EP1324643B1 - Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung - Google Patents

Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung Download PDF

Info

Publication number
EP1324643B1
EP1324643B1 EP02025345A EP02025345A EP1324643B1 EP 1324643 B1 EP1324643 B1 EP 1324643B1 EP 02025345 A EP02025345 A EP 02025345A EP 02025345 A EP02025345 A EP 02025345A EP 1324643 B1 EP1324643 B1 EP 1324643B1
Authority
EP
European Patent Office
Prior art keywords
control
frequency
circuit
stop
electronic ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02025345A
Other languages
English (en)
French (fr)
Other versions
EP1324643A1 (de
Inventor
Stefan Zudrell-Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonicatco GmbH and Co KG
Original Assignee
Tridonicatco GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonicatco GmbH and Co KG filed Critical Tridonicatco GmbH and Co KG
Publication of EP1324643A1 publication Critical patent/EP1324643A1/de
Application granted granted Critical
Publication of EP1324643B1 publication Critical patent/EP1324643B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2856Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against internal abnormal circuit conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2855Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions

Definitions

  • the present invention relates to a power-controlled electronic ballast for operating at least one gas discharge lamp.
  • Modern ballasts for operating gas discharge lamps, in particular fluorescent tubes, are often power-controlled.
  • the intermediate circuit voltage supplied to the inverter is kept substantially constant, while the current flowing through the inverter is regulated by changing the operating frequency. This is done, for example, by a shunt resistor provided in the half-bridge of the inverter, the voltage dropping across this shunt resistor being fed as the actual value for the half-bridge current to a control or regulating circuit.
  • the control or regulating circuit sets the operating frequency of the inverter so that the average current through the shunt resistor or the proportional mean voltage above it remain constant. With the DC link voltage kept constant and the current regulated in this way to a constant value, the lamp is always supplied with the same power.
  • Fluorescent tubes have a negative characteristic when their voltage is a function of the current. This means that at a certain temperature T1, the lamp voltage U LA drops as the lamp current I LA increases, as is the case, for example, in the characteristic curve U LA, T1 illustrated in FIG. If the dependency between current and voltage at a certain power is entered into the same diagram, since the power is the product of current and voltage, the hyperbola P also shown in FIG. 2 results. If the lamp now has a certain power regulated, so sets on the characteristic of the lamp an operating point, which corresponds to the intersection between the characteristic and the power hyperbola. In the example shown in FIG. 2, in which the power P is to be set, the operating temperature which corresponds to the lamp current I T1 results, for example, at the temperature T1. Usually, the lamps are designed so that the operating point is optimal at a certain temperature. This means that optimum light output is guaranteed when the lamp is operated at a certain temperature, typically between 30 ° C and 40 ° C.
  • the situation may occur that the temperature at which the lamp is actually operated, is significantly higher. This could be used, for example, in factory buildings a high heat development will be the case.
  • Increasing the temperature results in a new characteristic curve for the lamp and thus also a new operating point.
  • the new characteristic curve U LA, T2 results at the higher temperature T2 , and a new operating point is established which corresponds to the increased lamp current I T2 .
  • This new operating point is achieved in the context of the power control described above by reducing the operating frequency for the inverter.
  • the frequency range within which the lamp current is allowed to be controlled is limited downwards. Practically, a stop frequency is set, which must not be fallen below. When the stop frequency is reached, the ballast acts as a constant current source and no longer as a constant power source. As a result, the maximum current corresponding to the stop frequency can not be exceeded, thus preventing destruction or damage of some or all of the components of the ballast.
  • the stop frequency is also problematic, since several factors must be taken into account.
  • the highest possible stop frequency is desirable since the safety function described above must not be used too late and thus at too high currents. For example, if the lamp is operated at normal temperature with a frequency of about 45 kHz, then a stop frequency of about 41 kHz should be selected.
  • the operating frequency at normal temperature may fluctuate around the ideal value of 45 kHz, for example, due to the fact that the various elements of the electronic ballast are subject to tolerances. If all devices are to be operated at normal temperature at a certain power, then each ballast will have a slightly different operating frequency, as shown for example in Figure 3.
  • the curve I shown in FIG. 3 shows that the actual operating frequency of all Ballast is distributed around the optimum frequency f nm of 45 kHz and is approximately between 43 and 47 kHz.
  • the stop frequency f stop is distributed around an ideal value, as shown by the curve II. The reason for this again lies in certain tolerances of the components responsible for determining the stop frequency.
  • the operating frequency at normal temperature is already below the stop frequency. This is the case in the region F shown hatched in FIG. 3, in which the curves for the operating frequency (I) at normal temperature and the stop frequency (II) overlap. All ballasts that fall within this hatched area do not allow for proper lamp operation and are therefore considered scrap. In order to keep this proportion of such faulty ballasts low, the lowest possible stop frequency is therefore desirable, which, however, is in contradiction to the above-mentioned preference for the highest possible stop frequency.
  • the present invention is therefore an object of the invention to provide an electronic ballast, in which on the one hand early and reliable onset of current limiting is made possible and on the other hand ensures that the stop frequency in the initial state in each case below the operating frequency lies.
  • an electronic ballast having the features of claim 1. This is characterized by the fact that the stop frequency is temperature-dependent and - starting from a base stop frequency - increases with increasing temperature. In this way, it is possible to choose a correspondingly low base stop frequency, which is far enough below the operating frequency, so that in each case a proper lamp start is guaranteed. Starting from the base stop frequency then increases the stop frequency with increasing temperature, so that at higher temperatures in time uses a current limit, which avoids damage to the ballast. An adjustment of the ballast after its production is thus no longer necessary, which is why the invention contributes to a reduction in manufacturing costs, especially in non-dimmable ballasts.
  • the power control preferably takes place in that a control or regulating circuit detects the voltage drop across a resistance arranged at the base of the half-bridge, compares this actual value of the half-bridge current with a reference value and determines an operating frequency for the inverter on the basis of the comparison result.
  • the increase of the stop frequency with increasing temperature can be achieved in a simple and elegant way in that the control or regulating circuit derives the control signals for the inverter from a fundamental frequency, this fundamental frequency rising with increasing temperature.
  • the stop frequency which takes into account the control or regulating circuit internally when determining the frequency for the inverter, remains unchanged, while the effectively set at the inverter minimum frequency still increases.
  • the control or regulating circuit determines the currently present temperature - for example by measuring a temperature-dependent reference voltage - and then based on this temperature information determines a stop frequency, which increases according to the invention with increasing temperature.
  • a particularly advantageous embodiment of the ballast according to the invention is to form the control or regulating circuit for the inverter digital.
  • an analog / digital converter is provided, which converts the operating parameters detected by the control or regulating circuit into a digital value consisting of at least 2 bits.
  • an operating frequency for operating the inverter is then calculated in a digital computing block and converted by means of a driver circuit into corresponding control signals for the switching elements of the inverter.
  • This solution enables extensive integration of the ballast controls.
  • the implementation of the analog measured operating parameters into digital values with high accuracy enables a high stability in the control of the lamp power.
  • This digital embodiment can be extended, for example, to the control circuit for the smoothing circuit.
  • the base stop frequency for the ballast can be specified by a connectable to the control or regulating circuit reference resistance whose size is determined by a provided in the control or regulating circuit analog / digital converter, which after connecting an internal power source, converts the voltage dropping across this reference resistor into a digital value also consisting of at least 2 bits.
  • the control circuits for the inverter and the intermediate circuit voltage are also digital in the manner described above, a further reduction of the components can be achieved by merely converting in control or regulation circuit the detected operating parameters and the voltage drop across the reference resistor a single analog / digital converter is provided which operates in time division multiplex.
  • the digital values converted by the analog / digital converter have an accuracy of 12 bits.
  • the electronic ballast shown in Figure 1 is the input side connected via a high-frequency filter 1 to the mains supply voltage U 0 .
  • a rectifier circuit 2 in the form of a full-bridge rectifier, which converts the mains supply voltage U 0 in a rectified input voltage for the smoothing circuit 3.
  • the smoothing circuit 3 is used for harmonic filtering and smoothing the rectified input voltage and comprises a smoothing capacitor C1 and a boost converter having an inductance L1, a controllable switch in the form of a MOS field-effect transistor S1 and a diode D1.
  • the boost converter illustrated here other known smoothing circuits can also be used.
  • a storage capacitor C2 adjoining the smoothing circuit 3 is applied DC link voltage U z generated, which is supplied to the inverter 4.
  • This inverter 4 consists of two arranged in a half-bridge arrangement MOS field effect transistors S2 and S3.
  • an alternating voltage is generated at the midpoint of the half-bridge, which is supplied to the load circuit 5 with the gas discharge lamp LA connected thereto.
  • the gas discharge lamp LA is in particular a fluorescent tube.
  • the three MOS field-effect transistors S1-S3 of the smoothing circuit 3 and the inverter 4 are driven by a control or regulating circuit 6 which generates corresponding control information and transmits this to a driver circuit 7 which converts this control information into corresponding control signals for the gates of the three MOS transistors.
  • Field effect transistors S1-S3 converts.
  • the control information is determined based on operating parameters that are taken from the smoothing circuit and the inverter 4 or the load circuit 5.
  • the intermediate circuit voltage U z falling across the storage capacitor C2 is determined, on the other hand the shunt resistor R1 which drops across this resistor R1 or the average half-bridge current and thus ultimately that of the lamp is connected via a shunt resistor R1 arranged at the base of the half-bridge of the inverter 4 LA supplied power determined.
  • the intermediate circuit voltage U z is thereby converted by a first analog / digital converter ADC1 into a digital value which is fed to a first digital arithmetic block 8.
  • This calculation block 8 calculates by means of the from the analog / digital converter ADC1 obtained actual value of the intermediate circuit voltage U a suitable switching frequency for the MOS field effect transistor S1 for the boost converter. This frequency is transmitted to the driver circuit 7, which drives the gate of the transistor S1 accordingly. In this way, the intermediate circuit voltage U z is kept constant at a certain value.
  • the drop across the shunt resistor R1 at the base of the half-bridge voltage is converted by a second analog-to-digital converter ADC2 and fed to a comparison block 9.
  • This - also digitally operating - comparison block 9 compares the current actual value of the lamp power with a predetermined reference value P ref and determines from the comparison result, whether the frequency of the inverter 4 must be increased or reduced to operate the lamp LA with the desired power.
  • This information will be available later described in more detail logic block 10 to an output block 11, which outputs corresponding control information to the driver circuit 7, which in turn drives the two MOS field-effect transistors S2 and S3 of the inverter 4. In this way, the operating frequency of the inverter 4 is adjusted so that the lamp LA is operated at the desired power.
  • the frequency of the inverter 4 should not fall below a certain minimum value in order to avoid excessive currents in the ballast and the lamp LA.
  • This stop frequency is determined by an external reference resistor R2, which is connected to the control or regulating circuit 6.
  • the height of the resistor R2 is a measure of the stop frequency f stop . It is determined by the fact that the terminal of the resistor R2 is connected to a provided in the control or regulation circuit 6 internal current source I s via a switch S4. The voltage which then drops across the resistor R2 is converted by a third analog / digital converter ADC3.
  • the logic block 10 was inserted into the digital control circuit for the lamp power, firstly the result supplied by the comparison block 9 and secondly the value determined by the third analog / digital converter ADC3, which is a measure of the stop frequency is to be supplied.
  • the logic block 9 now determines whether the operating frequency f run determined by the comparison block 9 is above or below the stop frequency f stop . If the operating frequency f run is above the stop frequency f stop , then it is transmitted unchanged to the output block 11, which drives the inverter 4 with the aid of the driver circuit 7. In this case, therefore, the stop frequency f stop does not affect the control operation for the lamp power.
  • the stop frequency f stop indicates the maximum current at which the lamp LA is operated.
  • the control loop now changes to a state in which the ballast is a constant current source for the lamp LA, whereby the occurrence of excessive currents and damage to the ballast is avoided.
  • the reference resistance R2 is designed such that the stop frequency f stop predetermined by it is sufficiently below the operating frequency necessary for the desired lamp power at normal operating temperatures f run lies. This ensures that in each case a regular lamp start can be performed and the current limit is not already used at start of operation.
  • the stop frequency f stop to be raised to allow timely insertion of the current limit.
  • This is achieved by providing the central clock 12, which is provided in the control or regulation circuit 6, in a temperature-dependent manner.
  • This clock 12 transmits to all components of the control or regulating circuit 6 a clock signal to enable a synchronous operation of the various units.
  • this clock signal is also transmitted to the output block 11 of the lamp power control circuit; which also uses this clock signal to convert the frequency value obtained from the logic block 10, which is in digital form, into corresponding high-frequency control signals for the driver circuit 7. Since the clock 12 is temperature-dependent applies to the frequency f base of the transmitted from him to all components of the control or regulating circuit 6 clock signal:
  • f Base f Base . 0 - TK ⁇ ( T - T 0 )
  • the temperature dependence of the clock 12 thus has the consequence that the actually used stop frequency increases with increasing temperature.
  • the solution presented here is characterized in that the increase of the stop frequency is achieved in a particularly simple and elegant way.
  • the temperature-dependent behavior of the clock 12 can be achieved without much effort.
  • there is also the possibility of others To take measures to ensure an increase in the stop frequency with increasing temperature.
  • the clock generator 12 is designed to be temperature-stable, for example, so that it supplies a base frequency independent of the temperature.
  • a further analog / digital converter ADC4 is now provided which measures a deliberately temperature-dependent designed internal reference voltage V ref and supplies the temperature information obtained to the logic block 10. This determines based on this temperature information, a suitable stop frequency and takes into account in the manner described above in the transmission of the determined by the comparison block 9 operating frequency to the output block 11. According to the invention increases the determined by the logic block 10 based on the temperature information stop frequency with increasing temperature.
  • digital embodiment of the control or regulating circuit 6 advantageously allows extensive integration of the entire circuit.
  • the integration can be further enhanced by using only a single analog-to-digital converter which operates to time-multiplex the various input signals.
  • the analog / digital converter (s) preferably form digital values with an accuracy of 12 bits, so that a very precise regulation of the intermediate circuit voltage and the lamp power is obtained.
  • ASIC application-specific integrated circuit
  • the solution according to the invention thus ensures reliable operation of the electronic ballast, in which it is ensured that the desired current limit occurs in time to avoid damage.
  • the production costs for the ballast are reduced because no additional adjustment in the production is necessary for the realization of a reliably functioning current limit.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Inverter Devices (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

  • Die vorliegende Erfindung betrifft ein leistungsgeregeltes elektronisches Vorschaltgerät zum Betreiben mindestens einer Gasentladungslampe.
  • Moderne Vorschaltgeräte zum Betreiben von Gasentladungslampen, insbesondere von Leuchtstoffröhren, sind oftmals leistungsgeregelt. Bei dieser Regelungsart wird die dem Wechselrichter zugeführte Zwischenkreisspannung im wesentlichen konstant gehalten, während der über den Wechselrichter fließende Strom durch Veränderung der Betriebsfrequenz geregelt wird. Dies erfolgt beispielsweise durch einen in der Halbbrücke des Wechselrichters vorgesehenen Shunt-Widerstand, wobei die über diesen Shunt-Widerstand abfallende Spannung als Istwert für den Halbbrücken-Strom einer Steuer- oder Regelschaltung zugeführt wird. Die Steuer- oder Regelschaltung stellt die Betriebsfrequenz des Wechselrichters so ein, dass der mittlere Strom über den Shunt-Widerstand bzw. die dazu proportionale mittlere Spannung über diesem konstant bleiben. Mit der konstant gehaltenen Zwischenkreisspannung und dem auf diese Weise auf einen konstanten Wert geregelten Strom wird der Lampe stets die gleiche Leistung zugeführt.
  • Leuchtstoffröhren haben eine negative Kennlinie, wenn man ihre Spannung in Abhängigkeit vom Strom darstellt. Das bedeutet, dass bei einer bestimmten Temperatur T1 mit steigendem Lampenstrom ILA die Lampenspannung ULA abfällt, wie dies beispielsweise bei der in Figur 2 dargestellten Kennlinie ULA,T1 der Fall ist. Trägt man in das gleiche Diagramm die Abhängigkeit zwischen Strom und Spannung bei einer bestimmten Leistung ein, so ergibt sich - da die Leistung das Produkt aus Strom und Spannung ist - die ebenfalls in Figur 2 dargestellte Hyperbel P. Wird die Lampe nun auf eine bestimmte Leistung geregelt, so stellt sich auf der Kennlinie der Lampe ein Arbeitspunkt ein, der dem Schnittpunkt zwischen der Kennlinie und der Leistungs-Hyperbel entspricht. Bei dem in Figur 2 dargestellten Beispiel, bei dem die Leistung P eingestellt werden soll, ergibt sich beispielsweise bei der Temperatur T1 derjenige Arbeitspunkt, der dem Lampenstrom IT1 entspricht. Üblicherweise sind die Lampen derart ausgelegt, dass der Arbeitspunkt bei einer bestimmten Temperatur optimal ist. Das bedeutet, dass eine optimale Lichtausbeute gewährleistet ist, wenn die Lampe bei einer bestimmten Temperatur, die typischerweise im Bereich zwischen 30° und 40°C liegt, betrieben wird.
  • Gegenüber dem zuvor geschilderten Idealfall bei normaler Betriebstemperatur kann allerdings die Situation eintreten, dass die Temperatur, bei der die Lampe tatsächlich betrieben wird, deutlich höher ist. Dies könnte beispielsweise in Fabrikgebäuden mit einer hohen Wärmeentwicklung der Fall sein. Durch die Erhöhung der Temperatur ergibt sich allerdings eine neue Kennlinie für die Lampe und damit auch ein neuer Arbeitspunkt. Bei dem in Figur 2 dargestellten Beispiel ergibt sich beispielsweise bei der höheren Temperatur T2 die neue Kennlinie ULA,T2 und es stellt sich ein neuer Arbeitspunkt ein, der dem erhöhten Lampenstrom IT2 entspricht. Dieser neue Arbeitspunkt wird im Rahmen der eingangs beschriebenen Leistungsregelung durch eine Reduzierung der Betriebsfrequenz für den Wechselrichters erreicht.
  • Durch den Wechsel auf den neuen Arbeitspunkt bei einer Erhöhung der Betriebstemperatur wird zwar erreicht, dass die der Lampe zugeführte Leistung konstant bleibt, gleichzeitig erhöht sich jedoch aufgrund des höheren Stromes die Verlustleistung und die Lichtausbeute der Lampe wird reduziert. Wird die Betriebsfrequenz gegenüber der Frequenz bei Normaltemperatur deutlich reduziert, besteht sogar die Gefahr, dass der Strom in Bereiche ansteigt, in denen das Gerät selbst gefährdet ist.
  • Um deshalb zu verhindern, dass der Strom aufgrund eines Temperaturanstiegs gefährliche Größenordnungen annimmt, wird üblicherweise der Frequenzbereich, innerhalb dem der Lampenstrom geregelt werden darf, nach unten begrenzt. Praktisch wird dabei eine Stoppfrequenz festgelegt, die nicht unterschritten werden darf. Wird die Stoppfrequenz erreicht, wirkt das Vorschaltgerät ab diesem Zeitpunkt wie eine Konstant-Stromquelle und nicht mehr wie eine Konstant-Leistungsquelle. Dies hat zur Folge, dass der der Stoppfrequenz entsprechende maximale Strom nicht überschritten werden kann und demzufolge eine Zerstörung oder Beschädigung einiger oder aller Komponenten des Vorschaltgeräts verhindert wird.
  • Das Festlegen der Stoppfrequenz ist allerdings ebenfalls problematisch, da hierbei mehrere Faktoren berücksichtigt werden müssen. Auf der einen Seite ist eine möglichst hohe Stoppfrequenz wünschenswert, da die zuvor beschriebene Sicherungsfunktion nicht zu spät und damit bei zu hohen Strömen einsetzen darf. Wird die Lampe beispielsweise bei Normaltemperatur mit einer Frequenz von etwa 45 kHz betrieben, so sollte beispielsweise eine Stoppfrequenz von ca. 41 kHz gewählt werden.
  • Auf der anderen Seite ist allerdings zu berücksichtigen, dass die Betriebsfrequenz bei Normaltemperatur aufgrund der Tatsache, dass die verschiedenen Elemente des elektronischen Vorschaltgerätes toleranzbehaftet sind, um den Idealwert von beispielsweise 45 kHz schwanken kann. Sollen alle Geräte bei Normaltemperatur bei einer bestimmten Leistung betrieben werden, so wird jedes Vorschaltgerät eine etwas andere Betriebsfrequenz aufweisen, wie dies beispielsweise in Figur 3 dargestellt ist. Die in Figur 3 dargestellte Kurve I zeigt, dass die tatsächliche Betriebsfrequenz aller Vorschaltgeräte um die optimale Frequenz fnm von 45 kHz verteilt ist und in etwa zwischen 43 und 47 kHz liegt. Im gleicher Weise ist auch die Stoppfrequenz fstop um einen Idealwert verteilt, wie dies die Kurve II darstellt. Der Grund hierfür liegt wiederum in gewissen Toleranzen der für die Festlegung der Stoppfrequenz verantwortlichen Bauelemente.
  • Es kann nun der Fall eintreten, dass die bei Normaltemperatur vorliegende Betriebsfrequenz bereits unterhalb der Stoppfrequenz liegt. Dies ist bei dem in Figur 3 schraffiert dargestellten Bereich F der Fall, in dem die Kurven für die Betriebsfrequenz (I) bei Normaltemperatur und die Stoppfrequenz (II) überlappen. Alle Vorschaltgeräte, die in diesen schraffierten Bereich fallen, ermöglichen keinen ordnungsgemäßen Lampenbetrieb und sind dementsprechend als Ausschuss zu betrachten. Um diesen Anteil solcher fehlerhaften Vorschaltgeräte gering zu halten, ist daher eine möglichst niedrige Stoppfrequenz wünschenswert, was allerdings im Widerspruch zu der oben genannten Präferenz für eine möglichst hohe Stoppfrequenz steht.
  • Das zuvor beschriebene Problem könnte dadurch vermieden werden, dass unmittelbar nach der Herstellung für jedes Gerät ein Abgleich durchgeführt wird, in dem eine für die jeweilige Betriebsfrequenz geeignete Stoppfrequenz individuell festgelegt wird. Bei elektronischen Vorschaltgeräten, die ein Dimmen der Lampe ermöglichen, wird ein derartiger Abgleich ohnehin durchgeführt, so dass hierdurch kein zusätzlicher Arbeitsaufwand entsteht. Bei nicht-dimmbaren Geräten ist allerdings ein derartiger Abgleich nicht unbedingt notwendig, so dass eine individuelle Festlegung der Stoppfrequenz zusätzlichen Arbeitsaufwand bedeutet, durch den die Herstellungskosten erhöht werden.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein elektronisches Vorschaltgerät anzugeben, bei dem auf der einen Seite ein frühzeitiges und zuverlässiges Einsetzen der Strombegrenzung ermöglicht wird und bei dem auf der anderen Seite sichergestellt ist, dass die Stoppfrequenz im Ausgangszustand in jedem Fall unterhalb der Betriebsfrequenz liegt.
  • Die Aufgabe wird durch ein elektronisches Vorschaltgerät, welches die Merkmale des Anspruches 1 aufweist, gelöst. Dieses zeichnet sich dadurch aus, dass die Stoppfrequenz temperaturabhängig ist und - ausgehend von einer Basis-Stopfrequenz - mit steigender Temperatur ansteigt. Auf diese Weise besteht die Möglichkeit, eine entsprechend niedrige Basis-Stoppfrequenz zu wählen, die weit genug unterhalb der Betriebsfrequenz liegt, so dass in jedem Fall ein ordnungsgemäßer Lampenstart gewährleistet ist. Ausgehend von der Basis-Stoppfrequenz steigt dann die Stoppfrequenz mit steigender Temperatur an, so dass bei höheren Temperaturen rechtzeitig eine Strombegrenzung einsetzt, die eine Beschädigung des Vorschaltgerätes vermeidet. Ein Abgleich des Vorschaltgeräts nach seiner Herstellung ist damit nicht mehr notwendig, weshalb die Erfindung insbesondere bei nicht-dimmbaren Vorschaltgeräten zu einer Reduzierung der Herstellungskosten beiträgt.
  • Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche. So erfolgt die Leistungsregelung vorzugsweise dadurch, dass eine Steuer- oder Regelschaltung die über einen am Fußpunkt der Halbbrücke angeordneten Widerstand abfallende Spannung erfasst, diesen Istwert des Halbbrückenstroms mit einem Referenzwert vergleicht und anhand des Vergleichsergebnisses eine Betriebsfrequenz für den Wechselrichter bestimmt. Das Ansteigen der Stoppfrequenz mit steigender Temperatur kann auf einfache und elegante Weise dadurch erreicht werden, dass die Steuer- oder Regelschaltung die Steuersignale für den Wechselrichter aus einer Grundfrequenz ableitet, wobei diese Grundfrequenz mit steigender Temperatur ansteigt. Hierbei bleibt die Stoppfrequenz, welche die Steuer- oder Regelschaltung intern bei der Ermittlung der Frequenz für den Wechselrichter berücksichtigt, unverändert, während die effektiv an dem Wechselrichter eingestellte Minimal-Frequenz dennoch ansteigt. Alternativ dazu besteht allerdings auch die Möglichkeit, dass die Steuer- oder Regelschaltung die aktuell vorliegende Temperatur bestimmt - beispielsweise durch Messen einer temperaturabhängigen Referenzspannung - und dann auf Basis dieser Temperaturinformation eine Stopfrequenz ermittelt, die erfindungsgemäß mit steigender Temperatur ansteigt.
  • Eine besonders vorteilhafte Weiterbildung des erfindungsgemäßen Vorschaltgeräts besteht darin, die Steuer- oder Regelschaltung für den Wechselrichter digital auszubilden. Dies wird dadurch erreicht, dass innerhalb der Steuer- oder Regelschaltung ein Analog/Digital-Wandler vorgesehen ist, der den von der Steuer- oder Regelschaltung erfassten Betriebsparameter in einen aus mindestens 2 bit bestehenden Digitalwert umsetzt. Auf Basis dieses Digitalwerts wird anschließend in einem digitalen Rechenblock eine Betriebsfrequenz zum Betreiben des Wechselrichters berechnet und mit Hilfe einer Treiberschaltung in entsprechende Steuersignale für die Schaltelemente des Wechselrichters umgesetzt. Diese Lösung ermöglicht eine weitgehende Integrierung der Steuerelemente des Vorschaltgeräts. Gleichzeitig wird durch die Umsetzung der analog gemessenen Betriebsparameter in Digitalwerte mit einer hohen Genauigkeit eine große Stabilität bei der Regelung der Lampenleistung ermöglicht. Diese digitale Ausgestaltung kann beispielsweise auch auf den Regelkreis für die Glättungsschaltung erweitert werden.
  • Die Basis-Stoppfrequenz für das Vorschaltgerät kann durch einen an die Steuer- oder Regelschaltung anschließbaren Referenz-Widerstand vorgegeben werden, dessen Größe über einen in der Steuer- oder Regelschaltung vorgesehenen Analog/Digital-Wandler ermittelt wird, der nach dem Anschluss einer internen Stromquelle, die über diesen Referenz-Widerstand abfallende Spannung in einen ebenfalls aus mindestens 2 bit bestehenden Digitalwert umsetzt. Sind auch die Regelkreise für den Wechselrichter und die Zwischenkreisspannung in der zuvor beschriebenen Weise digital ausgebildet, so kann eine weitere Reduzierung der Bauelemente dadurch erreicht werden, dass in Steuer- oder Regelschaltung zum Umsetzen der erfassten Betriebsparameter und der über den Referenz-Widerstand abfallenden Spannung lediglich ein einziger Analog/Digital-Wandler vorgesehen ist, der im Zeitmultiplex arbeitet. Vorzugsweise weisen die von dem bzw. den Analog/Digital-Wandler umgesetzten Digitalwerte eine Genauigkeit von 12 bit auf.
  • Im folgenden soll die Erfindung anhand der beiliegenden Zeichnungen näher erläutert werden. Es zeigen:
  • Fig. 1
    ein erstes Ausführungsbeispiel eines erfindungsgemäßen Vorschaltgeräts;
    Fig.2
    die Kennlinien einer Leuchtstofflampe bei zwei verschiedenen Temperaturen;
    Fig. 3
    eine Grafik zur Verdeutlichung der Schwierigkeiten bei der Festlegung der Stoppfrequenz; und
    Fig. 4
    ein zweites Ausführungsbeispiel eines erfindungsgemäßen Vorschaltgeräts.
  • Das in Figur 1 dargestellte elektronische Vorschaltgerät ist eingangsseitig über ein Hochfrequenzfilter 1 an die Netzversorgungsspannung U0 angeschlossen. Am Ausgang des Hochfrequenzfilters 1 befindet sich eine Gleichrichterschaltung 2 in Form eines Vollbrückengleichrichters, welche die Netzversorgungsspannung U0 in eine gleichgerichtete Eingangsspannung für die Glättungsschaltung 3 umsetzt. Die Glättungsschaltung 3 dient zur Oberwellenfilterung und Glättung der gleichgerichteten Eingangsspannung und umfasst einen Glättungskondensator C1 sowie einen eine Induktivität L1, einen steuerbaren Schalter in Form eines MOS-Feldeffekttransistors S1 und eine Diode D1 aufweisenden Hochsetzsteller. Anstelle des hier dargestellten Hochsetzstellers können auch andere bekannte Glättungsschaltungen verwendet werden.
  • Durch ein entsprechendes Schalten des MOS-Feldeffekttransistors S1 wird eine über den sich an die Glättungsschaltung 3 anschließenden Speicherkondensator C2 anliegende Zwischenkreisspannung Uz erzeugt, die dem Wechselrichter 4 zugeführt wird. Dieser Wechselrichter 4 besteht aus zwei in einer Halbbrückenanordnung angeordneten MOS-Feldeffekttransistoren S2 und S3. Durch ein alternierendes hochfrequentes Ansteuern der beiden Feldeffekttransistoren S2, S3 wird am Mittelpunkt der Halbbrücke eine Wechselspannung erzeugt, die dem Lastkreis 5 mit der daran angeschlossenen Gasentladungslampe LA zugeführt wird. Bei der Gasentladungslampe LA handelt es sich insbesondere um eine Leuchtstoffröhre.
  • Das Ansteuern der drei MOS-Feldeffekttransistoren S1-S3 der Glättungsschaltung 3 und des Wechselrichters 4 erfolgt durch eine Steuer- oder Regelschaltung 6, die entsprechende Steuerinformationen erzeugt und an eine Treiberschaltung 7 übermittelt, die diese Steuerinformationen in entsprechende Steuersignale für die Gates der drei MOS-Feldeffekttransistoren S1-S3 umsetzt. Die Steuerinformationen werden dabei anhand von Betriebsparametern, die der Glättungsschaltung und dem Wechselrichter 4 bzw. dem Lastkreis 5 entnommen werden, ermittelt. Dabei wird zum einen die über den Speicherkondensator C2 abfallende Zwischenkreisspannung Uz bestimmt, zum anderen wird über einen am Fußpunkt der Halbbrücke des Wechselrichters 4 angeordneten Shunt-Widerstand R1 die über diesen Widerstand R1 abfallende Spannung bzw. der mittlere Halbbrückenstrom und damit letztendlich die der Lampe LA zugeführte Leistung bestimmt.
  • Innerhalb der Steuer- oder Regelschaltung 6 werden zwei Regelkreise gebildet, einer für die Zwischenkreisspannung Uz und einer für die Lampenleistung. Die Zwischenkreisspannung Uz wird dabei von einem ersten Analog/Digital-Wandler ADC1 in einen digitalen Wert umgesetzt, der einem ersten digitalen Rechenblock 8 zugeführt wird. Dieser Rechenblock 8 berechnet anhand des von dem Analog/Digital-Wandlers ADC1 erhaltenen Istwerts der Zwischenkreisspannung Uz eine geeignete Schaltfrequenz für den MOS-Feldeffekttransistor S1 des Hochsetzstellers. Diese Frequenz wird an die Treiberschaltung 7 übermittelt, die das Gate des Transistors S1 dementsprechend ansteuert. Auf diese Weise wird die Zwischenkreisspannung Uz auf einem bestimmten Wert konstant gehalten.
  • Die über den Shunt-Widerstand R1 am Fußpunkt der Halbbrücke abfallende Spannung wird von einem zweiten Analog/Digital-Wandler ADC2 umgesetzt und einem Vergleichsblock 9 zugeführt. Dieser - ebenfalls digital arbeitende - Vergleichsblock 9 vergleicht den aktuellen Istwert der Lampenleistung mit einem vorgegebenen Referenzwert Pref und bestimmt anhand des Vergleichsergebnisses, ob die Frequenz des Wechselrichters 4 erhöht oder reduziert werden muss, um die Lampe LA mit der gewünschten Leistung zu betreiben. Diese Information wird über einen später noch näher beschriebenen Logikblock 10 an einen Ausgabeblock 11 übermittelt, der entsprechende Steuerinformationen an die Treiberschaltung 7 abgibt, die wiederum die beiden MOS-Feldeffekttransistoren S2 und S3 des Wechselrichters 4 ansteuert. Auf diese Weise wird die Betriebsfrequenz des Wechselrichters 4 derart eingestellt, dass die Lampe LA bei der gewünschten Leistung betrieben wird.
  • Wie eingangs bereits erläutert wurde, soll die Frequenz des Wechselrichters 4 einen bestimmten Minimalwert nicht unterschreiten, um zu hohe Ströme in dem Vorschaltgerät und der Lampe LA zu vermeiden. Diese Stoppfrequenz wird durch einen externen Referenz-Widerstand R2 bestimmt, der an die Steuer- oder Regelschaltung 6 angeschlossen wird. Die Höhe des Widerstands R2 ist ein Maß für die Stoppfrequenz fstop. Sie wird dadurch bestimmt, dass der Anschluss des Widerstands R2 mit einer in der Steuer- oder Regelschaltung 6 vorgesehenen internen Stromquelle Is über einen Schalter S4 verbunden wird. Die daraufhin über den Widerstand R2 abfallende Spannung wird von einem dritten Analog/Digital-Wandler ADC3 umgesetzt.
  • Um die gewünschte Strombegrenzung zu erreichen, wurde in den digitalen Regelkreis für die Lampenleistung der Logikblock 10 eingefügt, dem zum einen das von dem Vergleichsblock 9 zugeführte Ergebnis und zum anderen der von dem dritten Analog/Digital-Wandler ADC3 ermittelte Wert, der ein Maß für die Stoppfrequenz ist, zugeführt werden. Der Logikblock 9 ermittelt nun, ob die von dem Vergleichsblock 9 ermittelte Betriebsfrequenz frun oberhalb oder unterhalb der Stoppfrequenz fstop liegt. Liegt die Betriebsfrequenz frun oberhalb der Stoppfrequenz fstop, so wird sie unverändert an den Ausgabeblock 11 übermittelt, der mit Hilfe der Treiberschaltung 7 den Wechselrichter 4 ansteuert. In diesem Fall beeinflusst somit die Stoppfrequenz fstop den Regelvorgang für die Lampenleistung nicht.
  • Liegt allerdings die von dem Vergleichsblock 9 zum Einstellen der gewünschten Lampenleistung ermittelte Betriebsfrequenz frun unterhalb der Stoppfrequenz fstop, so wird anstelle dieser Betriebsfrequenz frun die Stoppfrequenz fstop an den Ausgabeblock 11 übermittelt. In diesem Fall gibt die Stoppfrequenz fstop den maximalen Strom vor, bei dem die Lampe LA betrieben wird. Der Regelkreis wechselt nunmehr in einen Zustand über, in dem das Vorschaltgerät eine Konstantstromquelle für die Lampe LA darstellt, wodurch das Auftreten von zu hohen Strömen und eine Beschädigung des Vorschaltgeräts vermieden wird.
  • Wie zuvor erwähnt wurde, wird der Referenz-Widerstand R2 derart ausgelegt, dass die durch ihn vorgegebene Stoppfrequenz fstop ausreichend unterhalb der bei normalen Betriebstemperaturen für die gewünschte Lampenleistung notwendigen Betriebsfrequenz frun liegt. Hierdurch wird sichergestellt, dass in jedem Fall ein regulärer Lampenstart durchgeführt werden kann und die Strombegrenzung nicht bereits bei Betriebsbeginn einsetzt.
  • Erst bei einem Anstieg der Temperatur der Lampe LA oder des Vorschaltgeräts soll die Stoppfrequenz fstop angehoben werden, um ein rechtzeitiges Einsetzen der Strombegrenzung zu ermöglichen. Dies wird dadurch erreicht, dass der in der Steuer- oder Regelschaltung 6 vorgesehene zentrale Taktgeber 12 temperaturabhängig ausgebildet wird. Dieser Taktgeber 12 übermittelt an sämtliche Komponenten der Steuer- oder Regelschaltung 6 ein Taktsignal um ein synchrones Arbeiten der verschiedenen Einheiten zu ermöglichen. Insbesondere wird dieses Taktsignal auch an den Ausgabeblock 11 des Regelkreises für die Lampenleistung übermittelt; der dieses Taktsignal auch dazu verwendet, den von dem Logikblock 10 erhaltenen Frequenzwert, der in digitaler Form vorliegt, in entsprechende hochfrequente Steuersignale für die Treiberschaltung 7 umzusetzen. Da der Taktgeber 12 temperaturabhängig arbeitet gilt für die Frequenz fbasis des von ihm an alle Komponenten der Steuer- oder Regelschaltung 6 übermittelten Taktsignals: f basis = f basis , 0 TK × ( T T 0 )
    Figure imgb0001
  • Die Frequenz fbasis,0 stellt dabei die Frequenz des von dem Taktgeber 12 erzeugten Taktsignals bei Normaltemperatur T0 dar. Da die Frequenz fbasis des Taktsignals zugleich die Grundfrequenz darstellt, aus der der Ausgabeblock 11 die Steuersignale für die Treiberschaltung 7 ableitet, gilt die gleiche Temperaturabhängigkeit auch für die von der Steuer- oder Regelschaltung 6 an die Treiberschaltung 7 übermittelten Signale. Insbesondere bedeutet dies, dass für den Fall, dass von dem Logikblock 10 die von dem Analog/Digital-Wandler ADC3 erhaltene Stoppfrequenz an den Ausgabeblock 11 übermittelt wird, für die Stoppfrequenz gilt: f stop = f stop , 0 TK × ( T T 0 )
    Figure imgb0002
  • Die Temperaturabhängigkeit des Taktgebers 12 hat somit zur Folge, dass die tatsächlich verwendete Stoppfrequenz mit steigender Temperatur ansteigt.
  • Die hier dargestellte Lösung zeichnet sich dadurch aus, dass der Anstieg der Stoppfrequenz auf besonders einfache und elegante Weise erreicht wird. Das temperaturabhängige Verhalten des Taktgebers 12 kann ohne größeren Aufwand erreicht werden. Selbstverständlich besteht allerdings auch die Möglichkeit, andere Maßnahmen zu treffen, die einen Anstieg der Stoppfrequenz bei steigender Temperatur gewährleisten.
  • Bei dem in Fig. 4 dargestellten Ausführungsbeispiel ist der Taktgeber 12 beispielsweise temperaturstabil ausgebildet, so dass er eine von der Temperatur unabhängige Basisfrequenz liefert. Zusätzlich ist nun allerdings ein weiterer Analog/Digital-Wandler ADC4 vorgesehen, der eine bewusst temperaturabhängig gestaltete interne Referenzspannung Vref misst und die dabei erhaltene Temperaturinformation dem Logikblock 10 zuführt. Dieser bestimmt anhand dieser Temperaturinformation eine geeignete Stopfrequenz und berücksichtigt diese in der oben beschriebenen Weise bei der Übermittlung der von dem Vergleichsblock 9 ermittelten Betriebsfrequenz an den Ausgabeblock 11. Erfindungsgemäß steigt dabei die von dem Logikblock 10 auf Basis der Temperaturinformation bestimmte Stopfrequenz mit steigender Temperatur an.
  • Die in den vorliegenden Ausführungsbeispielen dargestellte digitale Ausgestaltung der Steuer- oder Regelschaltung 6 ermöglicht in vorteilhafter Weise eine weitgehende Integration der gesamten Schaltung. Die Integration kann weiter dadurch erhöht werden, dass lediglich ein einziger Analog/Digital-Wandler verwendet wird, der zum Umsetzen der verschiedenen Eingangssignale im Zeitmultiplex arbeitet. Der bzw. die Analog/Digital-Wandler bilden dabei vorzugsweise Digitalwerte mit einer Genauigkeit von 12 bit, so dass eine sehr präzise Regelung der Zwischenkreisspannung und der Lampenleistung erhalten wird. Insbesondere besteht auch die Möglichkeit, die Schaltung als sogenannte anwendungsspezifische integrierte Schaltung (Application Specific Integrated Circuit - ASIC) auszubilden.
  • Die erfindungsgemäße Lösung gewährleistet somit einen zuverlässigen Betrieb des elektronischen Vorschaltgerätes, bei dem sichergestellt ist, dass die gewünschte Strombegrenzung zum Vermeiden von Schäden rechtzeitig eintritt. Darüber hinaus werden die Herstellungskosten für das Vorschaltgerät reduziert, da für die Realisierung einer zuverlässig funktionierenden Strombegrenzung kein zusätzlicher Abgleich bei der Herstellung notwendig ist.

Claims (13)

  1. Elektronisches Vorschaltgerät für mindestens eine Gasentladungslampe (LA), vorzugsweise für eine Leuchtstoffröhre, mit einer an eine Versorgungsspannungsquelle anschließbaren Gleichrichterschaltung (2), einer an den Ausgang der Gleichrichterschaltung (2) angeschlossenen Glättungsschaltung (3) zum Erzeugen einer Zwischenkreisspannung (UZ) und einem mit der Zwischenkreisspannung (UZ) gespeisten Wechselrichter (4), an dessen Ausgang ein Anschlüsse für die Lampe (LA) enthaltender Lastkreis (5) angeschlossen ist,
    sowie mit einer Steuer- oder Regelschaltung (6), welche einen der Leistung der Lampe (LA) entsprechenden Betriebsparameter des Wechselrichters (4) oder des Lastkreises (5) erfasst und in Abhängigkeit von dem erfassten Betriebsparameter die Betriebsfrequenz (frun) des Wechselrichters (4) verändert, wobei die Variation der Betriebsfrequenz (frun) nach unten durch eine Stopfrequenz (fstop) begrenzt ist,
    dadurch gekennzeichnet,
    dass die Stopfrequenz (fstop) temperaturabhängig ist und, ausgehend von einer Basis-Stopfrequenz (fstop,0), mit steigender Temperatur ansteigt.
  2. Elektronisches Vorschaltgerät nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Wechselrichter (4) durch zwei in einer Halbbrückenanordnung angeordnete steuerbare Schaltelemente (S2, S3) gebildet wird und die Steuer- oder Regelschaltung (6) den über die Halbbrücke fließenden Strom erfasst.
  3. Elektronisches Vorschaltgerät nach Anspruch 2,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) die über einen am Fußpunkt der Halbbrücke angeordneten Widerstand (R1) abfallende Spannung erfasst.
  4. Elektronisches Vorschaltgerät nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) die Betriebsfrequenz (frun) für den Wechselrichter (4) auf Grundlage eines Vergleichs des erfassten Betriebsparameters mit einem Referenzwert bestimmt.
  5. Elektronisches Vorschaltgerät nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) zunächst in Abhängigkeit von dem erfassten Betriebsparameter eine Betriebsfrequenz (frun) für den Wechselrichter (4) ermittelt, anschließend die ermittelte Betriebsfrequenz (frun) mit der Stopfrequenz (fstop) vergleicht und den Wechselrichter (4) in Abhängigkeit von dem Vergleichsergebnis entweder mit der ermittelten Betriebsfrequenz (frun) oder der Stopfrequenz (fstop) ansteuert.
  6. Elektronisches Vorschaltgerät nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) die Steuersignale für den Wechselrichter (4) aus einer Grundfrequenz (fbasis) ableitet, wobei die Grundfrequenz (fbasis) mit steigender Temperatur ansteigt.
  7. Elektronisches Vorschaltgerät nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) die aktuell vorliegende Temperatur bestimmt und auf Basis der erhaltenen Temperaturinformation die Stopfrequenz (fstop) festlegt.
  8. Elektronisches Vorschaltgerät nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) zum Bestimmten der Temperatur eine temperaturabhängige Referenzspannung (Vref) erfasst.
  9. Elektronisches Vorschaltgerät nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung einen Analog/Digital-Wandler (ADC2) zum Umsetzen des erfassten Betriebsparameters in einen aus mindestens 2 bit bestehenden Digitalwert aufweist, auf Basis dieses Digitalwerts in einem digitalen Rechenblock (8) eine Betriebsfrequenz (frun) zum Betreiben des Wechselrichters (4) berechnet und an eine Treiberschaltung (7) übermittelt, welche diese Schaltinformation in entsprechende Steuersignale zum Ansteuern des Wechselrichters (4) umsetzt.
  10. Elektronisches Vorschaltgerät nach Anspruch 9,
    dadurch gekennzeichnet,
    dass die Glättungsschaltung (3) durch einen Schaltregler gebildet wird und die Steuer- oder Regelschaltung (6) mindestens einen Betriebsparameter (UZ) der Glättungsschaltung (3) erfasst und einen steuerbaren Schalter (S1) des Schaltreglers in Abhängigkeit von dem Wert des erfassten Betriebsparameters (UZ) ansteuert,
    wobei die Steuer- oder Regelschaltung (6) mindestens einen weiteren Analog/Digital-Wandler (ADC1) zum Umsetzen des erfassten Betriebsparameters (UZ) in einen aus mindestens 2 bit bestehenden Digitalwert aufweist,
    und wobei die Steuer- oder Regelschaltung (6) auf Basis dieses Digitalwerts in einem digitalen Rechenblock (7) eine Schaltinformation zum Betreiben des steuerbaren Schalters (S1) des Schaltreglers berechnet und an die Treiberschaltung (7) übermittelt, die diese Schaltinformation in ein entsprechendes Steuersignal zum Ansteuern des Schalters (S1) umsetzt.
  11. Elektronisches Vorschaltgerät nach Anspruch 9 oder 10,
    dadurch gekennzeichnet,
    dass die Basis-Stopfrequenz (fstop,0) durch einen an die Steuer- oder Regelschaltung (6) anschließbaren Referenz-Widerstand (R2) vorgebbar ist, dessen Größe über einen in der Steuer- oder Regelschaltung (6) vorgesehenen Analog/Digital-Wandler (ADC3) ermittelt wird, der nach dem Anschluss einer internen Stromquelle (Is) die über den Referenz-Widerstand (R2) abfallende Spannung in einen aus mindestens 2 bit bestehenden Digitalwert umsetzt.
  12. Elektronisches Vorschaltgerät nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) zum Umsetzen der erfassten Betriebsparameter und der über den Referenz-Widerstand (R2) abfallenden Spannung einen einzigen im Zeitmultiplex arbeitenden Analog/Digital-Wandler aufweist.
  13. Elektronisches Vorschaltgerät nach einem der vorherigen Ansprüche,
    dadurch gekennzeichnet,
    dass die Steuer- oder Regelschaltung (6) als anwendungsspezifische integrierte Schaltung ausgebildet ist.
EP02025345A 2001-12-27 2002-11-13 Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung Expired - Lifetime EP1324643B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10164242.3A DE10164242B4 (de) 2001-12-27 2001-12-27 Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsreglung
DE10164242 2001-12-27

Publications (2)

Publication Number Publication Date
EP1324643A1 EP1324643A1 (de) 2003-07-02
EP1324643B1 true EP1324643B1 (de) 2006-03-29

Family

ID=7711040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02025345A Expired - Lifetime EP1324643B1 (de) 2001-12-27 2002-11-13 Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung

Country Status (3)

Country Link
EP (1) EP1324643B1 (de)
AT (1) ATE322144T1 (de)
DE (2) DE10164242B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051387B4 (de) * 2004-10-21 2019-11-07 Tridonic Gmbh & Co Kg Betriebsgerät für Leuchtmittel, aufweisend einen adaptiven A/D-Wandler
DE102011103638A1 (de) * 2011-06-08 2012-12-13 Tridonic Gmbh & Co. Kg Verfahren zum Betreiben eines elektronischen Vorschaltgeräts für ein Leuchtmittel und elektronisches Vorschaltgerät

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910900A1 (de) * 1989-04-04 1990-10-11 Zumtobel Ag Vorschaltgeraet fuer eine entladungslampe
DE3943350A1 (de) * 1989-12-29 1991-07-04 Zumtobel Ag Verfahren und vorschaltgeraet zum dimmen von leuchtstoffroehren
DE4425890A1 (de) * 1994-07-11 1996-01-18 Priamos Licht Ind & Dienstleis Schaltungsanordnung für den Betrieb einer Entladungslampe
TW266383B (en) * 1994-07-19 1995-12-21 Siemens Ag Method of starting at least one fluorescent lamp by an electronic ballast and the electronic ballast used therefor
DE19536142A1 (de) * 1995-09-20 1997-03-27 Bosch Gmbh Robert Thermisch geschütztes, elektrische Bauelemente enthaltendes Steuergerät
US6337544B1 (en) * 1999-12-14 2002-01-08 Philips Electronics North America Corporation Digital lamp signal processor
DE10013041A1 (de) * 2000-03-17 2001-09-27 Trilux Lenze Gmbh & Co Kg Verfahren und Vorrichtung zum Betrieb einer mit einer Leuchtstofflampe versehenen Leuchte

Also Published As

Publication number Publication date
DE10164242A1 (de) 2003-07-17
ATE322144T1 (de) 2006-04-15
DE50206213D1 (de) 2006-05-18
EP1324643A1 (de) 2003-07-02
DE10164242B4 (de) 2014-07-03

Similar Documents

Publication Publication Date Title
EP1333707B1 (de) Elektronisches Vorschaltgerät für Gasentladungslampe
DE4436825C2 (de) Verfahren und elektronische Vorschalteinrichtung zum Betreiben einer Hochdruck-Gasentladungslampe
EP2296449B1 (de) Parametrisierbarer digitaler PFC
EP0422255B1 (de) Elektronisches Vorschaltgerät
DE4017415C2 (de) Schaltungsanordnung zum Betrieb einer Hochdruck-Entladungslampe für einen Fahrzeugscheinwerfer
DE60210768T2 (de) Vorschaltgerät für eine hochleistungsentladungslampe
DE19900153A1 (de) Integrierte Gate-Treiberschaltung
DE4320857A1 (de) Beleuchtungssschaltkreis für Kraftfahrzeugentladungslampe
DE102014106869B4 (de) LED-Beleuchtungsvorrichtung und Beleuchtungsgerät
EP1635620B1 (de) Elektronisches Vorschaltgerät mit Pumpschaltung für Entladungslampe mit vorheizbaren Elektroden
EP1732364B1 (de) Schaltungsanordnung und Verfahren zur netzspannungsabhängigen Leistungsregelung eines elektronischen Geräts, insbesondere eines elektronischen Vorschaltgeräts
EP1324643B1 (de) Elektronisches Vorschaltgerät mit Strombegrenzung bei Leistungsregelung
DE10120497B4 (de) Elektronisches Vorschaltgerät
AT16163U1 (de) Lampenbetriebsgerät
EP1095543A1 (de) Vorschaltgerät für mindestens eine gasentladungslampe und verfahren zum betreiben eines derartigen vorschaltgeräts
EP1322142B1 (de) Elektronisches Vorschaltgerät mit Überwachungsschaltung zum Erkennen des in einer Gasentladungslampe auftretenden Gleichrichteffekts
EP1191826B1 (de) Elektronisches Vorschaltgerät mit digitaler Steuereinheit
DE10134566A1 (de) Elektronisches Vorschaltgerät mit Vorheizbetrieb
EP2425684B1 (de) Leistungsgeregelte betriebsschaltung für ein leuchtmittel sowie verfahren zum betreiben derselben
DE102005013309A1 (de) Vorschaltgerät mit Dimmvorrichtung
EP1198159A1 (de) Elektronisches Vorschaltgerät
EP3195698B1 (de) Elektronisches vorschaltgerät und verfahren zur ansteuerung einer last
EP1304908B1 (de) Fehlerkorrektur von Referenzwerten in elektronischen Schaltungen
DE202019005916U1 (de) LLC Stufe für LED Treiber
DE19817076A1 (de) Elektronisches Vorschaltgerät für Leuchtstofflampen und Verfahren zum Betreiben von Leuchtstofflampen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20031125

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20050330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060329

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50206213

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060629

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060710

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060829

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070102

BERE Be: lapsed

Owner name: TRIDONICATCO GMBH & CO. KG

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRIDONICATCO GMBH & CO. KG

Free format text: TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6850 DORNBIRN (AT) -TRANSFER TO- TRIDONICATCO GMBH & CO. KG#FAERBERGASSE 15#6850 DORNBIRN (AT)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111128

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131128

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20131129

Year of fee payment: 12

Ref country code: IT

Payment date: 20131127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20141128

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 322144

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141113

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170131

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206213

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602