EP1706698A1 - Wärme bertrager - Google Patents

Wärme bertrager

Info

Publication number
EP1706698A1
EP1706698A1 EP04803542A EP04803542A EP1706698A1 EP 1706698 A1 EP1706698 A1 EP 1706698A1 EP 04803542 A EP04803542 A EP 04803542A EP 04803542 A EP04803542 A EP 04803542A EP 1706698 A1 EP1706698 A1 EP 1706698A1
Authority
EP
European Patent Office
Prior art keywords
degrees
rib according
gills
section
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04803542A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Kramer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1706698A1 publication Critical patent/EP1706698A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Definitions

  • the invention relates to a heat exchanger, such as, in particular, a flat tube heat exchanger, and a fin, such as, in particular, a corrugated fin, for example for a flat tube heat exchanger, in particular for a coolant, charge air cooler or condensers or evaporators for motor vehicles according to the preamble of patent claim 1.
  • a heat exchanger such as, in particular, a flat tube heat exchanger
  • a fin such as, in particular, a corrugated fin, for example for a flat tube heat exchanger, in particular for a coolant, charge air cooler or condensers or evaporators for motor vehicles according to the preamble of patent claim 1.
  • Corrugated fins and flat tubes form a soldered cooling system in which a medium to be cooled, e.g. B. a coolant or charge air flows through the flat tubes and a cooling medium, eg. B. Ambient air flows over the corrugated fins.
  • a medium to be cooled e.g. B. a coolant or charge air flows through the flat tubes and a cooling medium, eg. B. Ambient air flows over the corrugated fins.
  • Such soldered cooling systems are used for coolant coolers for cooling an internal combustion engine or as charge air coolers for cooling the compressed intake air of internal combustion engines in motor vehicles.
  • Radiators or condensers or evaporators are also constructed similarly, for example.
  • Ribs can also be used in mechanically joined heat exchangers in which the ribs and the tubes of the heat exchangers are mechanically connected to one another.
  • the trend of development goes in the direction of higher pressures for the medium to be cooled, in particular in the coolant circuit, the flat tubes Because of the lower air pressure drop, they are extremely slim and therefore extremely unstable against increased internal pressure.
  • the flat tubes therefore tend to "inflate”, ie bulge when subjected to internal pressure. This bulge can be counteracted from the inside and outside
  • the flat tubes are covered with gills to improve the heat transfer, which has disadvantages in terms of strength.
  • the corrugated fins therefore buckle when the flat tubes are subjected to higher internal pressure.
  • EP 0 547 309 B1 from the applicant discloses a corrugated fin for flat tubes, in which a stiffening bead is arranged between two gill panels and in the middle of the flat tube, i. H. where the greatest buckling stress occurs for the corrugated fin.
  • a stiffening bead is arranged between two gill panels and in the middle of the flat tube, i. H. where the greatest buckling stress occurs for the corrugated fin.
  • this only results in a selective stiffening of the corrugated fin, which is no longer sufficient with increasing stress as a result of increased internal pressure.
  • the stiffening means are integrated in the gills, ie basically all gills of the corrugated fin contribute to the support effect.
  • the flat tubes are thus supported over their entire length by a stiffened corrugated fin.
  • Each individual gill advantageously has a kink-resistant profile, which gives the entire corrugated fin increased security against kinking.
  • the profile of each gill has an S-shaped cross section. This gives the advantage of a greater section modulus against buckling without significantly increasing the air-soapy pressure drop across the corrugated fin - on the contrary. a lower pressure drop can be expected.
  • the gill which is S-shaped in cross-section, thus has a variable gill angle - compared to the prior art - which initially rises from a very low value to a maximum value in the middle of the gill length and then decreases again to a minimum value. This results in a "gentle" deflection of the air flow without - as in the prior art - lossy eddies occurring at the leading and trailing edge of the gills.
  • An advantage is an unexpected combination effect in that the kink stiffness of the gills increases and whose pressure drop is reduced at the same time.
  • the cross section of the gills is angled twice and has an approximately Z-shaped course, i. H.
  • the gill angled according to the invention has three gill angles, the gill angle jumping from a low to a high value at the first kink and back to the low value at the second kink.
  • the Z-shape has an inconsistent course of the gill angle over the gill length compared to the S-shape, which simplifies production technology.
  • the advantage of increased buckling rigidity combined with a reduced pressure drop is also achieved here.
  • advantageous angular dimensions are given both for the S-shaped and for the Z-shaped cross section of the gill.
  • the low inflow and outflow angle is particularly advantageous because, as already mentioned, this avoids eddy formation behind the inflow and outflow edge.
  • the heat transfer performance of the corrugated fin is not deteriorated, since the thermal boundary layer is still started up on each leading edge of a gill. This mechanism is responsible for a large part of the heat transfer. This ultimately also has the advantage that the entire heat exchanger is improved in terms of its performance.
  • FIG. 1 shows a corrugated fin with gills according to the prior art in a view from the front
  • FIG. 2 shows the corrugated fin according to the prior art in a plan view
  • FIG. 3 shows a section through the corrugated fin according to FIG. 2 along the line III-III
  • FIG. 5 a corrugated fin according to the invention with an S-shaped cross section
  • FIG. 6 a corrugated fin according to the invention with a double kink cross section
  • Fig. 7 shows a detail X from Fig. 5 and
  • FIG. 8 shows a detail Y from FIG. 6.
  • Fig. 1 shows a corrugated fin 1 with gills 2 seen in the air flow direction.
  • the corrugated fin 2 is part of a cooling system, not shown, consisting of corrugated fins and flat tubes 3, which are indicated by dashed lines.
  • the corrugated fins are each arranged between two tubes.
  • the tubes are in turn connected in a fluid-tight manner to header boxes at their end regions.
  • the pipes are typically inserted into openings in the collecting box and connected to them in a fluid-tight manner.
  • the tubes are preferably pushed into a tube plate with openings and connected in a sealed manner, so that the fluid can get from one header box through the fluid connections within the tubes to the other header box.
  • the corrugated fin 1 and the flat tubes 3 preferably each consist of an aluminum material and are soldered to one another.
  • FIG. 2 shows the corrugated fin 1 in a plan view, the direction of air flow being represented by an arrow L.
  • the gills 2 form two gill arrays with front gills 2a and rear gills 2b.
  • Fig. 3 shows a section along the line III-III and the opposite gill angles ⁇ 1 and ⁇ 2 of the front gills 2a and the rear gills, 2b.
  • Fig. 4 shows the corrugated fin 1 according to the prior art and its loading by the flat tubes, not shown here, when these are subjected to internal pressure.
  • the load on the corrugated fin 1 is represented by arrows P1, P2, which each act on a fin arch 1 a, 1 b.
  • FIG. 5 shows a corrugated fin 5 according to the invention with front gills 6a and rear gills 6b, which have an S-shaped cross section.
  • the S-shaped cross-section is characterized by a constantly changing gill angle from the inlet to the outlet of the air flow.
  • An enlarged cross section is shown as detail X in FIG. 7 and is described in more detail there.
  • FIG. 6 shows a further embodiment of the invention, namely a corrugated fin 7 with front gills 8a and rear gills 8b, which are each angled twice, ie have a double kink.
  • the gill angle changes discontinuously in this double-knee gill 8a, 8b, ie in each case at the kink point.
  • An enlarged view is shown as detail Y in FIG. 8 and is described in more detail there.
  • FIG. 7 shows the detail X from FIG. 5, ie the gill 6a, which is arranged symmetrically upwards and downwards relative to a central plane e of the corrugated fin 5.
  • the S-shape of the gill 6a has an approximately sinusoidal shape and is characterized by three sections, namely an inflow area 9, a central deflection area 10 and an outflow area 11.
  • the slopes of the individual areas 9, 10, 11 are represented by straight lines a, b, c.
  • the inflow section 9 forms an inflow angle ⁇ s with the central plane e
  • the outflow region 11 forms an outflow angle ⁇ s with the central plane e, ie the angle between the straight lines c and e.
  • the central cross-sectional area 10 that is to say the deflection area, forms a deflection angle ⁇ s with the center plane e (angle between the straight lines b and e).
  • the angles ⁇ s are in a range from 0 to 10 degrees, preferably in a narrower range from 0 to 5 degrees.
  • the deflection angle ⁇ s is in a range from 15 to 35 degrees and preferably in a range from 20 to 30 degrees.
  • the air flow marked by an arrow L thus meets an extremely small inflow angle ⁇ s in the inflow region 9, so that no detachments and eddies form on the rear or suction side of the gill profile.
  • the inflow angle ⁇ s which corresponds to the gill angle ⁇ in the prior art, changes with increasing flow around the gill 6a up to the value ⁇ s and then decreases again to the value ⁇ s in the region 11. This also results in a non-detachable outflow of air.
  • the S-shaped cross section of the gill 6a results in an increased section modulus against buckling, ie a higher permissible buckling load - in comparison to the known rectangular cross section.
  • FIG. 8 shows the detail Y from FIG. 6, ie the corrugated fin 7 with gills 8a, which are angled twice and have a double kink cross section or an approximately Z-shaped course.
  • the center plane of the corrugated fin 7 is also marked with e here, ie as a reference plane for the individual angles.
  • the cross-section of the gill 8a is divided into three sections, namely an inflow section 12, a central deflection section 13 and an outflow section 14, all three sections 12, 13, 14 being approximately rectilinear and connected to one another by radii r.
  • the slopes of the individual sections 12, 13, 14 are marked by straight lines a, b, c and form the inflow and outflow angles ⁇ z and the deflection angle ßz with the reference plane e.
  • the air flow is again represented by an arrow L, and it can be seen that the inflow angle ⁇ z is relatively small, so that there are no or hardly any signs of separation of the flow on the suction side of the inflow section 12 and also the deflecting section 13. The air flow can therefore also be present on the suction side of the gill 8a, which results in a low pressure drop.
  • the inflow and outflow angles ⁇ z are in the range from 0 to 25 or preferably in the range from 5 to 15 degrees, and the deflection angle ⁇ z is in the range from 15 to 35 degrees or preferably in the range from 20 to 30 degrees.
  • This Z-shaped profile of the gill 8a also results in an increased resistance moment against buckling, which, with the number of gills, adds up to an increased total resistance moment against buckling for the entire rib.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager und eine Rippe (1), wie insbesondere eine Wellrippe (1) insbesondere für einen Flachrohrwär­meübertrager, insbesondere einen Kühlmittel- oder Ladeluft-Kühler für Kraftfahrzeuge, wobei die Weltrippe (1) zwischen Flachrohren (3) des Wär­meübertragers angeordnet, stoffschlüssig mit diesen verbunden, mit Kiemen (6, 8) besetzt und von Luft überströmbar ist sowie eingeformte Ver­steifungsmittel aufweist.

Description

BEHR GmbH & Co. KG Mauserstraße 3, 70469 Stuttgart
Wärmeübertrager
Die Erfindung betrifft einen Wärmeübertrager, wie insbesondere einen Flach- rohrwärmeübertrager, sowie eine Rippe, wie insbesondere eine Wellrippe beispielsweise für einen Flachrohrwärmeübertrager, insbesondere für einen Kühlmittel-, Ladeluftkühler oder Kondensatoren oder Verdampfer für Kraftfahrzeuge nach dem Oberbegriff des Patentanspruches 1.
Solche Wärmeübertrager sind durch die EP 0 547 309 Bf der Anmelderin bekannt geworden.
Wellrippen und Flachrohre bilden ein gelötetes Kühlsystem, bei welchem ein zu kühlendes Medium, z. B. ein Kühlmittel oder Ladeluft durch die Flachroh- re strömt und ein kühlendes Medium, z. B. Umgebungsluft über die Wellrippen strömt. Derartige gelötete Kühlsysteme werden für Kühlmittelkühler zur Kühlung eines Verbrennungsmotors oder als Ladeluftkühler zur Kühlung der verdichteten Ansaugluft von Verbrennungsmotoren in Kraftfahrzeugen verwendet. Auch sind Heizkörper oder Kondensatoren oder Verdampfer bei- spielsweise ähnlich aufgebaut. Auch können Rippen bei mechanisch gefügten Wärmeübertragern verwendet werden, bei welchen die Rippen und die Rohre der Wärmeübertrager mechanisch miteinander verbunden werden.
Die Tendenz der Entwicklung geht in Richtung höherer Drücke für das zu kühlende Medium, insbesondere im Kühlmittelkreislauf, wobei die Flachrohre wegen des geringeren luftseitigen Druckabfalls extrem schlank ausgebildet und damit äußerst instabil gegenüber erhöhtem Innendruck sind. Die Flachrohre neigen daher unter Innendruckbeaufschlagung zum „Aufblähen", d. h. zu einer Ausbauchung. Dieser Ausbauchung kann von innen und. außen entgegen gewirkt werden: Im Inneren des Flachrohres werden verlötete Turbulenzeinlagen eingesetzt, die als Zuganker wirken, und von außen üben die Wellrippen eine Stützwirkung auf die Flachrohre aus. Die Flachrohre sind mit Kiemen zur Verbesserung der Wärmeübertragung besetzt, was festigkeitsmäßig Nachteile hat. Die Wellrippen knicken daher bei höherer Innendruck- belastung der Flachrohre ein.
Man hat daher in der US-A 4,693,307 vorgeschlagen, in die Mitte eines Kiemenfeldes eine Versteifungssicke einzuformen, d. h. eine dachförmig ausgebildete einzelne Doppelkieme, die gleichzeitig eine Strömungsumlenkung bewirkt.
Durch die EP 0 547 309 B1 der Anmelderin wurde eine Wellrippe für Flachrohre bekannt, bei welcher eine Versteifungssicke zwischen zwei Kiemenfeldern und in der Mitte des Flachrohres angeordnet ist, d. h. da, wo die größte Knickbeanspruchung für die Wellrippe auftritt. Damit ist jedoch nur eine punktuelle Versteifung der Wellrippe erreicht, was bei steigender Beanspruchung infolge erhöhten Innendrucks nicht mehr ausreichend ist.
Es ist Aufgabe der vorliegenden Erfindung, eine Wellrippe der eingangs ge- nannten Art hinsichtlich ihrer Stützwirkung zu verbessern, ohne dass dabei ihre thermodynamischen Eigenschaften wie Wärmeübertragung und Druck- abfall beeinträchtigt werden..
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 bzw. des Anspruchs 11 gelöst. Erfindungsgemäß sind die Versteifungsmittel in die Kiemen integriert, d. h., dass grundsätzlich alle Kiemen der Wellrippe zur Stützwirkung beitragen. Die Flachrohre werden somit durch eine versteifte Wellrippe über ihre gesamte Länge abgestützt. Vorteilhafterweise weist jede einzelne Kiemen ein knicksteifes Profil auf, womit die gesamte Wellrippe eine erhöhte Sicherheit gegen Knicken erhält. Näch einer vorteilhaften Ausgestaltung der Erfindung weist das Profil einer jeden Kieme einen S-förmigen Querschnitt auf. Damit wird der Vorteil eines größeren Widerstandsmomentes gegen Knicken erreicht, ohne dass der luft- seifige Druckabfall über die Wellrippe signifikant zunimmt - im Gegenteil ist sogar. ein geringerer Druckabfall zu erwarten. Die im Querschnitt S-förmig ausgebildete Kieme besitzt somit - im Vergleich zum Stand der Technik - einen variablen Kiemenwinkel, der zunächst von einem sehr niedrigen Wert auf einen maximalen Wert in der Mitte der Kiemenlänge ansteigt und danch wieder auf einen minimalen Wert zurückgeht. Damit wird eine „sanfte" Um- lenkung der Luftströmung erreicht, ohne dass - wie beim Stand der Technik - an der der An- und Abströmkante der Kiemen verlustbehaftete Wirbel auftreten. Als Vorteil ergibt sich ein unerwarteter Kombinationseffekt, indem die Knicksteifigkeit der Kiemen erhöht und deren Druckabfall gleichzeitig redu- ziert wird.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Querschnitt der Kiemen zweifach abgewinkelt und weist einen etwa Z-förmigen Verlauf auf, d. h. die erfindungsgemäß abgewinkelte Kieme weist drei Kie- menwinkel auf, wobei der Kiemenwinkel an der ersten Knickstelle von einem niedrigen auf eine hohen und an der zweiten Knickstelle wieder auf den niedrigen Wert springt. Somit weist die Z-Form gegenüber der S-Form einen unstetigen Verlauf des Kiemenwinkels über der Kiemenlänge auf, was fertigungstechnisch Vereinfachungen mit sich bringt. Im Übrigen wird auch hier der Vorteil einer erhöhten Knicksteifigkeit, verbunden mit einem reduzierten Druckabfall, erreicht.
Nach weiteren vorteilhaften Ausgestaltungen der Erfindung sind sowohl für den S-förmigen als auch für den Z-förmigen Querschnitt der Kieme vorteil- hafte Winkelabmessungen angegeben. Dabei ist insbesondere der geringe An- und Abströmwinkel von Vorteil, weil dadurch - wie bereits erwähnt - eine Wirbelbildung hinter der An- und Abströmkante vermieden wird. Gleichzeitig wird die Wärmeübertragungsleistung der Wellrippe nicht verschlechtert, da nach wie vor an jeder Anströmkante einer Kieme jeweils ein neuer Anlauf der thermischen Grenzschicht erfolgt. Dieser Mechanismus ist für ei- nen großen Teil der Wärmeübertragung verantwortlich. Damit wird schließlich auch der Vorteil erreicht, dass der gesamte Wärmeübertrager hinsichtlich seiner Leistungsfähigkeit verbessert wird.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen
Fig. 1 eine Wellrippe mit Kiemen gemäß Stand der Technik in einer Ansicht von vorn, Fig. 2 die Wellrippe gemäß Stand der Technik in einer Draufsicht,
Fig. 3 einen Schnitt durch die Wellrippe gemäß Fig. 2 entlang der Linie lll-lll,
Fig. 4 die Wellrippe gemäß Stand der Technik und ihre Belastung,
Fig. 5 eine erfindungsgemäße Wellrippe mit S-förmigem Querschnitt, Fig. 6 eine erfindungsgemäße Wellrippe mit einem Doppelknickquerschnitt,
Fig. 7 eine Einzelheit X aus Fig. 5 und
Fig. 8 eine Einzelheit Y aus Fig. 6.
Fig. 1 zeigt eine Wellrippe 1 mit Kiemen 2 in Luftströmuηgsrichtung gesehen.
Die Wellrippe 2 ist Teil eines vollständig nicht dargestellten Kühlsystems, bestehend aus Wellrippen und Flachrohren 3, welche gestrichelt angedeutet sind. Die Wellrippen sind dabei jeweils zwischen zwei Rohren angeordnet. Die Rohre sind ihrerseits an ihren Endbereichen mit Sammelkästen fluiddicht verbunden. Typischer Weise sind die Rohre in Öffnungen im Sammelkasten eingesteckt und mit diesen fluiddicht verbunden. Vorzugsweise sind die Rohre in einen Rohrboden mit Öffnungen eingeschoben und abgedichtet verbunden, so daß das Fluid von einem Sammelkasten durch die Fluidverbin- dungen innerhalb der Rohre zum anderen Sammelkasten gelangen kann. Die Wellrippe 1 und die Flachrohre 3 bestehen vorzugsweise jeweils aus einem Aluminiumwerkstoff und sind miteinander verlötet. Es können jedoch bei anderen Ausführungsvarianten auch andere Materialien verwendet werden, wie beispielsweise Stahl insbesondere für Abgaswärmeübertrager, Kupfer oder andere Legierungen.- Fig. 2 zeigt die Wellrippe 1 in einer Draufsicht, wobei die Luftströmungsrichtung durch einen Pfeil L dargestellt ist. Die Kiemen 2 bilden zwei Kiemenfelder mit vorderen Kiemen 2a und hinteren Kiemen 2b.
Fig. 3 zeigt einen Schnitt längs der Linie III-III und die entgegengesetzt gerichteten Kiemenwinkel α1 und α2 der vorderen Kiemen 2a bzw. der hinteren Kiemen ,2b.
Fig. 4 zeigt die Wellrippe 1 nach dem Stand der Technik und ihre Belastung durch die hier nicht dargestellten Flachrohre, wenn diese mit Innendruck beaufschlagt werden. Die Belastung der Wellrippe 1 ist durch Pfeile P1 , P2 dargestellt, die jeweils auf einen Rippenbogen 1 a, 1 b wirken. Dies führt zu einer Druckbelastung der Rippenabschnitte zwischen dem Rippenbogen 1 a, 1 b, d. h. auch zu einer Druckbelastung der Kiemen 2, die somit auch einer Knickbelastung unterliegen. Aufgrund des Rechteckquerschnittes der bekannten Kiemen 2 ergibt sich hier eine relativ niedrige Knicklast, die die Wellrippe 1 nach dem Stand der Technik einknicken lässt (vgl. Dubbel, Taschenbuch für den Maschinenbau, 20. Auflage, C 43).
Fig. 5 zeigt eine erfindungsgemäße Wellrippe 5 mit vorderen Kiemen 6a und hinteren Kiemen 6b, welche einen S-förmigen Querschnitt aufweisen. Der S- förmige Querschnitt ist durch einen stetig veränderlichen Kiemenwinkel vom Eintritt bis zum Austritt der Luftströmung gekennzeichnet. Ein vergrößerter Querschnitt ist als Einzelheit X in Fig. 7 dargestellt und wird dort näher beschrieben.
Fig. 6 zeigt eine weitere Ausführungsform der Erfindung, nämlich eine Wellrippe 7 mit vorderen Kiemen 8a und hinteren Kiemen 8b, die jeweils zwei- fach abgewinkelt sind, d. h. einen Doppelknick aufweisen. Der Kiemenwinkel ändert sich bei dieser Doppelknickkieme 8a, 8b unstetig, d. h. jeweils an der Knickstelle. Eine vergrößerte Darstellung ist als Einzelheit Y in Fig. 8 dargestellt und wird dort näher beschrieben. Fig. 7 zeigt die Einzelheit X aus Fig. 5, d. h. die Kieme 6a, welche zu einer Mittelebene e der Wellrippe 5 symmetrisch nach oben und unten angeordnet ist. Die S-Form der Kieme 6a weist ein annähernd Sinus-förmigen Verlauf auf und ist durch drei Abschnitte, nämlich einen Anströmbereich 9, einen mittleren Umlenkbereich 10 und einen Abströmbereich 11 gekennzeichnet. Die Steigungen der einzelnen Bereiche 9, 10, 11 sind durch Geraden a, b, c dargestellt. Zwischen den Abschnitten 9, 10, 11 besteht jeweils ein kontinuierlicher Übergang. Der Anströmabschnitt 9 bildet mit der Mittelebene e einen Anströmwinkel αs, und der Abströmbereich 11 bildet mit der Mittelebene e einen Abströmwinkel αs, d. h. den Winkel zwischen den Geraden c und e. Der mittlere Querschnittsbereich 10, d. h. der Umlenkbereich bildet mit der Mittelebene e einen Umlenkwinkel ßs (Winkel zwischen den Geraden b und e). Die Winkel αs liegen in einem Beeich von 0 bis 10 Grad, vorzugsweise in einem engeren Bereich von 0 bis 5 Grad. Der Umlenkwinkel ßs liegt in einem Bereich von 15 bis 35 Grad und vorzugsweise in einem Bereich von 20 bis 30 Grad. Die durch einen Pfeil L gekennzeichnete Luftströmung trifft also im Anströmbereich 9 auf einen äußerst geringen Anströmwinkel αs, sodass sich auf der Rück- bzw. Saugseite des Kiemenprofils keine Ablösungen und Wirbel bilden. Der Anströmwinkel αs, der dem Kiemenwinkel α beim Stand der Technik entspricht, ändert sich mit zunehmender Umströmung der Kieme 6a bis zu dem Wert ßs und nimmt dann wieder bis zum Wert αs im Bereich 11 ab. Damit erfolgt auch eine ablösungsfreie Abströmung der Luft. Der S- förmige Querschnitt der Kieme 6a ergibt ein erhöhtes Widerstandsmoment gegen Knicken, d. h. eine höhere zulässige Knicklast - im Vergleich zum bekannten Rechteckquerschnitt.
Fig. 8 zeigt die Einzelheit Y aus Fig. 6, d. h. die Wellrippe 7 mit Kiemen 8a, die zweifach abgewinkelt sind und einen Doppelknickquerschnitt bzw. einen etwa Z-förmigen Verlauf aufweisen. Die Mittelebene der Wellrippe 7 ist auch hier mit e gekennzeichnet, d. h. als Bezugsebene für die einzelnen Winkel. Der Querschnitt der Kieme 8a ist in drei Abschnitte unterteilt, nämlich einen Anströmabschnitt 12, einen mittleren Umlenkabschnitt 13 und einen Abströmabschnitt 14, wobei alle drei Abschnitte, 12, 13, 14 etwa geradlinig verlaufen und durch Radien r miteinander verbunden sind. Die Steigungen der einzelnen Abschnitte 12, 13, 14 sind durch Geraden a, b, c markiert und bilden mit der Bezugsebene e die An- und Abströmwinkel αz sowie den Umlenkwinkel ßz. Die Luftströmung ist wiederum durch einen Pfeil L dargestellt, und man erkennt,' dass der Anströmwinkel αz relativ gering ist, sodass sich auf der Saugseite des Anströmabschnittes 12 und auch des Umlenkab- Schnittes 13 keine bzw. kaum Ablösungserscheinungen der Strömung ergeben. Die Luftströmung kann somit auch an der Saugseite der Kieme 8a anliegen, was einen geringen Druckabfall zur Folge hat. Die An- und Abströmwinkel αz liegen im Bereich von 0 bis 25 bzw. vorzugsweise im Bereich von 5 bis 15 Grad, und der Umlenkwinkel ßz liegt im Bereich von 15 bis 35 Grad bzw. vorzugsweise im Bereich von 20 bis 30. Grad. Auch durch dieses Z- förmige Profil der Kieme 8a ergibt sich ein erhöhtes Widerstandsmoment gegen Knicken, welches sich mit der Zahl der Kiemen zu einem erhöhten Gesamtwiderstandmoment gegen Knicken für die gesamte Weilrippe summiert.
Die Herstellung der oben beschriebenen Kiemen, d. h. sowohl mit S-Profil als auch mit Z-Profil erfolgt in ähnlicher Weise wie beim Stand der Technik, d. h. mittels so genannter Rippenschneidwalzen, welche die Kiemen aus einem ebenen Blechband schneiden und ausformen.

Claims

P a t e n t a n s p r ü c h e
1. Rippe, insbesondere Wellrippe, insbesondere für einen Flachrohrwärmeübertrager, insbesondere einen Kühlmittel- oder Ladeluft- Kühler für Kraftfahrzeuge, wobei die Rippe zwischen Flachrohren des Wärmeübertragers angeordnet oder senkrecht zu diesen angeordnet ist und stoffschlüssig oder mechanisch mit diesen verbunden ist, mit Kiemen besetzt und von Luft überströmbar ist sowie eingeformte Versteifungsmittel aufweist, dadurch gekennzeichnet, dass die Versteifungsmittel in die Kiemen (6a, 6b; 8a, 8b) integriert sind.
2. Rippe nach Anspruch 1 , dadurch gekennzeichnet, dass die Kiemen (6a, 6b; 8a, 8b) ein knicksteifes Profil aufweisen, das von einer Geraden oder einem Rechteckprofil abweichend ist.
3. Rippe nach Anspruch 2, dadurch gekennzeichnet, dass das Profil ei- nen S-förmigen Querschnitt (6a) mit zwei Rundungen aufweist.
4. Rippe nach Anspruch 2, dadurch gekennzeichnet, dass das Profil einen zweifach, dreifach oder mehrfach abgewinkelten, beispielsweise etwa Z-förmigen Querschnitt (8a) aufweist.
Rippe nach Anspruch 2, dadurch gekennzeichnet, dass das Profil einen einfach abgewinkelten, etwa V-förmigen Querschnitt (8a) aufweist.
6. Rippe nach Anspruch 3, 4 oder 5, dadurch gekennzeichnet, dass der Querschnitt (6a; 8a) einen Anström- und einen Abströmbereich (9, 11 ; 12, 14) sowie einen zwischen beiden angeordneten Umlenkbereich (10; 13) aufweist, wobei der An- und Abströmbereich je einen be- tragsmäßig etwa gleichen An- und Abströmwinkel (αs, αz) und der Umlenkbereich einen Umlenkwinkel (ßs, ßz) aufweisen und dass der Umlenkungswinkel größer als der An- und Abströmwinkel ist, d. h. ßs > αs und ßz > αz sind.
7. Rippe nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass folgende Bereiche für die Winkel αs und ßs gelten:
0 αs < 10 Grad und 15 ßs ≤ 35 Grad.
8. Rippe nach zumindest einem der vorhergehenden Ansprüche,, dadurch gekennzeichnet, dass folgende Bereiche für die Winkel αs und ßs gelten:
0 αs 5 Grad und 20 ßs < 30 Grad.
9. Rippe nach zumindest einem der vorhergehenden Ansprüche,, da- . durch gekennzeichnet, dass für die Winkel αz und ßz folgende Bereiche gelten:
0 αz < 25 Grad und 15 ßz ≤ 35 Grad. .
10. Rippe nach zumindest einem der vorhergehenden Ansprüche,, dadurch gekennzeichnet, dass für die Winkel αz und ßz folgende Bereiche gelten: 5 αz ≤ 15 Grad und 20 ßz < 30 Grad.
11. Wärmeübertrager mit Sammelkästen und mit diesen fluiddicht verbundenen Fluidkanäle, wie Rohren, wobei die Rohre jeweils in Öffnungen der Sammelkästen dicht aufgenommen sind, mit einem Ein- lass und einem Auslass, wobei zwischen den Rohren oder senkrecht zu den Rohren Rippen angeordnet sind, dadurch gekennzeichnet, daß die Rippen gemäß zumindest einem der vorhergehenden Ansprüche gestaltet sind.
EP04803542A 2004-01-07 2004-12-06 Wärme bertrager Withdrawn EP1706698A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004001306A DE102004001306A1 (de) 2004-01-07 2004-01-07 Wärmeübertrager
PCT/EP2004/013832 WO2005066566A1 (de) 2004-01-07 2004-12-06 Wärmeübertrager

Publications (1)

Publication Number Publication Date
EP1706698A1 true EP1706698A1 (de) 2006-10-04

Family

ID=34716367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803542A Withdrawn EP1706698A1 (de) 2004-01-07 2004-12-06 Wärme bertrager

Country Status (4)

Country Link
US (1) US20080190589A1 (de)
EP (1) EP1706698A1 (de)
DE (1) DE102004001306A1 (de)
WO (1) WO2005066566A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502005007801D1 (de) * 2005-12-03 2009-09-10 Modine Mfg Co Wärmeübertragungsrippe, Herstellungsverfahren und Wärmeübertrager
US20070240865A1 (en) 2006-04-13 2007-10-18 Zhang Chao A High performance louvered fin for heat exchanger
CN101846475B (zh) * 2009-03-25 2013-12-11 三花控股集团有限公司 用于热交换器的翅片以及采用该翅片的热交换器
JP5499957B2 (ja) * 2009-07-24 2014-05-21 株式会社デンソー 熱交換器
US20110226782A1 (en) * 2010-03-17 2011-09-22 Gm Global Technology Operations, Inc. Gas temperature moderation within compressed gas vessel through heat exchanger
JP5257485B2 (ja) * 2011-05-13 2013-08-07 ダイキン工業株式会社 熱交換器
EP2725311B1 (de) 2012-10-29 2018-05-09 Samsung Electronics Co., Ltd. Wärmetauscher
JP6046558B2 (ja) * 2013-05-23 2016-12-14 カルソニックカンセイ株式会社 熱交換器
JP6011481B2 (ja) 2013-07-12 2016-10-19 株式会社デンソー 熱交換器用フィン
DE102015205902A1 (de) 2015-04-01 2016-10-06 Mahle International Gmbh Rippe für einen Wärmeübertrager
JP6327271B2 (ja) * 2015-04-17 2018-05-23 株式会社デンソー 熱交換器
DE102016210159A1 (de) * 2016-06-08 2017-12-14 Mahle International Gmbh Rippenelement für einen Wärmeübertrager
DE102017208324A1 (de) * 2017-05-17 2018-11-22 Mahle International Gmbh Wärmeübertrager
JP6663899B2 (ja) * 2017-11-29 2020-03-13 本田技研工業株式会社 冷却装置
US11326842B2 (en) * 2018-09-21 2022-05-10 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner having the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55105194A (en) * 1979-02-07 1980-08-12 Hitachi Ltd Heat-exchanger
JPS5893A (ja) * 1981-06-24 1983-01-05 Hitachi Ltd 熱交換器用フイン
JPS59185992A (ja) * 1983-04-06 1984-10-22 Mitsubishi Electric Corp 熱交換器
JPH0610591B2 (ja) * 1983-07-29 1994-02-09 三菱電機株式会社 熱交換器
JPS6152589A (ja) * 1984-08-22 1986-03-15 Nippon Denso Co Ltd 空気用熱交換器
US4693307A (en) * 1985-09-16 1987-09-15 General Motors Corporation Tube and fin heat exchanger with hybrid heat transfer fin arrangement
US4815532A (en) * 1986-02-28 1989-03-28 Showa Aluminum Kabushiki Kaisha Stack type heat exchanger
US4958681A (en) * 1989-08-14 1990-09-25 General Motors Corporation Heat exchanger with bypass channel louvered fins
US5099914A (en) * 1989-12-08 1992-03-31 Nordyne, Inc. Louvered heat exchanger fin stock
DE4142019A1 (de) * 1991-12-19 1993-06-24 Behr Gmbh & Co Wellrippe fuer flachrohrwaermetauscher
EP0881450B1 (de) * 1996-12-04 2003-03-05 Zexel Valeo Climate Control Corporation Wärmetauscher
US6805193B2 (en) * 2002-01-24 2004-10-19 Valeo, Inc. Fin louver design for heat exchanger
DE102004012796A1 (de) * 2003-03-19 2004-11-11 Denso Corp., Kariya Wärmetauscher und Wärmeübertragungselement mit symmetrischen Winkelabschnitten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005066566A1 *

Also Published As

Publication number Publication date
WO2005066566A1 (de) 2005-07-21
DE102004001306A1 (de) 2005-08-04
US20080190589A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1544564B1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE69911131T2 (de) Wärmetauscher
EP2655828A1 (de) Saugrohr mit integriertem ladeluftkühler
EP1706698A1 (de) Wärme bertrager
EP0864838B1 (de) Wärmeübertrager für ein Kraftfahrzeug
EP0547309B1 (de) Wellrippe für Flachrohrwärmetauscher
DE10354382A1 (de) Wärmeübertrager, insbesondere Ladeluftkühler für Kraftfahrzeuge
EP1901020B1 (de) Stapelscheibenwärmetauscher zur Ladeluftkühlung
DE60310992T2 (de) Hochdruckwärmetauscher
DE112017005178T5 (de) Wärmetauscher mit Umgehungsdichtung mit Rückhalteklammer
DE102008014373A1 (de) Strömungskanal, Wärmetauscher, Abgasrückführsystem, Ladeluft-Zuführsystem, Verwendung eines Wärmetauschers
DE102007031824A1 (de) Wärmetauscher
WO2004053411A1 (de) Wärmeübertrager
EP1657512A1 (de) Wärmetauscher mit offenem Profil als Gehäuse
WO2007137863A1 (de) Wärmetauscher
DE102006032570A1 (de) Einheit, aufweisend einen Gaskühler und einen inneren Wärmetauscher, und Wärmetauscher
EP2096397A2 (de) Rippe für einen Wärmetauscher und Herstellungsverfahren
EP2185884B1 (de) Rippe für einen wärmetauscher
EP1934545B1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
DE19547928C2 (de) Plattenwärmetauscher
DE102008020230A1 (de) Wärmetauscher sowie Wärmetauscherrohr
DE112018005521T5 (de) Wärmetauscher
EP1248063B1 (de) Wärmeübertrager
EP3239641A1 (de) Flachrohr für einen wärmeübertrager
DE102005032812A1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090723

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130403