EP1705964B1 - Vorschaltgerät mit Dimmvorrichtung - Google Patents

Vorschaltgerät mit Dimmvorrichtung Download PDF

Info

Publication number
EP1705964B1
EP1705964B1 EP06004878.2A EP06004878A EP1705964B1 EP 1705964 B1 EP1705964 B1 EP 1705964B1 EP 06004878 A EP06004878 A EP 06004878A EP 1705964 B1 EP1705964 B1 EP 1705964B1
Authority
EP
European Patent Office
Prior art keywords
lamp current
lamp
brightness
envelope
electronic ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06004878.2A
Other languages
English (en)
French (fr)
Other versions
EP1705964A2 (de
EP1705964A3 (de
Inventor
Klaus Fischer
Josef Kreittmayr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP1705964A2 publication Critical patent/EP1705964A2/de
Publication of EP1705964A3 publication Critical patent/EP1705964A3/de
Application granted granted Critical
Publication of EP1705964B1 publication Critical patent/EP1705964B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2988Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the lamp against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3927Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by pulse width modulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S315/00Electric lamp and discharge devices: systems
    • Y10S315/04Dimming circuit for fluorescent lamps

Definitions

  • the present invention relates to an electronic ballast with a dimming device for controlling the lamp brightness of a low-pressure discharge lamp, and to a method for controlling the lamp brightness of a low-pressure discharge lamp.
  • Electronic ballasts for operating low-pressure discharge lamps are known in many designs. Usually, they include a rectifier circuit for rectifying an AC supply and charging a capacitor, often referred to as a smoothing capacitor. The voltage applied to this capacitor DC voltage is used to power an inverter or inverter (hereinafter inverter), which operates the low-pressure discharge lamp. Basically, an inverter from a rectified AC power supply or a DC power supply generates a power supply for the lamp, which has a much higher frequency than the mains frequency. Similar devices are also known for other lamp types, for example in the form of electronic transformers for halogen lamps.
  • Dimming devices for operating electronic ballasts for controlling the brightness of low-pressure discharge lamps are known per se.
  • a known possibility of brightness control is to adjust the regulation of the amplitude of the lamp current, the lamp power and thus the lamp brightness. This can be done by approximating or removing the operating frequency of the inverter from resonant frequencies of the lamp-inverter system.
  • the document US-A1-2002 / 0060537 discloses dimming from a gas discharge lamp using different dimming strategies in three different dimming ranges.
  • the three dimming strategies are analog operation, pulsed operation and superimposition of these two modes.
  • pulse width modulation PWM is used.
  • the invention is based on the technical problem of providing an improved electronic ballast with regard to lamp brightness control.
  • the invention provides that the high-frequency lamp current is amplitude-modulated with a modulation signal and thus the average lamp current is varied.
  • the maximums of the envelopes are reduced to reduce the brightness.
  • the amplitude difference between the minima and the maxima of the envelopes of the lamp current can be constant over a certain brightness range, but need not be.
  • the shape of the modulation signal is maintained in this brightness range. It only changes the DC component of the modulation signal.
  • the minimums of the envelope of the lamp current reach a lower limit.
  • This lower limit is not undershot by the envelope.
  • the lower limit may, depending on the embodiment of the invention, assume a positive finite value or else be set to zero. Between the phases with greater amplitude of the envelope, there are thus phases in which the amplitude of the envelope of the lamp current corresponds to the value of the lower limit.
  • pulse packets The phases in which the amplitude of the envelope is greater than the value of the lower bound define "pulse packets". These are from each other separated by phases with minimum amplitude of the envelope.
  • a pulse packet corresponds to a coherent period in which the amplitude of the envelope is greater than the minimum value and consists of several high-frequency lamp current oscillations. Between the pulse packets, the amplitude of the envelope corresponds to the lower limit, so it flows with positive finite lower limit, a high-frequency lamp current. If the lower limit is set to zero, no lamp current flows.
  • the low-pressure discharge lamp When operating a low-pressure discharge lamp with periodically modulated lamp current, the low-pressure discharge lamp is operated at several operating points of the lamp voltage / lamp current characteristic, that is to say the lamp characteristic. During the lower lamp current phases, the operating point is in a steeper region of the higher voltage characteristic line, while the larger lamp current phase is the lower operating point in a flatter lower voltage characteristic line FIG. 1 rather left or rather right.
  • the inverter can no longer provide the lamp voltage continuously.
  • the operating point lies in a range of lower characteristic slope and lower burning voltages during the phases with a larger lamp current and in a range of greater characteristic slope and higher lamp voltages during the phases with smaller lamp current.
  • the low-pressure discharge lamp is periodically operated only briefly in the critical range of small lamp currents, the burning voltage increases only slightly.
  • a preferred embodiment of the invention provides that a finite minimum lamp current amplitude is not undershot, but preferably should be so small that it only facilitates a rapid subsequent increase in amplitude.
  • the envelope is limited to large values.
  • the envelope does not exceed a maximum value. Starting from low brightnesses, this means that with increasing maxima and minima of the envelope of the lamp current, the maxima first reach this upper limit and then also do not exceed the corresponding value. A further increase in brightness can be achieved by increasing the minima. Phases with the maximum value of the envelope are interrupted by minima in the envelope and their surroundings. The maximum brightness is reached when the amplitude of the envelope always assumes its maximum value corresponding to the upper limit. Basically, this is a mirror image approach in relation to the lower limit explained above.
  • the rising edge of a phase with larger lamp current amplitudes is preferably carried out relatively steeply in comparison with the corresponding falling edge.
  • a rapid reduction of the envelope of the lamp current does not correspond to the inherent dynamics of the system of inverter and low-pressure discharge lamp. Because there are still many charge carriers in the discharge space of the low-pressure discharge lamp, the burning voltage of the low-pressure discharge lamp increases only slowly and the inverter can continue to couple power into the low-pressure discharge lamp.
  • an embodiment of the invention is adapted to modulate the envelope of the lamp current sawtooth or rounded sawtooth, the rising edge is much steeper than the falling.
  • the ratio between the peak and average value of the lamp current, the crest factor, can be kept small if the amplitude amplitude of the envelope of the lamp current is adequately selected. This suggests a longer life of the low pressure discharge lamp and inverter system.
  • an embodiment of the invention comprises a signal generator for generating a periodic signal and a circuit arrangement for limiting the periodic signal.
  • the limited periodic signal is used as a reference for controlling the modulation of the lamp current.
  • the signal is limited by a lower bound and possibly an upper bound.
  • the frequency response and the amplitude of the signal generated by the signal generator should preferably be able to be adapted to the particular embodiment of the invention. For example, it may be useful to make the frequency of the signal generated by the signal generator of the work area, ie the average lamp current dependent. For small lamp currents, it may be useful, for example, to increase the frequency of the sequence of maxima and minima of the envelope of the lamp current in order to give the charge carriers present in the discharge less time for recombination, even at a lower charge carrier density.
  • the output signal of the signal generator is synchronized with the phase position of the low-frequency, for example, as a result of rectification of a mains voltage supply voltage of the inverter. In this way, any beats noticeable as flickering of the lamp brightness can be avoided.
  • a preferred embodiment of the invention provides to control the inverter via a control loop.
  • the invention has a measuring device which measures the lamp current and converts it into a controlled variable.
  • this measuring device may also measure the operating frequency of the inverter or another variable related to the lamp current to convert it to a controlled variable.
  • a controller is provided. The controller receives the controlled variable of the measuring device and a signal, which is related to the desired brightness, as an input signal (reference variable). From control variable and reference variable, the output signal of the controller determines the control of the inverter.
  • a further preferred embodiment of the invention provides a circuit arrangement for measuring the lamp resistance, for example in EP 0 422 255 B1 described.
  • the measured variable is converted into a controlled variable, for example a voltage signal, and serves as an additional input to the regulator.
  • the controller can control the inverter so that a tearing of the gas discharge by increasing the lamp current is prevented.
  • the invention can make do without additional power components in the load circuit, compact can be built if required. Therefore, the invention is preferably suitable for integration of the electronic ballast in low-pressure discharge lamps, in particular compact fluorescent lamps (CFL).
  • CFL compact fluorescent lamps
  • FIG. 1 the lamp voltage of a low-pressure discharge lamp according to the invention is shown as a function of the lamp current, ie the lamp characteristic.
  • the lamp voltage initially increases only moderately from a minimum at maximum lamp current when the lamp current is reduced; the dependence of the lamp voltage on the lamp current is low: brightness range 1 in FIG. 1 , With a further reduction of the lamp current, the lamp voltage increases more and more; the dependence of the lamp voltage on the lamp current is increasing more pronounced: brightness ranges 2 and 3 in FIG. 1 ,
  • the gas discharge breaks down when the required voltage from the inverter can not be continuously supplied.
  • the limited output voltage of the inverter thus defines the minimum lamp current at which the lamp can still be operated continuously, and thus the minimum brightness of the lamp at unmodulated lamp current.
  • the entire brightness range is subdivided into three brightness ranges.
  • the lamp current is modulated in a sawtooth manner as the brightness decreases, wherein the amplitude of the sawtooth-shaped modulation increases with decreasing brightness and the maxima of the sawtooth are "cut off" by an upper limit.
  • FIG. 2 a shows the lamp current just below the maximum brightness
  • FIG. 2 b shows the lamp current at a lower brightness than FIG. 2 a. It can be seen that the amplitude deviation of the sawtooth-shaped modulation changes.
  • the brightness is further reduced in a second range.
  • the amplitude deviation of the saw-tooth modulation is not changed, but the DC component of the modulation and the effective value of the lamp current continue to decrease by reducing the maximum lamp current amplitude, such as FIGS. 2 c and 2 d demonstrate.
  • FIG. 2 c shows the lamp current just at the border to the first brightness range
  • FIG. 2 d shows the lamp current at a lower brightness than FIG. 2 c.
  • the second brightness range is followed by a third brightness range. This extends to the minimum brightness.
  • the maximum amplitude of the lamp current is further reduced, decreasing the stroke of the sawtooth modulation and cutting off the sawtooth at values below the lower limit.
  • the lamp current amplitudes assume a presettable minimum value (MIN).
  • MIN minimum value
  • the envelope of the lamp current assumes a pulsed shape.
  • Each phase in which the amplitude of the envelope takes a value greater than the minimum value (MIN) defines a pulse packet. The further the maximum current amplitude and thus the stroke is reduced, the longer are the times with the minimum lamp current amplitudes.
  • the minimum lamp current amplitudes can be very small and even identical to zero, so that no or almost no lamp current flows. As the brightness decreases, the amplitudes in the pulse packets become smaller, the pulse packet durations less, and the distances between the pulse packets larger. The frequency of the modulation signal can increase.
  • FIG. 2 e shows the lamp current at a brightness close to the boundary to the second brightness range
  • Figure 2 f shows the lamp current at a lower brightness.
  • FIG. 3 shows a circuit arrangement according to the invention for controlling the lamp brightness.
  • a first signal DL is used, which behaves strictly monotone to the desired brightness.
  • This signal is fed to a sawtooth generator STG.
  • the sawtooth generator STG can be designed as a self-oscillating circuit.
  • the signal DL determines the DC component of the sawtooth signal, for example, DL can be proportional to the DC component of the sawtooth signal.
  • the sawtooth generator generates a signal ST, which is supplied to a clamping circuit.
  • the clamping circuit CL provides an output signal RV which is limited up and down. If ST assumes values which are greater than the value MAX, the output signal RV is limited to the value MAX (clamped). If ST assumes values smaller than MIN, RV is limited to MIN (clamped).
  • the original signal ST can also be completely above the value MAX or below the value MIN. In these cases, the output RV of the clamping circuit CL corresponds to a constant signal with the value MAX or MIN.
  • the clamped sawtooth signal RV is fed as a reference variable to a regulator REG.
  • the regulator REG can be implemented as a PI controller.
  • the regulator REG controls via its output signal MV, the operating frequency of the inverter INV, which operates the low-pressure discharge lamp. Further, the inverter INV provides a size CV which depends on the lamp current. The size CV may in particular be the lamp current itself or the operating frequency of the inverter.
  • the measuring device ME generated from the size CV, a signal AV, which is supplied to the regulator REG as a controlled variable.
  • the minimum value of the reference variable RV for the regulator REG corresponds to the value MIN.
  • the value MIN should preferably not be too small from a control engineering point of view.
  • the REG regulator should always be held in an active operating state instead of allowing its output signal to drop (rise) to a final value due to the supply voltage of the REG regulator. As a result, larger transient events can be avoided with increasing (falling) edge of the sawtooth-shaped modulation signal.
  • the Figures 4 af show the change of the sawtooth signal ST and the reference variable RV for driving the regulator REG with a change in the desired brightness from just below the maximum brightness to a low brightness.
  • a large part of the sawtooth signal is above the maximum value MAX.
  • Those Parts of the sawtooth signal which are above the value MAX are clamped to the value MAX.
  • the clamping device CL generates the reference variable RV, which largely corresponds to the maximum value MAX.
  • the reference variable RV corresponds to the signal ST, such as FIG. 4 a shows.
  • the desired brightness is reduced, so does the DC component of the sawtooth voltage ST.
  • the stroke of the amplitude modulation of the controlled variable RV increases, but only up to a maximum value which corresponds to the stroke of the sawtooth signal ST, such as FIG. 4 b shows.
  • phase MIN As the brightness decreases further, phases occur in which the sawtooth signal ST drops below the minimum value for the reference variable RV defined by the value MIN. During these phases, the reference variable RV is clamped by the clamping circuit CL to the minimum value MIN. The phases with decreasing DC component of the sawtooth signal ST become longer, like the FIGS. 4 e and f demonstrate. If the sawtooth signal ST is always smaller than the value MIN, the reference variable RV corresponds to the value MIN.
  • the inverter when the inverter is supplied with an intermediate circuit voltage, it will not be constant in time, but will have corresponding fluctuations in the periodicity of the supply network.
  • the frequency of the modulation signal is much larger. This can cause beats, which can be perceived as flickering of the low-pressure discharge lamp.
  • the phase angle of the sawtooth signal can be synchronized with the phase position of the line frequency. For example, it can be achieved by a suitable circuit that a rising edge of the sawtooth signal is always generated at the time of the network maximum.
  • the size of the MIN signal should be kept as small as possible in order to achieve the lowest possible brightness. With a small signal DL or MIN increases the risk of extinguishing the discharge. To prevent that from happening EP 0 422 255 B1 known circuit can be used to measure the discharge resistance. If this increases strongly, a demolition of the discharge is imminent. Based on the knowledge of the discharge resistance, the regulator REG can be supplied with an additional controlled variable, so that the lamp current is increased in the event of an imminent extinction of the lamp.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)

Description

    Technisches Gebiet
  • Die vorliegende Erfindung bezieht sich auf ein elektronisches Vorschaltgerät mit einer Dimmvorrichtung zur Steuerung der Lampenhelligkeit einer Niederdruckentladungslampe, sowie auf ein Verfahren zur Steuerung der Lampenhelligkeit einer Niederdruckentladungslampe.
  • Stand der Technik
  • Elektronische Vorschaltgeräte zum Betrieb von Niederdruckentladungslampen sind in vielfältigen Ausführungen bekannt. I.d.R. enthalten sie eine Gleichrichterschaltung zur Gleichrichtung einer Wechselspannungsversorgung und Aufladen eines häufig als Glättungskondensator bezeichneten Kondensators. Die an diesem Kondensator anliegende Gleichspannung dient zur Versorgung eines Wechselrichters bzw. Inverters (im Folgenden Inverter), der die Niederdruckentladungslampe betreibt. Grundsätzlich erzeugt ein Inverter aus einer gleichgerichteten Wechselspannungsversorgung oder einer Gleichspannungsversorgung eine Versorgungsleistung für die Lampe, die eine viel höhere Frequenz als die Netzfrequenz aufweist. Ähnliche Vorrichtungen sind auch für andere Lampentypen bekannt, beispielsweise in Form von elektronischen Transformatoren für Halogenlampen.
  • Dimmvorrichtungen zum Betrieb von elektronischen Vorschaltgeräten zur Helligkeitssteuerung von Niederdruckentladungslampen sind an sich bekannt.
  • Eine bekannte Möglichkeit der Helligkeitssteuerung besteht dabei darin, über Regelung der Amplitude des Lampenstromes die Lampenleistung und damit die Lampenhelligkeit einzustellen. Dies kann über eine Annäherung oder Entfernung der Betriebsfrequenz des Inverters von Resonanzfrequenzen des Lampe-Inverter-Systems erfolgen.
  • Das Dokument US-A1-2002/0060537 offenbart Dimmen von einer Gasentladungslampe wobei in drei verschiedene Dimm-Bereichen verschiedene Dimm-Strategien benutzt werden. Die drei Dimm-Strategien sind Analoger Betrieb, gepulster Betrieb und eine Überlagerungen von diesen beiden Betriebsarten. In allen Dimm-Bereichen wird Pulsweitenmodulation (PWM) verwendet.
  • Darstellung der Erfindung
  • Der Erfindung liegt das technische Problem zugrunde, ein im Hinblick auf die Lampenhelligkeitssteuerung verbessertes elektronisches Vorschaltgerät anzugeben.
  • Diese Aufgabe wird durch ein elektronisches Vorschaltgerät mit einer Dimmvorrichtung zur Steuerung der Helligkeit einer Niederdruckentladungslampe gelöst. Das elektronische Vorschaltgerät ist ausgelegt zum Betrieb der Niederdruckentladungslampe mit periodisch moduliertem Lampenstrom, dadurch gekennzeichnet, dass die Dimmvorrichtung dazu ausgelegt ist, den Lampenstrom zur Steuerung der Lampenhelligkeit wie folgt einzustellen:
    • mit abnehmender Helligkeit werden sowohl die Maxima als auch die Minima der Einhüllenden des Lampenstromes kleiner;
    • bei weiter abnehmender Helligkeit wird die periodische Modulation der Einhüllenden des Lampenstromes durch eine, optional Null entsprechende, untere Begrenzung (MIN) der Lampenstromamplitude überlagert, so dass eine periodische Modulation der Einhüllenden des Lampenstromes in Lampenstrompulspakete mit über der unteren Begrenzung (MIN) liegenden Lampenstromamplituden entsteht,
    • wobei mit weiter abnehmender Helligkeit die Pulspaketbreiten abnehmen und die Abstände zwischen den Pulspaketen mit den begrenzten Lampenstromamplituden (MIN) zunehmen.
  • Bevorzugte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden im Folgenden näher erläutert. Die Offenbarung bezieht sich dabei stets sowohl auf die Verfahrenskategorie als auch die Vorrichtungskategorie der Erfindung.
  • Zur Steuerung der Lampenhelligkeit sieht die Erfindung vor, dass der hochfrequente Lampenstrom mit einem Modulationssignal amplitudenmoduliert und damit der mittlere Lampenstrom variiert wird.
  • Ausgehend von maximaler Helligkeit der Niederdruckentladungslampe werden zur Verringerung der Helligkeit zumindest die Minima und, zumindest ab einem bestimmten Helligkeitswert, auch die Maxima der Einhüllenden verkleinert. Der Amplitudenunterschied zwischen den Minima und den Maxima der Einhüllenden des Lampenstromes kann dabei über einen gewissen Helligkeitsbereich konstant sein, muss es aber nicht. Vorzugsweise bleibt die Form des Modulationssignals in diesem Helligkeitsbereich erhalten. Es ändert sich nur der Gleichanteil des Modulationssignals.
  • Bei weiterer Verringerung der Helligkeit erreichen die Minima der Einhüllenden des Lampenstromes eine untere Grenze. Diese untere Grenze wird von der Einhüllenden nicht unterschritten. Die untere Grenze kann je nach Ausführungsform der Erfindung einen positiven endlichen Wert annehmen oder aber auch auf Null gesetzt werden. Zwischen den Phasen mit größerer Amplitude der Einhüllenden gibt es also Phasen, in denen die Amplitude der Einhüllenden des Lampenstromes dem Wert der unteren Begrenzung entspricht.
  • Die Phasen, in denen die Amplitude der Einhüllenden größer ist als der Wert der unteren Begrenzung, definieren "Pulspakete". Diese sind voneinander getrennt durch Phasen mit minimaler Amplitude der Einhüllenden. Ein Pulspaket entspricht dabei einem zusammenhängenden Zeitraum, in dem die Amplitude der Einhüllenden größer ist als der minimale Wert und besteht aus mehreren hochfrequenten Lampenstromschwingungen. Zwischen den Pulspaketen entspricht die Amplitude der Einhüllenden der unteren Begrenzung, es fließt also bei positiver endlicher unterer Begrenzung ein hochfrequenter Lampenstrom. Ist die untere Begrenzung auf Null gesetzt, fließt kein Lampenstrom.
  • Wird die Helligkeit weiter verringert, so nimmt die zeitliche Ausdehnung der Pulspakete ab und die Abstände zwischen den Pulspaketen werden länger.
  • Zur Erhöhung der Helligkeit wird ausgehend von geringeren Helligkeiten das obige Schema in umgekehrter Reihenfolge verwendet.
  • Beim Betrieb einer Niederdruckentladungslampe mit periodisch moduliertem Lampenstrom wird die Niederdruckentladungslampe auf mehreren Arbeitspunkten der Lampenspannungs-/Lampenstromkennlinie, also der Lampenkennlinie, betrieben. Während der Phasen mit geringerem Lampenstrom liegt der Arbeitspunkt in einem steileren Bereich der Kennlinie mit höheren Spannungen, während der Phasen mit größerem Lampenstrom liegt der Arbeitspunkt in einem flacheren Bereich der Kennlinie mit geringeren Spannungen, vergleiche Figur 1 eher links bzw. eher rechts.
  • Die Vorteile einer solchen Betriebsweise werden deutlich beim Vergleich zu einer Helligkeitssteuerung mittels einer modulationsfreien Amplitudeneinstellung des Lampenstromes.
  • Bei geringen Helligkeiten fließen ohne Amplitudenmodulation kleine Lampenströme, somit liegt der Arbeitspunkt in Figur 1 eher links auf der Lampenkennlinie. In diesem Kennlinienbereich hängt die Lampenspannung stark von dem Lampenstrom ab. Wird die Helligkeit weiter verringert, so nimmt auch der Lampenstrom weiter ab und die Lampenspannung steigt sehr stark an. Vor allem im Bereich kleiner kontinuierlicher Lampenströme ist die Abhängigkeit der Lampenspannung vom Lampenstrom zudem sehr stark temperaturabhängig. Bei größeren Lampenströmen ist die Lampenspannung nur schwach vom Lampenstrom abhängig.
  • Ab einer bestimmten Lampenspannung kann der Inverter die Lampenspannung nicht mehr kontinuierlich zur Verfügung stellen.
  • Beim Betrieb einer Niederdruckentladungslampe mit periodisch moduliertem Lampenstrom liegt während der Phasen mit größerem Lampenstrom der Arbeitspunkt in einem Bereich geringerer Kennliniensteigung und niedrigerer Brennspannungen und während der Phasen mit kleinerem Lampenstrom in einem Bereich größerer Kennliniensteigung und höherer Lampenspannungen. Bei geringen Helligkeiten wird die Niederdruckentladungslampe periodisch wiederkehrend nur kurz im kritischen Bereich kleiner Lampenströme betrieben, die Brennspannung steigt dabei nur wenig an.
  • Damit können geringere Helligkeiten erreicht werden als mit unmoduliertem Strom, weil in den Phasen mit größeren Lampenströmen genug Ladungsträger für die Entladung bereitgestellt werden, und dadurch in Phasen mit sehr kleinen Lampenströmen eine vollständige Rekombination der Ladungsträger vermieden wird.
  • Es kann Ausführungsformen der Erfindung geben, bei denen der Lampenstrom periodisch gänzlich verschwindet. Dennoch bleiben Ladungsträger durch die periodisch wiederkehrenden Maxima der Einhüllenden erhalten. So können sehr geringe Helligkeiten erreicht werden.
  • Eine bevorzugte Ausführung der Erfindung sieht vor, dass eine endliche minimale Lampenstromamplitude nicht unterschritten wird, die jedoch vorzugsweise so klein sein sollte, dass sie lediglich eine rasche nachfolgende Amplitudenerhöhung erleichtert.
  • Bei einer weiteren bevorzugten Ausführungsform wird die Einhüllende zu großen Werten hin begrenzt. Die Einhüllende überschreitet einen maximalen Wert nicht. Ausgehend von geringen Helligkeiten heißt das, dass mit größer werdenden Maxima und Minima der Einhüllenden des Lampenstromes zunächst die Maxima diese obere Grenze erreichen und dann den entsprechenden Wert auch nicht weiter überschreiten. Eine weitere Steigerung der Helligkeit kann erreicht werden durch eine Vergrößerung der Minima. Phasen mit maximalem Wert der Einhüllenden werden von Minima in der Einhüllenden und deren Umgebung unterbrochen. Die maximale Helligkeit ist erreicht, wenn die Amplitude der Einhüllenden immer ihren der oberen Grenze entsprechenden maximalen Wert annimmt. Im Grunde handelt es sich hier um ein spiegelbildliches Vorgehen im Verhältnis zu der oben erläuterten unteren Begrenzung.
  • Beim Betrieb der Niederdruckentladungslampe mit moduliertem hochfrequenten Lampenstrom wird vorzugsweise die ansteigende Flanke einer Phase mit größeren Lampenstromamplituden im Vergleich zu der entsprechenden abfallenden Flanke relativ steil ausgeführt. Eine schnelle Reduktion der Einhüllenden des Lampenstromes entspricht nicht der Eigendynamik des Systems aus Inverter und Niederdruckentladungslampe. Weil noch viele Ladungsträger im Entladungsraum der Niederdruckentladungslampe vorhanden sind, nimmt die Brennspannung der Niederdruckentladungslampe nur langsam zu und der Inverter kann weiter Leistung in die Niederdruckentladungslampe einkoppeln.
  • Ein Aufschwingen von kleinen Lampenströmen zu großen Lampenströmen ist jedoch innerhalb weniger Lampenstromschwingungen schnell möglich, die ansteigenden Flanken der Modulation können sehr steil ausgeführt werden. Bei kleinen Lampenströmen bedämpft die Niederdruckentladungslampe den Inverter nur schwach, es können schlagartig hohe Spannungen erzeugt werden, die einen großen Lampenstrom zur Folge haben. Dadurch kann nach Phasen mit relativ kleinem Lampenstrom sehr schnell ein großer Lampenstrom aufgebaut werden.
  • Vorzugsweise ist eine Ausgestaltung der Erfindung dazu ausgelegt, die Einhüllende des Lampenstromes sägezahnförmig oder verrundet sägezahnförmig zu modulieren, wobei die steigende Flanke deutlich steiler als die fallende ist.
  • Das Verhältnis zwischen Spitzen- und Mittelwert des Lampenstromes, der Crest-Faktor, kann bei geschickter Wahl des Amplitudenhubes der Einhüllenden des Lampenstromes klein gehalten werden. Dies lässt eine längere Lebensdauer des Systems aus Niederdruckentladungslampe und Inverter erwarten.
  • Vorzugsweise weist eine Ausgestaltung der Erfindung einen Signalgenerator zur Erzeugung eines periodischen Signals und eine Schaltungsanordnung zur Beschränkung des periodischen Signals auf. Das beschränkte periodische Signal wird als Führungsgröße zur Steuerung der Modulation des Lampenstromes verwendet. Das Signal ist durch eine untere Schranke und gegebenenfalls eine obere Schranke beschränkt. Der Frequenzgang und die Amplitude des vom Signalgenerator erzeugten Signals sollen vorzugsweise an die jeweilige Ausgestaltung der Erfindung angepasst werden können. Beispielsweise kann es sinnvoll sein, die Frequenz des vom Signalgenerator erzeugten Signals vom Arbeitsbereich, also dem mittleren Lampenstrom, abhängig zu machen. Bei kleinen Lampenströmen kann es beispielsweise sinnvoll sein, die Frequenz der Abfolge von Maxima und Minima der Einhüllenden des Lampenstromes zu erhöhen, um den in der Entladung vorhandenen Ladungsträgern bei ohnehin geringerer Ladungsträgerdichte weniger Zeit zur Rekombination zu geben.
  • In einer bevorzugten Ausgestaltung der Erfindung wird das Ausgangssignal des Signalgenerators mit der Phasenlage der beispielsweise in der Folge einer Gleichrichtung einer Netzspannung niederfrequent schwankenden Versorgungsspannung des Inverters synchronisiert. Auf diese Weise können eventuell als Flackern der Lampenhelligkeit wahrnehmbare Schwebungen vermieden werden.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, den Inverter über einen Regelkreis zu steuern. Dazu weist die Erfindung eine Messvorrichtung auf, welche den Lampenstrom misst und in eine Regelgröße umwandelt. Alternativ kann diese Messvorrichtung auch die Betriebsfrequenz des Inverters messen oder eine andere mit dem Lampenstrom zusammenhängende Größe, um diese in eine Regelgröße umzuwandeln. Weiter ist ein Regler vorgesehen. Der Regler erhält die Regelgröße der Messvorrichtung und ein Signal, welches zur gewünschten Helligkeit in Beziehung steht, als Eingangssignal (Führungsgröße). Aus Regelgröße und Führungsgröße bestimmt sich das Ausgangssignal des Reglers zur Steuerung des Inverters.
  • Eine weitere bevorzugte Ausgestaltung der Erfindung sieht eine Schaltungsanordnung zur Messung des Lampenwiderstandes vor, zum Beispiel in EP 0 422 255 B1 beschrieben. Die Messgröße wird in eine Regelgröße, beispielsweise ein Spannungssignal, umgewandelt und dient als zusätzliche Eingabe zum Regler. Bei einem sich stark erhöhenden Widerstand der Entladungslampe kann der Regler den Inverter so ansteuern, dass ein Abreißen der Gasentladung durch Erhöhen des Lampenstromes verhindert wird.
  • Da die Erfindung ohne zusätzliche Leistungsbauelemente im Lastkreis auskommen kann, kann bei Bedarf kompakt gebaut werden. Daher eignet sich die Erfindung vorzugsweise zur Integration des elektronischen Vorschaltgerätes in Niederdruckentladungslampen, insbesondere Kompaktleuchtstofflampen (CFL).
  • Kurze Beschreibung der Zeichnungen
  • Im Folgenden soll die Erfindung anhand eines Ausführungsbeispieles näher erläutert werden. Die dabei offenbarten Einzelmerkmale können auch in anderen Kombinationen erfindungswesentlich sein. Die vorstehende und die folgende Beschreibung beziehen sich auf die Vorrichtungskategorie und die Verfahrenskategorie der Erfindung, ohne dass dies im Einzelnen noch explizit erwähnt wird.
  • Figur 1
    zeigt die Abhängigkeit der Lampenspannung einer erfindungsgemäßen Niederdruckentladungslampe vom Lampenstrom.
    Figuren 2 a-f
    zeigen den modulierten Lampenstrom bei verschiedenen Lampenhelligkeiten einer erfindungsgemäßen Niederdruckentladungslampe.
    Figur 3
    zeigt eine erfindungsgemäße Schaltungsanordnung zur Steuerung der Lampenhelligkeit.
    Figuren 4 a-f
    zeigen wie ein moduliertes Signal für den Betrieb einer Niederdruckentladungslampe erfindungsgemäß generiert wird.
    Bevorzugte Ausführung der Erfindung
  • In Figur 1 ist die Lampenspannung einer erfindungsgemäßen Niederdruckentladungslampe als Funktion des Lampenstromes dargestellt, also die Lampenkennlinie. Die Lampenspannung nimmt ausgehend von einem Minimum bei maximalem Lampenstrom bei einer Reduzierung des Lampenstromes zunächst nur mäßig zu; die Abhängigkeit der Lampenspannung vom Lampenstrom ist gering: Helligkeitsbereich 1 in Figur 1. Bei einer weiteren Reduzierung des Lampenstromes nimmt die Lampenspannung immer stärker zu; die Abhängigkeit der Lampenspannung vom Lampenstrom wird zunehmend ausgeprägter: Helligkeitsbereiche 2 und 3 in Figur 1. Bei Unterschreitung eines minimalen Lampenstromes reißt die Gasentladung ab, wenn die erforderliche Spannung vom Inverter nicht kontinuierlich bereitgestellt werden kann. Die begrenzte Ausgangsspannung des Inverters definiert also den minimalen Lampenstrom, mit dem die Lampe noch kontinuierlich betrieben werden kann, und damit die minimale Helligkeit der Lampe bei unmoduliertem Lampenstrom.
  • In Anlehnung an Figur 1 und zur Veranschaulichung der erfindungsgemäßen Idee, wird der gesamte Helligkeitsbereich in drei Helligkeitsbereiche unterteilt.
  • In einem ersten Helligkeitsbereich zwischen maximal möglicher Helligkeit und einer mittleren Helligkeit wird bei abnehmender Helligkeit der Lampenstrom sägezahnförmig moduliert, wobei der Amplitudenhub der sägezahnförmigen Modulation mit geringer werdender Helligkeit zunimmt und die Maxima des Sägezahns durch eine obere Begrenzung "abgeschnitten" sind.
  • Figur 2 a zeigt den Lampenstrom knapp unterhalb der maximalen Helligkeit, Figur 2 b zeigt den Lampenstrom bei einer geringeren Helligkeit als Figur 2 a. Man sieht, dass sich der Amplitudenhub der sägezahnförmigen Modulation ändert.
  • Anschließend an das Ende des ersten Helligkeitsbereiches wird die Helligkeit in einem zweiten Bereich weiter reduziert. Der Amplitudenhub der sägezahnförmigen Modulation wird nicht verändert, jedoch nehmen der Gleichanteil der Modulation und der Effektivwert des Lampenstromes durch Verringerung der maximalen Lampenstromamplitude weiter ab, wie die Figuren 2 c and 2 d zeigen.
  • Figur 2 c zeigt den Lampenstrom knapp an der Grenze zum ersten Helligkeitsbereich, Figur 2 d zeigt den Lampenstrom bei einer geringeren Helligkeit als Figur 2 c.
  • An den zweiten Helligkeitsbereich schließt sich ein dritter Helligkeitsbereich an. Dieser erstreckt sich bis zur minimalen Helligkeit. Die maximale Amplitude des Lampenstromes wird weiter reduziert, wobei der Hub der sägezahnförmigen Modulation abnimmt und der Sägezahn bei Werten unterhalb der unteren Begrenzung abgeschnitten wird. Zwischen den Maxima der Einhüllenden des Lampenstromes nehmen die Lampenstromamplituden einen vorgebbaren minimalen Wert (MIN) an. Dadurch nimmt die Einhüllende des Lampenstromes eine gepulste Gestalt an. Jede Phase, in der die Amplitude der Einhüllenden einen größeren Wert annimmt als den minimalen Wert (MIN), definiert ein Pulspaket. Je weiter die maximale Stromamplitude und damit der Hub reduziert wird, desto länger sind die Zeiten mit den minimalen Lampenstromamplituden. Die minimalen Lampenstromamplituden können sehr klein und sogar identisch Null sein, so dass kein oder nahezu kein Lampenstrom fließt. Mit abnehmender Helligkeit werden die Amplituden in den Pulspaketen kleiner, die Pulspaketdauern geringer und die Abstände zwischen den Pulspaketen größer. Die Frequenz des Modulationssignals kann dabei ansteigen.
  • Figur 2 e zeigt den Lampenstrom bei einer Helligkeit nahe an der Grenze zum zweiten Helligkeitsbereich; Figur 2 f zeigt den Lampenstrom bei einer geringeren Helligkeit.
  • Figur 3 zeigt eine erfindungsgemäße Schaltungsanordnung zur Steuerung der Lampenhelligkeit. Zur Steuerung der Lampenhelligkeit wird ein erstes Signal DL verwendet, welches sich zur gewünschten Helligkeit streng monoton verhält. Dieses Signal wird einem Sägezahngenerator STG zugeführt. Der Sägezahngenerator STG kann als selbstoszillierende Schaltung ausgeführt sein.
  • Das Signal DL bestimmt den Gleichanteil des Sägezahnsignals, beispielsweise kann DL proportional zum Gleichanteil des Sägezahnsignals sein. Der Sägezahngenerator erzeugt ein Signal ST, welches einer Klemmschaltung zugeführt wird. Die Klemmschaltung CL stellt ein Ausgangssignal RV bereit das nach oben und unten begrenzt ist. Nimmt ST Werte an, die größer als der Wert MAX sind, so wird das Ausgangssignal RV auf den Wert MAX beschränkt (geklemmt). Nimmt ST Werte an, die kleiner als der Wert MIN sind, so wird RV auf den Wert MIN beschränkt (geklemmt). Das ursprüngliche Signal ST kann auch komplett oberhalb des Wertes MAX oder unterhalb des Wertes MIN liegen. In diesen Fällen entspricht die Ausgabe RV der Klemmschaltung CL einem konstanten Signal mit dem Wert MAX bzw. MIN.
  • Das geklemmte Sägezahnsignal RV wird als Führungsgröße einem Regler REG zugeführt. Der Regler REG kann als PI-Regler ausgeführt sein.
  • Der Regler REG steuert über sein Ausgangssignal MV die Betriebsfrequenz des Inverters INV, welcher die Niederdruckentladungslampe betreibt. Weiter stellt der Inverter INV eine Größe CV zur Verfügung, welche von dem Lampenstrom abhängt. Die Größe CV kann dabei insbesondere der Lampenstrom selbst oder die Betriebsfrequenz des Inverters sein.
  • Die Messeinrichtung ME erzeugt aus der Größe CV ein Signal AV, welches dem Regler REG als Regelgröße zugeführt wird.
  • Der minimale Wert der Führungsgröße RV für den Regler REG entspricht dem Wert MIN. Der Wert MIN sollte aus regelungstechnischer Sicht vorzugsweise nicht zu klein gewählt werden. Der Regler REG sollte immer in einem aktiven Betriebszustand gehalten werden, anstatt sein Ausgangssignal auf einen durch die Versorgungsspannung des Reglers REG bedingten Endwert sinken (steigen) zu lassen. Dadurch können größere Einschwingvorgänge bei steigender (fallender) Flanke des sägezahnförmigen Modulationssignals vermieden werden.
  • Die Figuren 4 a-f zeigen die Veränderung des Sägezahnsignals ST und der Führungsgröße RV zur Ansteuerung des Reglers REG bei einer Veränderung der gewünschten Helligkeit von knapp unterhalb der maximalen Helligkeit bis zu einer geringen Helligkeit. Nahe der maximalen Helligkeit liegt ein großer Teil des Sägezahnsignals über dem Maximalwert MAX. Diejenigen Teile des Sägezahnsignals, welche oberhalb des Wertes MAX liegen, werden auf den Wert MAX geklemmt. Die Klemmvorrichtung CL erzeugt die Führungsgröße RV, welche zum großen Teil dem Maximalwert MAX entspricht. Zu den Zeiten, zu denen das Signal ST kleiner ist als der Wert MAX, entspricht die Führungsgröße RV dem Signal ST, wie Figur 4 a zeigt. Wird die gewünschte Helligkeit verringert, so verringert sich auch der Gleichanteil der Sägezahnspannung ST. Der Hub der Amplitudenmodulation der Regelgröße RV wird größer, allerdings nur bis zu einem maximalen Wert, welcher dem Hub des Sägezahnsignals ST entspricht, wie Figur 4 b zeigt.
  • Wird der Gleichanteil der Sägezahnspannung weiter verringert, so ändert sich zunächst einmal nicht der Hub der Modulation der Führungsgröße RV, sondern deren Gleichanteil, wie die Figuren 4 c und d zeigen.
  • Bei weiterer Reduzierung der Helligkeit treten Phasen auf, in denen das Sägezahnsignal ST unter den durch den Wert MIN definierten Minimalwert für die Führungsgröße RV sinkt. Während dieser Phasen wird die Führungsgröße RV von der Klemmschaltung CL auf den minimalen Wert MIN geklemmt. Die Phasen mit abnehmendem Gleichanteil des Sägezahnsignals ST werden länger, wie die Figuren 4 e und f zeigen. Ist das Sägezahnsignal ST immer kleiner als der Wert MIN, so entspricht die Führungsgröße RV dem Wert MIN.
  • Üblicherweise wird bei einer Versorgung des Inverters mit einer Zwischenkreisspannung diese nicht zeitlich konstant sein, sondern der Periodizität des Versorgungsnetzes entsprechende Schwankungen aufweisen. Die Frequenz des Modulationssignals ist viel größer. Es können dadurch Schwebungen entstehen, welche als Flackern der Niederdruckentladungslampe wahrgenommen werden können. Um dies zu verhindern kann die Phasenlage des Sägezahnsignals mit der Phasenlage der Netzfrequenz synchronisiert werden. Beispielsweise kann durch eine geeignete Schaltung erreicht werden, dass immer zum Zeitpunkt des Netzmaximums eine steigende Flanke des Sägezahnsignals erzeugt wird.
  • Die Größe des Signals MIN soll möglichst klein gehalten werden, um zu möglichst geringen Helligkeiten gelangen zu können. Mit einem kleinen Signal DL bzw. MIN steigt das Risiko eines Erlöschens der Entladung. Um das zu verhindern, kann die aus EP 0 422 255 B1 bekannte Schaltung verwendet werden, um den Entladungswiderstand zu messen. Steigt dieser stark an, steht ein Abriss der Entladung unmittelbar bevor. Basierend auf der Kenntnis des Entladungswiderstandes kann dem Regler REG eine zusätzliche Regelgröße zugeführt werden, so dass bei einem drohenden Erlöschen der Lampe der Lampenstrom erhöht wird.

Claims (12)

  1. Elektronisches Vorschaltgerät mit einer Dimmvorrichtung zur Steuerung der Helligkeit einer Niederdruckentladungslampe, ausgelegt zum Betrieb mit periodisch moduliertem Lampenstrom, dadurch gekennzeichnet, dass die Dimmvorrichtung dazu ausgelegt ist, den Lampenstrom zur Steuerung der Lampenhelligkeit wie folgt einzustellen:
    - mit abnehmender Helligkeit werden sowohl die Maxima als auch die Minima der Einhüllenden des Lampenstromes kleiner;
    - bei weiter abnehmender Helligkeit wird die periodische Modulation der Einhüllenden des Lampenstromes durch eine, optional Null entsprechende, untere Begrenzung (MIN) der Lampenstromamplitude überlagert, so dass eine periodische Modulation der Einhüllenden des Lampenstromes in Lampenstrompulspakete mit über der unteren Begrenzung (MIN) liegenden Lampenstromamplituden entsteht,
    - wobei mit weiter abnehmender Helligkeit die Pulspaketbreiten abnehmen und die Abstände zwischen den Pulspaketen, wobei in den Abständen die Amplitude der Einhüllenden der unteren Begrenzung (MIN) entspricht, zunehmen.
  2. Elektronisches Vorschaltgerät nach Anspruch 1, bei dem die Dimmvorrichtung so ausgelegt ist, dass die untere Begrenzung (MIN) einem positiven Wert der Einhüllenden des Lampenstromes entspricht.
  3. Elektronisches Vorschaltgerät nach Anspruch 1 oder 2, bei dem die Dimmvorrichtung so ausgelegt ist, dass die Einhüllende des Lampenstromes bei großer und maximaler Helligkeit durch einen maximalen Wert (MAX) beschränkt ist.
  4. Elektronisches Vorschaltgerät nach Anspruch 1, 2 oder 3, bei dem die Dimmvorrichtung so ausgelegt ist, dass die jeweils ansteigenden Flanken der periodischen Modulation, verglichen mit den jeweils abfallenden Flanken, steil ausgeführt werden.
  5. Elektronisches Vorschaltgerät nach Anspruch 4, bei dem die Dimmvorrichtung dazu ausgelegt ist, die Einhüllende des Lampenstromes zur Steuerung der Helligkeit sägezahnförmig oder verrundet sägezahnförmig zu modulieren.
  6. Elektronisches Vorschaltgerät nach einem der vorangehenden Ansprüche, bei dem die Dimmvorrichtung einen Signalgenerator (STG) zur Erzeugung eines periodischen Signals (ST) für die Modulation des Lampenstromes und eine Schaltungsanordnung (CL) zur Beschränkung des periodischen Signals (ST) entsprechend gegebenenfalls einer maximalen und der minimalen Schranke (MAX, MIN) aufweist.
  7. Elektronisches Vorschaltgerät nach einem der vorangehenden Ansprüche, bei dem die Dimmvorrichtung einen Signalgenerator (STG) zur Erzeugung eines periodischen Signals (ST) für die Modulation des Lampenstromes und eine Vorrichtung zur Synchronisierung des periodischen Signals mit der Versorgungsspannung eines Inverters (INV) zur Erzeugung des Lampenstromes aufweist, wobei das Ausgangssignal des Signalgenerators (STG) mit der Phasenlage der niederfrequent schwankenden Versorgungsspannung des Inverters (INV) synchronisiert wird.
  8. Elektronisches Vorschaltgerät nach einem der vorhergehenden Ansprüche mit
    - einem Inverter (INV) zur Erzeugung des Lampenstromes,
    - einer Messvorrichtung (ME) zur Messung des Lampenstromes oder einer vom Lampenstrom abhängigen Größe und zur Erzeugung einer Regelgröße (AV),
    - einem von der Dimmvorrichtung gesteuerten Regler (REG) zur Steuerung des Inverters (INV).
  9. Elektronisches Vorschaltgerät nach Anspruch 8 mit einer Einrichtung zum Verhindern des Abreißens der Gasentladung, welche ausgelegt ist zur Messung des Lampenwiderstandes und zur Umwandlung des Lampenwiderstandes in eine zusätzliche Regelgröße.
  10. Niederdruckentladungslampe mit integriertem elektronischem Vorschaltgerät nach einem der vorhergehenden Ansprüche.
  11. Verfahren zur Steuerung der Helligkeit einer Niederdruckentladungslampe mittels eines elektronischen Vorschaltgerätes mit einer Dimmvorrichtung, ausgelegt zum Betrieb mit periodisch moduliertem Lampenstrom, dadurch gekennzeichnet, dass zur Steuerung der Lampenhelligkeit die Dimmvorrichtung den Lampenstrom wie folgt einstellt:
    - mit abnehmender Helligkeit werden sowohl die Maxima als auch die Minima der Einhüllenden des Lampenstromes kleiner;
    - bei weiter abnehmender Helligkeit wird die periodischen Modulation der Einhüllenden des Lampenstromes durch eine, optional Null entsprechende, untere Begrenzung (MIN) der Lampenstromamplitude überlagert, so dass eine periodische Modulation der Einhüllenden des Lampenstromes in Lampenstrompulspakete mit über der unteren Begrenzung (MIN) liegenden Lampenstromamplituden entsteht,
    - wobei mit weiter abnehmender Helligkeit die Pulspaketbreiten abnehmen und die Abstände zwischen den Pulspaketen, wobei in den Abständen die Amplitude der Einhüllenden der unteren Begrenzung (MIN) entspricht, zunehmen.
  12. Verfahren nach Anspruch 11 unter Verwendung eines Vorschaltgerätes nach einem der Ansprüche 1 bis 10.
EP06004878.2A 2005-03-22 2006-03-09 Vorschaltgerät mit Dimmvorrichtung Expired - Fee Related EP1705964B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005013309A DE102005013309A1 (de) 2005-03-22 2005-03-22 Vorschaltgerät mit Dimmvorrichtung

Publications (3)

Publication Number Publication Date
EP1705964A2 EP1705964A2 (de) 2006-09-27
EP1705964A3 EP1705964A3 (de) 2010-01-27
EP1705964B1 true EP1705964B1 (de) 2013-11-06

Family

ID=36593667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06004878.2A Expired - Fee Related EP1705964B1 (de) 2005-03-22 2006-03-09 Vorschaltgerät mit Dimmvorrichtung

Country Status (4)

Country Link
US (1) US7327099B2 (de)
EP (1) EP1705964B1 (de)
CN (1) CN1849030B (de)
DE (1) DE102005013309A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2223572A1 (de) 2007-12-14 2010-09-01 Koninklijke Philips Electronics N.V. Vorrichtung zur erzeugung von dämmbarem licht
DE102009047289A1 (de) * 2009-11-30 2011-06-22 Osram Gesellschaft mit beschränkter Haftung, 81543 Verfahren zur Einstellung eines elektronischen Vorschaltgeräts, elektronisches Vorschaltgerät und Abgleicheinheit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0422255B1 (de) 1989-10-09 1994-03-02 Siemens Aktiengesellschaft Elektronisches Vorschaltgerät
DE3943350A1 (de) 1989-12-29 1991-07-04 Zumtobel Ag Verfahren und vorschaltgeraet zum dimmen von leuchtstoffroehren
NL9000202A (nl) * 1990-01-29 1991-08-16 Philips Nv Schakelinrichting.
GB2277415B (en) * 1993-04-23 1997-12-03 Matsushita Electric Works Ltd Discharge lamp lighting device
US5684367A (en) * 1996-01-16 1997-11-04 Osram Sylvania Inc. Color control and arc stabilization for high-intensity, discharge lamps
JP3600976B2 (ja) * 1998-07-14 2004-12-15 三菱電機株式会社 放電灯点灯装置
US6198234B1 (en) * 1999-06-09 2001-03-06 Linfinity Microelectronics Dimmable backlight system
US6198236B1 (en) * 1999-07-23 2001-03-06 Linear Technology Corporation Methods and apparatus for controlling the intensity of a fluorescent lamp
US6307765B1 (en) * 2000-06-22 2001-10-23 Linfinity Microelectronics Method and apparatus for controlling minimum brightness of a fluorescent lamp
KR100345965B1 (ko) * 2000-09-15 2002-08-01 페어차일드코리아반도체 주식회사 복합 디밍 회로
JP4259008B2 (ja) * 2001-03-05 2009-04-30 東芝ライテック株式会社 電球形蛍光ランプ
ATE330449T1 (de) * 2001-05-08 2006-07-15 Koninkl Philips Electronics Nv Impulsbreitenmodulation zum betrieb von hochdrucklampen
WO2002098186A1 (en) * 2001-05-25 2002-12-05 Matsushita Electric Works, Ltd. Electronic ballast for a high intensity discharge lamp
US7116063B2 (en) * 2003-07-28 2006-10-03 Matsushita Electric Works, Ltd. Dimmable discharge lamp lighting device

Also Published As

Publication number Publication date
US7327099B2 (en) 2008-02-05
EP1705964A2 (de) 2006-09-27
EP1705964A3 (de) 2010-01-27
CN1849030A (zh) 2006-10-18
DE102005013309A1 (de) 2006-09-28
US20060214605A1 (en) 2006-09-28
CN1849030B (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
DE69919138T2 (de) Electronischer dimmer
DE60210768T2 (de) Vorschaltgerät für eine hochleistungsentladungslampe
EP2296449B1 (de) Parametrisierbarer digitaler PFC
EP0422255B1 (de) Elektronisches Vorschaltgerät
DE3903520A1 (de) Hochfrequenz-energieversorgungsschaltung fuer gasentladungslampen
DE10296991T5 (de) Entladelampen-Betätigungsvorrichtung
DE19615665B4 (de) Rückkopplungssteuersystem für eine Last
DE10006796B4 (de) Verfahren und Vorschaltgerät zum Starten einer Entladungslampe
EP2604097B1 (de) Modulation eines pfc bei dc-betrieb
EP1737279A2 (de) Vorrichtung zum Bereitstellen einer sinusförmig amplitudenmodulierten Betriebsspannung Beleuchtungssystem und Verfahren zum Erzeugen einer amplitudenmodulierten Spannung
DE4018127A1 (de) Verfahren und schaltungsanordnung zur regelung der helligkeit (dimmen) von gasentladungslampen
EP1705964B1 (de) Vorschaltgerät mit Dimmvorrichtung
EP0998782A2 (de) Vorrichtung zur gleichspannungsversorgung
DE4340604A1 (de) Elektronisches Vorschaltgerät zum Versorgen einer Last, beispielsweise einer Lampe
EP1901592B1 (de) Elektronisches Vorschaltgerät mit asymmetrischer Wechselrichter-Ansteuerung
DE10120497B4 (de) Elektronisches Vorschaltgerät
WO2019063333A1 (de) Lampenbetriebsgerät mit konverter in dcm
EP1708549B1 (de) Vorschaltgerät mit einer Dimmvorrichtung
DE102016107578B4 (de) Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels
EP1377135A2 (de) Entladungslampenbetriebsschaltung mit Schaltung zur Detektion der Nähe zu einem kapazitiven Betrieb
EP1324643B1 (de) Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung
DE102004038353B4 (de) Ansteuerschaltung für einen Schalter in einem Schaltwandler und Schaltungsanordnung mit einem Schaltwandler und einer Last
DE10340198B4 (de) Schaltungsanordnung zum Dimmen von Gasentladungslampen und Verfahren zu ihrem Betrieb
DE102022115765A1 (de) Technik zur stabilen Gleichspannungsversorgung
DE202018104924U1 (de) Lampenbetriebsgerät mit Konverter in DCM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/392 20060101AFI20060629BHEP

Ipc: H05B 41/298 20060101ALI20091223BHEP

17P Request for examination filed

Effective date: 20100419

17Q First examination report despatched

Effective date: 20100622

AKX Designation fees paid

Designated state(s): DE FR GB HU IT

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 41/392 20060101AFI20130411BHEP

Ipc: H05B 41/298 20060101ALI20130411BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130606

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB HU IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013319

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSRAM GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006013319

Country of ref document: DE

Effective date: 20140102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013319

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006013319

Country of ref document: DE

Effective date: 20140807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060309

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006013319

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: PATENT-TREUHAND-GESELLSCHAFT FUER ELEKTRISCHE GLUEHLAMPEN MBH, 81543 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: LEDVANCE GMBH, DE

Effective date: 20180523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200326

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200528

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006013319

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309