EP1699890A1 - Schmelzkleber - Google Patents

Schmelzkleber

Info

Publication number
EP1699890A1
EP1699890A1 EP04804964A EP04804964A EP1699890A1 EP 1699890 A1 EP1699890 A1 EP 1699890A1 EP 04804964 A EP04804964 A EP 04804964A EP 04804964 A EP04804964 A EP 04804964A EP 1699890 A1 EP1699890 A1 EP 1699890A1
Authority
EP
European Patent Office
Prior art keywords
adhesive
adhesive film
resins
film according
test method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04804964A
Other languages
English (en)
French (fr)
Inventor
Marc Husemann
Renke Bargmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Publication of EP1699890A1 publication Critical patent/EP1699890A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2431/00Presence of polyvinyl acetate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2477/00Presence of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable

Definitions

  • the invention relates to a thermoplastic hotmelt adhesive, optionally with reactive resin, which is activated at implant temperatures of 150 ° C. and is used for bonding electrical modules to card bodies.
  • the adhesive must have good adhesion to polycarbonate, ABS, PVC and PET, but also good adhesion to the electrical module.
  • gluing is carried out on epoxy materials, polyesters or polyimides.
  • cyan acrylates were used as liquid adhesives, which had the advantage that optimal wetting of the card body and the electrical chip was achieved.
  • this technology is dying out because the processes are very slow. The solvent evaporated only slowly from the cavity of the card body, the syringes for dosing clogged when they stopped due to drying out and were also difficult to dose, and the liquid adhesive also needed a certain amount of time to harden. As a result, the quality of the bond was quite poor.
  • the hotmelt pressure sensitive adhesives are clearly superior to the liquid adhesives. Nevertheless, the selection of suitable connections is also very limited here, since very high demands are placed on this joining technology. They are very limited different materials that have to be glued. Due to the very different polarities of PC, PVC, PET, ABS, epoxy and polyimide, it is impossible to find a single polymer that adheres equally well to all materials. The requirements of end customers continue to increase. For example, the flatness of the electrical module with the card body is an important criterion, since otherwise the cards could no longer be read out. This means that there is an upper limit on the implant temperatures, since PVC in particular, for example, tends to deform at implant temperatures above 170 ° C.
  • Another criterion is the requirement from the banking sector that the electrical modules cannot be removed without being destroyed. Accordingly, the internal cohesion of the adhesive must be very high, so that it does not split in the middle and the adhesion on both sides (card body + electrical module) is extremely high. At the same time, the adhesive must also have a very high level of flexibility, since the cards undergo torsion and bending tests after the implantation. The card material should preferably break before the adhesion to the card body and to the electrical module ceases. As a rule, not even marginal withdrawals are tolerated. Another criterion are temperature fluctuations and the influence of moisture, since these cards withstand both high and low temperatures in later use and sometimes have to survive one wash cycle. Accordingly, the adhesive should not become brittle at low temperatures, should not liquefy at high temperatures and have a low tendency to absorb water.
  • Another requirement criterion is the processing speed due to the growing number of card requirements.
  • the adhesive should soften or melt very quickly so that the implantation process can be completed within a second.
  • the invention is based on the object of specifying an adhesive film for implanting electrical modules in a card body, which fulfills the criteria mentioned above and in particular at implant temperatures of 150 ° C. in the stamp for the different card bodies and electrical modules trains very high liability.
  • the theological properties of the temperature-activated adhesive system have optimized flow behavior.
  • the crossover temperature must be below 125 ° C, otherwise the adhesive would not flow and would therefore not optimally wet the card surface and the electrical module.
  • the curves of the storage module G 'and loss module G "intersect; physically this should be interpreted as a transition from elastic to viscous behavior.
  • the elastic component that is, the storage module G '
  • the viscous component that is, the loss modulus G "
  • the adhesive must between occurring loads card body and electrical module ensure even under strong deformations. Therefore, a Theologically optimized viskoeiasticians behavior is required.
  • the melt flow index should be between 3 and 50 cm 3/10 minutes. at a value of less than 3 cm 3/10 minutes, the card surface is not sufficiently wetted . at levels of greater than 50 cm 3/10 minutes for the implantation, the adhesive is squeezed out.
  • the bonding of the electrical module 2 to a card body 3 is shown schematically in FIG. 1).
  • the inventive temperature-activatable adhesive 1 has a layer thickness between 10 and 100 ⁇ m in a preferred embodiment, and a layer thickness of 30 to 80 ⁇ m in a particularly preferred embodiment.
  • the heat-activatable adhesive serves in particular as an adhesive film for gluing electrical chip modules in card bodies, the respective adhesive layer forming very good adhesion to the card body and to the electrical chip module after the temperature activation.
  • the heat-activatable adhesive has good adhesion to epoxy materials, polyesters and polyimides for bonding the electrical module and good adhesion to PC, ABS, PVC and PET for bonding to card bodies.
  • thermoplastic materials are used for this, e.g. Polyurethanes, polyesters, polyamides, ethylene vinyl acetates, synthetic rubbers, such as e.g.
  • Styrenoprene di- and triblock copolymers SIS
  • SBS styrene-butadiene di- and triblock copolymers
  • SEBS styrene-ethylene-butadiene di- and triblock copolymers
  • polyvinyl acetate polyimides, polyethers, copolyamides, copolyesters, polyolefins, e.g. Polyethylene, polypropylene, or poly (meth) acrylates. The list does not claim to be complete.
  • the polymers have a softening range between 65 and 125 °.
  • Resins or reactive resins that increase the adhesive strength can be added to optimize the adhesive properties and the activation range.
  • the proportion of the resins is between 2 and 50% by weight, based on the thermoplastic.
  • All of the previously known adhesive resins described in the literature can be used as tackifying resins to be added.
  • Representative are the pinene, indene and rosin resins, their disproportionated, hydrogenated, polymerized, esterified derivatives and salts, the aliphatic and aromatic hydrocarbon resins, terpene resins and terpene-phenolic resins as well as C5, C9 and other hydrocarbon resins. Any combination of these and other resins can be used to adjust the properties of the resulting adhesive as desired.
  • thermoplastic In general, all (soluble) resins compatible with the corresponding thermoplastic can be used, in particular reference is made to all aliphatic, aromatic, alkylaromatic hydrocarbon resins, hydrocarbon resins based on pure monomers, hydrogenated hydrocarbon resins, functional hydrocarbon resins and natural resins. Attention is drawn to the presentation of the state of knowledge in the "Handbook of Pressure Sensitive Adhesive Technology" by Donatas Satas (van Nostrand, 1989). In a further preferred embodiment, reactive resins are added to the heat-activatable adhesive.
  • a very preferred group includes epoxy resins.
  • the molecular weight M w (weight average) of the epoxy resins varies from 100 g / mol up to a maximum of 10000 g / mol for polymeric epoxy resins.
  • the epoxy resins include, for example, the reaction product of bisphenol A and epichlorohydrin, the reaction product of phenol and formaldehyde (novolak resins) and epichlorohydrin, glycidyl ester, the reaction product of epichlorohydrin and p-amino phenol.
  • Preferred commercial examples are e.g. Araldite TM 6010, CY-281 TM, ECN TM 1273, ECN TM 1280, MY 720, RD-2 from Ciba Geigy, DER TM 331, DER TM 732, DER TM 736, DEN TM 432, DEN TM 438, DEN TM 485 from Dow Chemical, Epon TM 812, 825, 826, 828, 830, 834, 836, 871, 872, 1001, 1004, 1031 etc. from Shell Chemical and HPT TM 1071, HPT TM 1079 also from Shell Chemical.
  • Examples of commercial aliphatic epoxy resins are e.g. Vinyl cyclohexane dioxides such as ERL-4206, ERL-4221, ERL 4201, ERL-4289 or ERL-0400 from Union Carbide Corp.
  • novolak resins e.g. Epi-Rez TM 5132 from Celanese, ESCN-001 from Sumitomo Chemical, CY-281 from Ciba Geigy, DEN TM 431, DEN TM 438, Quatrex 5010 from Dow Chemical, RE 305S from Nippon Kayaku, Epicion TM N673 from DaiNipon Ink Chemistry or Epicote TM 152 from Shell Chemical.
  • Melamine resins such as e.g. Cymel TM 327 and 323 from Cytec.
  • Terpenophenol resins such as NIREZ TM 2019 from Arizona Chemical can also be used as reactive resins.
  • Phenolic resins such as YP 50 from Toto Kasei, PKHC from Union Carbide Corp. can also be used as reactive resins. and BKR 2620 from Showa Union Gosei Corp. deploy.
  • polyisocyanates such as e.g. Use Coronate TM L from Nippon Polyurethane Ind., Desmodur TM N3300 or Mondur TM 489 from Bayer.
  • crosslinkers and accelerators can optionally be added to the mixture.
  • Suitable accelerators are e.g. Imidazoles, commercially available from 2M7, 2E4MN, 2PZ-CN, 2PZ-CNS, P0505, L07N from Shikoku Chem. Corp. or Curezol 2MZ from Air Products.
  • amines especially tertiary amines, can also be used for acceleration.
  • plasticizers can also be used.
  • plasticizers based on polyglycol ethers, polyethylene oxides, phosphate esters, aliphatic carboxylic acid esters and benzoic acid esters can be used here.
  • Aromatic carboxylic acid esters, higher molecular weight diols, sulfonamides and adipic acid esters can also be used.
  • fillers e.g. fibers, carbon black, zinc oxide, titanium dioxide, chalk, solid or hollow glass spheres, microspheres made of other materials, silica, silicates
  • nucleating agents e.g. fibers, carbon black, zinc oxide, titanium dioxide, chalk, solid or hollow glass spheres, microspheres made of other materials, silica, silicates
  • blowing agents e.g. in the form of primary and secondary antioxidants or in the form of light stabilizers.
  • polyolefins in particular poly- ⁇ -olefins, are used in the sense of layer i), which have a softening range of greater than 65 ° C. and less than 125 ° C. and also reappear after cooling while cooling solidify.
  • layer i polyolefins, in particular poly- ⁇ -olefins, are used in the sense of layer i), which have a softening range of greater than 65 ° C. and less than 125 ° C. and also reappear after cooling while cooling solidify.
  • Degussa are commercially available under the trade name Vestoplast TM different heat-activatable poly- ⁇ -olefins.
  • the polyolefin-activatable adhesives have static softening temperatures T E , A or melting points T S, A of 65 ° C. to 125 ° C.
  • the adhesive strength of these polymers can be increased by targeted additives.
  • polyimine or polyvinyl acetate copolymers can be used as additives that promote adhesion.
  • the heat-activatable adhesive must be made available for further processing for the bonding of electrical modules on card bodies on a release paper or a release liner.
  • the coating can be done from solution or - very preferably - from the melt.
  • the solvent is preferably drawn off in a concentration extruder under reduced pressure, for which purpose, for example, single- or twin-screw extruders can be used, which preferably distill off the solvent in different or the same vacuum stages and via feed preheating feature.
  • Coating is then carried out via a melt nozzle or an extrusion nozzle, the adhesive film possibly being stretched in order to achieve the optimum coating thickness.
  • a kneader or a twin-screw extruder can be used to mix the resins.
  • the carrier materials for the adhesive are the materials which are familiar and customary to the person skilled in the art, such as foils (polyester, PET, PE, PP, BOPP, PVC, polyimide), nonwovens, foams, woven and woven foils and release paper (glassine, HDPE, LDPE).
  • the carrier materials should be equipped with a separating layer.
  • the separating layer consists of a silicone separating lacquer or a fluorinated separating lacquer. Examples
  • the measurement was carried out using a rheometer from Rheometrics Dynamic Systems (RDA II).
  • the “Rheomatics Dynamical Analyzer” (RDA II) measures the torque that occurs when an oscillating shear is applied to a strip specimen (deformation control).
  • the sample diameter was 8 mm, the sample thickness was between 1 and 2 mm. It was measured with the plate-on-plate configuration (parallel plates). The temperature sweep from 0 to 150 ° C was recorded at a frequency of 10 rad / s.
  • the iso-bending test is carried out analogously to the ISO / IEC standard 10373: 1993 (E) - section 6.1. The test is passed if a total of more than 4000 bends are reached.
  • the chip card In the hand test, the chip card is bent by hand over one of the two corners, which are closer to the electrical module, until the card breaks or the module breaks. Then the test is passed. If the electrical module comes loose or pops out, the test is considered failed.
  • the Meltflow Index MFI was carried out according to ISO 1133 (Procedure B, volume-flow-rate MVR). The test was carried out at 150 ° C at 2.16 kg. Other test methods
  • the softening temperatures are preferably determined using differential scanning calorimetry (DSC).
  • Griltex 9 E (copolyester) from EMS-Grilltech + 25% by weight EPR 0191 (epoxy resin, bisphenol A resin with a softening range of 60 ° C.) from Bakelite were mixed in a measuring kneader from Haake at approx. 130 ° C and 15 minutes at 25 rpm. mixed. The heat-activatable adhesive was then pressed to 60 ⁇ m at 140 ° C. between two layers of siliconized glassine release paper. By test method E) of the MFI was 30 cm 3/10 minutes.
  • Example 2
  • Griltex 9 E (copolyester) from EMS-Grilltech was pressed between two layers of siliconized glassine release paper to 60 ⁇ m at 140 ° C. By test method E) was the MF1 18 cm 3/10 minutes.
  • Platamid 2395 copolyamide
  • Atofina + 20% by weight EPR 0191 epoxy resin, bisphenol resin with a softening range of 60 ° C.
  • Heat-activatable adhesive was then siliconized between two layers
  • the implantation of the electrical modules in the card body was carried out with an implanter from Ruhlamat. The following materials were used.
  • examples 1 to 3 are laminated at 2 bar onto the module belt from Nedcard using a two-roll laminating system from Storck GmbH. Then the electrical modules are implanted in the appropriate cavity of the card body.
  • the following parameters were used for all examples:
  • Stamp temperature 150 ° C time: 1 x 2 s cooling step: 1x 800 ms, 25 ° C pressure: 70 N per module Results:
  • Table 1 shows that all inventive examples have passed the most important criteria for a chip card and are therefore very well suited for the bonding of electrical modules to card bodies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Klebstofffolie, bestehend aus einem Thermoplast und optional einem oder mehrerer Harze, wobei a) das Klebesystem eine Erweichungstemperatur von grösser 65 °C und kleiner 125 °C aufweist b) einen Melt-Flowindex (ISO 1133) von grösser 3 und kleiner 100 cm³/10 Minuten auf- weist c) einen nach Testmethode A gemessenen Speichermodul G' bei 23 °C von grösser 10<7 >Pas besitzt d) einen nach Testmethode A gemessenen Verlustmodul G'' bei 23 °C von grösser 10<6> Pas besitzt e) und einen nach Testmethode A gemessenen crossover von kleiner 125 °C aufweist.

Description

Beschreibung
SCHMELZKLEBER
Die Erfindung betrifft einen thermoplastischen Schmelzkleber optional mit Reaktivharz, der bei Implantϊertemperaturen von 150 °C aktiviert und zur Verklebung von elektrischen Modulen mit Kartenkörpern eingesetzt wird.
Zur Implantierung von elektrischen Modulen in Kartenkörpern sind im Stand der Technik bereits eine Vielzahl von Klebstofffolien oder Fügeverfahren bekannt. Ziel dieser Implantierungen ist die Herstellung von Telefonkarten, Kreditkarten, Parkautomatkarten, Versicherungskarten, etc.. Beispiele für die entsprechenden Verklebungsverfahren finden sich z.B. in den Patentschriften EP 0842 995 A, EP 1 078965 A und DE 19948 560 A.
In diesem Bereich der Verklebung steigen aber kontinuierlich die Anforderungen an das Klebesystem. So muss der Kleber eine gute Haftung auf Polycarbonat, auf ABS, PVC und PET aufweisen, aber ebenso eine gute Haftung zum elektrischen Modul. Hier wird in der Regel auf Epoxy-Materialien, Polyestern oder Polyimiden verklebt. Früher wurden Cyan-Acrylate als Flüssigkleber eingesetzt, die den Vorteil aufwiesen, dass eine optimale Benetzung des Kartenkörpers sowie des elektrischen Chips erzielt wurde. Diese Technologie ist aber im Aussterben begriffen, da die Prozesse sehr langsam sind. Das Lösemittel verdampfte nur langsam aus der Kavität des Kartenkörpers, die Spritzen zur Dosierung verstopften beim Stillstand durch Austrocknen und waren zudem schlecht dosierbar und der Flüssigkleber benötigte ebenfalls eine gewisse Zeit zum Aushärten. Als Resultat war die Qualität der Verklebung recht schlecht.
Hier zeigen sich die Schmelzhaftkleber den Flüssigklebern deutlich überlegen. Dennoch ist die Auswahl an geeigneten Verbindungen auch hier sehr eingeschränkt, da sehr hohe Anforderungen an diese Fügetechnik gestellt werden. Eine Einschränkung sind die sehr unterschiedlichen Materialien, die verklebt werden müssen. Durch die sehr unterschiedlichen Polaritäten von PC, PVC, PET, ABS, Epoxy und Polyimid ist es unmöglich, ein einzelnes Polymer zu finden, welches auf allen Materialien gleich gut haftet. Weiterhin steigen die Anforderungen der Endkunden immer weiter an. So ist z.B. die Ebenheit des elektrischen Moduls mit dem Kartenkörper ein wichtiges Kriterium, da ansonsten die Karten nicht mehr ausgelesen werden könnten. Dies bedingt, dass die Implantiertemperaturen nach oben begrenzt sind, da z.B. insbesondere PVC bei Implantiertemperaturen von oberhalb 170 °C zu Verformungen neigt. Ein weiteres Kriterium ist die Anforderung aus dem Bankenbereich, dass die elektrischen Module nicht zerstörungsfrei sich entfernen lassen. Dementsprechend muss die innere Kohäsion des Klebers sehr hoch sein, so dass er nicht in der Mitte spaltet und die Haftung zu beiden Seiten (Kartenkörper + elektrisches Modul) extrem hoch ist. Gleichzeitig muss der Kleber auch eine sehr hohe Flexibilität aufweisen, da die Karten nach der Implantierung Torsionstests und Biegetest durchlaufen. Bevorzugt sollte erst das Kar- tenmaterial brechen bevor die Haftung zum Kartenkörper und zum elektrischen Modul aussetzt. In der Regel werden noch nicht einmal Abhebungen am Rand geduldet. Ein weiteres Kriterium sind Temperaturschwankungen und der Einfluss von Feuchtigkeit, da diese Karten in der späteren Benutzung sowohl hohe als auch tiefe Temperaturen stand halten und zum Teil auch einmal einen Waschdurchgang überstehen müssen. Dementsprechend sollte der Kleber bei tiefen Temperaturen nicht verspröden, bei hohen Temperaturen nicht verflüssigen und eine geringe Tendenz zur Aufnahme von Wasser besitzen.
Ein weiteres Anforderungskriterium ist durch die wachsende Anzahl des Kartenbedarfs die Verarbeitungsgeschwindigkeit. Der Kleber sollte sehr schnell erweichen oder Auf- schmelzen, damit der Implantierprozess innerhalb einer Sekunde abgeschlossen werden kann.
Der Erfindung liegt in Anbetracht dieses Standes der Technik die Aufgabe zu Grunde, eine Klebstofffolie zum Implantieren von elektrischen Modulen in einen Kartenkörper anzugeben, welche die oben genannten Kriterien erfüllt und insbesondere bei Implantiertemperaturen von 150 °C im Stempel zu den unterschiedlichen Kartenkörpern und elektrischen Modulen eine sehr hohe Haftung ausbildet.
Erfindungsgemäß wird die Aufgabe gelöst durch eine Klebstofffolie, bestehend aus einem Thermoplast und optional einem oder mehrerer Harze, wobei das Klebesystem a) eine Erweichungstemperatur von größer 65 °C und kleiner 125 °C aufweist b) einen Melt-Flowindex von größer 3 und kleiner 100 cm3/10 Minuten aufweist (gemessen analog ISO 1133 bei T = 150 °C bei 2,16 kg) c) einen nach Testmethode A gemessenen Speichermodul G' bei 23 °C von größer 107 Pas besitzt d) einen nach Testmethode A gemessenen Veriustmodul G" bei 23 °C von größer 106 Pas besitzt e) und einen nach Testmethode A gemessenen crossover (Identität von Speichermodul und Verlustmodul) von kleiner 125 °C aufweist.
Das Temperatur-aktivierbare Klebesystem weist durch die Theologischen Eigenschaften ein optimiertes Fließverhalten auf.
Weiterhin muss die crossover-Temperatur unterhalb 125 °C liegen, da ansonsten der Kleber nicht fließfähig werden würde und somit nicht die Kartenoberfläche sowie das elektrische Modul optimal benetzen würde. Am crossover-Punkt schneiden sich die Kurven von Speichermodul G' und Verlustmodul G"; physikalisch ist dies als Übergang von elastischem zu viskosem Verhalten zu interpretieren.
Weiterhin muss der elastische Anteil, also der Speichermodul G' bei größer 107 Pas und der viskose Anteil, also der Verlustmodul G" bei größer 106 Pas liegen, da ansonsten keine optimale Flexibilität des Klebers gewährleistet wird. Der Kleber muss die auftretenden Belastungen zwischen Kartenkörper und elektrischem Modul auch unter starken Verbiegungen gewährleisten. Daher ist ein Theologisch optimiertes viskoeiastisches Verhalten erforderlich. Der Meltflowindex muss zwischen 3 und 50 cm3 / 10 Minuten liegen. Bei einem Wert von kleiner 3 cm3 / 10 Minuten wird die Kartenoberfläche nicht ausreichend benetzt. Bei Werten von größer 50 cm3 / 10 Minuten beim Implantieren wird der Kleber herausgequetscht.
Die Verklebung des elektrischen Moduls 2 mit einem Kartenkörper 3 ist in Fig. 1) sche- matisch dargestellt. Der erfinderische Temperatur-aktivierbare Kleber 1 besitzt in einer bevorzugten Auslegung eine Schichtdicke zwischen 10 und 100 μm, in einer besonders bevorzugten Auslegung eine Schichtdicke von 30 bis 80 μm. Hitze-aktivierbare Kleber
Der Hitze-aktivierbare Kleber dient insbesondere als Klebstofffolie zur Verklebung von elektrischen Chipmodulen in Kartenkörpern, wobei die jeweilige Klebschicht eine sehr gute Haftung zum Kartenkörper und zum elektrischen Chipmodul nach der Temperatur- aktivierung ausbildet.
Der Hitze-aktivierbare Kleber besitzt zur Verklebung des elektrischen Moduls eine gute Haftung zu Epoxy-Materialien, Polyestern und Polyimiden und zur Verklebung auf Kartenkörpern eine gute Haftung zu PC, ABS, PVC und PET. In einer sehr bevorzugten Auslegung werden hierfür thermoplastische Materialien eingesetzt, wie z.B. Poly- urethane, Polyester, Polyamide, Ethylenvinylacetate, Synthesekautschuke, wie z.B. Sty- rolisopren Di- und Triblockcopolymere (SIS), Styrolbutadien Di- und Triblockcopolymere (SBS), Styrolethylenbutadien Di- und Triblockcopolymer (SEBS), Polyvinylacetat, Poly- imide, Polyether, Copolyamide, Copolyester, Polyolefine, wie z.B. Polyethylen, Polypropylen, oder Poly(meth)acrylate. Die Aufzählung besitzt keinen Anspruch auf Vollständig- keit.
Die Polymere besitzen einen Erweichungsbereich zwischen 65 und 125°.
Zur Optimierung der klebtechnischen Eigenschaften und des Aktivierungsbereiches lassen sich Klebkraft-steigernde Harze oder Reaktivharze hinzusetzen. Der Anteil der Harze beträgt zwischen 2 und 50 Gew.-% bezogen auf den Thermoplasten.
Als zuzusetzende klebrigmachende Harze sind ausnahmslos alle vorbekannten und in der Literatur beschriebenen Klebharze einsetzbar. Genannt seien stellvertretend die Pinen-, Inden- und Kolophoniumharze, deren disproportionierte, hydrierte, polymerisierte, veresterte Derivate und Salze, die aliphatischen und aromatischen Kohlenwasserstoffharze, Terpenharze und Terpenphenolharze sowie C5-, C9- sowie andere Kohlenwasserstoffharze. Beliebige Kombinationen dieser und weiterer Harze können eingesetzt werden, um die Eigenschaften der resultierenden Klebmasse wunschgemäß einzustellen. Im allgemeinen lassen sich alle mit dem entsprechenden Thermoplasten kompatiblen (löslichen) Harze einsetzen, insbesondere sei verwiesen auf alle aliphatischen, aromatischen, alkylaromatischen Kohlenwasserstoffharze, Kohlenwasserstoffharze auf Basis reiner Monomere, hydrierte Kohlenwasserstoffharze, funktioneile Kohlenwasserstoffharze sowie Naturharze. Auf die Darstellung des Wissensstandes im „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, 1989) sei ausdrück- lieh hingewiesen. In einer weiteren bevorzugten Ausführung werden dem Hitze-aktivierbaren Kleber Reaktivharze hinzugegeben.
Eine sehr bevorzugte Gruppe umfasst Epoxy-Harze. Das Molekulargewicht Mw (Gewichtsmittel) der Epoxy-Harze variiert von 100 g/mol bis zu maximal 10000 g/mol für polymere Epoxy-Harze.
Die Epoxy-Harze umfassen zum Beispiel das Reaktionsprodukt aus Bisphenol A und Epichlorhydrin, das Reaktionsprodukt aus Phenol und Formaldehyd (Novolak Harze) und Epichlorhydrin, Glycidyl Ester, das Reaktionsprodukt aus Epichlorhydrin und p-Amino Phenol.
Bevorzugte kommerzielle Beispiele sind z.B. Araldite™ 6010, CY-281™, ECN™ 1273, ECN™ 1280, MY 720, RD-2 von Ciba Geigy, DER™ 331, DER™ 732, DER™ 736, DEN™ 432, DEN™ 438, DEN™ 485 von Dow Chemical, Epon™ 812, 825, 826, 828, 830, 834, 836, 871, 872,1001, 1004, 1031 etc. von Shell Chemical und HPT™ 1071, HPT™ 1079 ebenfalls von Shell Chemical.
Beispiele für kommerzielle aliphatische Epoxy-Harze sind z.B. Vinylcyclohexandioxide, wie ERL-4206, ERL-4221, ERL 4201, ERL-4289 oder ERL-0400 von Union Carbide Corp.
Als Novolak-Harze können z.B. eingesetzt werden, Epi-Rez™ 5132 von Celanese, ESCN-001 von Sumitomo Chemical, CY-281 von Ciba Geigy, DEN™ 431, DEN™ 438, Quatrex 5010 von Dow Chemical, RE 305S von Nippon Kayaku, Epicion™ N673 von DaiNipon Ink Chemistry oder Epicote™ 152 von Shell Chemical.
Weiterhin lassen sich als Reaktivharze auch Melamin-Harze einsetzen, wie z.B. Cymel™ 327 und 323 von Cytec.
Weiterhin lassen sich als Reaktivharze auch Terpenphenolharze, wie z.B. NIREZ™ 2019 von Arizona Chemical einsetzen. Weiterhin lassen sich als Reaktivharze auch Phenol harze, wie z.B. YP 50 von Toto Kasei, PKHC von Union Carbide Corp. und BKR 2620 von Showa Union Gosei Corp. einsetzen.
Weiterhin lassen sich als Reaktivharze auch Polyisocyanate, wie z.B. Coronate™ L von Nippon Polyurethan Ind. , Desmodur™ N3300 oder Mondur™ 489 von Bayer einsetzen.
Um die Reaktion zwischen den beiden Komponenten zu beschleunigen, lassen sich auch optional Vernetzer und Beschleuniger in die Mischung zu additivieren.
Als Beschleuniger eignen sich z.B. Imidazole, kommerziell erhältlich unter 2M7, 2E4MN, 2PZ-CN, 2PZ-CNS, P0505, L07N von Shikoku Chem. Corp. oder Curezol 2MZ von Air Products.
Weiterhin lassen sich auch Amine, insbesondere tert.-Amine zur Beschleunigung einsetzen.
Neben Reaktivharzen lassen sich auch Weichmacher einsetzen. Hier können in einer bevorzugten Ausführung der Erfindung Weichmacher auf Basis, Polyglykolethern, Poly- ethylenoxiden, Phosphatestern, aliphatische Carbonsäureester und Benzoesäureester eingesetzt werden. Weiterhin lassen sich auch aromatische Carbonsäureester, höhermolekulare Diole, Sulfonamide und Adipinsäureester einsetzen.
Weiterhin können optional Füllstoffe (z.B. Fasern, Ruß, Zinkoxid, Titandioxid, Kreide, Voll- oder Hohlglaskugeln, Mikrokugeln aus anderen Materialien, Kieselsäure, Silikate), Keimbildner, Blähmittel, Compoundierungsmittel und/oder Alterungsschutzmittel, z.B. in Form von primären und sekundären Antioxidantien oder in Form von Lichtschutzmitteln zugesetzt sein.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Haftklebebandes werden Polyolefine, insbesondere Poly-α-olefine, im Sinne der Schicht i) eingesetzt, die einen Erweichungsbereich von größer 65 °C und kleiner 125 °C aufweisen und sich ebenfalls nach der Verklebung während des Abkühlens wieder verfestigen. Von der Firma Degussa sind unter dem Handelsnamen Vestoplast™ unterschiedliche Hitze-aktivierbare Poly-α-olefine kommerziell erhältlich.
Die Polyolefin-aktivierbaren Klebemassen weisen in einer bevorzugten Ausführungsform statische Erweichungstemperaturen TE,A oder Schmelzpunkte TS,A von 65 °C bis 125 °C auf. Die Klebkraft dieser Polymere kann durch gezielte Additivierung gesteigert werden. So lassen sich z.B. Polyimin- oder Polyvinylacetat-Copolymere als klebkraftfördernde Zusätze verwenden.
Verfahren zur Herstellung
Die Hitze-aktivierbare Klebemasse muss zur weiteren Verarbeitung zur Verklebung von elektrischen Modulen auf Kartenkörpern auf einem Trennpapier oder einem Trennliner zur Verfügung gestellt werden. Die Beschichtung kann aus Lösung oder — sehr bevorzugt - aus der Schmelze erfolgen. Für den Auftrag aus der Schmelze wird - falls das Polymer in Lösung vorliegt - das Lösemittel bevorzugt in einem Aufkonzentrationsextruder unter vermindertem Druck abgezogen, wozu beispielsweise Ein- oder Doppelschneckenextruder eingesetzt werden können, die bevorzugt das Lösemittel in verschiedenen oder gleichen Vakuumstufen abdestillieren und über eine Feedvorwärmung verfügen. Dann wird über eine Schmelzdüse oder eine Extrusionsdüse beschichtet, wobei gegebenenfalls der Klebefilm gereckt wird, um die optimale Beschichtungsdicke zu erreichen. Für die Vermischung der Harze kann ein Kneter oder ein ein Doppelschneckenextruder zur Vermischung eingesetzt werden.
Als Trägermaterialien für die Klebemasse werden die dem Fachmann geläufigen und üblichen Materialien, wie Folien (Polyester, PET, PE, PP, BOPP, PVC, Polyimid), Vliese, Schäume, Gewebe und Gewebefolien sowie Trennpapier (Glassine, HDPE, LDPE) verwendet. Die Trägermaterialien sollten mit einer Trennschicht ausgerüstet sein. Die Trennschicht besteht in einer sehr bevorzugten Auslegung der Erfindung aus einem Silikontrennlack oder einem fluorierten Trennlack. Beispiele
Testmethoden:
Rheologie A)
Die Messung wurde mit einem Rheometer der Fa. Rheometrics Dynamic Systems (RDA II) durchgeführt.
Der „Rheomatics Dynamical Analyser" (RDA II) misst das auftretende Drehmoment bei Aufbringen einer oszillierenden Scherung auf eine Streifenprobe (Deformationssteue- rung).
Der Probendurchmesser betrug 8 mm, die Probendicke betrug zwischen 1 und 2 mm. Es wurde mit der Platte-auf-Platte-Konfiguration (parallele Platten) gemessen. Es wurde der Temperatur-Sweep von 0 bis 150 °C mit einer Frequenz von 10 rad/s aufgenommen.
Iso-Bending B)
Der Iso-Bending Test wird analog der Iso/IEC-Norm 10373 : 1993 (E) - section 6.1 durchgeführt. Der Test gilt als bestanden, wenn insgesamt mehr als 4000 Biegungen erreicht werden.
Extrem-Biegetest C)
Im Extrembiegetest wird ein 3 cm breiter Ausschnitt mit dem elektrischen Modul in der Mitte liegend aus der Chipkarte ausgeschnitten und dann 10 x von 3 cm Breite auf 2.5 cm Breite zusammengedrückt. Der Test gilt als bestanden, wenn das elektrische Modul sich nicht herauslöst.
Handtest D)
Im Handtest wird die Chipkarte mit der Hand über eine der beiden Ecken, die näher zum elektrischen Modul liegen, so weit gebogen, bis dass die Karte bricht oder das Modul bricht. Dann gilt der Test als bestanden. Falls das elektrische Modul sich löst oder herausspringt, gilt der Test als nicht bestanden.
MFIE)
Der Meltflowindex MFI wurde analog ISO 1133 (Procedure B, volume-flow-rate MVR) durchgeführt. Der Test wurde bei 150 °C bei 2,16 kg durchgeführt. Übrige Testmethoden
Molmassenbestimmungen erfolgten über GPC-Messungen (Gelpermeationschroma- tografie). (Herstellung einer Lösung der Probe in Tetrahydrofuran mit einer Konzentration von 3g/l; Lösungsvorgang 12 Stunden bei Raumtemperatur; danach Filtration der Lösung durch einen 1μm Einmalfilter, Zusatz von ca. 200 ppm Toluol als interner Standard.
Mittels eines Autosampiers werden 20μl der Lösung wie folgt chromatografiert: Nach einer 103Ä Säule von 50 mm Länge folgen eine 106Ä, eine 104Ä und eine 10 Ä Säule mit jeweils einer Länge von 300mm. Als Eluent dient Tetrahydrofuran, das mit einer Flussrate von 1,0ml/min gepumpt wird. Die Kalibrierung der Säulen erfolgt mit Polystyrolstandards, die Detektion erfolgt über die Messung der Änderung des Brechungsindex mit Hilfe eines Shodex Differentialrefraktometers Rl 71).
Die Bestimmung der Erweichungstemperaturen erfolgt bevorzugt über die Differential Scanning Calorimetry (DSC).
Untersuchungen:
Referenz 1)
Polyamidfolie XAF 34.408 der Fa. Collano-Xiro
Referenz 2)
PU-Folie XAF 36.304 der Fa. Collano Xiro
Beispiel 1)
Griltex 9 E (Copolyester) der Fa. EMS-Grilltech + 25 Gew.-% EPR 0191 (Epoxy-Harz, Bisphenol A Harz mit 60 °C Erweichungsbereich) der Fa. Bakelite wurden in einem Meßkneter der Fa. Haake bei ca. 130 °C und 15 Minuten bei 25 U/min. abgemischt. Die Hitze-aktivierbare Klebemasse wurde anschließend zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 60 μm ausgepresst bei 140°C. Nach Testmethode E) betrug der MFI 30 cm3/10 Minuten. Beispiel 2)
Griltex 9 E (Copolyester) der Fa. EMS-Grilltech wurde zwischen zwei Lagen silikonisier- tem Glassine-Trennpapier auf 60 μm ausgepresst bei 140 °C. Nach Testmethode E) betrug der MF1 18 cm3/10 Minuten.
Beispiel 3)
Platamid 2395 (Copolyamid) der Fa. Atofina + 20 Gew.-% EPR 0191 (Epoxy- Harz.BisphenoI A Harz mit 60°C Erweichungsbereich) der Fa. Bakelite wurden in einem
Meßkneter der Fa. Haake bei ca. 130 °C und 15 Minuten bei 25 U/min. abgemischt. Die
Hitze-aktivierbare Klebemasse wurde anschließend zwischen zwei Lagen silikonisiertem
Glassine-Trennpapier auf 60 μm ausgepresst bei 140 °C.
Nach Testmethode E) betrug der MF1 16 cm3/10 Minuten.
Implantierunα der elektrischen Module
Die Implantierung der elektrischen Module in den Kartenkörper erfolgte mit einem Implanter der Fa. Ruhlamat. Es wurden folgende Materialien eingesetzt.
Elektrische Module: Nedcard Dummy N4C-25C, Tape-Type: 0232-10 PVC-Karten: Fa. CCD ABS-Karte: Fa. ORGA
In einem ersten Schritt werden über eine Zweiwalzenkaschieranlage der Fa. Storck GmbH die Beispiele 1 bis 3 mit 2 bar auf den Modulgurt der Fa. Nedcard kaschiert. Dann werden die elektrischen Module in die passende Kavität des Kartenkörpers implantiert. Es wurden folgende Parameter für alle Beispiele angewendet:
Heizschritte: 1
Stempeltemperatur: 150 °C Zeit: 1 x 2 s Kühlschritt: 1x 800 ms, 25 °C Druck: 70 N pro Modul Ergebnisse:
Die mit den erfinderischen Klebemassen hergestellten Chipkarten wurden nach den Testmethoden B, C und D ausgetestet. Die Ergebnisse sind in der Tabelle 1 dargestellt.
Tab. 1
Tabelle 1 kann entnommen werden, dass alle erfinderischen Beispiele die wichtigsten Kriterien für eine Chipkarte bestanden haben und somit sehr gut zur Verklebung von elektrischen Modulen auf Kartenkörpern geeignet sind.
Die Theologischen Eigenschaften sind in der folgenden Tabelle 2 aufgelistet. Tab. 2

Claims

Patentansprüche
1. Klebstofffolie, bestehend aus einem Thermoplast und optional einem oder mehrerer Harze, wobei a) das Klebesystem eine Erweichungstemperatur von größer 65 °C und kleiner 125 °C aufweist b) einen Melt-Flowindex (ISO 1133) von größer 3 und kleiner 100 cm3/10 Minuten aufweist c) einen nach Testmethode A gemessenen Speichermodul G' bei 23 °C von größer 107 Pas besitzt d) einen nach Testmethode A gemessenen Verlustmodul G" bei 23 °C von größer 106 Pas besitzt e) und einen nach Testmethode A gemessenen crossover von kleiner 125 °C aufweist.
2. Klebstofffolie nach Anspruch 1, dadurch gekennzeichnet, dass die Schichtdicke zwischen 10 und 100 μm, besonders bevorzugt zwischen 30 und 80 μm beträgt.
3. Klebstofffolie nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass als Thermoplasten besonders bevorzugt Copolyamide, Poly- ethylvinylacetate, Polyvinylacetate, Polyolefine, Polyurethane und Copolyester eingesetzt werden.
4. Klebstofffolie nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass als Reaktivharz Epoxid-, und/oder Phenol- und/oder Novolak- Harze eingesetzt werden.
5. Verwendung einer Klebstofffolie nach einem der vorstehenden Ansprüche zur Verklebung von Chipmodulen in Kartenkörpern.
6. Verwendung einer Klebstofffolie nach einem der vorstehenden Ansprüche zur Verklebung auf Polyimid-, Polyester oder Epoxy-basierenden Chipmodulen und auf PVC, ABS, PET, PC, PP oder PE Kartenkörpern. Verfahren zur Herstellung eines Hitze-aktivierbaren Klebebandes, durch gekennzeichnet, dass eine Klebstofffolie nach den Ansprüchen 1 bis 4 auf ein Releasepapier oder einen Releasefilm beschichtet wird.
EP04804964A 2003-12-23 2004-12-21 Schmelzkleber Withdrawn EP1699890A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361538A DE10361538A1 (de) 2003-12-23 2003-12-23 Schmelzkleber zur Implantierung von elektrischen Modulen in einen Kartenkörper
PCT/EP2004/053629 WO2005063907A1 (de) 2003-12-23 2004-12-21 Schmelzkleber

Publications (1)

Publication Number Publication Date
EP1699890A1 true EP1699890A1 (de) 2006-09-13

Family

ID=34706661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804964A Withdrawn EP1699890A1 (de) 2003-12-23 2004-12-21 Schmelzkleber

Country Status (5)

Country Link
US (1) US20080026186A1 (de)
EP (1) EP1699890A1 (de)
DE (2) DE10361538A1 (de)
MX (1) MXPA06007084A (de)
WO (1) WO2005063907A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101419056B1 (ko) 2005-04-29 2014-07-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 폴리우레탄 보호 필름
DE102006047735A1 (de) * 2006-10-06 2008-04-10 Tesa Ag Hitzeaktivierbares Klebeband insbesondere für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102006047739A1 (de) * 2006-10-06 2008-04-17 Tesa Ag Hitzeaktivierbares Klebeband insbesondere für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102008053447A1 (de) * 2008-09-11 2010-04-15 Tesa Se Klebemasse mit hohem Repulsionswiderstand
DE102008046871A1 (de) * 2008-09-11 2010-03-18 Tesa Se Klebemasse mit hohem Repulsionswiderstand
DE102017216070A1 (de) 2017-09-12 2019-03-14 Tesa Se Versiegelungsklebeband für Karosserien

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842995A1 (de) * 1995-05-27 1998-05-20 Beiersdorf Aktiengesellschaft Thermoplastische Klebstofffolie

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065439A (en) * 1975-06-10 1977-12-27 Toyobo Co., Ltd. Copolyester and process for the production thereof
US4249978A (en) * 1979-04-19 1981-02-10 Kliklok Corporation Method of forming a heat resistant carton
NZ201589A (en) * 1981-11-02 1985-08-16 Grace W R & Co Heat activatable adhesive or sealant compositions
US4710539A (en) * 1981-11-02 1987-12-01 W. R. Grace & Co. Heat activatable adhesive or sealant compositions
FR2580416B1 (fr) * 1985-04-12 1987-06-05 Radiotechnique Compelec Procede et dispositif pour fabriquer une carte d'identification electronique
DE3639630A1 (de) * 1986-11-20 1988-06-01 Gao Ges Automation Org Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
US4822443A (en) * 1986-12-08 1989-04-18 Velcro Industries B.V. Apparatus for attaching touch fasteners with self-heating attachment adhesive
JPH09156267A (ja) * 1995-12-06 1997-06-17 Watada Insatsu Kk プラスチックカード
US6350791B1 (en) * 1998-06-22 2002-02-26 3M Innovative Properties Company Thermosettable adhesive
JP2000017242A (ja) * 1998-06-29 2000-01-18 Minnesota Mining & Mfg Co <3M> ホットメルト接着剤組成物、熱圧着性フィルムおよびホットメルト接着剤組成物を用いた接着方法
US6265460B1 (en) * 1998-06-29 2001-07-24 3M Innovative Properties Company Hot-melt adhesive composition, heat-bonding film adhesive and adhering method using hot-melt adhesive composition
US6846759B1 (en) * 1998-11-24 2005-01-25 Knowlton Nonwovens, Inc. Adhesive coated polyester felt
CN1478019A (zh) * 2000-12-06 2004-02-25 用于金属表面的含有带聚烯烃芯的非定向多层膜的保护涂层
EP1485867A4 (de) * 2001-12-24 2012-02-22 L 1 Secure Credentialing Inc Kontakt-chipkarten mit einem dokumentkern, kontaktlose chipkarten mit identifikationsdokument mehrschichtiger struktur auf pet-basis und verfahren zu ihrer herstellung
US20060121272A1 (en) * 2003-01-29 2006-06-08 Tesa Ag Thermo-activated adhesive material for fpcb agglutinations
US20060088715A1 (en) * 2003-01-29 2006-04-27 Tesa Ag Method for gluing fpcb's
CN1863884A (zh) * 2003-08-22 2006-11-15 蒂萨股份公司 包含至少两个层的胶粘膜

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842995A1 (de) * 1995-05-27 1998-05-20 Beiersdorf Aktiengesellschaft Thermoplastische Klebstofffolie

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Griltex 9E Copolyester Schmelzkleber", TECHNISCHES DATENBLATT, - 20 December 2001 (2001-12-20) *
ABSTRACT ARTICLE: "DIN 53765. Pruefung von Kunststoffen und Elastomeren; Thermische Analyse; Dynamische Differenzkalorimetrie (DDK) = Testing of plastics and elastomeres; Thermal analysis; DSC-method", DEUTSCHE NORMEN. DIN NORM,, vol. 53765, 1 March 1994 (1994-03-01), pages 12PP, XP009133150 *
HANS-GEORG ELIAS: "Makromoleküle", vol. 1, 1990, HÜTHIG & WEPF VERLAG, BASEL, HEIDELBERG, NEW YORK, ISBN: 3-85739-101-4, pages: 845 - 857 *
INTERNET CITATION: "Erweichungspunkt, Dokumentenkennung RD-05-01649", July 2007 (2007-07-01), Retrieved from the Internet <URL:http://www.roempp.com/prod/roempp.php> [retrieved on 20101119] *
JÜRGEN FALBE; MANFRED REGITZ: "Römpp Chemie Lexikon", 1990, GEORG THIEME VERLAG, STUTTGART, NEW YORK, ISBN: 3-13-734709-2, pages: 1223 - 1224 *
See also references of WO2005063907A1 *

Also Published As

Publication number Publication date
US20080026186A1 (en) 2008-01-31
WO2005063907A1 (de) 2005-07-14
DE112004002195D2 (de) 2006-09-28
MXPA06007084A (es) 2006-09-04
DE10361538A1 (de) 2005-07-28

Similar Documents

Publication Publication Date Title
EP1607457A2 (de) Elektrisch anisotrop leitfähiger Schmelzkleber zur Implantierung von elektrischen Modulen in einen Kartenkörper
EP1658346B1 (de) Verwendung einer klebstofffolie zur implantierung von elektrischen modulen in einen kartenkörper
EP2076575B1 (de) Hitzeaktivierbares klebeband insbesondere für die verklebung von elektronischen bauteilen und leiterbahnen
WO2010086244A1 (de) Träger verstärkte hitzeaktivierbare klebemassen
EP3137566B1 (de) Verfahren zur herstellung einer verklebung auf permeat sensiblen oberflächen
DE19519499B4 (de) Thermoplastische Klebstoffolie und deren Verwendung
DE102006055093A1 (de) Hitze-aktiviert verklebbares Flächenelement
EP3137568B1 (de) Spaltbares klebeband mit dosierfähigen spaltbaren flüssigklebstoff
WO2010145945A1 (de) Verwendung von hitzeaktiverbaren klebebändern für die verklebung von flexiblen leiterplatten
WO2005063909A1 (de) Klebfolie zur implantierung von elektrischen modulen in einen kartenkörper
EP1699890A1 (de) Schmelzkleber
EP3481888B1 (de) Härtbare klebemasse und darauf basierende reaktivklebebänder
WO2005063908A1 (de) Schmelzkleber
DE102004031190A1 (de) Hitzeaktivierbares Klebeband für die Verklebung von elektronischen Bauteilen und Leiterbahnen
WO2004067665A1 (de) Verfahren zur verklebung von fpcb′s
WO2010028950A1 (de) Verfahren zur verklebung zweier konststoffoberflächen
WO2004067664A1 (de) Hitze-aktivierbare klebemasse für fpcb-verklebungen
EP0846743A1 (de) Thermoplastische härtbare Selbstklebefolie
WO2007093318A1 (de) Reaktive harzmischung
DE19700254A1 (de) Thermoplastische härtbare Selbstklebefolie
DE10324737A1 (de) Hitze-aktivierbare Klebemass für FPCB-Verklebungen
DE10317403A1 (de) Verfahren zur Verklebung von FPCB&#39;s

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 20080613

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESA SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120216