DE102008053447A1 - Klebemasse mit hohem Repulsionswiderstand - Google Patents

Klebemasse mit hohem Repulsionswiderstand Download PDF

Info

Publication number
DE102008053447A1
DE102008053447A1 DE200810053447 DE102008053447A DE102008053447A1 DE 102008053447 A1 DE102008053447 A1 DE 102008053447A1 DE 200810053447 DE200810053447 DE 200810053447 DE 102008053447 A DE102008053447 A DE 102008053447A DE 102008053447 A1 DE102008053447 A1 DE 102008053447A1
Authority
DE
Germany
Prior art keywords
heat
adhesive
bonding
resins
activatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200810053447
Other languages
English (en)
Inventor
Marc Dr. Husemann
Markus Brodbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Priority to DE200810053447 priority Critical patent/DE102008053447A1/de
Priority to JP2011526454A priority patent/JP2012502154A/ja
Priority to CN2009801273145A priority patent/CN102089377A/zh
Priority to KR1020107027856A priority patent/KR20110056456A/ko
Priority to EP09782219A priority patent/EP2281015A1/de
Priority to US12/996,722 priority patent/US20110171472A1/en
Priority to PCT/EP2009/061002 priority patent/WO2010028951A1/de
Priority to TW98129032A priority patent/TW201016817A/zh
Publication of DE102008053447A1 publication Critical patent/DE102008053447A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/121Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives by heating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J121/00Adhesives based on unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/18Condensation polymers of aldehydes or ketones with aromatic hydrocarbons or their halogen derivatives only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2421/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2461/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2461/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/16Addition or condensation polymers of aldehydes or ketones according to C08L59/00 - C08L61/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2461/00Presence of condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/386Improvement of the adhesion between the insulating substrate and the metal by the use of an organic polymeric bonding layer, e.g. adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31931Polyene monomer-containing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

Verfahren zur Verklebung zweier Kunststoffoberflächen miteinander, wobei die Verklebung durch eine hitzeaktivierbare Klebemasse bewirkt wird, dadurch gekennzeichnet, dass als hitzeaktivierbare Klebemasse eine solche auf Basis i) zumindest eines Elastomers mit einem Gewichtsanteil von 30 bis 70 Gew.-% ii) zumindest einer Reaktivharzkomponente mit einem Gewichtsanteil von 30 bis 70 Gew.-% eingesetzt wird, wobei zumindest eine der zu verklebenden Kunststoffoberflächen zu einem Substrat gehört, das eine Wärmeleitfähigkeit aufweist, die groß genug ist, um die zur Verklebung notwendige Aktivierungsenergie der hitzeaktivierbaren Klebemasse zu übertragen.

Description

  • Die Erfindung betrifft eine Hitze-aktivierbare Klebemasse mit hohem Repulsionswiderstand insbesondere bei Temperaturen bis +85°C sowie deren Verwendung in Kunststoff/Kunststoff Verklebungen in Konsumgüterelektronikbauteilen.
  • Zur Verklebung von Kunststoffbauteilen in Konsumgüterelektronikgeräten werden üblicher Weise doppelseitige Haftklebebänder eingesetzt. Die hierfür erforderlichen Klebkräfte genügen einer Fixierung und Befestigung. Für portable Konsumgüterelektronikartikel steigen jedoch stetig die Anforderungen. Zum einen werden diese Artikel immer kleiner, so dass damit auch die Verklebungsflächen geringer werden. Zum anderen muss die Verklebung zusätzliche Anforderungen erfüllen, da portable Artikel in einem größeren Temperaturbereich eingesetzt werden und zudem mechanischer Belastung (Stöße, Stürze usw.) ausgesetzt werden können. Eine weiterer Trend ist die Verwendung von flexiblen Leiterplatten. Diese weisen gegenüber bestehenden festen Leiterplatten den Vorteil auf, dass Sie deutlich flacher sind und eine Vielzahl von flexiblen elektrischen Bauteilen miteinander kombiniere können. So werden FPC's (Flexible printed circuits; flexible Leiterplatten) häufig zur Ansteuerung von Displays eingesetzt, die insbesondere bei Notebooks als auch bei Klapphandys flexibel sind. Auch werden flexible Leiterplatten zur Ansteuerung der Kameralinse oder für Rückleuchtenbeleuchtungseinheiten für LCD Displays (Liquid Crystal Displays, Flüssigkristalldatenanzeigen) eingesetzt. Der Trend verstärkt die Vielfalt der Designer, da immer mehr Bauteile flexibel gestaltet werden können und trotzdem elektrisch verbindbar bleiben. Die Verwendung von flexiblen Leiterplatten erfordert aber auch neue Klebebandlösungen, da flexible Leiterplatten auch im Gehäuse häufig partiell fixiert werden. Hierfür werden üblicherweise Haftklebemassen bzw. doppelseitige Haftklebebänder eingesetzt. Hier sind die Beanspruchungen aber relativ hoch, da durch die Biegesteifigkeit der flexiblen Leiterplatte eine konstante Repulsionskraft wirkt, die die Haftklebemasse kompensieren muss. Hinzu kommt, dass Konsumgüterelektronikgeräten häufig auch ein Klimawechseltest unterzogen wird, um äußere Klimaeinflüsse zu simulieren. Hier wird üblicherweise ein Temperaturbereich von –40°C bis +85°C abgedeckt. Während tiefere Temperaturen kein Problem darstellen, da hier sich die Haftklebemasse verhärtet und somit die innere Festigkeit steigt, sind insbesondere hohe Temperaturen ein Problem, da hier die Haftklebemassen immer fließfähiger werden, innere Festigkeit verlieren und die Haftklebemassen oder Haftklebebänder kohäsiv unter der Repulsionskraft spalten. Trotz dieses schwierigen Umfeldes sind bereits eine Vielzahl von Haftklebebändern entwickelt worden. So werden z. B. von der Firma Nitto Denko die Produkte 5606R oder 5608R hierfür ausgelobt. Auch besteht die Möglichkeit, die Schichtdicke der Haftklebemasse oder des Haftklebebandes zu erhöhen, da mit steigendem Masseauftrag auch die Klebefestigkeit ansteigt.
  • Eine weitere Möglichkeit zur Verklebung von Bauteilen im Bereich der Konsumgüterelektronik sind Hitze-aktivierbare Folien. Hitze-aktivierbare Klebemassen können in zwei Kategorien unterschieden werden:
    • a) thermoplastische hitzeaktivierbare Folien
    • b) reaktive hitzeaktivierbare Folien
  • Hitze-aktivierbare Folien weisen eine besonders hohe Klebkraft auf, müssen aber durch Temperatur aktiviert werden. Daher werden Sie in der Regel für Metall-Metall- oder Metall-Kunststoffverklebungen eingesetzt. Hierbei ermöglicht die Metallseite, die Wärme, die zur Aktivierung benötigt wird, einzubringen. Bei Kunststoff-Kunststoff Verklebungen ist dies nicht möglich, da Kunststoffe als thermische Barriere wirken und üblicher Weise zuerst deformiert bevor die benötigte Wärme die Hitze-aktivierbare Klebemasse erreicht.
  • Die beschriebenen Erläuterungen zeigen, dass für die Verklebung von FPC's der Bedarf für eine Klebemasse oder ein Klebeband besteht, welches die Repulsionskraft absorbieren kann, und zwar auch bei Schichtdicken unterhalb 100 µm, da die Konsumgüterelektronikgeräte immer kleiner und schmaler werden.
  • Der Erfindung liegt in Anbetracht dieses Standes der Technik die Aufgabe zu Grunde, eine Klebstofffolie zum Befestigen von flexiblen Leiterplatten auf Kunststoffbauteilen für portable Konsumgüterelektronikartikel zur Verfügung zu stellen, welche insbesondere
    • a) von –40 bis +85°C einsetzbar ist und in diesem Temperaturbereich die Repulsionskraft der flexiblen Leiterplatte standhält
    • b) sich durch Klebkräfte größer 15 N/cm auf Polyimid auszeichnet
    • c) durch Wärme aktiviert werden kann, ohne dass die zu verklebenden Kunststoffe oberflächlich geschädigt werden.
  • Erfindungsgemäß wird die Aufgabe gelöst durch ein Verfahren zur Verklebung zweier Kunststoffoberflächen unter Einsatz einer Klebmasse oder einer Klebfolie, aufweisend zumindest eine hitzeaktivierbare Klebmasse.
  • Zumindest eine der Kunstzstoffoberflächen sollte dabei sehr bevorzugt zu einem Substrat gehören, das eine Wärmeleitfähigkeit aufweist, die groß genug ist, um die zur Verklebung notwendige Aktivierungsenergie der hitzeaktivierbaren Klebemasse zu übertragen.
  • Sehr bevorzugt basiert die Klebmasse auf
    • i) einem Elastomer oder mehrerer Elastomere, mit einem Gewichtsanteil von 30 bis 70%, bevorzugt 40–60%,
    • ii) einer oder mehreren Reaktivharzkomponenten, also einem oder mehreren Harzen, die zur Vernetzung mit sich selbst, mit anderen Reaktivharzen und/oder mit dem Elastomer befähigt sind, mit einem Gewichtsanteil von 70 bis 30%, bevorzugt 60–40%, und
    • iii) optional zumindest einem klebrigmachenden Harz mit einem Gewichtsanteil von bis zu 20%.
  • In einer günstigen Ausführungsvariante beschränkt sich die Klebmasse auf die vorgenannten Bestandteile, es kann aber auch erfindungsgemäß vorteilhaft sein, wenn sie weitere Bestandteile aufweist.
  • Als Elastomere werden solche Verbindungen verstanden, wie sie im Römpp (Online Version; Ausgabe 2008, Dokumentkennung RD-05-00596) definiert sind. Als Elastomere werden in diesem Fall bevorzugt Kautschuke, Polychlorisoprene, Polyacrylate, Nitrilkautschuke, epoxidierte Nitrilkautschuke, etc. eingesetzt.
  • Als Reaktivharze eigenen sich z. B. Phenolharze, Epoxy Harze, Melaminharze, Harze mit Isocyanatfunktionen oder Mischungen aus den obengenannten Harzen. In Kombination mit den Reaktivsystemen lassen sich auch eine Vielzahl anderer Harze, Füllmaterialien, Katalysatoren, Alterungsschutzmittel etc. zusetzen.
  • Eine sehr bevorzugte Gruppe umfasst Epoxy-Harze. Das Molekulargewicht der Epoxy-Harze variiert von 100 g/mol bis zu maximal 10000 g/mol für polymere Epoxy-Harze.
  • Die Epoxy-Harze umfassen zum Beispiel das Reaktionsprodukt aus Bisphenol A und Epichlorhydrin, das Reaktionsprodukt aus Phenol und Formaldehyd (Novolak Harze) und Epichlorhydrin, Glycidyl Ester, das Reaktionsprodukt aus Epichlorhydrin und p-Amino Phenol.
  • Bevorzugte kommerzielle Beispiele sind z. B. AralditeTM 6010, CY-281TM, ECNTM 1273, ECNTM 1280, MY 720, RD-2 von Ciba Geigy, DERTM 331, DERTM 732, DERTM 736, DENTM 432, DENTM 438, DENTM 485 von Dow Chemical, EponTM 812, 825, 826, 828, 830, 834, 836, 871, 872, 1001, 1004, 1031 etc. von Shell Chemical und HPTTM 1071, HPTTM 1079 ebenfalls von Shell Chemical.
  • Beispiele für kommerzielle aliphatische Epoxy-Harze sind z. B. Vinylcyclohexandioxide, wie ERL-4206, ERL-4221, ERL 4201, ERL-4289 oder ERL-0400 von Union Carbide Corp.
  • Als Novolak-Harze können z. B. eingesetzt werden, Epi-RezTM 5132 von Celanese, ESCN-001 von Sumitomo Chemical, CY-281 von Ciba Geigy, DENTM 431, DENTM 438, Quatrex 5010 von Dow Chemical, RE 305S von Nippon Kayaku, EpiclonTM N673 von DaiNipon Ink Chemistry oder EpicoteTM 152 von Shell Chemical.
  • Weiterhin lassen sich als Reaktivharze auch Melamin-Harze einsetzen, wie z. B. CymelTM 327 und 323 von Cytec.
  • Weiterhin lassen sich als Reaktivharze auch Terpenphenolharze, wie z. B. NIREZTM 2019 von Arizona Chemical einsetzen.
  • Weiterhin lassen sich als Reaktivharze auch Phenolharze, wie z. B. YP 50 von Toto Kasei, PKHC von Union Carbide Corp. Und BKR 2620 von Showa Union Gosei Corp. einsetzen.
  • Weiterhin lassen sich als Reaktivharze auch Polyisocyanate, wie z. B. CoronateTM L von Nippon Polyurethan Ind., DesmodurTM N3300 oder MondurTM 489 von Bayer einsetzen.
  • Um die Reaktion zwischen den beiden Komponenten zu beschleunigen, lassen sich auch Vernetzer und Beschleuniger in die Mischung zu additivieren.
  • Als Beschleuniger eignen sich z. B. Imidazole, kommerziell erhältlich unter 2M7, 2E4MN, 2PZ-CN, 2PZ-CNS, P0505, L07N von Shikoku Chem. Corp. oder Curezol 2MZ von Air Products.
  • Weiterhin lassen sich auch Amine, insbesondere tert.-Amine zur Beschleunigung einsetzen.
  • In einer weiteren bevorzugten Ausführungsvariante werden als Elastomere Poly(meth)acrylate eingesetzt. Sehr bevorzugt werden Polymere eingesetzt, die aus Polymeren aus zumindest den folgenden Monomeren bestehen
    • a1) 70 bis 100 Gew.-% Acrylsäureester und/oder Methacrylsäureester und/oder deren freien Säuren mit der folgenden Formel CH2 = C(R1)(COOR2), wobei R1 = H und/oder CH3 und R2 = H und/oder Alkylketten mit 1 bis 30 C-Atomen sind.
  • Weiterhin sind zur Herstellung der Polymere optional die folgenden Monomere zugesetzt:
    • a2) bis zu 30 Gew.-% olefinisch ungesättigte Monomere mit funktionellen Gruppen.
  • In einer sehr bevorzugten Auslegung werden für die Monomere a1) Acrylmomonere umfassend Acryl- und Methacrylsäureester mit Alkylgruppen bestehend aus 1 bis 14 C-Atomen eingesetzt. Spezifische Beispiele, ohne sich durch diese Aufzählung einschränken zu wollen, sind Methylacrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, Propylacrylat, Propymethacrylat, n-Butylacrylat, n-Butylmethacrylat, n-Pentylacrylat, n-Hexylacrylat, n-Hexylmethacrylat, n-Heptylacrylat, n-Octylacrylat, n-Nonylacrylat, Laurylacrylat, Stearylacrylat, Stearylmethacrylat, Behenylacrylat, und deren verzweigten Isomere, wie z. B. 2-Ethylhexylacrylat. Weitere einzusetzende Verbindungsklassen, die ebenfalls in geringen Mengen unter a1) hinzugesetzt werden können, sind Cyclohexylmethacrylate, Isobornylacrylat und Isobornylmethacrylate.
  • In einer vorteilhaften Variante werden für a2) Acrylmonomere entsprechend der folgenden allgemeinen Formel eingesetzt,
    Figure 00060001
    wobei R1 = H und/oder CH3 ist und der Rest -OR2 eine funktionelle Gruppe darstellt oder beinhaltet, welche eine nachfolgende UV-Vernetzung der Haftklebemasse unterstützt, welche z. B. in einer besonders bevorzugten Auslegung eine H-Donor Wirkung besitzt.
  • Besonders bevorzugte Beispiele für die Komponente a2) sind Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Allylalkohol, Maleinsäureanhydrid, Itaconsäureanhydrid, Itaconsäure, Acrylamid und Glyceridylmethacrylat, Benzylacrylat, Benzylmethacrylat, Phenylacrylat, Phenylmethacrylat, t-Butylphenylacrylat, t-Butylaphenylmethacrylat, Phenoxyethylacrlylat, Phenoxyethylmethacrylat, 2-Butoxyethylmethacrylat, 2-Butoxyethylacrylat, Dimethylaminoethylmethacrylat, Dimethylaminoethylacrylat, Diethylaminoethylmethacrylat, Diethylaminoethylacrylat, Cyanoethylmethacrylat, Cyanoethylacrylat, Gycerylmethacrylat, 6-Hydroxyhexylmethacrylat, N-tert.-Butylacrylamid, N-Methylolmethacrylamid, N-(Buthoxymethyl)methacrylamid, N-Methylolacrylamid, N-(Ethoxymethyl)acrylamid, N-Isopropylacrylamid, Vinylessigsäure, Tetrahydrofufurylacrlyat, β-Acryloyloxypropionsäure, Trichloracrylsäure, Fumarsäure, Crotonsäure, Aconitsäure, Dimethylacrylsäure, wobei diese Aufzählung nicht abschließend ist.
  • In einer weiteren bevorzugten Auslegung werden für die Komponente a2) aromatische Vinylverbindungen eingesetzt, wobei die aromatischen Kerne bevorzugt aus C4- bis C18-Bausteinen bestehen und auch Heteroatome enthalten können. Besonders bevorzugte Beispiele sind Styrol, 4-Vinylpyridin, N-Vinylphthalimid, Methylstyrol, 3,4-Dimethoxystyrol, 4-Vinylbenzoesäure, wobei diese Aufzählung nicht abschließend ist.
  • Zur Polymerisation werden die Monomere dermaßen gewählt, daß die resultierenden Polymere als Hitze-aktivierbare Klebemassen eingesetzt werden können, insbesondere derart, daß die resultierenden Polymere klebende Eigenschaften entsprechend des „Handbook of Pressure Sensitive Adhesive Technology” von Donatas Satas (van Nostrand, New York 1989) besitzen. Für diese Anwendungen liegt die statische Glasübergangstemperatur des resultierenden Polymers (inkls. den zugesetzen Harzen oder anderen Additiven) vorteilhaft oberhalb 30°C.
  • Zur Erzielung einer Glasübergangstemperatur TG,A der Polymere von TG,A ≥ 30°C werden entsprechend dem vorstehend gesagten die Monomere sehr bevorzugt derart ausgesucht und die mengenmäßige Zusammensetzung der Monomermischung vorteilhaft derart gewählt, daß sich nach der Fox-Gleichung (G1) (vgl. T. G. Fox, Bull. Am. Phys. Soc. 1 (1956) 123) der gewünschte TG,A-Wert für das Polymer ergibt.
  • Figure 00070001
  • Hierin repräsentiert n die Laufzahl über die eingesetzten Monomere, wn den Massenanteil des jeweiligen Monomers n (Gew.-%) und TG,n die jeweilige Glasübergangstemperatur des Homopolymers aus den jeweiligen Monomeren n in K.
  • Verfahren zur Herstellung
  • Die Hitze-aktivierbare Klebemasse wird zur weiteren Verarbeitung und zur Verklebung auf einem Trennpapier oder einer Trennfolie zur Verfügung gestellt.
  • Die Beschichtung kann aus Lösung oder aus der Schmelze erfolgen. Bei der Beschichtung aus Lösung wird – wie bei der Verarbeitung von Klebemassen aus Lösung üblich – bevorzugt mit der Rakeltechnik gearbeitet, wobei hier alle dem Fachmann bekannten Rakeltechniken eingesetzt werden dürfen. Für den Auftrag aus der Schmelze wird – falls das Polymer in Lösung vorliegt – das Lösemittel bevorzugt in einem Aufkonzentrationsextruder unter vermindertem Druck abgezogen, wozu beispielsweise Ein- oder Doppelschneckenextruder eingesetzt werden können, die bevorzugt das Lösemittel in verschiedenen oder gleichen Vakuumstufen abdestillieren und über eine Feedvorwärmung verfügen. Dann wird über eine Schmelzdüse oder eine Extrusionsdüse beschichtet, wobei gegebenenfalls der Klebefilm gereckt wird, um die optimale Beschichtungsdicke zu erreichen. Für die Vermischung der Harze kann ein Kneter oder ein ein Doppelschneckenextruder zur Vermischung eingesetzt werden.
  • Als temporäre Trägermaterialien für die Klebemasse werden die dem Fachmann geläufigen und üblichen Materialien, wie Folien (Polyester, PET, PE, PP, BOPP, PVC, Polyimid) sowie Trennpapiere (Glassine, HDPE, LDPE) verwendet. Die Trägermaterialien sollten mit einer Trennschicht ausgerüstet sein. Die Trennschicht besteht in einer sehr bevorzugten Auslegung der Erfindung aus einem Silikontrennlack oder einem fluorierten Trennlack.
  • Das erfindungsgemäße Verfahren eignet sich hervorragend zur Verklebung von flexiblen Leiterplatten, insbesondere in Kunststoffgehäusen von elektronischen bauteilöen oder Geräten. Die flexible Leiterplatte weist dabei eine Wärmeleitfähigkeit auf, die groß genug ist, um die zur Verklebung notwendige Aktivierungsenergie der hitzeaktivierbaren Klebemasse zu übertragen.
  • Produktaufbauten:
  • Die hitzeaktivierbaren Folien weisen bevorzugt das in 1 dargestellte Produktdesign auf, wobei:
  • 1
    Hitzeaktivierbare Klebemasse
    2
    Trägermaterial
    3
    Hitzeaktivierbare Klebemasse
    4
    Temporärer Träger
  • Der in 1 dargestellte Produktaufbau umfasst die beidseitige Beschichtung der hitzeaktivierbaren Klebemasse (1, 3) auf einem Trägermaterial (2). Der Gesamtverbund wird bevorzugt mit zumindestens einem temporären Träger (4) geschützt, um das Abrollen der hitzeaktivierbaren Klebemassen von der Rolle zu ermöglichen. In einer weiteren Ausführungsform werden beide Klebemassenseiten (1, 3) mit einem temporären Träger abgedeckt (hier nicht dargestellt). Des Weiteren ist es möglich, dass Trägermaterial (2) mit einer oder mehreren Funktionsbeschichtungen versehen ist (beispielsweise Primer, Haftvermittler, usw). Die Klebemassenschichten auf beiden Seiten des Trägermaterials (2) können identisch ausgestattet sein; es ist aber auch möglich, dass sich die beiden Klebemassenschichten unterscheiden, insbesondere in Hinblick auf ihre chemischen Zusammensetzungen und/oder Dicken. Der Klebemassenauftrag je Seite beträgt bevorzugt zwischen 5 und 250 g/m2.
  • Der in 2 dargestellte Produktaufbau umfasst die einseitige Beschichtung der hitzeaktivierbaren Klebemasse auf einem temporären Träger. Die Bedeutung der Positionsziffern entspricht dabei derjenigen bei 1 (1 = hitzeaktivierbare Klebemasse, 4 = temporärer Träger). Die hitzeaktivierbaren Klebemasse (1) wird bevorzugt mit zumindest einem temporären Träger (4) abgedeckt, um das Abrollen des Klebebandes zu ermöglichen bzw. das Stanzverhalten zu verbessern. In einer weiteren Ausführungsform werden beide Seiten mit einem temporäreren Träger abgedeckt (hier nicht dargestellt). Der Klebemassenauftrag beträgt bevorzugt zwischen 5 und 250 g/m2.
  • Als Trägermaterial lassen sich hierbei die dem Fachmann geläufigen und üblichen Materialien, wie Folien (Polyester, PET, PE, PP, BOPP, PVC, Polyimid, Polymethacrylat, PEN, PVB, PVF, Polyamid), Vliese, Schäume, Gewebe und Gewebefolien verwenden.
  • Verwendung:
  • Flexible Leiterplatten sind in einer Vielzahl von elektronischen Geräten, wie z. B. Mobilfunktelefone, Autoradios, Computer, etc. vertreten. Generell bestehen Sie aus Schichten von Kupfer oder Aluminium (elektrischer Leiter) und Polyimid (elektrischer Isolator). Als elektrischer Isolator werden aber auch andere Kunststoffe eingesetzt, wie z. B. Polyethylennaphtphalat (PEN) oder Liquid Crystal Polymers (LCP). Durch die Tatsache, dass die flexible elektrische Bauteile miteinander verbinden, müssen Sie flexibel gestaltet sein. Da aber immer mehrere elektrische Bauteile miteinander verbunden werden müssen, nimmt die Rechenleistung der flexiblen Leiterplatten zu, was in mehrschichtigen Ausführungen resultiert. Die Schichtdicke der flexiblen Leiterplatte kann daher von 50 µm bis 500 µm variieren. Da die flexible Leiterplatte aus einem Verbund aus Isolator und elektrischem Leiter besteht und beide Materialien unterschiedliche Eigenschaften aufweisen, besitzen flexible Leiterplatten eine relativ hohe Biegesteifigkeit. Dies kann noch durch Bestückungen, wie z. B. mit IC's oder durch partielle Verstärkungen noch gesteigert werden. Um nun unkontrollierte Bewegungen zu vermeiden, oder um den Platzbedarf zu minimieren werden flexible Leiterplatten innerhalb des Gehäuses von elektronischen Geräten verklebt. Hierbei stehen in der Regel verschiedene Kunststoffe als zu verklebende Materialien zur Verfügung. So werden sehr häufig Polycarbonate (PC), ABS, ABS/PC Elends, Polyamide, Glasfaserverstärkte Polyamide, Polyethersulfone, Polystyrol oder Ähnliches eingesetzt. Wenn auch nicht im Sinne der Erfindung können aber auch als Substrate Glas oder Metalle, wie z. B. Aluminium oder Edelstahl, eingesetzt werden.
  • Eine typische Verwendung stellt die in 3 dargestellte Verklebung von flexiblen Leiterplatten auf der Rückseitenbeleuchtung von LCD Displays dar. Bedingt durch die enge Biegung entsteht eine konstante Biegekraft, die die hitzeaktivierbare Klebemasse absorbieren muss. Flexible Leiterplatten weisen in der Anwendung in elektronischen Bauteilen üblicherweise einen Biegewinkel von mindestens 90°, insbesondere von 180° auf.
  • Die 3 zeigt ein Beispiel für die Verklebung einer flexiblen Leiterplatte mit einer Hitzeaktivierbaren Klebemasse, wobei der Biegewinkel der flexiblen Leiterplatte 180° beträgt.
  • Dabei bedeuten:
  • 31
    Gehäuse zur Rückseitenbeleuchtung
    32
    LCD-Panel
    33
    Flexible Leiterplatte
    34
    Hitzeaktivierbare Klebemasse bzw. hitzeaktivierbares Klebeband (erfindungsgemäße Verwendung)
    35
    optische Filme.
  • Des Weiteren muss berücksichtigt werden, dass häufig die elektronischen Geräte einem wechselndem Klima ausgesetzt sind. Dies bedeutet im Extremfall, dass die Klebkraft auch bei 85°C hoch genug ist, um ein Ablösen der flexiblen Leiterplatte zu vermeiden. Weiterhin sollte die Hitze-aktivierbare Folie in einem relativ geringen Prozessfenster verarbeitbar sein, damit zum einen bei 85°C noch eine genügend hohe Steifigkeit erhalten bleiben muss, aber noch die Temperaturaktivierung möglich sein muss. Häufig sind die zu verklebenden Substrate nur bis 130°C Temperaturstabil. Zudem muss berücksichtigt werden, dass die flexiblen Leiterplatten bereits mit Elektronik bestück sind und diese ebenfalls Temperaturempfindlich ist. Die unterscheidet den Prozess von z. B. der Verklebung von Versteifungsmaterialien zur partiellen Versteifung, der bereits während des Herstellungsprozesses der flexiblen Leiterplatte stattfindet. Letztlich muss ebenfalls berücksichtigt werden, dass durch die hohen Stückzahlen das Verarbeitungsfenster limitiert ist, d. h. die Wärme muss relativ schnell eingebracht werden.
  • Verklebung:
  • Prelaminierung
  • Üblicherweise werden Stanzlinge der hitzeaktivierbaren Klebemasse hergestellt und diese auf das Kunststoffteil platziert. Im einfachsten Fall wird der Stanzling auf dem Kunststoffteil manuell z. B. mit einer Pinzette platziert. Der Stanzling kann unterschiedlich ausgeformt sein. Weiterhin kann es aus konstruktiven Gründen auch erforderlich sein, vollflächige Stanzlinge einzusetzen. In einer weiteren Ausführung wird der Hitze-aktivierbare Klebebandstanzling nach der manuellen Positionierung mit einer Wärmequelle behandelt, z. B. im einfachsten Fall mit einem Bügeleisen. Hierdurch erhöht sich die Haftung zum Kunststoff. Hierfür ist es auch von Vorteil, wenn der Stanzling noch mit einem temporären Träger ausgestattet ist.
  • Im Stand der Technik werden Verklebungen üblicherweise auf Metallsubstraten vorgenommen. Hierbei wird zunächst das Metallteil auf den Hitze-aktivierbaren Klebebandstanzling platziert. Die Platzierung erfolgt auf der offenen Seite. Auf der Rückseite befindet sich noch der temporäre Träger. Anschließend wird durch eine Wärmequelle Wärme durch das Metall in das Hitze-aktivierbare Klebeband eingebracht. Dadurch wird das Klebeband tackig und haftet stärker am Metall als an dem temporären Träger.
  • Für das erfindungsgemäße Verfahren muss die Wärmemenge wohl dosiert sein. Bei Reaktivsystemen sollte die Temperatur nach oben limitiert werden, damit während der Prelamination keine Vernetzungsreaktion eintritt, die die ultimale Verklebungsleistung später mindern. Für die Einbringung der Wärme wird in einer bevorzugten Auslegung eine Heizpresse eingesetzt. Der Stempel der Heizpresse ist aus z. B. Aluminium, Messing oder Bronze gefertigt und nimmt die Außenform des Stanzlings an. Weiterhin kann der Stempel nach Ausformungen aufweisen, um z. B. partielle Wärmeschädigungen zu vermeiden. Der Druck und die Temperatur werden möglichst gleichmäßig eingebracht. Druck, Temperatur und Zeit werden den Materialien (Metall, Metalldicke, Art der Hitze-aktivierbare Folie) angepasst und variiert.
  • Das übliche Prozessfenster für die Prelaminierung liegt bei 1.5 bis 10 Sekunden Aktivierungszeit, 1.5 bar bis 5 bar Anpressdruck und bei 100°C bis 150°C Heizstempeltemperatur.
  • Verklebung der Substrate
  • Der Verklebungsprozess zwischen der flexiblen Leiterplatte und dem Kunststoffteil wird bevorzugt mit einer Heizpresse durchgeführt. Hierfür wird die Wärme bevorzugt von der Seite der flexiblen Leiterplatte eingebracht, da diese in der Regel die bessere thermische Leitfähigkeit aufweist.
  • In der Regel werden Druck und Temperatur gleichzeitig appliziert. Dies erfolgt durch einen Heizstempel, der aus einem Material mit guter thermischer Leitfähigkeit besteht. Übliche Materialien sind z. B. Kupfer, Messing, Bronze oder Aluminium. Es können aber auch andere Legierungen eingesetzt werden. Des Weiteren sollte bevorzugt der Heizpressstempel die Form der Oberseite des Verklebungsfläche einnehmen. Diese Form kann wiederum 2-dimensionaler oder 3-dimensionaler Natur sein. Der Druck wird üblicher Weise über einen Druckzylinder aufgebracht. Die Applizierung muss aber nicht unbedingt über Luftdruck erfolgen. Auch sind z. B. hydraulische Pressvorrichtungen oder elektromechanische (Spindeln, Stellantriebe oder Stellglieder) möglich. Des Weiteren kann es von Vorteil sein, mehrfach Druck und Temperatur einzubringen, um z. B. durch Reiheschaltung oder Rotationsprinzip den Prozessdurchsatz zu erhöhen. Die Heizpressstempel müssen in diesem Fall nicht alle mit der gleichen Temperatur und/oder gleichem Druck betrieben werden. Weiterhin kann auch – wenn auch nicht immer von Vorteil – die Kontaktzeit unterschiedlich sein. Des Weiteren kann es auch von Vorteil sein, in einem letzten Prozessschritt nur Druck mit einem auf Raumtemperatur-gekühlten Pressstempel oder einem gekühlten Pressstempel einzubringen.
  • Die Prozesszeiten belaufen sich üblicher Weise auf 2.5 bis 30 s pro Presstempelschritt. Besonders bei reaktiven Hitze-aktivierbaren Folien kann es von Vorteil sein, bei höheren Temperaturen sowie bei längeren Zeiten zu verkleben. Weiterhin kann es auch erforderlich sein, den Druck zu variieren. Durch sehr hohe Drücke kann die Hitze-aktivierbare Folie ausquetschen. Dies möchte man in der Regel minimieren. Geeignete Drücke belaufen sich auf 1.5 bis 10 bar berechnet auf die Verklebungsfläche. Auch hier spielt die Stabilität der Materialien sowie das Fließverhalten der Hitze-aktivierbaren Folie einen großen Einfluss auf den zu wählenden Druck.
  • Experimenteller Teil
  • Testmethoden:
  • Repulsionstest A
  • Eine 100 µm dicke Polyimidfolie wird als flexibler Leiterplattenersatz in 10 cm × 1 cm ausgeschnitten. Das eine Ende der Polyimidfolie wird dann an einer Polycarbonat (3 mm Dicke, 1 cm Breite, 3,5 cm Länge verklebt). Zur Verklebung wird tesa® 4965 eingesetzt. Die Polyimidfolie wird dann um die Polycarbonatplatte in einer Schlaufe gebogen und mit einem Abstand von 20 mm vom Ende mit der Hitze-aktivierbaren Folie verklebt. Die Hitze-aktivierbare Folie weist für die Verklebung eine Breite von 10 mm und eine Länge von 3 mm auf. Nach der Verklebung wird der Verbund in einen Trockenschrank bei 85°C oder bei –40^C eingelagert. Der Test gilt als bestanden, wenn sicher innerhalb von 72 Stunden die Verklebung durch die Biegesteifigkeit der Polyimidfolie nicht löst.
  • 90° Klebkraft Test B
  • Auf eine 3 mm dicke Polycarbonatplatte mit 5 cm Breite und 20 cm Länge wird mit der Hitze-aktivierbaren Folie eine 1 cm breiter, 100 µm dicker und 10 cm langer Streifen Polyimidfolie verklebt.
  • Anschließend wird mit einer Zugprüfmaschine der Fa. Zwick die Polyimidfolie im konstanten Ziehwinkel von 90° Ziehwinkel mit einer Geschwindigkeit von 50 mm/min abgezogen und die Kraft in N/cm gemessen. Die Messung wird bei 23°C unter 50 Feuchtigkeit durchgeführt. Die Messwerte sind dreifach bestimmt und werden gemittelt.
  • Verklebung
  • Die Verklebung der reaktiven Hitze-aktivierbaren Folien wurde in einer Heizpresse mit 180°C Stempeltemperatur, 30 sec. Kontaktzeit und einem Druck von 8 bar durchgeführt.
  • Referenzbeispiel 1)
  • Dynapol® S EP 1408 (Copolyester der Firma Evonik, Schmelztemperatur 80°C) wurde zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 100 µm bei 140°C ausgepresst. Der nach Testmethode C bestimmte Crossover liegt bei 91°C.
  • Referenzbeispiel 2)
  • Dynapol® S 361 (Copolyester der Firma Evonik, Schmelztemperatur 175°C) wurde zwischen zwei Lagen silikonisiertem Glassine-Trennpapier auf 100 µm bei 230°C ausgepresst. Der nach Testmethode C bestimmte Crossover liegt bei 178°C.
  • Referenzbeispiel 3)
  • tesa® 4982 (100 µm Dicke, 12 µm PET Träger, Harz-modifizierte Acrylathaftklebemasse, 2 × 46 g/m2) wurde als Haftklebemasse mituntersucht. Das Produkt wurde bei 23°C aufgebracht, aber mit 5 bar Druck und 10 sec. Verklebungszeit.
  • Beispiel 1)
  • 50 Gew.-% Breon N36 C80 (Nitrilkautschuk) der Fa. Zeon, 40 Gew.-% Phenol-Novolak Harz Durez® 33040 abgemischt mit 8% HMTA (Rohm und Haas) und 10 Gew.-% des Phenolresolharzes 9610 LW der Fa. Bakelite wurden als 30%ige Lösung in Methylethylketon in einem Kneter hergestellt. Die Knetdauer betrug 20 h. Die Hitze-aktivierbare Klebemasse wurde anschließend aus Lösung auf ein Glassinetrennpapier ausgestrichen und bei 100°C für 10 Minuten getrocknet. Nach der Trocknung betrug die Schichtdicke 100 µm.
  • Beispiel 2)
  • 50 Gew.-% Nipol N1094-80 (Nitrilkautschuk) der Fa. Zeon, 40 Gew.-% Phenol-Novolak Harz Durez® 33040 abgemischt mit 8% HMTA (Rohm und Haas) und 10 Gew.-% des Phenolresolharzes 9610 LW der Fa. Bakelite wurden als 30%ige Lösung in Methylethylketon in einem Kneter hergestellt. Die Knetdauer betrug 20 h. Die Hitze-aktivierbare Klebemasse wurde anschließend aus Lösung auf ein Glassinetrennpapier ausgestrichen und bei 100°C für 10 Minuten getrocknet. Nach der Trocknung betrug die Schichtdicke 100 µm.
  • Ergebnisse:
  • Zunächst wurde mit allen Beispielen der Repulsionstest A durchgeführt. Die Ergebnisse sind in der Tabelle 1 dargestellt. Tabelle 1
    Beispiele Repulsionstest A (85°C) Repulsionstest A (–40°C)
    1 > 72 Stunden > 72 Stunden
    2 > 72 Stunden > 72 Stunden
    Referenz 1 6 Stunden** > 72 Stunden
    Referenz 2 nicht bestimmt* nicht bestimmt*
    Referenz 3 2 Stunden** > 72 Stunden
    • *Hitze-aktivierbare Folie ließ sich nicht aufschmelzen.
    • **Die Verklebung öffnete sich innerhalb dieses Zeitraumes
  • Die Ergebnisse belegen, dass mit den Hitze-aktivierbaren Beispielen 1 und 2 eine sehr gute Repulsionsbeständigkeit bei 85°C und bei –40°C erreicht werden können. in allen Fällen hielt die Verklebung größer 72 Stunden. Referenzbeispiel 3 belegt dagegen, dass Haftklebemassen nicht sehr gut geeignet sind. Hier öffnete sich die Verklebung bereits innerhalb von 2 Stunden bei 85°C. Referenzbeispiel 2 ließ sich unter den Standardbedingungen nicht aufschmelzen. Nur nach Erhöhung der Temperatur auf 210°C wurde ein Aufschmelzen erreicht. Unter diesen Temperaturen trat aber bereits eine Deformierung des Polycarbonates auf, so dass dieser Thermoplast nicht ohne Beschädigung der Substrate aufgebracht werden kann. Referenzbeispiel 1 zeigte hier ein deutlich leichteres Aufschmelzen, aber die Verklebung öffnete sich bei 85°C bereits nach 6 Stunden. Der Thermoplast ist zu weich für diese Anwendung.
  • In einer weiteren Prüfung wurde die Verklebungsfestigkeit nach Testmethode B bestimmt. Die Ergebnisse sind in Tabelle 2 zusammengefasst. Tabelle 2
    Beispiele 90° Klebkrafttest B
    1 16,9 N/cm
    2 18,2 N/cm
    Referenz 1 17,4 N/cm
    Referenz 2 nicht bestimmt
    Referenz 3 7,2 N/cm
    • *Hitze-aktivierbare Folie ließ sich nicht aufschmelzen.
  • Die Werte aus Tabelle 2 belegen, dass mit allen erfinderischen Beispielen 1 und 2 sehr hohe Verklebungsfestigkeiten erzielt wurden und somit eine gute Haftung auf Polyimid und Polycarbonat aufgebaut wurde. Referenzbeispiel 3 verdeutlicht, dass mit Haftklebemassen deutlich geringer Verklebungsfestigkeiten erzielt werden. Referenzbeispiel 2 ließ sich unter den Standardbedingungen nicht aufschmelzen. Nur nach Erhöhung der Temperatur auf 210°C wurde ein Aufschmelzen erreicht. Unter diesem Temperaturen trat aber bereits eine Deformierung des Polycarbonates auf, so dass dieser Thermoplast nicht ohne Beschädigung der Substrate aufgebracht werden kann.
  • Den Messwerten kann entnommen werden, dass alle erfinderischen Beispiele die wichtigsten Kriterien für eine flexible Leiterplattenverklebung erfüllen. Die erfinderischen Beispiele sind somit sehr gut für diese Anwendung geeignet.

Claims (8)

  1. Verfahren zur Verklebung zweier Kunststoffoberflächen miteinander, wobei die Verklebung durch eine hitzeaktivierbare Klebemasse bewirkt wird, dadurch gekennzeichnet, dass als hitzeaktivierbare Klebemasse eine solche auf Basis i) zumindest eines Elastomers mit einem Gewichtsanteil von 30 bis 70 Gew.-% ii) zumindest einer Reaktivharzkomponente mit einem Gewichtsanteil von 30 bis 70 Gew.-% eingesetzt wird, wobei zumindest eine der zu verklebenden Kunststoffoberflächen zu einem Substrat gehört, das eine Wärmeleitfähigkeit aufweist, die groß genug ist, um die zur Verklebung notwendige Aktivierungsenergie der hitzeaktivierbaren Klebemasse zu übertragen.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Klebemasse iii) bis zu 20 Gew.-% eines oder mehrerer klebrigmachender Harze enthält.
  3. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine der zu verklebenden Kunststoffoberflächen zu einer flexiblen Leiterplatte gehört.
  4. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die flexible Leiterplatte einen Biegewinkel von mindestens 90°, insbesondere von 180° aufweist.
  5. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das zumindest eine Elastomer gewählt wird aus der Gruppe, umfassend Kautschuke, Polychlorisoprene, Polyacrylate, Nitrilkautschuke.
  6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Reaktivharzkomponente gewählt wird aus der Gruppe der Reaktivharze umfassend Phenolharze, Epoxyharze, Melaminharze, Novolakharze.
  7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Übertragung der Aktivierungsenergie zur Verklebung und die Verklebung innerhalb eines Zeitraums von maximal 30 s erfolgt.
  8. Klebeverbund, erhältlich nach einem Verfahren gemäß einem der vorangehenden Ansprüche.
DE200810053447 2008-09-11 2008-09-11 Klebemasse mit hohem Repulsionswiderstand Withdrawn DE102008053447A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE200810053447 DE102008053447A1 (de) 2008-09-11 2008-09-11 Klebemasse mit hohem Repulsionswiderstand
JP2011526454A JP2012502154A (ja) 2008-09-11 2009-08-26 高い反発抵抗を有する接着剤
CN2009801273145A CN102089377A (zh) 2008-09-11 2009-08-26 具有高耐性的粘合剂
KR1020107027856A KR20110056456A (ko) 2008-09-11 2009-08-26 높은 저항성을 가진 접착제
EP09782219A EP2281015A1 (de) 2008-09-11 2009-08-26 Klebemasse mit hohem repulsionswiderstand
US12/996,722 US20110171472A1 (en) 2008-09-11 2009-08-26 Adhesive With a High Resistance
PCT/EP2009/061002 WO2010028951A1 (de) 2008-09-11 2009-08-26 Klebemasse mit hohem repulsionswiderstand
TW98129032A TW201016817A (en) 2008-09-11 2009-08-28 Adhesive mass with high repulsion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810053447 DE102008053447A1 (de) 2008-09-11 2008-09-11 Klebemasse mit hohem Repulsionswiderstand

Publications (1)

Publication Number Publication Date
DE102008053447A1 true DE102008053447A1 (de) 2010-04-15

Family

ID=41259881

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200810053447 Withdrawn DE102008053447A1 (de) 2008-09-11 2008-09-11 Klebemasse mit hohem Repulsionswiderstand

Country Status (8)

Country Link
US (1) US20110171472A1 (de)
EP (1) EP2281015A1 (de)
JP (1) JP2012502154A (de)
KR (1) KR20110056456A (de)
CN (1) CN102089377A (de)
DE (1) DE102008053447A1 (de)
TW (1) TW201016817A (de)
WO (1) WO2010028951A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217860A1 (de) * 2015-05-05 2016-11-10 Tesa Se Klebeband mit Klebemasse mit kontinuierlicher Polymerphase

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101149021B1 (ko) * 2010-10-08 2012-05-24 엘지이노텍 주식회사 3차원 촬상장치와 그 제조방법
CN106281115A (zh) * 2016-08-29 2017-01-04 龙利得包装印刷股份有限公司 一种包装纸用胶黏剂
CN113056536B (zh) * 2018-10-02 2023-04-21 3M创新有限公司 柔性隔离制品及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124053A1 (de) * 1991-07-19 1993-01-21 Siemens Ag Verfahren zum herstellen einer haftverbindung zwischen wenigstens einem bauteil und einem metallischen substrat
WO2004067665A1 (de) * 2003-01-29 2004-08-12 Tesa Ag Verfahren zur verklebung von fpcb′s
WO2004094550A1 (en) * 2003-04-10 2004-11-04 3M Innovative Properties Company Heat-activatable adhesive
DE102004057650A1 (de) * 2004-11-29 2006-06-01 Tesa Ag Hitzeaktivierbares Klebeband auf Basis carboxylierter Nitrilkautschuke für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102004057651A1 (de) * 2004-11-29 2006-06-01 Tesa Ag Hitzeaktivierbares Klebeband auf der Basis von Nitrilkautschuk und Polyvinylbutyral für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102005025056A1 (de) * 2005-05-30 2006-12-07 Tesa Ag Nitrilkautschuk-Blends zur Fixierung von Metallteilen auf Kunststoffen
DE102006055093A1 (de) * 2006-11-21 2008-06-19 Tesa Ag Hitze-aktiviert verklebbares Flächenelement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699351B2 (en) * 2000-03-24 2004-03-02 3M Innovative Properties Company Anisotropically conductive adhesive composition and anisotropically conductive adhesive film formed from it
JP2003261852A (ja) * 2002-03-11 2003-09-19 Sumitomo Bakelite Co Ltd 異方導電性接着剤
DE10361537A1 (de) * 2003-12-23 2005-07-28 Tesa Ag Thermoplastische Blends zur Implantierung von elektrischen Modulen in einen Kartenkörper
DE10361538A1 (de) * 2003-12-23 2005-07-28 Tesa Ag Schmelzkleber zur Implantierung von elektrischen Modulen in einen Kartenkörper
DE102006047739A1 (de) * 2006-10-06 2008-04-17 Tesa Ag Hitzeaktivierbares Klebeband insbesondere für die Verklebung von elektronischen Bauteilen und Leiterbahnen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4124053A1 (de) * 1991-07-19 1993-01-21 Siemens Ag Verfahren zum herstellen einer haftverbindung zwischen wenigstens einem bauteil und einem metallischen substrat
WO2004067665A1 (de) * 2003-01-29 2004-08-12 Tesa Ag Verfahren zur verklebung von fpcb′s
WO2004094550A1 (en) * 2003-04-10 2004-11-04 3M Innovative Properties Company Heat-activatable adhesive
DE102004057650A1 (de) * 2004-11-29 2006-06-01 Tesa Ag Hitzeaktivierbares Klebeband auf Basis carboxylierter Nitrilkautschuke für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102004057651A1 (de) * 2004-11-29 2006-06-01 Tesa Ag Hitzeaktivierbares Klebeband auf der Basis von Nitrilkautschuk und Polyvinylbutyral für die Verklebung von elektronischen Bauteilen und Leiterbahnen
DE102005025056A1 (de) * 2005-05-30 2006-12-07 Tesa Ag Nitrilkautschuk-Blends zur Fixierung von Metallteilen auf Kunststoffen
DE102006055093A1 (de) * 2006-11-21 2008-06-19 Tesa Ag Hitze-aktiviert verklebbares Flächenelement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217860A1 (de) * 2015-05-05 2016-11-10 Tesa Se Klebeband mit Klebemasse mit kontinuierlicher Polymerphase

Also Published As

Publication number Publication date
EP2281015A1 (de) 2011-02-09
JP2012502154A (ja) 2012-01-26
KR20110056456A (ko) 2011-05-30
US20110171472A1 (en) 2011-07-14
TW201016817A (en) 2010-05-01
CN102089377A (zh) 2011-06-08
WO2010028951A1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2293916B1 (de) Hitze-aktivierbare klebemassen zur steigerung der verbundfestigkeit zwischen kunststoff und metallen in spritzgussbauteilen
EP1658345B1 (de) Zumindest zweischichtige klebstofffolie
EP1893709B1 (de) Klebstofffolie auf basis von nitrilkautschuk-blends zur fixierung von metallteilen auf kunststoffen
EP2087056B1 (de) Hitze-aktiviert verklebbares flächenelement
EP1893708B1 (de) Hitze-aktivierbare folien zur fixierung von metallteilen auf kunststoffen
EP2742106B1 (de) Elektrisch leitfähige haftklebemasse und haftklebeband
EP2285926A1 (de) Verstreckte thermoplaste zur verklebung von metallteilen auf kunststoffen, gläsern und metallen und verfahren zu ihrer herstellung
DE102005035905A1 (de) Nitrilkautschuk Blends zur Fixierung von Metallteilen auf Kunststoffen
WO2017140801A1 (de) Haftklebestreifen
DE102008053447A1 (de) Klebemasse mit hohem Repulsionswiderstand
WO2009095347A2 (de) Verfahren zur verklebung von flexiblen leiterplatten mit polymermaterialien zur partiellen oder vollständigen versteifung
WO2010145945A1 (de) Verwendung von hitzeaktiverbaren klebebändern für die verklebung von flexiblen leiterplatten
DE102006035787A1 (de) Verfahren zum Stanzen von bei Raumtemperatur nicht tackigen hitzeaktivierbaren Klebmassen
WO2010028950A1 (de) Verfahren zur verklebung zweier konststoffoberflächen
DE102007063020A1 (de) Verfahren zur Herstellung eines Antennensystems
DE60307694T2 (de) Klebefolie für flexible bedruckte Leiterplatte sowie Verfahren zum Montieren elektronischer Teile auf eine flexible bedruckte Leiterplatte
WO2024179890A1 (de) Reaktivklebeband zum einfachen lösen
DE102009014387A1 (de) Verfahren zur Fixierung von Metallteilen auf Kunststoffen mit hitzeaktivierbaren, flächigen Haftmitteln, insbesondere mit hitzeaktivierbaren Folien

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130403