EP1709221A1 - Techniques d'assemblage d'elements de tension pour ascenseur - Google Patents

Techniques d'assemblage d'elements de tension pour ascenseur

Info

Publication number
EP1709221A1
EP1709221A1 EP03800244A EP03800244A EP1709221A1 EP 1709221 A1 EP1709221 A1 EP 1709221A1 EP 03800244 A EP03800244 A EP 03800244A EP 03800244 A EP03800244 A EP 03800244A EP 1709221 A1 EP1709221 A1 EP 1709221A1
Authority
EP
European Patent Office
Prior art keywords
cord
broken
wire end
tension member
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03800244A
Other languages
German (de)
English (en)
Other versions
EP1709221A4 (fr
EP1709221B1 (fr
Inventor
Hugh J. O'donnell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otis Elevator Co
Original Assignee
Otis Elevator Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otis Elevator Co filed Critical Otis Elevator Co
Publication of EP1709221A1 publication Critical patent/EP1709221A1/fr
Publication of EP1709221A4 publication Critical patent/EP1709221A4/fr
Application granted granted Critical
Publication of EP1709221B1 publication Critical patent/EP1709221B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/08Alarms or stop motions responsive to exhaustion or breakage of filamentary material fed from supply reels or bobbins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F7/00Twisting wire; Twisting wire together
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07FCOIN-FREED OR LIKE APPARATUS
    • G07F19/00Complete banking systems; Coded card-freed arrangements adapted for dispensing or receiving monies or the like and posting such transactions to existing accounts, e.g. automatic teller machines
    • G07F19/20Automatic teller machines [ATMs]
    • G07F19/201Accessories of ATMs
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2064Polyurethane resins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2301/00Controls
    • D07B2301/30Signals indicating failure or excessive conditions, e.g. overheating
    • D07B2301/307Breakage of wire or strand or rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2007Elevators

Definitions

  • This invention generally relates to elevator tension members such as those used in belts or ropes. More particularly, this invention relates to handling and arranging tension member components within an assembly.
  • Elevator systems often include a car and counterweight supported by a rope or belt.
  • Conventional machines move the rope or belt to cause the desired movement of the car between levels within a building, for example.
  • steel ropes were used.
  • flat belt technology has been introduced.
  • the flat belts provide traction and bending fatigue resistance advantages.
  • One example flat belt arrangement includes a plurality of steel tension members encased in a polyurethane jacket.
  • the steel tension members may include a plurality of wires that are wound together to form cords, which serve as the tension members. It is possible for one or more wires to break at different times during the assembly process.
  • a broken wire end that becomes entangled in the assembly machinery during the winding process or later when the jacket is applied to the tension members can cause a problem such as damage to the machinery or at least significantly interrupting production. Similar problems exist in jacketed round rope manufacturing. There is a need for techniques to manage such broken wires. If the stock were simply cut at the point of each break, the length of stock would be randomly and undesirably limited. Most elevator installations require lengthy, uninterrupted tension member.
  • One proposed arrangement has been to cut an entire strand or cord (i.e., all of the constituent wires) at the point of the wire break and then to weld together the two cut ends. This proposal provides significant shortcomings.
  • the breaking strength and bending fatigue resistance required for tension members in an elevator belt are significantly compromised when the cut-and-weld technique is employed. In some circumstances, the service life based on bending fatigue is reduced by more than 50%.
  • This invention provides alternatives for handling situations where one or more wires are broken during an elevator tension member or belt or rope assembly process.
  • this invention is a technique for effectively managing broken wires during an elevator tension member or rope or belt assembly process.
  • One example method of making an elevator tension member includes arranging a plurality of wires into at least one strand. A plurality of strands are then arranged into at least one cord. The method includes determining if there is at least one broken wire end protruding from at least one of the strands or at least one of the cords while performing the corresponding arranging steps. If there is at least one broken wire, the ends of the wire are manipulated to prevent them from protruding away from the corresponding strand or cord. In one example, any detected broken wire ends are inserted into the corresponding strand or cord.
  • the broken ends are twisted around at least one adjacent' unbroken wire. In another example, the broken ends are weaved among unbroken wires. In another example, the broken wire ends are secured against an outer surface of the corresponding strand or cord. In one example, the broken wire ends are welded or brazed in place. In another example, the broken wire ends are adhesively secured in place.
  • Figure 1 A schematically shows a portion of an elevator belt assembly.
  • Figure IB schematically shows an end of a jacketed rope assembly.
  • Figure 2 schematically illustrates a belt assembly process.
  • Figure 3A and 3B schematically illustrate, in somewhat more detail, the belt assembly process, highlighting a situation where one or more broken wires exist.
  • Figure 4 is a schematic illustration of method of making a belt assembly designed according to an embodiment of this invention.
  • Figure 5 schematically illustrates an example tool for performing a method of this invention.
  • Figure 6 schematically illustrates a preferred feature of the example tool also shown in Figure 5.
  • Figure 1 A schematically shows a portion of an elevator belt 20.
  • a plurality of tension members 22 are encased in a polyurethane jacket 24.
  • the tension members 22 are cords that comprise seven strands, which each comprise seven individual wires. The wires are wound in a known manner to form strands and the strands are wound in a known manner to form the cords.
  • there are twelve tension members 22 i.e., twelve cords).
  • Figure IB shows an end of a jacketed rope 25 having a plurality of tension members 26 made much like the tension members 22 of the example in Figure 1A.
  • a polyurethane jacket 28 surrounds the tension members 26, which are wound together as a rope.
  • Figure 2 schematically illustrates an assembly process 30 where wire stock 32 of individual wires is provided to a cord winding machine 34 that first winds a plurality of wires into individual strands and then winds a plurality of strands into a cord.
  • the completed cords are placed on spools and eventually provided to a jacket application machine 36 where the cords are appropriately positioned and placed within the jacket 24 or 28 to form the belt or rope eventually sent to appropriate storage 38.
  • Known techniques can be used for each of the stages schematically shown in Figure 2.
  • a plurality of wires 40 from the wire stock 32 are twisted in a known manner to establish a strand 42. In this example, seven individual wires 40 are within each individual strand 42.
  • one of the wires 40 has a broken section with two ends 44 protruding away from the exterior of the strand 42.
  • This condition is detected by a detector 50, which can be a known device as used in high speed winding machinery, for example.
  • the winding machinery preferably is shut down so that the condition of the broken wire can be addressed. If the winding process continued, the broken wire would likely become entangled in the machinery causing significant problems and machine down time.
  • the broken ends 44 shown in Figure 3A are recaptured as part of the strand 42 in a manner that the broken ends do not protrude away from the strand such that there is any risk of entanglement with the belt manufacturing machinery.
  • the broken ends 44 are manipulated manually and inserted in between other ones of the wires 40 in the area of the broken ends.
  • Other example techniques include weaving the broken portions of the wires within the strand or twisting them around at least one adjacent unbroken wire. By tucking in the broken ends, they are effectively captured within the strand in a manner that they will not protrude out and cause difficulties for the machinery.
  • the broken wire ends are manipulated and placed against the strand. An adhesive is applied to the strands 42 in the vicinity of the broken ends 44 such that the broken ends are secured in position as part of the strand and they do not protrude outward.
  • the ends 44 are welded or brazed in place against adjacent wires at the appropriate location along the strand.
  • brazing or welding material preferably is kept from protruding in a manner that may interfere with the manufacturing process.
  • Another example includes welding or brazing the broken ends of a wire together.
  • the portion of a wire that protrudes outward is cut off so that the remaining portions are flush with the rest of the strand. Once the winding machinery stops upon detection of a broken wire, the tension on the wires is relaxed so that manual manipulation of the broken wire ends 44 is possible to achieve the recapture of the broken ends using a chosen technique.
  • Figure 3B schematically illustrates a later portion of the process where the individual strands 42 are wound together to form a cord 46.
  • another detector 52 inspects the cords for broken wires protruding away from the exterior of the cord, for example.
  • broken wire ends 54 are detected and the machinery is stopped so that the broken wire ends can be recaptured into the cord. Any one of the example techniques described above are used in this stage of the process to again ensure no entanglements during later processing of the cords to form the elevator belt 20 or rope 25.
  • the detector 52 comprises known detecting components. Once a cord has passed inspection by the detector 52, it can be provided to a jacket application machine including an extruder, for example, for applying the polyurethane jacket 24 or 28 to establish the belt or rope configuration.
  • Figure 4 schematically illustrates a method of making one example belt assembly 20.
  • a cord supply 50 provides the cords 46.
  • the cord supply 50 comprises a plurality of spools containing the wound steel wire strands that form the cords 46.
  • the cords may be formed at the same facility as where the method of applying the jacket 24 is accomplished or the cords may be preformed and prespooled, depending on the needs of a particular situation.
  • a positioning device 52 aligns the cords 46 in a desired alignment so that the cords will extend parallel to a longitudinal axis of the belt assembly 20.
  • a tensioning device 54 controls an amount of tension on the cords 46 during the jacket application process.
  • the tension station 54 preferably includes a suitably programmed controller that monitors and controls the tension within a desired range. More particularly, the tension on each individual cord preferably is maintained at a desired level throughout the process of making the belt assembly so that the belt configuration or geometry is controlled as much as possible. The tension on each individual cord may be different with respect to the other cords. In one example, a base tension of approximately 50 Newtons is placed on each cord and a sample belt assembly is made. The sample belt assembly preferably then is inspected to make sure that the geometry is as desired.
  • the tension on one or more individual cords is adjusted to address the undesirable belt geometry variation.
  • the tension on each individual cord preferably is significant enough so that the cord horizontal position remains the same throughout the jacket application process. Because this example includes eliminating cord supports in the jacket application portion of the manufacturing process, the tensions used during the example process may need to be higher than those that were used in supported cord techniques.
  • tension feedback devices (as known in the art) preferably are incorporated into the manufacturing equipment so that the tension on each individual cord can be monitored and adjusted as needed throughout the entire assembly process.
  • the jacket application station 56 preferably includes a suitable mold or other device for applying the jacket material onto the cords 46.
  • a supply 58 provides the chosen material to the jacket application station 56 in a conventional manner.
  • the jacket material may be pressure molded, extruded or otherwise applied to the cords 46.
  • rollers 59 are included as part of or immediately after the jacket application station 56.
  • the rollers 59 preferably are Teflon coated.
  • the rollers 59 provide a surface treatment to the sheave-contacting surfaces of the belt assembly immediately after the application of the jacket material. In this example, the rollers provide smooth, flat, parallel belt surfaces.
  • the rollers 59 may provide an embossed pattern on the jacket surfaces, for example.
  • the rollers 59 preferably are included because the elimination of the cord supports as used in conventional equipment introduces a need for additional dimensional control.
  • the rollers 59 provide such additional dimensional control.
  • the rollers 59 are positioned on opposite sides of the belt assembly (although only one roller is visible in the illustration of Figure 4).
  • the rollers 59 preferably extend across the entire width of the belt assembly for best dimensional control of the belt surfaces.
  • the rollers 59 are freewheeling and move responsive to movement of the belt assembly as it passes through the rollers.
  • the rollers are motorized so that they move at a controlled rate.
  • the formed belt assembly 20 is then processed at a finishing station 60.
  • the finishing station 60 includes a forming device, a dimensional inspection device and a curing cold water bath where the jacket material and the cords within the material are cooled to a suitable temperature.
  • the inspection device such as a known laser triangulation measuring device, determines whether the desired geometry was achieved.
  • the resulting belt assembly 40 preferably is then stored at 62, for example on spools for shipment to various locations for installation in elevator systems.
  • the belt assembly 20 may be precut to specific lengths or may be provided in larger quantities where a technician at the installation selects the appropriate amount of belt material for a particular application.
  • Figure 5 schematically illustrates an example molding device 70 for applying the jacket 24 to the cords 46.
  • the example forming device 70 of Figure 5 includes a mold housing 72 having an input side 74.
  • a cord positioning device 76 preferably is situated at the input side 74.
  • the cord positioning device 76 includes a plurality of openings 78 through which the cords 46 are fed into the device 70.
  • the openings 78 preferably are accurately machined or otherwise formed so that a close tolerance is kept between the exterior of the cords 46 and the interior of the opening 78.
  • the mold housing 72 includes one or more openings 79 through which the jacket material is applied to the cords using pressure injection.
  • the molding device 70 includes an opening 80 at an output side 82 of the mold housing 72.
  • the opening 80 preferably is shaped to control the exterior shape and surfaces on the belt assembly 20.
  • the opening 80 of the molding device 70 in the example of Figure 6 has a non-linear configuration along the portions of the opening that form the sheave- contacting belt surfaces. The non-linear configuration provides for differences in the thickness of the belt assembly as seen across the width.
  • the portions of the belt assembly corresponding to the locations of the cords 46 have a reduced thickness compared to the portions of the belt assembly where no cords are present.
  • the varying, non-linear configuration of the surfaces 86 and 88 are designed to accommodate the variation in the amount of shrinkage across the width of the belt that will occur during the finishing and curing of the belt assembly. It is believed that the amount of shrinkage corresponds to the cross section of urethane jacket material. In the areas where the cords 46 are present, there will be less shrinkage because of the presence of the cord material, which in some examples is steel. The portions of the belt assembly where cords are not present has a temporary greater thickness because there will be more shrinkage at those points of the assembly.
  • the type of configuration illustrated in Figure 6 is unique to the example approach to manufacturing a belt assembly.
  • mold wheels were included as part of the jacket application station. Such mold wheels operated to compress the jacket material into more of a flat configuration as part of the initial cooling process. Therefore, the non-linear, varying thickness approach, which is part of one example implementation of this invention, addresses the varying amounts of shrinkage that occur during a curing process in a unique manner. In one example, there is approximately a .05 to .10 millimeter variation in the thickness of the jacket provided by the opening 80 of the molding device illustrated in Figure 6.
  • the length of belt or rope stock and cord stock is significantly enhanced. If the sections of strand or cord were simply cut each time a wire was broken, there would be an undesirable amount of material scrap and many potentially unuseful lengths for most elevator installations.
  • the length of belt without any cut-and- weld joints in the tension members can be on the order of 13 km.
  • the example techniques make the tension member manufacturing process far more economical and efficient.
  • the example embodiments may include one or more broken wires at some point.
  • one broken wire presents approximately a 2% loss of continuous wire tension- bearing capability. This minor difference does not appreciably affect strength because so many of the wires are intact and there are a plurality of cords, some or a majority of which may have no wire breaks at all.
  • broken wires are manageable in a manner that increases manufacturing efficiency and the economies associated with making and installing elevator belts and ropes.
  • the preceding description is exemplary rather than limiting in nature.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Ropes Or Cables (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
EP03800244A 2003-12-22 2003-12-22 Techniques d'assemblage d'elements de tension pour ascenseur Expired - Lifetime EP1709221B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/041387 WO2005068696A1 (fr) 2003-12-22 2003-12-22 Techniques d'assemblage d'elements de tension pour ascenseur

Publications (3)

Publication Number Publication Date
EP1709221A1 true EP1709221A1 (fr) 2006-10-11
EP1709221A4 EP1709221A4 (fr) 2009-02-25
EP1709221B1 EP1709221B1 (fr) 2010-10-20

Family

ID=34793602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03800244A Expired - Lifetime EP1709221B1 (fr) 2003-12-22 2003-12-22 Techniques d'assemblage d'elements de tension pour ascenseur

Country Status (10)

Country Link
US (1) US20070277496A1 (fr)
EP (1) EP1709221B1 (fr)
JP (1) JP2007524549A (fr)
CN (1) CN1886538B (fr)
AT (1) ATE485409T1 (fr)
AU (1) AU2003299979A1 (fr)
DE (1) DE60334647D1 (fr)
ES (1) ES2350447T3 (fr)
HK (1) HK1099568A1 (fr)
WO (1) WO2005068696A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529394A (ja) * 2004-03-15 2007-10-25 オーチス エレベータ カンパニー 少なくとも一つの外面が粗面化されたジャケットを有するエレベーターの耐荷重部材
EP2569470B1 (fr) 2010-05-13 2015-08-26 Otis Elevator Company Procédé de fabrication d'un tissu tissé ayant un espacement désiré entre des éléments de tension pour un ascenseur
RU2553967C2 (ru) 2011-04-14 2015-06-20 Отис Элевэйтор Компани Канат или ремень с покрытием для подъемных систем
US20180222721A1 (en) * 2017-02-06 2018-08-09 Otis Elevator Company Elevator tension member
CN110539572B (zh) * 2018-05-28 2021-07-30 保定钞票纸业有限公司 具有机读性能和/或机读编码功能的防伪安全带及防伪纸
CN113123151A (zh) * 2021-04-26 2021-07-16 朱淑粉 一种预应力钢绞线生产加工方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1885821A (en) * 1931-10-03 1932-11-01 Roeblings John A Sons Co Wire rope and method of making the same
US2540840A (en) * 1949-10-08 1951-02-06 Western Electric Co Strand guiding apparatus
DE1021760B (de) * 1955-08-09 1957-12-27 Hackethal Draht & Kabelwerk Ag Einrichtung zur fortlaufenden UEberwachung der Abmessung von Litzen in Schnellverseilaschinen
DE2643866A1 (de) * 1976-09-29 1978-03-30 Henrich Kg Verfahren zum messen von kopplungserscheinungen, drahtbruechen oder drahtbeschaedigungen in isolierten, verseilten draehten sowie vorrichtung zur durchfuehrung des verfahrens
DD130868A1 (de) * 1977-05-20 1978-05-10 Ulrich Baum Abschaltvorrichtung fuer verseilmaschinen bei drahtriss und drahtueberspruengen
JPS5446279A (en) * 1977-09-21 1979-04-12 Fuji Shoji Method of connecting cable beed wire for tire
JPS6080910A (ja) * 1983-10-12 1985-05-08 Sumitomo Rubber Ind Ltd タイヤ用スチ−ルコ−ド
US4591995A (en) * 1982-05-18 1986-05-27 Zellweger Uster Ltd. Process and device for monitoring single strands in stranding processes
US4903473A (en) * 1988-09-01 1990-02-27 Stolberger Maschinenfabrik Gmbh & Co Kg Method for controlling a cage stranding machine
JP2001164485A (ja) * 1999-12-02 2001-06-19 Hitachi Cable Ltd 撚線の断線検知器
WO2003100164A1 (fr) * 2002-05-23 2003-12-04 N.V. Bekaert S.A. Cable metallique
EP1384809A1 (fr) * 2002-07-22 2004-01-28 N.V. Bekaert S.A. Fixation des filaments d'un toron

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US460407A (en) * 1890-04-22 1891-09-29 Method of splicing cables
US3017739A (en) * 1959-01-02 1962-01-23 Bethlehem Steel Corp Long splice and method of making same
GB1405545A (en) * 1973-01-18 1975-09-10 Bekaert Sa Nv Method of joining wires, strands and cords
US3934397A (en) * 1974-07-11 1976-01-27 Black Boyd C Wire rope splice assembly
US4131759A (en) * 1977-08-10 1978-12-26 United States Steel Corporation Slip sleeve mechanism for a strength tapered caged armored electromechanical cable
GB2011969B (en) * 1977-11-11 1982-04-07 Cable Belt Ltd Ropes and the like
US4428992A (en) * 1981-11-21 1984-01-31 Hitco Method of splicing reinforcement fiber
US4445593A (en) * 1982-10-15 1984-05-01 Siecor Corporation Flat type feeder cable
CA2016130A1 (fr) * 1989-05-04 1990-11-04 Larry W. Oden Cordon souple a ame monofilament de fibre organique a module eleve
CA2109904C (fr) * 1992-12-18 2004-09-14 Pol Bruyneel Cable metallique a torons multiples
EP0864688A1 (fr) * 1997-03-13 1998-09-16 N.V. Bekaert S.A. Câble de commande avec un revêtement polymère
AU2001250425A1 (en) * 2000-05-08 2001-11-20 N V. Bekaert S.A. Zinc-coated steel cord with improved fatigue resistance
KR100356311B1 (ko) * 2000-05-30 2002-10-12 고려제강 주식회사 자동차 윈도우 레귤레이터용 와이어 케이블
US7670240B2 (en) * 2001-10-04 2010-03-02 Otis Elevator Company Elevator belt assembly with noise reducing groove arrangement

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1885821A (en) * 1931-10-03 1932-11-01 Roeblings John A Sons Co Wire rope and method of making the same
US2540840A (en) * 1949-10-08 1951-02-06 Western Electric Co Strand guiding apparatus
DE1021760B (de) * 1955-08-09 1957-12-27 Hackethal Draht & Kabelwerk Ag Einrichtung zur fortlaufenden UEberwachung der Abmessung von Litzen in Schnellverseilaschinen
DE2643866A1 (de) * 1976-09-29 1978-03-30 Henrich Kg Verfahren zum messen von kopplungserscheinungen, drahtbruechen oder drahtbeschaedigungen in isolierten, verseilten draehten sowie vorrichtung zur durchfuehrung des verfahrens
DD130868A1 (de) * 1977-05-20 1978-05-10 Ulrich Baum Abschaltvorrichtung fuer verseilmaschinen bei drahtriss und drahtueberspruengen
JPS5446279A (en) * 1977-09-21 1979-04-12 Fuji Shoji Method of connecting cable beed wire for tire
US4591995A (en) * 1982-05-18 1986-05-27 Zellweger Uster Ltd. Process and device for monitoring single strands in stranding processes
JPS6080910A (ja) * 1983-10-12 1985-05-08 Sumitomo Rubber Ind Ltd タイヤ用スチ−ルコ−ド
US4903473A (en) * 1988-09-01 1990-02-27 Stolberger Maschinenfabrik Gmbh & Co Kg Method for controlling a cage stranding machine
JP2001164485A (ja) * 1999-12-02 2001-06-19 Hitachi Cable Ltd 撚線の断線検知器
WO2003100164A1 (fr) * 2002-05-23 2003-12-04 N.V. Bekaert S.A. Cable metallique
EP1534890B1 (fr) * 2002-07-17 2007-10-17 N.V. Bekaert S.A. Toron metallique comprenant un filament interrompu
EP1384809A1 (fr) * 2002-07-22 2004-01-28 N.V. Bekaert S.A. Fixation des filaments d'un toron

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005068696A1 *

Also Published As

Publication number Publication date
CN1886538A (zh) 2006-12-27
EP1709221A4 (fr) 2009-02-25
AU2003299979A1 (en) 2005-08-03
WO2005068696A1 (fr) 2005-07-28
DE60334647D1 (de) 2010-12-02
JP2007524549A (ja) 2007-08-30
CN1886538B (zh) 2012-05-23
EP1709221B1 (fr) 2010-10-20
US20070277496A1 (en) 2007-12-06
HK1099568A1 (en) 2007-08-17
ES2350447T3 (es) 2011-01-24
ATE485409T1 (de) 2010-11-15

Similar Documents

Publication Publication Date Title
EP2090421B1 (fr) Courroie d'ascenseur
JP4607416B2 (ja) 耐疲労性が改善された亜鉛被覆鋼コード
EP2697147B1 (fr) Filin ou courroie revêtu destiné à des systèmes d'ascenseur
US7426822B2 (en) Metal cord
JP2009001957A (ja) 高荷重を巻き上げるためのワイヤロープおよび同ワイヤロープの製作方法
US8826945B1 (en) Apparatus and method for forming wire
EP1047818B1 (fr) Procede et appareil de fabrication de cables torsades et cables ainsi fabriques
EP1709221B1 (fr) Techniques d'assemblage d'elements de tension pour ascenseur
WO2018051395A1 (fr) Câble métallique à utiliser comme câble de pose, et son procédé de production
EP1506338B1 (fr) Cable metallique
JP4925986B2 (ja) 金属素線のゴム被覆方法、コードの製造方法、コード、ゴム被覆装置およびコードの製造装置
KR100974436B1 (ko) 인터럽트된 필라멘트를 포함하는 메탈 스트랜드
US20230295788A1 (en) Method of annealing multiple individual aluminum and copper wires in machine line in tandem with a stranding machine for continuous operation
KR100768372B1 (ko) 엘리베이터 시스템에 사용하기 위한 인장 부재를 제조하는 방법 및 인장 부재 조립체
EP0257459A2 (fr) Méthode et installation pour la fabrication de câbles miniers acier-caoutchouc
US20230407561A1 (en) Cable, Strand, and Method and Device for Producing a Cable and a Strand
JPH0875968A (ja) 自己支持型光ケーブルの製造方法
JPH0617385A (ja) ゴム製品補強用スチールコード
EP1365062A1 (fr) Câble métallique
JPH111881A (ja) ゴム製品補強用スチールコードおよびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20090122

RIC1 Information provided on ipc code assigned before grant

Ipc: D02G 3/02 20060101AFI20060904BHEP

Ipc: D07B 7/08 20060101ALI20090116BHEP

17Q First examination report despatched

Effective date: 20090608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60334647

Country of ref document: DE

Date of ref document: 20101202

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110112

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110120

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

26N No opposition filed

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101222

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60334647

Country of ref document: DE

Effective date: 20110721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101222

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20141211

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334647

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221116

Year of fee payment: 20

Ref country code: DE

Payment date: 20221122

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230102

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60334647

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240102

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231221

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231223