rod approximately in its normal radial plane, that is to say to ensure correct positioning of the centers of the second spherical joints and to reduce the forces acting on the connecting rods.
  • first and second drive surfaces For each link rod, clearance is required between the first and second drive surfaces. Indeed, during the rotation of the cylinder block, the connecting rod tends to pivot relative to the center of the first spherical joint. This tendency to pivot results from the fact that the second axis of rotation is inclined relative to the first. Indeed, the centers of the first spherical joints are arranged on a first circle, centered on the first axis of rotation and contained in a plane perpendicular to this axis, while the centers of the second spherical joints are arranged on a second circle, centered on the second axis of rotation and contained in another plane perpendicular to this axis.
  • the projection of the first circle on the plane containing the second circle forms an ellipse.
  • the axis of each connecting rod substantially describes a cone, whose apex is at the center of the second spherical joint, if we consider that the axis of the rod link is a straight line passing through the centers of the first and second spherical joints.
  • angle ⁇ The angle between the axis of a connecting rod and the second axis of rotation is hereinafter referred to as angle ⁇ .
  • the angle ⁇ varies during the rotation of the cylinder block.
  • the distance between the second driving surface and the first surface is such that it periodically comes into contact with the second surface, when the angle ⁇ reaches a value such that this contact is effective.
  • synchronization force the force exerted by the second drive surface on the first, during this contact.
  • the synchronization forces depend on the clearance between the drive surfaces, the angle of inclination of the cam plate, that is to say the angle of inclination between the second axis of rotation and the first, and the elasticity of the material in which the connecting rods are made.
  • the object of the present invention is to improve the state of the art, by proposing a synchronization system making it possible to reduce the synchronization forces and, consequently, to reduce the stresses exerted on the connecting rods.
  • the second driving surfaces are eccentric with respect to the second spherical joints so that a reference gap between a second driving surface and a first driving surface is reduced in the area. wherein said surfaces come into contact at the time of synchronization in the preferred direction of rotation.
  • the invention applies equally well to synchronization systems using slots having flat lateral faces as described in FIG. GB 1 140 167 , that to synchronization systems in which the driving surfaces are rotational surfaces, as described in the application PCT / EP2004001560 .
  • the invention is generally applicable to synchronization systems whose driving surfaces have closed or open contours, purely rotational contours or locally presenting flats.
  • the eccentricity is measured between the geometric center of a first driving surface and the geometric center of a second driving surface, on the same plane perpendicular to the second axis of rotation, in a reference position in which the axis of the connecting rod, which is a straight line passing through the centers of the spherical joints, is parallel to this axis.
  • the geometric center is the center of curvature of the curve formed by this sectional surface perpendicular to the normal axis, passing through the center of the second spherical joint and parallel to the second axis of rotation. If either of the training surfaces is not purely a rotating surface, then its center is a center of symmetry.
  • the second drive surfaces have, relative to the second spherical joints, a measured tangential eccentricity, for each second spherical joint, tangentially to the circle described by the center of said second spherical joint during the rotation of the sliding disc around the second rotation axis.
  • the eccentricity according to the invention therefore preferably comprises a tangential component.
  • the second drive surfaces also have, with respect to the second spherical joints, a measured radial eccentricity, for each spherical joint, along a radius of the circle described by the center of said spherical joint when the rotation of the sliding disc around the second axis of rotation.
  • This radial eccentricity is also interesting, in particular in the case where the driving surfaces are rotation surfaces, of the type described in the application. PCT / EP2004001560 .
  • the first driving surface and the second driving surface are each defined at least in part by the rotation of a generating line about an axis.
  • the first and the second driving surfaces are each entirely defined by the rotation of a generating line about an axis.
  • This first variant corresponds to the synchronization system described in the aforementioned PCT application.
  • At least one of the first and second drive surfaces has at least one flat.
  • the second driving surface is formed by the wall of a radial slot of the sliding disk or of a fixed part relative to this disk, this slot being open on the opposite side to the second axis of rotation. and having side faces substantially parallel to a radius passing through the second axis of rotation, while the first driving surface is formed on a tenon, secured to a connecting rod and engaged in said slot.
  • Such radial slots correspond to what is disclosed GB 1 140 167 . It should be noted that the flat surface mentioned above is then formed by the lateral faces of these slots. However, such a flat can also be found on second drive surfaces of different shapes, for example surfaces having a closed contour, substantially oval, with two diametrically opposed flats.
  • the first driving surface is formed on an extension of a connecting rod, beyond the second spherical joint, while the second connecting surface is formed in a recess in which said extension is engaged.
  • the recess is formed in the same room as the female part of the second spherical joint and has an axis of symmetry which is offset with respect to the axis of said female part.
  • the choice for the first and second driving surfaces of an extension of the connecting rod and a recess is advantageous in that it allows easy machining and assembly.
  • the offset recess can be easily achieved by properly positioning a piercing tool.
  • the connecting rod can in turn have a symmetry of revolution about its axis, passing through the centers of the first and second spherical joints.
  • the first driving surface is formed on a connecting rod, between the first and second spherical joints, while the second driving surface is formed in a cell of a workpiece. which is fixed relative to the sliding disk, this cell being traversed by the connecting rod.
  • Connecting rods 16 extend between the sliding disc 12 and the pistons 4. More specifically, each connecting rod is connected to a piston by a first spherical joint 16A and the sliding disc by a second spherical joint 16B.
  • the first spherical joint comprises a female portion 15A dug in the piston and open on the side of the cam plate, and a male head 15B, integral with the connecting rod 16.
  • the second spherical joint comprises a female portion 17A dug in the sliding disc and a male head 17B secured to the connecting rod 16.
  • the machine comprises a shaft 18 which, depending on whether this machine is a pump for a motor, constitutes the entry or the exit of the machine.
  • This shaft is engaged in a bore 2A of the cylinder block, and is integral with the latter rotation through 19 complementary grooves.
  • the machine comprises main supply and exhaust ducts 20A, 20B with which roll ducts 3A can be placed in communication.
  • the second axis of rotation A s is inclined relative to the first A C by an angle ⁇ .
  • This angle can be adjustable to vary the engine capacity of the machine.
  • the angle of inclination is maximum, the shaft 18 being almost in contact with the wall of the through hole 10A of the cam plate 10.
  • the invention also applies to machines for which this angle of inclination is constant, in particular non-variable displacement engines.
  • the axial bearing 14 is arranged at the bottom of a recess 10B that the cam plate has on the side facing the cylinder block, and the sliding disk 12 is also arranged in this recess,
  • a retainer 11 such as a segment makes it possible to retain the male heads of the second spherical joints 16B in the female portions of these spherical joints.
  • the pistons 4 move in translation in the cylinders 3 which, because of the inclination of the cam plate causes rotation of the cylinder block. It will be understood that during this rotation the centers C A of the first spherical joints move on a cylinder with a circular base, whose diameter is D and whose axis is the first axis of rotation A C. At the same time, the centers C B of the second spherical joints move on a circle, centered on the second axis of rotation A S and having a diameter D S.
  • the projection of the cylinder on which the centers of the first spherical joints move on the plane P S in which the centers of the second spherical joints are located gives an ellipse having for main axis D / cos ⁇ and for minor axis D.
  • the machine comprises a synchronization system between the cylinder block 2 and the sliding disk 12.
  • This synchronization is provided by means of the connecting rods. More specifically, for each connecting rod, the synchronization system comprises a first driving surface formed on an extension 22A of a connecting rod 16, beyond the second spherical joint 16B and a second driving surface formed in a recess 22B in which this extension or tenon 22A is engaged.
  • the first driving surface is fixed relative to the connecting rod, while the second driving surface with which it cooperates is fixed relative to the sliding disk.
  • the first and second connecting surfaces can, as in this case, be formed in one piece with, respectively, a connecting rod and the sliding disc or be integral with these parts.
  • a clearance j is provided between the first and second drive surfaces. This game is calculated to allow the connecting rods around the centers of the first spherical joints during the back and forth of the pistons in the cylinders.
  • the figure 3 shows the front face 12A of the sliding disc, which is turned towards the cylinder block 2. This view is taken perpendicularly to the second axis of rotation A S. In this view, there are shown the recesses 17A forming the female portions of the second spherical joints, as well as the recesses 22B in which the extensions 22A of the connecting rods are engaged.
  • part IV of this figure 3 enlarged on the figure 4 , which corresponds to the first embodiment, the reference position of such an extension 22A has also been indicated in broken lines when the axis of the connecting rod coincides with the normal axis A N which passes through the center of the second spherical joint considered and is parallel to the second axis of rotation A S.
  • this normal axis A N has been indicated, as well as the tangential plane P T and the radial plane P R , which is the normal radial plane for the connecting rod corresponding to this second spherical joint.
  • the tangential plane P T is the one that is tangential to the circle described by the center C B of this second spherical joint during the rotation of the sliding disc around the axis A S
  • the radial plane P R is the plane which contains the second axis of rotation A S and a radial line passing through this axis A S and the center C B of the second spherical joint.
  • the figure 4 shows that the second driving surface, formed on the recess 22B of the sliding disk is eccentric with respect to the center C B of the second spherical joint and the extension 22A of the corresponding connecting rod.
  • the female portion 17A of the second spherical joint with its center C B through which the normal axis A N.
  • the extension 22A is of circular section centered on the axis of the connecting rod. So, on the figure 4 , this extension is materialized by a circle centered on the center C B.
  • the synchronization recess 22B in which the extension 22A is engaged is also represented by a circle, but this is eccentric. Indeed, the center A E of the circle forming the base of the cylindrical recess 22B is shifted relative to the Ce according to a tangential eccentricity e T and a radial eccentricity e R.
  • the tangential eccentricity is measured tangentially to the circle C described by the center C B of the second spherical joint during the rotation of the sliding disc around the second axis of rotation A S.
  • the radial eccentricity E R is measured along a radius R A of the circle C.
  • the extension 22A is in its defined reference position in which its axis is parallel to the second axis of rotation, and the gap between the circles 22A is 22B represents the "reference set" between the first and the second surface of training. It can be seen that this reference set is reduced in zone Z where these surfaces come into contact at the time of synchronization in the preferred direction of rotation, that is to say when the sliding disk rotates in the R direction under the direction of rotation. effect of the rotation of the cylinder block in the corresponding direction. In the general case, at the beginning of such rotation, the connecting rods tend to tilt forward so that the zone Z is located towards the rear of the extensions 22A as shown in FIGS. figures 3 and 4 .
  • the recess 22B has a cylindrical shape with a circular base.
  • the recess 22'B has been given an elliptical shape.
  • the center of this ellipse indicated by the axis A E which center is formed at the intersection of the major axis and the minor axis of the ellipse, is also eccentric with respect to the center C B of the second spherical joint 17A.
  • the radial and tangential eccentricities are measured in the same way as previously indicated.
  • the first driving surface 122A is formed by the cylindrical surface with a circular base of a section 122A of the connecting rod forming a tenon, between the two spherical joints.
  • the sliding disc has a central extension 13 extending from the front face 12A of this disc to the cylinder block 2.
  • This central extension carries a plurality of hollow fingers 123, one for each connecting rod , each of these fingers forming a cavity 122B which is traversed by the connecting rod.
  • the cells are in this case formed in one piece with the sliding disc. It should be noted, however, that the extension 13 could be an insert and fixed on this disc.
  • the second embodiment is illustrated in detail VII of the figure 3 and on the enlarged view of the figure 7 , which is an AA cut of the figure 6 .
  • the cell 122B has the form of a radial slot open on the side of the outer periphery of the sliding disk, that is to say on the opposite side to the second axis of rotation.
  • the second driving surface 122B is formed by the wall of such a radial slot.
  • This slot has two lateral faces respectively 123B and 123C which are substantially parallel to a radius passing through the second axis of rotation A S.
  • the bottom 123A of the slot 122B has the shape of a cylinder portion.
  • it is materialized by a half circle.
  • the slot 122B has a plane of symmetry P Y , which is substantially parallel to a radius passing through the second axis of rotation A s and which is offset relative to a radius R D of the sliding disc 12 passing through the center C B of the female portion 17A of the second spherical joint connecting the connecting rod considered to the sliding disc.
  • This plane P Y is offset with respect to the axis A N of the female portion 17A of the spherical joint. As can be seen, this offset is such that the reference clearance between the post 122A and the wall of the slot 122B which forms the second driving surface is reduced in the zone Z where the synchronization takes place during the rotation of the cylinder block in the preferred R direction.
  • the bottom of the slot 122B is a cylinder portion, it materializes the center of curvature of the bottom by the axis A E , and measured with respect to this center a radial eccentricity and a tangential eccentricity indicated on the figure 7 .
  • the second driving surface is formed by a radial slot open on the opposite side to the second axis of rotation
  • the first surface of drive is formed on a tenon, secured to a connecting rod and engaged in this slot.
  • This tenon can be arranged between the spherical joints as on the figures 6 and 7 or in the form of an extension as in the first embodiment, in which case the recess 10B of the cam plate and the sliding disc 12 could be open radially on the opposite side to the second axis of rotation A S .
  • the first and second driving surfaces are each defined at least in part by the rotation of a generating line about an axis. This is for example the case for the bottom 123A of the slot 122B on the figure 7 . In this same figure the first driving surface is entirely formed by the rotation of a generating line around the axis of the connecting rod.
  • the two driving surfaces are each completely defined by the rotation of a generating line about an axis, which materialize the circles represented on the figure 4 .
  • At least one of the first and second drive surfaces has in cross section perpendicular to the second axis of rotation A S the shape of a curve whose curvature varies along this curve. This is for example the case for the second training surface on the figure 5 , materialized by an ellipse 22'B.
  • this curve can still be modified to present at least one flat.
  • the slot on the wall of which is formed the second driving surface has two flats, formed by both sides of this slot 123B, 123C.
  • the first and second drive surfaces have a closed contour.
  • the second driving surface has such a closed contour, while the other has an open contour.
  • the invention applies to a motor or an axial piston pump, having a preferred direction of rotation.
  • This motor or pump can have a single direction of rotation, in particular when it concerns the pump of an open circuit or a motor having a single direction of rotation. It may also have a reverse direction of rotation which is used in an exceptional manner, for example with regard to a motor intended for the drive in translation of a vehicle, the reverse gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

  • La présente invention concerne une machine hydraulique à pistons axiaux, telle qu'un moteur ou une pompe, comprenant :
    • un bloc-cylindres monté rotatif dans un carter autour d'un premier axe de rotation dans un sens préférentiel de rotation, le bloc-cylindres comprenant une pluralité de cylindres dans lesquels des pistons sont mobiles en translation parallèlement au premier axe de rotation,
    • un plateau-came supportant un disque de glissement apte à être entraîné, par rapport au plateau came, en rotation autour d'un deuxième axe de rotation, incliné par rapport au premier axe de rotation,
    • des tiges de liaison entre le disque de glissement et les pistons, chaque tige de liaison étant reliée, d'une part, à un piston par un premier joint sphérique et, d'autre part, au disque de glissement par un deuxième joint sphérique,
    • un système de synchronisation entre le bloc-cylindres et le disque de glissement qui, pour chaque tige de liaison, comprend une première surface d'entraînement fixe par rapport à la tige de liaison apte à entrer en contact avec une deuxième surface d'entraînement fixe par rapport au disque de glissement, un jeu étant ménagé entre lesdites première et deuxième surfaces d'entraînement.
  • GB 1 140 167 divulgue une machine de ce type, dans laquelle le système de synchronisation comprend une pièce d'entraînement qui est fixe par rapport au disque de glissement et qui, pour chaque tige de liaison, présente une alvéole traversée par la tige de liaison, cette alvéole présentant la forme d'une fente radiale, ouverte sur la périphérie externe de la pièce d'entraînement. Au cours de la rotation du bloc-cylindres, la tige de liaison qui traverse une alvéole entre par intermittence en contact avec les faces de la fente formant cette alvéole, ce qui permet de maintenir cette tige dans une position telle que son axe soit approximativement contenu dans un plan radial normal, contenant le deuxième axe de rotation et un rayon partant de cet axe et passant par le centre du joint sphérique correspondant à cette tige. Ainsi, l'axe de chaque tige de liaison est maintenu approximativement dans un plan radial normal, de sorte que la rotation du disque de glissement du deuxième axe de rotation est synchronisée avec la rotation du bloc-cylindres autour du premier axe.
  • Le délai de synchronisation, entre le moment où, sous l'effet de la rotation du bloc-cylindres, une tige de liaison a tendance à s'écarter d'une position dans laquelle son axe est contenu dans le plan radial normal contenant le centre de son deuxième joint sphérique et celui où cet écartement est contrarié par le contact entre la tige et une face de la fente, maintenant ainsi l'axe de cette tige approximativement dans ce plan radial normal, est fonction des dimensions respectives de la fente et de la tige engagée dans celle-ci. Plus précisément, ce délai dépend du jeu de référence entre la première surface d'entraînement formée sur la tige et la deuxième surface d'entraînement formée par la paroi de la fente, ce jeu de référence étant celui qui est mesuré entre lesdites surfaces lorsque l'axe de la tige de liaison est dans son plan radial normal.
  • Dans GB 1 140 167 , les fentes de la pièce d'entraînement servent à rattraper les débattements tangentiels des tiges de liaison mais, dans la mesure où elles sont ouvertes sur la périphérie externe de la pièce d'entraînement, ces débattements tangentiels ne sont pas limités quand les débattements radiaux augmentent.
  • Dans toute la suite, la direction tangentielle est considérée comme étant celle qui est tangentielle au cercle décrit par les centres des deuxièmes joints sphériques lors d'une rotation du disque de glissement autour du deuxième axe de rotation, tandis que la direction radiale est celle qui est radiale par rapport à ce cercle.
  • La demande de brevet PCT/EP2004001560 publiée WO 2005 078 238 divulgue un système de synchronisation dans lequel les premières et deuxièmes surfaces d'entraînement sont chacune formées par la rotation d'une ligne génératrice autour d'un axe et sont donc des surfaces de rotation. Ainsi qu'il est expliqué dans ladite demande de brevet, cette particularité permet de réduire les délais de synchronisation en limitant la distance entre une première surface d'entraînement et la deuxième surface d'entraînement correspondante.
  • Comme indiqué précédemment, le système de synchronisation sert à maintenir l'axe de chaque tige de liaison approximativement dans son plan radial normal, c'est-à-dire à assurer un positionnement correct des centres des deuxièmes joints sphériques et à réduire les forces agissant sur les tiges de liaison.
  • Pour chaque tige de liaison, un jeu est nécessaire entre la première et la deuxième surface d'entraînement. En effet, lors de la rotation du bloc-cylindres, la tige de liaison a tendance à pivoter par rapport au centre du premier joint sphérique. Cette tendance au pivotement résulte du fait que le deuxième axe de rotation est incliné par rapport au premier. En effet, les centres des premiers joints sphériques sont disposés sur un premier cercle, centré sur le premier axe de rotation et contenu dans un plan perpendiculaire à cet axe, tandis que les centres des deuxièmes joints sphériques sont disposés sur un deuxième cercle, centré sur le deuxième axe de rotation et contenu dans un autre plan perpendiculaire à cet axe. Du fait de l'inclinaison entre ces axes, la projection du premier cercle sur le plan contenant le deuxième cercle forme une ellipse. Ceci a pour conséquence que, au cours de la rotation du bloc-cylindres, l'axe de chaque tige de liaison décrit sensiblement un cône, dont le sommet est au centre du deuxième joint sphérique, si on considère que l'axe de la tige de liaison est une droite passant par les centres des premiers et deuxièmes joints sphériques.
  • Ainsi, au cours de la rotation du bloc-cylindres, les premières et deuxièmes surfaces de liaison entrent par intermittence en contact les unes avec les autres. En effet, si l'on considère qu'une tige de liaison est initialement dans une position dans laquelle son axe est dans son plan radial normal, la rotation du bloc-cylindres a tendance à incliner cette tige qui s'écarte donc de cette position initiale jusqu'à ce que la première surface d'entraînement entre en contact avec la deuxième surface d'entraînement, tendant ainsi à une solidarisation en rotation instantanée du bloc-cylindres et du disque de glissement, donc à leur synchronisation.
  • L'angle entre l'axe d'une tige de liaison et le deuxième axe de rotation est ci-après désigné par angle β.
  • Avec le système de synchronisation, on cherche à faire en sorte que l'angle β d'inclinaison des tiges de liaison reste faible, tout en permettant les débattements angulaires des tiges de qui sont nécessaires, comme indiqué précédemment, du fait de leurs pivotements par rapport aux centres des premiers joints sphériques.
  • Pour une tige de liaison considérée, l'angle β varie au cours de la rotation du bloc-cylindres. La distance entre la deuxième surface d'entraînement et la première surface est telle que celle-ci vient périodiquement au contact de la deuxième surface, lorsque l'angle β atteint une valeur telle que ce contact est effectif. On désignera ci-après par effort de synchronisation, l'effort exercé par la deuxième surface d'entraînement sur la première, lors de ce contact.
  • Les efforts de synchronisation dépendent du jeu entre les surfaces d'entraînement, de l'angle d'inclinaison du plateau-came, c'est-à-dire de l'angle d'inclinaison entre le deuxième axe de rotation et le premier, et de l'élasticité du matériau dans lequel les tiges de liaison sont réalisées.
  • La présente invention a pour but d'améliorer l'état de la technique précitée, en proposant un système de synchronisation permettant de réduire les efforts de synchronisation et, en conséquence, de réduire les contraintes exercées sur les tiges de liaison.
  • Ce but est atteint grâce au fait que les deuxièmes surfaces d'entraînement sont excentrées par rapport aux deuxièmes joints sphériques de telle sorte qu'un jeu de référence entre une deuxième surface d'entraînement et une première surface d'entraînement soit réduit dans la zone où lesdites surfaces entrent en contact au moment de la synchronisation dans le sens préférentiel de rotation.
  • Si on considère une tige de liaison particulière, alors que l'axe de cette tige est dans son plan radial normal, on visualise alors le jeu de référence entre la première surface d'entraînement liée à cette tige et la deuxième surface d'entraînement liée au disque de glissement. Si, à partir de cette situation, l'alimentation en fluide des cylindres est telle que le bloc cylindres tourne dans son sens préférentiel de rotation, cette tige de liaison a tendance à s'incliner par rapport au deuxième axe de rotation selon l'angle β précité, jusqu'à ce que la synchronisation s'effectue pour cette tige, c'est-à-dire jusqu'à ce que la première surface d'entraînement entre en contact avec la deuxième surface d'entraînement.
  • Selon l'invention, les deuxièmes surfaces d'entraînement sont excentrées par rapport aux deuxièmes joints sphériques, de telle sorte que cette synchronisation intervient plus rapidement que dans l'art antérieur, où une telle excentricité n'existait pas. Globalement, le jeu de référence est bien entendu suffisant pour permettre le débattement nécessaire de la tige de liaison, mais il est réduit localement du fait de cette excentricité, et le contact de synchronisation intervient donc plus rapidement, avant que l'angle β ait atteint une valeur importante, ce qui permet de réduire très sensiblement l'effort de synchronisation au moment de la synchronisation.
  • Il est à noter que l'invention s'applique aussi bien aux systèmes de synchronisation utilisant des fentes ayant des faces latérales planes tels que décrits dans GB 1 140 167 , qu'aux systèmes de synchronisation dans lesquels les surfaces d'entraînement sont des surfaces de rotation, comme décrit dans la demande PCT/EP2004001560 . L'invention s'applique de manière générale aux systèmes de synchronisation dont les surfaces d'entraînement ont des contours fermés ou ouverts, des contours purement rotationnels ou présentant localement des méplats.
  • L'excentricité est mesurée entre le centre géométrique d'une première surface d'entraînement et le centre géométrique d'une deuxième surface d'entraînement, sur un même plan perpendiculaire au deuxième axe de rotation, dans une position de référence dans laquelle l'axe de la tige de liaison, qui est une droite passant par les centres des joints sphériques, est parallèle à cet axe. Pour une surface ayant une courbure constante, le centre géométrique est le centre de courbure de la courbe que forme cette surface en coupe perpendiculaire à l'axe normal, passant par le centre du deuxième joint sphérique et parallèle au deuxième axe de rotation. Si l'une ou l'autre des surfaces d'entraînement n'est pas purement une surface de rotation, son centre est alors un centre de symétrie.
  • Avantageusement, les deuxièmes surfaces d'entraînement présentent, par rapport aux deuxièmes joints sphériques, une excentricité tangentielle mesurée, pour chaque deuxième joint sphérique, tangentiellement au cercle décrit par le centre dudit deuxième joint sphérique lors de la rotation du disque de glissement autour du deuxième axe de rotation.
  • La composante tangentielle des efforts de synchronisation est la plus importante. L'excentricité selon l'invention comprend donc de préférence une composante tangentielle.
  • Avantageusement, les deuxièmes surfaces d'entraînement présentent en outre, par rapport aux deuxièmes joints sphériques, une excentricité radiale mesurée, pour chaque joint sphérique, selon un rayon du cercle décrit par le centre dudit joint sphérique lors de la rotation du disque de glissement autour du deuxième axe de rotation.
  • Cette excentricité radiale est également intéressante, en particulier dans le cas où les surfaces d'entraînement sont des surfaces de rotation, du type décrit dans la demande PCT/EP2004001560 .
  • Avantageusement, la première surface d'entraînement et la deuxième surface d'entraînement sont chacune définies au moins en partie par la rotation d'une ligne génératrice autour d'un axe.
  • Selon une première variante, la première et la deuxième surface d'entraînement sont chacune entièrement définies par la rotation d'une ligne génératrice autour d'un axe.
  • Cette première variante correspond au système de synchronisation décrit dans la demande PCT précitée.
  • Selon une deuxième variante, au moins l'une des première et deuxième surfaces d'entraînement présente au moins un méplat.
  • Dans ce cas, avantageusement, la deuxième surface d'entraînement est formée par la paroi d'une fente radiale du disque de glissement ou d'une pièce fixe par rapport à ce disque, cette fente étant ouverte du côté opposé au deuxième axe de rotation et présentant des faces latérales sensiblement parallèles à un rayon passant par le deuxième axe de rotation, tandis que la première surface d'entraînement est formée sur un tenon, solidaire d'une tige de liaison et engagé dans ladite fente.
  • De telles fentes radiales correspondent à ce que divulgue GB 1 140 167 . Il est à noter que le méplat évoqué précédemment est alors formé par les faces latérales de ces fentes. Toutefois, un tel méplat peut également être constaté sur des deuxièmes surfaces d'entraînement de formes différentes, par exemple des surfaces ayant un contour fermé, sensiblement ovale, avec deux méplats diamétralement opposés.
  • Selon un mode de réalisation avantageux, la première surface d'entraînement est formée sur une extension d'une tige de liaison, au-delà du deuxième joint sphérique, tandis que la deuxième surface de liaison est formée dans un renfoncement dans lequel ladite extension est engagée.
  • Dans ce cas, avantageusement, le renfoncement est formé dans la même pièce que la partie femelle du deuxième joint sphérique et présente un axe de symétrie qui est décalé par rapport à l'axe de ladite partie femelle.
  • Le choix, pour les premières et deuxièmes surfaces d'entraînement, d'une extension de la tige de liaison et d'un renfoncement est avantageux en ce qu'il permet un usinage et un montage aisés. Le renfoncement décalé peut être aisément réalisé en positionnant correctement un outil de perçage. La tige de liaison peut quant à elle présenter une symétrie de révolution autour de son axe, passant par les centres des premiers et deuxièmes joints sphériques.
  • Selon un autre mode de réalisation avantageux, la première surface d'entraînement est formée sur une tige de liaison, entre les premier et deuxième joints sphériques, tandis que la deuxième surface d'entraînement est formée dans une alvéole d'une pièce d'entraînement qui est fixe par rapport au disque de glissement, cette alvéole étant traversée par la tige de liaison.
  • L'invention sera bien comprise et ses avantages apparaîtront mieux à la lecture de la description détaillée qui suit, de modes de réalisation représentés à titre d'exemples non limitatifs. La description se réfère aux dessins annexés sur lesquels :
    • la figure 1 est une vue en coupe axiale d'une machine selon l'invention, dans le premier mode de réalisation ;
    • la figure 2 est un agrandissement de la région A de la figure 1 ;
    • la figure 3 montre le disque de glissement, vu selon la flèche III de la figure 1, qui est parallèle au deuxième axe de rotation avec des parties modifiées pour montrer deux modes de réalisation.
    • la figure 4 est un agrandissement de la zone IV de la figure 3, permettant de mieux visualiser l'invention selon le premier mode de réalisation ;
    • la figure 5 est une vue analogue à la figure 4, pour une variante de réalisation ;
    • la figure 6 est une vue analogue à celle de la figure 1, ïllustrant le deuxième mode de réalisation ; et
    • la figure 7 est un agrandissement de la zone VII de la figure 3, permettant de mieux comprendre ce deuxième mode de réalisation.
  • La machine hydraulique de la figure 1 comprend un carter 1, dans lequel est disposé un bloc-cylindres 2 monté rotatif autour d'un premier axe de rotation AC. Le bloc-cylindres comprend une pluralité de cylindres 3 dans lesquels les pistons 4 sont montés mobiles en translation, parallèlement au premier axe de rotation AC. Cette machine comprend également un plateau-came 10 qui supporte un disque de glissement 12 par l'intermédiaire d'un palier axial 14. Le disque de glissement peut ainsi tourner par rapport au plateau-came autour d'un deuxième axe de rotation AS.
  • Des tiges de liaison 16 s'étendent entre le disque de glissement 12 et les pistons 4. Plus précisément, chaque tige de liaison est reliée à un piston par un premier joint sphérique 16A et au disque de glissement par un deuxième joint sphérique 16B. Le premier joint sphérique comprend une partie femelle 15A creusée dans le piston et ouverte du côté du plateau-came, ainsi qu'une tête mâle 15B, solidaire de la tige de liaison 16. De même, le deuxième joint sphérique comprend une partie femelle 17A creusée dans le disque de glissement et une tête mâle 17B solidaire de la tige de liaison 16.
  • La machine comprend un arbre 18 qui, selon que cette machine est une pompe pour un moteur, constitue l'entrée ou la sortie de la machine. Cet arbre est engagé dans un alésage 2A du bloc-cylindres, et est solidaire de la rotation ce dernier grâce à des cannelures 19 complémentaires.
  • La machine comprend des conduits principaux d'alimentation et d'échappement 20A, 20B avec lesquels des conduits de cylindres 3A peuvent être mis en communication.
  • Le deuxième axe de rotation As est incliné par rapport au premier AC d'un angle α. Cet angle peut être réglable pour faire varier la cylindrée de la machine. Sur la figure 1, l'angle d'inclinaison est maximum, l'arbre 18 étant presque au contact de la paroi du perçage traversant 10A du plateau-came 10. Toutefois, l'invention s'applique également à des machines pour lesquelles cet angle d'inclinaison est constant, en particulier des moteurs à cylindrée non variable.
  • Le palier axial 14 est disposé au fond d'un renfoncement 10B que présente le plateau-came, du côté dirigé vers le bloc-cylindres, et le disque de glissement 12 est également disposé dans ce renfoncement, Une pièce de retenue 11 telle qu'un segment permet de retenir les têtes mâles des deuxièmes joints sphériques 16B dans les parties femelles de ces joints sphériques.
  • Si l'on considère que la machine est un moteur, du fait de l'alimentation et de l'échappement par les conduits 20A et 20B, les pistons 4 se déplacent en translation dans les cylindres 3 ce qui, du fait de l'inclinaison du plateau-came provoque la rotation du bloc-cylindres. On comprend qu'au cours de cette rotation les centres CA des premiers joints sphériques se déplacent sur un cylindre à base circulaire, dont le diamètre est D et dont l'axe est le premier axe de rotation AC. Dans le même temps, les centres CB des deuxièmes joints sphériques se déplacent sur un cercle, centré sur le deuxième axe de rotation AS et ayant pour diamètre DS. La projection du cylindre sur lequel se déplacent les centres des premiers joints sphériques sur le plan PS dans lequel se trouvent les centres des deuxièmes joints sphériques donne une ellipse ayant pour grand axe D/cosα et pour petit axe D.
  • La machine comprend un système de synchronisation entre le bloc-cylindres 2 et le disque de glissement 12. Cette synchronisation est assurée par l'intermédiaire des tiges de liaison. Plus précisément, pour chaque tige de liaison, le système de synchronisation comprend une première surface d'entraînement formée sur une extension 22A d'une tige de liaison 16, au delà du deuxième joint sphérique 16B et une deuxième surface d'entraînement formée dans un renfoncement 22B dans lequel cette extension ou tenon 22A est engagée.
  • De manière générale, pour chaque tige de liaison, la première surface d'entraînement est fixe par rapport à la tige de liaison, tandis que la deuxième surface d'entraînement avec laquelle elle coopère est fixe par rapport au disque de glissement. Ainsi, les premières et deuxièmes surfaces de liaison peuvent, comme en l'espèce, être formées en une seule pièce avec, respectivement, une tige de liaison et le disque de glissement ou bien être solidaires de ces pièces.
  • Comme on le voit mieux sur la figure 2, un jeu j est ménagé entre les premières et deuxièmes surfaces d'entraînement. Ce jeu est calculé pour permettre le des tiges de liaison autour des centres des premiers joints sphériques lors des va-et-vient des pistons dans les cylindres.
  • La figure 3 montre la face frontale 12A du disque de glissement, qui est tournée vers le bloc-cylindres 2. Cette vue est prise perpendiculairement au deuxième axe de rotation AS. Sur cette vue, on a représenté les renfoncements 17A formant les parties femelles des deuxièmes joints sphériques, ainsi que les renfoncements 22B dans lesquels les extensions 22A des tiges de liaison sont engagées. Dans la partie IV de cette figure 3 agrandie sur la figure 4, qui correspond au premier mode de réalisation, on a indiqué également en trait interrompu la position de référence d'une telle extension 22A lorsque l'axe de la tige de liaison, est confondu avec l'axe normal AN qui passe par le centre du deuxième joint sphérique considéré et est parallèle au deuxième axe de rotation AS. Pour l'un des deuxièmes joints sphériques, on a indiqué cet axe normal AN, ainsi que le plan tangentiel PT et le plan radial PR, qui est le plan radial normal pour la tige de liaison correspondant à ce deuxième joint sphérique. Pour un deuxième joint sphérique considéré, le plan tangentiel PT est celui qui est tangentiel au cercle décrit par le centre CB de ce deuxième joint sphérique au cours de la rotation du disque de glissement autour de l'axe AS, tandis que le plan radial PR est le plan qui contient le deuxième axe de rotation AS et une droite radiale passant par cet axe AS et le centre CB du deuxième joint sphérique.
  • La figure 4 montre que la deuxième surface d'entraînement, formée sur le renfoncement 22B du disque de glissement est excentrée par rapport au centre CB du deuxième joint sphérique et de l'extension 22A de la tige de liaison correspondante. Sur cette figure, on a représenté la partie femelle 17A du deuxième joint sphérique, avec son centre CB par lequel passe l'axe normal AN. On a également représenté sur la figure 4 la position de référence de l'extension 22A de la tige de liaison qui coopère avec le renfoncement 17B. L'extension 22A est de section circulaire centrée sur l'axe de la tige de liaison. Ainsi, sur la figure 4, cette extension se matérialise par un cercle centré sur le centre CB. Le renfoncement de synchronisation 22B dans lequel est engagée l'extension 22A est également représenté par un cercle, mais celui-ci est excentré. En effet, le centre AE du cercle formant la base du renfoncement cylindrique 22B est décalé par rapport au Ce selon une excentricité tangentielle eT et une excentricité radiale eR.
  • L'excentricité tangentielle est mesurée tangentiellement au cercle C décrit par le centre CB du deuxième joint sphérique lors de la rotation du disque de glissement autour du deuxième axe de rotation AS.
  • L'excentricité radiale ER est mesurée selon un rayon RA du cercle C.
  • Sur la figure 4, l'extension 22A est dans sa positon de référence définie dans laquelle son axe est parallèle au deuxième axe de rotation, et l'écart entre les cercles 22A est 22B représente le « jeu de référence » entre la première et la deuxième surface d'entraînement. On voit que ce jeu de référence est réduit dans la zone Z où ces surfaces entrent en contact au moment de la synchronisation dans le sens préférentiel de rotation, c'est-à-dire lorsque le disque de glissement tourne dans le sens R sous l'effet de la rotation du bloc-cylindres dans le sens correspondant. Dans le cas général, au début d'une telle rotation, les tiges de liaison ont tendance à s'incliner vers l'avant de telle sorte que la zone Z est située vers l'arrière des extensions 22A comme représenté sur les figures 3 et 4.
  • Sur la figure 4, le renfoncement 22B a une forme cylindrique à base circulaire. Sur la variante de la figure 5, on a donné au renfoncement 22'B une forme elliptique. Le centre de cette ellipse indiqué par l'axe AE, lequel centre est formé à l'intersection du grand axe et du petit axe de l'ellipse, est également excentré par rapport au centre CB du deuxième joint sphérique 17A. On mesure les excentricités radiale et tangentielle de la même façon qu'indiqué précédemment.
  • La figure 6 montre un deuxième mode de réalisation. Les éléments analogues à ceux de la figure 1 sont désignés par les mêmes références. Sur la figure 6, la deuxième surface d'entraînement est formée par la paroi d'une fente radiale du disque de glissement (ou d'une pièce fixe par rapport à ce disque) et la première surface d'entraînement est formée sur un tenon, solidaire d'une tige de liaison et engagé dans cette fente. La première surface d'entraînement pour une tige de liaison est formée sur cette tige, entre les premiers et deuxièmes joints sphériques, 16A et 16B, tandis que la deuxième surface d'entraînement est formée dans une alvéole d'une pièce d'entraînement qui est fixe par rapport au disque de glissement.
  • Plus précisément, la première surface d'entraînement 122A est formée par la surface cylindrique à base circulaire d'un tronçon 122A de la tige de liaison formant un tenon, entre les deux joints sphériques. Le disque de glissement présente une extension centrale 13, qui s'étend, à partir de la face frontale 12A de ce disque, vers le bloc-cylindres 2. Cette extension centrale porte une pluralité de doigts creux 123, un pour chaque tige de liaison, chacun de ces doigts ménageant une alvéole 122B qui est traversée par la tige de liaison.
  • Ainsi, les alvéoles sont en l'espèce formées en seule pièce avec le disque de glissement. Il convient toutefois de relever que l'extension 13 pourrait être une pièce rapportée et fixée sur ce disque.
  • Le deuxième mode de réalisation est illustré sur le détail VII de la figure 3 et sur la vue agrandie de la figure 7, qui est une coupe A-A de la figure 6. On constate ainsi que l'alvéole 122B a la forme d'une fente radiale ouverte du côté de la périphérie externe du disque de glissement, c'est-à-dire du côté opposé au deuxième axe de rotation. Ainsi, la deuxième surface d'entraînement 122B est formée par la paroi d'une telle fente radiale. Cette fente présente deux faces latérales respectivement 123B et 123C qui sont sensiblement parallèles à un rayon passant par le deuxième axe de rotation AS. Le fond 123A de la fente 122B a la forme d'une portion de cylindre. Ainsi, en coupe A-A, il est matérialisé par un demi cercle.
  • Sur cette figure 7, on a indiqué la position du centre CB du deuxième joint sphérique 17A. Cette figure illustre la position de référence dans laquelle la tige de liaison 16 qui porte la première surface d'entraînement 122A a son axe qui coïncide avec l'axe normal AN passant par le centre CB.
  • La fente 122B présente quant à elle un plan de symétrie PY, qui est sensiblement parallèle à un rayon passant par le deuxième axe de rotation As et qui est décalé par rapport à un rayon RD du disque de glissement 12 passant par le centre CB de la partie femelle 17A du deuxième joint sphérique reliant la tige de liaison considérée au disque de glissement. Ce plan PY est décalé par rapport à l'axe AN de la partie femelle 17A du joint sphérique. Comme on le voit, ce décalage est tel que le jeu de référence entre le tenon 122A et la paroi de la fente 122B qui forme la deuxième surface d'entraînement est réduit dans la zone Z où la synchronisation s'opère lors de la rotation du bloc cylindre dans le sens R préférentiel.
  • En l'espèce le fond de la fente 122B étant une portion de cylindre, on matérialise le centre de courbure de ce fond par l'axe AE, et on mesure par rapport à ce centre une excentricité radiale et une excentricité tangentielle indiquées sur la figure 7.
  • La variante dans laquelle la deuxième surface d'entraînement est formée par une fente radiale ouverte du côté opposé au deuxième axe de rotation est utilisable dans le cadre du deuxième mode de réalisation comme représenté, mais également lorsque, de manière générale, la première surface d'entraînement est formée sur un tenon, solidaire d'une tige de liaison et engagé dans cette fente. Ce tenon peut être disposé entre les joints sphériques comme sur les figures 6 et 7, ou bien être réalisé sous la forme d'une extension comme dans le premier mode de réalisation, auquel cas, le renfoncement 10B du plateau-came et le disque de glissement 12 pourraient être ouverts radialement du côté opposé au deuxième axe de rotation AS.
  • Avantageusement la première et la deuxième surface d'entraînement sont chacune définies au moins en partie par la rotation d'une ligne génératrice autour d'un axe. C'est par exemple le cas pour le fond 123A de la fente 122B sur la figure 7. Sur cette même figure la première surface d'entraînement est entièrement formée par la rotation d'une ligne génératrice autour de l'axe de la tige de liaison.
  • Sur la figure 4, les deux surfaces d'entraînement sont chacune entièrement définies par la rotation d'une ligne génératrice autour d'un axe, ce que matérialisent les cercles représentés sur la figure 4.
  • En variante, au moins l'une des premières et deuxièmes surfaces d'entraînement présente en section perpendiculaire au deuxième axe de rotation AS la forme d'une courbe dont la courbure varie le long de cette courbe. C'est par exemple le cas pour la deuxième surface d'entraînement sur la figure 5, matérialisé par une ellipse 22'B.
  • Comme indiqué, cette courbe peut encore être modifiée pour présenter au moins un méplat.
  • Sur les figures 6 et 7, la fente sur la paroi de laquelle est formée la deuxième surface d'entraînement présente deux méplats, formés par les deux côtés de cette fente 123B, 123C. Sur les figures 1 à 5, les premières et deuxièmes surfaces d'entraînement présentent un contour fermé. Sur les figures 6 et 7, seule l'une de ces surfaces, la deuxième surface d'entraînement, présente un tel contour fermé, tandis que l'autre présente un contour ouvert.
  • L'invention s'applique à un moteur ou bien à une pompe à pistons axiaux, ayant un sens préférentiel de rotation. Ce moteur ou cette pompe peut avoir un seul sens de rotation, en particulier lorsqu'il s'agit de la pompe d'un circuit ouvert ou d'un moteur ayant un seul sens de rotation. Elle peut également avoir un sens de rotation inverse qui est utilisé de manière exceptionnelle, par exemple s'agissant d'un moteur destiné à l'entraînement en translation d'un véhicule, la marche arrière.
  • Par exemple, pour une machine ayant neuf ensembles piston/cylindre régulièrement répartis, et ayant une cylindrée de 70 cm3, réalisée selon le premier mode de réalisation des figures 1 à 4, on a constaté qu'une excentricité tangentielle comprise entre 0,05 et 0,2 degrés, alors que le rapport entre le diamètre des extensions 22A et celui des renfoncements 22B est de 0,921, permet de diviser par environ 5 les efforts tangentiels de synchronisation.

Claims (15)

  1. Machine hydraulique à pistons axiaux, telle qu'un moteur ou une pompe, comprenant :
    - un bloc-cylindres (2) monté rotatif dans un carter (1) autour d'un premier axe de rotation dans un sens préférentiel de rotation, le bloc-cylindres comprenant une pluralité de cylindres (3) dans lesquels des pistons (4) sont mobiles en translation parallèlement au premier axe de rotation,
    - un plateau-came (10) supportant un disque de glissement (12) apte à être entraîné, par rapport au plateau came, en rotation autour d'un deuxième axe de rotation (AS), incliné par rapport au premier axe de rotation,
    - des tiges de liaison (16) entre le disque de glissement et les pistons, chaque tige de liaison étant reliée, d'une part, à un piston (4) par un premier joint sphérique (16A) et, d'autre part, au disque de glissement par un deuxième joint sphérique (16B),
    - un système de synchronisation entre le bloc-cylindres (2) et le disque de glissement (12) qui, pour chaque tige de liaison (16), comprend une première surface d'entraînement (22A ; 122A) fixe par rapport à la tige de liaison (16) apte à entrer en contact avec une deuxième surface d'entraînement (22B ; 122B) fixe par rapport au disque de glissement (12), un jeu (j) étant ménagé entre lesdites première et deuxième surfaces d'entraînement,
    caractérisée en ce que les deuxièmes surfaces d'entraînement (22B ; 122B) sont excentrées (eR, eT) par rapport aux deuxièmes joints sphériques (16B) de telle sorte qu'un jeu de référence entre une deuxième surface d'entraînement (22B ; 122B) et une première surface d'entraînement (22A ; 122A) soit réduit dans la zone (Z) où lesdites surfaces entrent en contact au moment de la synchronisation dans le sens préférentiel de rotation (R).
  2. Machine selon la revendication 1, caractérisée en ce que les deuxièmes surfaces d'entraînement (22B ; 122B) présentent, par rapport aux deuxièmes joints sphériques (16B), une excentricité tangentielle (eT) mesurée, pour chaque deuxième joint sphérique, tangentiellement au cercle (C) décrit par le centre dudit deuxième joint sphérique lors de la rotation du disque de glissement (12) autour du deuxième axe de rotation (As).
  3. Machine selon la revendication 2, caractérisée en ce que les deuxièmes surfaces d'entraînement (22B ; 122B) présentent en outre, par rapport aux deuxième joints sphériques (16B), une excentricité radiale (eR) mesurée, pour chaque deuxième joint sphérique (16B), selon un rayon (RA) du cercle (C) décrit par le centre dudit deuxième joint sphérique lors de la rotation du disque de glissement (12) autour du deuxième axe de rotation (AS).
  4. Machine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la première surface d'entraînement (22A ; 122A) et la deuxième surface d'entraînement (22B ; 122B) sont chacune définies au moins en partie par la rotation d'une ligne génératrice autour d'un axe.
  5. Machine selon la revendication 4, caractérisée en ce que la première et la deuxième surface d'entraînement (22A, 22B) sont chacune entièrement définies par la rotation d'une ligne génératrice autour d'un axe.
  6. Machine selon l'une quelconque des revendications 1 à 4, caractérisée en ce que au moins l'une des première et deuxième surfaces d'entraînement (22'B) présente en section perpendiculaire au deuxième axe de rotation (AS) la forme d'une courbe dont la courbure varie le long de cette courbe.
  7. Machine selon l'une quelconque des revendications 1 à 4, caractérisée en ce que au moins l'une des première et deuxième surfaces d'entraînement (122B) présente au moins un méplat (123B, 123C).
  8. Machine selon l'une quelconque des revendications 1 à 7, caractérisée en ce que au moins l'une des première et deuxième surfaces d'entraînement (22A, 22B ; 122A) présente un contour fermé.
  9. Machine selon l'une quelconque des revendications 1 à 7, caractérisée en ce que au moins l'une des première et deuxième surfaces d'entraînement (122B) présente un contour ouvert.
  10. Machine selon la revendication 9, caractérisée en ce que la deuxième surface d'entraînement (122B) est formée par la paroi d'une fente radiale du disque de glissement (12) ou d'une pièce fixe par rapport à ce disque, cette fente étant ouverte du côté opposé au deuxième axe de rotation (AS) et présentant des faces latérales (123B, 123C) sensiblement parallèles à un rayon passant par le deuxième axe de rotation, et en ce que la première surface d'entraînement (122A) est formée sur un tenon, solidaire d'une tige de liaison (16) et engagé dans ladite fente (122B).
  11. Machine selon la revendication 10, caractérisée en ce que la fente présente un plan de symétrie (PY), sensiblement parallèle à un rayon passant par le deuxième axe de rotation (AS) et décalé par rapport à un rayon (RD) du disque (12) de glissement passant par le centre (CB) de la partie femelle (17A) du deuxième joint sphérique (16B) reliant la tige de liaison (16) au disque de glissement (12).
  12. Machine selon l'une quelconque des revendications 1 à 11, caractérisée en ce que la première surface d'entraînement est formée sur une extension (22A) d'une tige de liaison (16), au-delà du deuxième joint sphérique (16B), tandis que la deuxième surface d'entraînement est formée dans un renfoncement (22B) dans lequel ladite extension est engagée.
  13. Machine selon la revendication 12, caractérisée en ce que le renfoncement (22B) est formé dans la même pièce (12) que la partie femelle (17A) du deuxième joint sphérique (16B) et présente un axe de symétrie (AE) qui est décalé par rapport à l'axe (AN) de ladite partie femelle.
  14. Machine selon l'une quelconque des revendications 1 à 11, caractérisée en ce que la première surface d'entraînement (122A) est formée sur une tige de liaison (16), entre les premier et deuxième joints sphériques, tandis que la deuxième surface d'entraînement est formée dans une alvéole (122B) d'une pièce d'entraînement qui est fixe par rapport au disque de glissement (12), cette alvéole étant traversée par la tige de liaison (16).
  15. Machine selon la revendication 14, caractérisée en ce que l'alvéole (122B) coopérant avec la première surface d'entraînement (122A) d'une tige de liaison (16) présente un axe de symétrie (PY) qui est décalé par rapport à l'axe de ladite partie femelle (AN) du deuxième joint sphérique par lequel ladite tige de liaison (16) est reliée au disque de glissement (12).
EP06112267.7A 2005-04-05 2006-04-05 Machine hydraulique à pistons axiaux avec système de synchronisation Active EP1712787B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0503345A FR2883918B1 (fr) 2005-04-05 2005-04-05 Machine hydraulique a pistons axiaux avec systeme de synchronisation

Publications (2)

Publication Number Publication Date
EP1712787A1 EP1712787A1 (fr) 2006-10-18
EP1712787B1 true EP1712787B1 (fr) 2015-07-22

Family

ID=35429603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06112267.7A Active EP1712787B1 (fr) 2005-04-05 2006-04-05 Machine hydraulique à pistons axiaux avec système de synchronisation

Country Status (3)

Country Link
US (1) US7340988B2 (fr)
EP (1) EP1712787B1 (fr)
FR (1) FR2883918B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104595141B (zh) * 2015-01-10 2016-06-08 浙江大学 自定心抗倾覆分体式回程盘

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191021424A (en) * 1910-09-14 1911-05-25 Charles Richardson Pratt Improvements in Rotary Piston Pumps or Motors.
GB191121424A (en) 1911-09-28 1912-08-08 Ernest Schultz An Improved Milking Machine.
CH206998A (de) * 1937-12-08 1939-09-15 Askania Werke Ag Hubkolbengetriebe.
US3366968A (en) 1966-09-09 1968-01-30 Sundstrand Corp Fluid translating device
WO2005078238A1 (fr) * 2004-02-17 2005-08-25 Poclain Hydraulics Machine a pistons axiaux et a plateau oscillant

Also Published As

Publication number Publication date
FR2883918B1 (fr) 2007-07-06
US20060218786A1 (en) 2006-10-05
US7340988B2 (en) 2008-03-11
FR2883918A1 (fr) 2006-10-06
EP1712787A1 (fr) 2006-10-18

Similar Documents

Publication Publication Date Title
FR2541399A1 (fr) Joint homocinetique
EP0995034B1 (fr) Dispositif de frein de la rotation relative de deux elements
FR2651836A1 (fr) Mecanisme, moteur ou pompe, a pistons supportant des rouleaux d'appui desdits pistons sur une came.
EP0060822A1 (fr) Moteur à mouvement linéaire et plateau oscillant pour un tel moteur
FR2511432A1 (fr) Piston de moteur a surfaces d'appui distinctes
FR2551375A1 (fr) Procede de fabrication de pistons, et piston pour moteur a combustion interne
FR2658869A1 (fr) Machine a pistons radiaux et son procede de fabrication.
EP1712787B1 (fr) Machine hydraulique à pistons axiaux avec système de synchronisation
EP3317537B1 (fr) Machine hydraulique a pistons radiaux a distribution en harmonique
EP1466093B1 (fr) Moteur hydraulique a pistons radiaux
EP0429326A1 (fr) Joint de transmission articulé télescopique, notamment pour l'automobile
EP1941158B1 (fr) Moteur hydraulique a pistons radiaux avec refroidissement du bloc-cylindres
WO2001006142A1 (fr) Joint de transmission
EP1573198B1 (fr) Pompe ou moteur hydraulique
WO1993017224A1 (fr) Machine volumetrique a pistons louvoyants, en particulier moteur a quatre temps
FR2773508A1 (fr) Dispositif de finition de surfaces peripheriques de disques a came et de cames d'un arbre a cames
FR2943391A1 (fr) Machine volumetrique hydrostatique, notamment machine a pistons axiaux
WO2005073578A1 (fr) Joint de transmission homocinetique
FR2834011A1 (fr) Moteur hydraulique a pistons radiaux
EP1024914B1 (fr) Machine de roulage pour piece annulaire a former
FR2659882A1 (fr) Dispositif pour l'usinage de logements dans des cages de roulement.
FR2903153A1 (fr) Mecanisme hydraulique compact a pistons radiaux
FR3020415A1 (fr) Machine hydraulique a pistons radiaux comprenant un carter non symetrique de revolution
FR3050773A1 (fr) Machine hydraulique debrayable et vehicule equipe d'une telle machine
EP0597754B1 (fr) Machine à piston rotatif et procédé d'assemblage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070416

AKX Designation fees paid

Designated state(s): DE FR IT SK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006046033

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006046033

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006046033

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230419

Year of fee payment: 18