EP1697699A2 - Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer - Google Patents

Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer

Info

Publication number
EP1697699A2
EP1697699A2 EP04804864A EP04804864A EP1697699A2 EP 1697699 A2 EP1697699 A2 EP 1697699A2 EP 04804864 A EP04804864 A EP 04804864A EP 04804864 A EP04804864 A EP 04804864A EP 1697699 A2 EP1697699 A2 EP 1697699A2
Authority
EP
European Patent Office
Prior art keywords
mathematical formula
value
continuous function
encoded
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04804864A
Other languages
German (de)
English (en)
Inventor
Antoine Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP1697699A2 publication Critical patent/EP1697699A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters

Definitions

  • the invention relates to a device for determining and / or monitoring the volume and / or mass flow of a measuring medium which flows through a pipeline in a flow direction, with at least two ultrasonic transducers which emit ultrasonic measurement signals into the pipeline and received from the pipeline, and with a control / evaluation unit which determines the volume and / or mass flow of the measuring medium in the pipeline on the basis of the transit time difference of the ultrasonic measurement signals in the flow direction and counter to the flow direction.
  • Ultrasonic flowmeters are widely used in process and automation technology. They allow the volume and / or mass flow of a medium in a pipeline to be determined without contact.
  • the different transit times of ultrasonic measurement signals in the flow direction and counter to the flow direction of the medium are determined and evaluated.
  • the ultrasound measurement signals are alternately emitted by the ultrasound transducers in the direction of flow and counter to the direction of flow of the medium and received by the other ultrasound transducer. From the transit time difference of the ultrasound measurement signals, the flow velocity and thus with a known diameter of the pipeline, the volume flow or with known or measured density of the medium, the mass flow can be determined.
  • ultrasonic flow sensors which are used in the pipeline
  • clamp-on flow meters in which the ultrasonic sensors are pressed from the outside onto the pipeline by means of a tension lock.
  • Clamp-on flowmeters are described for example in EP 0686 255 B1, US Pat. No. 4,484,478 or US Pat. No. 4,598,593.
  • the ultrasonic measurement signals are irradiated and / or received at a predetermined angle in the pipeline or in the measuring tube in / in which the flowing medium is located.
  • the ultrasound measurement signals are coupled into the pipeline via a lead body or a coupling wedge or are uncoupled from the pipeline.
  • the main component of an ultrasonic transducer is furthermore at least one piezoelectric element, which generates and / or receives the ultrasound measurement signals.
  • the ultrasound measurement signals which are used for volume or mass flow measurement are usually broadband pulses. It goes without saying that especially with small pipe sizes. of the measuring tube, the time interval between the emitted and the received ultrasonic measuring signal is relatively small. In order to be able to carry out a sufficient resolution and thus a reliable measurement, the measurement signal is sampled at a sampling rate that is on the one hand shorter than the time between the transmission and reception of an ultrasound measurement signal and on the other hand is so small that within several samples are sampled during the measurement pulse duration. The sampling rate is consequently relatively high.
  • the sampled values or the sampled amplitude values of the ultrasonic measurement signal are fed to an A / D converter.
  • a control / evaluation unit e.g.
  • a DSP uses the sample values or the sampled values to interpolate the received measurement signal by means of a continuous function or to reconstruct it as realistically as possible.
  • the function is the successive, linear connection of two successive sample values / samples. Since this method is not sufficient for measurements with a high measurement accuracy in the field of ultrasonic flow measurement, it has become known to use Lagrangian interpolation or the even more complex interpolation according to Levenberg-Markart to reconstruct the received measurement signal.
  • the use of so-called low-energy devices, in particular two-wire ultrasonic flowmeters, has so far not been possible due to the high energy requirement.
  • the high energy requirement is primarily due to the large computing capacity of the microprocessor or the DSP.
  • the high energy requirement is a result of the complex evaluation processes which are required for highly dynamic measurements - especially in the real-time measurement area - with high measurement accuracy.
  • the object of the invention is to propose an ultrasonic flow measuring device with low energy consumption
  • the active evaluation unit interpolates the predetermined time range of the measurement signal by a continuous function (f (t)), the continuous function (f (t)) by "a sum of a predetermined number (n [is the encoded mathematical formula] N) is formed by wavelets (W) and where each wavelet (W) is the product of a sample with a slit function ([the encoded mathematical formula]) with a Gaussian bell curve ([the encoded mathematical formula], [the encoded mathematical formula is] [the encoded mathematical formula is] R)
  • the problem with the sin (x) / x function is that it converges too slowly to zero for practical use sin (x) / x is quasi only at minus-infinity or at plus-infinity equal to 0.
  • the control / evaluation unit determines an additional sample value and approximates these sample values or these sample values by means of the continuous function, the continuous function being formed by the sum of a predetermined number (n [the encoded mathematical formula] N) of wavelets (W) and each wavelet ( W) corresponds to the product of a sample with a cleavage function ([the encoded mathematical formula is]) with a Gauss' see bell curve ([the encoded mathematical formula is], [the encoded mathematical formula is] [the encoded mathematical formula is] R) ,
  • This method is already known in another context and is called: oversampling.
  • the intermediate sampling and intermediate value calculation can achieve a better resolution of the sampled received measurement signal and thus a higher measurement accuracy when determining the volume or mass flow.
  • a favorable embodiment of the device according to the invention proposes that the control / evaluation unit determines an abscissa value (t) at which an ordinate value of the continuous function (f (t)) reaches a predetermined limit value.
  • the predetermined limit value of the continuous function (f (t)) is preferably a maximum. However, it can also be a zero point, a minimum or a turning point.
  • the control / evaluation unit preferably uses the first derivative f (t) of the continuous function f (t) to determine the abscissa value (tmax, tmin) as a maximum and / or a minimum. This determined abscissa value is subsequently the direct reference value for the transit time of the measurement signal in the flow direction or counter to the flow direction.
  • a particularly advantageous embodiment of the device according to the invention provides that the control / evaluation unit determines the abscissa value (tmax) at which the continuous function reaches a maximum by linear interpolation of the first derivative of the continuous function (f (t)) obtained according to the following formula, and where tO denotes the abscissa value of a first estimate, in which a maximum or minimum is measured in the time interval (tO - T, tO + T), and where f "(t) is the second derivative of the continuous function (f (t)) Mathematically, this can be expressed using the following formula:
  • control Z evaluation unit correlates two ultrasound measurement signals in two time ranges, interpolates the corresponding discrete scanning of correlation points by means of a continuous function (f (t)) and the The abscissa value of the continuous function (f (t)), at which the ordinate value determines the Maximum reached, the abscissa value being a measure of the time shift between the ultrasound measurement signals sent and received in the flow direction and counter to the flow direction.
  • the result of this evaluation thus directly provides the time difference between the two ultrasonic measurement signals transmitted and received in different directions.
  • the measurement accuracy of the ultrasonic flow meter depends crucially on the correct or optimal choice of the coefficient [the coded mathematical formula is] of the Gaussian bell curve.
  • the coefficient [is the coded mathematical formula] is optimally determined, it is determined according to an advantageous embodiment of the device according to the invention as a function of the number of measuring points (MaxSamplei).
  • the computing / regulating unit determines an optimal value for the coefficient [the coded mathematical formula is] depending on the number of measuring points (MaxSamplei) using a mathematical simulation program.
  • a storage unit is preferably provided in which the optimum value for the coefficient [is the coded mathematical formula] is stored as a function of the number of measuring points (MaxSample). For example, the values are stored in a table. This method in turn saves computing time and energy, since the respective value can easily be taken from the table if required. Depending on the measurement accuracy required and / or depending on the energy currently available, an optimal measurement result can always be achieved.
  • the ultrasonic flow meter Because of the low energy consumption, it is possible to design the ultrasonic flow meter according to the invention as a two-wire flow meter.
  • Two-wire technology means that the power supply to the device and the measured value transmission to a remote control center and, if necessary, the configuration and parameterization of the device from the remote control center is carried out via only two lines. Since the wiring costs usually make up a relatively high proportion of the total costs, considerable savings can be achieved here. Due to the low energy consumption, it is also possible to equip the flow meter with an internal energy source. Communication with a remote control center can then be done over lines or wirelessly, e.g. via radio.
  • Fig. 1 the amplitude values [the encoded mathematical formula is] of six samples sampled at the time interval T are plotted against time.
  • the linear connection between two measuring points is shown by the dashed line.
  • the solid curve f (t) identifies a curve which, according to one of the known reconstruction algorithms, e.g. Lagrange or Levenberg-Markart.
  • the disadvantage of the methods that have become known is the high computing effort and, along with this, the high energy consumption of the control / evaluation unit or the microprocessor or the DSP.
  • the sample values are then interpolated in the predetermined time range by a continuous function (f (t)), the continuous function (f (t)) being a sum of a predetermined number (n [the encoded mathematical formula is] N) of Wavelets (W) is formed and where each wavelet (W) is the product of a sample with a cleavage function ([which is the encoded mathematical formula]) with a Gauss' see bell curve ([which is the encoded mathematical formula], [the encoded mathematical formula ] [the encoded mathematical formula is] R).
  • each scan area of the time period T is divided into ⁇ partial scan areas of the time period T / J.
  • C (i / g, n) converges very quickly to zero with increasing n, so that in the In practice, the approximation can be made that c (i / ⁇ , n) is zero as soon as the absolute value of n reaches a predetermined limit.
  • This limit ultimately depends on the required or necessary measurement accuracy and is subsequently identified as MaxSamples. It has been shown that a desired measurement accuracy can be achieved in practice if the value of MaxSamples is in the range from approx. 3 to 10.
  • a maximum (or minimum) is determined in the time domain by comparing the samples with one another. Let us assume that a corresponds to the maximum value (or the minimum value). It is also assumed that there are at least MaxSamples before and after a. For practical applications, the MaxSamples parameter ranges from 3 -10.
  • t max can be found by an interpolation of the first derivative using the following formula: [045] [ the encoded mathematical formula is] [046] As already mentioned, the following interpolation wavelet is used according to the invention: [047] [the encoded mathematical formula is] [048] The first derivative g '(x) and the second derivative g "(x) of the function g (x) are: [049] [the encoded mathematical formula is]
  • the absolute value of this residual is a sign of how well that would be is Wavelet for practical use.
  • the analysis of the residual using a mathematical simulation program eg Mathcad
  • Optimal values for are in the range of 0.01 to approx. 0.04. If a value for
  • , which depends on the number of MaxSamples, is read into a table.
  • the coefficients are calculated and saved in a table. In operation, this means for the microprocessor or the control / evaluation unit of the ultrasonic flow meter that only simple arithmetic operations such as additions,
  • a transit time difference method is used to measure the flow using an ultrasonic flow measuring device.
  • An ultrasonic pulse is radiated into the pipeline or into the measuring tube in the direction of flow (Up) of the measuring medium, received by an ultrasonic transducer and subsequently several (high-speed) A / D converters within a predetermined time range Samples [up] collected.
  • the same signal is then sent against the flow direction i (Down) into the pipeline or into the measuring tube, likewise received by an ultrasound transducer and sampled by the A / D converter.
  • Several samples [dn] are also collected within a given time range. i
  • the time difference between the two measurement signals is proportional to the flow rate of the measuring medium in the pipeline.
  • the two samples are correlated with each other according to the formula:
  • FIG 3 shows a schematic illustration of the device according to the invention in the form of an inline ultrasound flow meter 1.
  • the ultrasound flow meter 1 determines the volume flow or the mass flow of the measuring medium 4 flowing in the direction of flow (S or Up) in the pipeline 2 flows according to the known transit time difference method.
  • the essential components of the iniine ultrasonic flow meter 1 are the two ultrasonic transducers 5, 6 and the control Z evaluation unit 11.
  • the two ultrasonic sensors 5, 6 are at a distance L from each other by means of a fastening device (not shown separately in FIG. 1) Pipe 2 attached.
  • Corresponding fastening devices are well known from the prior art and are also offered and sold by the applicant.
  • the pipe 2 has a predetermined inside diameter di.
  • An ultrasonic transducer 5; 6 has at least one piezoelectric element 9; 10 on, which generates and / or receives the ultrasonic measurement signals.
  • the ultrasonic measurement signals are each via the coupling elements 7, 8 of the two ultrasonic transducers 5; 6 is coupled into the pipeline 2 through which the medium 4 flows or is uncoupled from the pipeline 2 through which the medium flows.
  • the coupling element 7, 8 ensures the best possible impedance matching of the ultrasound measurement signals during the transition from one medium to the other.
  • SP denotes the sound path on which the ultrasound measurement signals propagate in the pipeline 2 or in the measurement medium 4. In the case shown it is a so-called one-crosshead arrangement in which the ultrasonic transducers 5, 6 are arranged.
  • a traverse marks the partial area of the sound path SP on which an ultrasonic measurement signal crosses the pipeline 2 once.
  • the traverses can run diametrically or chordially in the pipeline or in the measuring tube 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un débitmètre à ultrasons (1) caractérisé en ce qu'il consomme peu d'énergie. Selon l'invention, une unité de régulation/évaluation (11) détermine plusieurs valeurs de balayage ([formule mathématique codée] dans laquelle i = 1, 2, 3) d'un signal de mesure reçu, à différents moments (t) dans le temps d'un intervalle temporel prédéfini, et interpole les valeurs de balayage au moyen d'une fonction constante (f(t)), cette fonction constante (f(t)) étant formée par addition d'un nombre donné (n [formule mathématique codée] N) d'ondelettes (W). Chaque ondelette (W) correspond au produit d'une valeur de balayage avec une fonction sinc (I)([formule mathématique codée]) avec une courbe de Gauss ([formule mathématique codée], [formule mathématique codée], [formule mathématique codée] R).
EP04804864A 2003-12-23 2004-12-15 Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer Withdrawn EP1697699A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10361464A DE10361464A1 (de) 2003-12-23 2003-12-23 Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Messmediums
PCT/EP2004/053515 WO2005064284A2 (fr) 2003-12-23 2004-12-15 Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer

Publications (1)

Publication Number Publication Date
EP1697699A2 true EP1697699A2 (fr) 2006-09-06

Family

ID=34706626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04804864A Withdrawn EP1697699A2 (fr) 2003-12-23 2004-12-15 Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer

Country Status (4)

Country Link
US (1) US7426443B2 (fr)
EP (1) EP1697699A2 (fr)
DE (1) DE10361464A1 (fr)
WO (1) WO2005064284A2 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101055577B1 (ko) * 2007-11-23 2011-08-23 삼성메디슨 주식회사 초음파 시스템
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
CN101413814B (zh) * 2008-12-03 2010-06-02 天津大学 基于cpld的涡街流量计及其修正方法
US8857269B2 (en) 2010-08-05 2014-10-14 Hospira, Inc. Method of varying the flow rate of fluid from a medical pump and hybrid sensor system performing the same
WO2013028497A1 (fr) 2011-08-19 2013-02-28 Hospira, Inc. Systèmes et procédés pour une interface graphique comprenant une représentation graphique de données médicales
PL2786100T3 (pl) * 2011-12-02 2023-02-27 Kamstrup A/S Przepływomierz ultradźwiękowy z cyfrowo podpróbkowanymi pomiarami przepływu
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
JP6306566B2 (ja) 2012-03-30 2018-04-04 アイシーユー・メディカル・インコーポレーテッド 注入システムのポンプ内の空気を検出するための空気検出システムおよび方法
ES2743160T3 (es) 2012-07-31 2020-02-18 Icu Medical Inc Sistema de cuidado de pacientes para medicaciones críticas
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
ES2838450T3 (es) 2013-05-29 2021-07-02 Icu Medical Inc Sistema de infusión que utiliza uno o más sensores e información adicional para hacer una determinación de aire en relación con el sistema de infusión
WO2014194065A1 (fr) 2013-05-29 2014-12-04 Hospira, Inc. Système de perfusion et procédé d'utilisation évitant la sursaturation d'un convertisseur analogique-numérique
JP6212762B2 (ja) * 2013-10-18 2017-10-18 国立研究開発法人宇宙航空研究開発機構 流量計測方法及び装置
AU2015222800B2 (en) 2014-02-28 2019-10-17 Icu Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
WO2015184366A1 (fr) 2014-05-29 2015-12-03 Hospira, Inc. Système et pompe de perfusion à rattrapage de débit d'administration réglable en boucle fermée
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
EP3454922B1 (fr) 2016-05-13 2022-04-06 ICU Medical, Inc. Système de pompe à perfusion à purge automatique à ligne commune
EP3468635B1 (fr) 2016-06-10 2024-09-25 ICU Medical, Inc. Capteur de flux acoustique pour mesures continues de débit de médicament et commande par rétroaction de perfusion
JP6751609B2 (ja) * 2016-07-05 2020-09-09 サーパス工業株式会社 流量調整装置
US10495499B2 (en) 2017-10-27 2019-12-03 METER Group, Inc. USA Sonic anemometer
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
FR3080455B1 (fr) * 2018-04-20 2020-07-17 Universite Du Mans Anemometre a ultrason
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
AU2021311443A1 (en) 2020-07-21 2023-03-09 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787252A (en) 1987-09-30 1988-11-29 Panametrics, Inc. Differential correlation analyzer
DK0452531T3 (da) * 1990-04-20 1995-06-19 Siemens Ag Fremgangsmåde til løbstidsmåling af et elektrisk signal
US5343737A (en) * 1992-09-22 1994-09-06 Joseph Baumoel Method and apparatus for leak detection and pipeline temperature modelling method and apparatus
DE4316297C1 (de) * 1993-05-14 1994-04-07 Fraunhofer Ges Forschung Frequenzanalyseverfahren
US6601005B1 (en) * 1996-11-07 2003-07-29 Rosemount Inc. Process device diagnostics using process variable sensor signal
US6026693A (en) * 1997-06-04 2000-02-22 Baumoel; Douglas S. Pipe spool section having square or rectangular cross-section for clamp on transducer and method for flow measurement
US6386047B2 (en) * 1998-09-03 2002-05-14 Chang Min Tech Co., Ltd. Ultrasonic flow velocity measuring method using phase difference measurements
US6550345B1 (en) * 2000-09-11 2003-04-22 Daniel Industries, Inc. Technique for measurement of gas and liquid flow velocities, and liquid holdup in a pipe with stratified flow
JP3616324B2 (ja) * 2000-11-27 2005-02-02 東京計装株式会社 伝播時間差方式による超音波流量計
DE10106308C1 (de) * 2001-02-12 2002-07-11 Siemens Ag Verfahren und Einrichtung zur Messung der Laufzeit eines akustischen Signals
US6732595B2 (en) * 2002-07-18 2004-05-11 Panametrics, Inc. Method of and system for determining the mass flow rate of a fluid flowing in a conduit
DE10314916A1 (de) * 2003-04-01 2004-10-21 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massenstroms eines Mediums
DE10348676A1 (de) * 2003-10-15 2005-05-12 Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums in einer Rohrleitung
DE10356114A1 (de) * 2003-11-27 2005-06-23 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Messmediums
DE102004053673A1 (de) * 2004-11-03 2006-05-04 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
DE102006000693A1 (de) * 2006-01-02 2007-07-05 Endress + Hauser Flowtec Ag Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- oder des Massedurchflusses eines Mediums

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005064284A2 *

Also Published As

Publication number Publication date
DE10361464A1 (de) 2005-07-28
WO2005064284A3 (fr) 2005-11-03
WO2005064284A2 (fr) 2005-07-14
US7426443B2 (en) 2008-09-16
US20080059085A1 (en) 2008-03-06
WO2005064284A9 (fr) 2005-08-25

Similar Documents

Publication Publication Date Title
EP1697699A2 (fr) Dispositif pour determiner et/ou surveiller le debit volumique et/ou massique d'une substance a mesurer
EP2356408B1 (fr) Procédé et dispositif d'étalonnage de transducteurs de mesure de débitmètres à ultrasons
DE69623604T2 (de) Vorrichtung zur messung und signalverarbeitung mit geringer leistungsaufnahme
DE69015160T2 (de) Geschwindigkeitsmessvorrichtung.
DE69622417T2 (de) Vorrichtung zur akustischen messung des durchflusses einer flüssigkeit
DE69907913T2 (de) Kreuzmessen von akustischen signalen eines durchflussmessers
DE102005004331B4 (de) Verfahren zur Bestimmung der Laufzeit eines Ultraschallsignals eines Ultraschallsensors sowie Ultraschallsensor
WO2016184648A1 (fr) Procédé, produit de programme informatique et dispositif pour la détermination d'une grandeur caractéristique permettant d'évaluer un dispositif de mesure comprenant un débitmètre ultrasonique clipsable et un tube de mesure
EP1754025A2 (fr) Determination de l'instant de reception d'un signal ultrasonore par detection de forme d'impulsion
DE102005018179A1 (de) Verfahren zum Betrieb eines Meßgeräts
DE69524553T2 (de) Hochauflösende Dickenmessung mit Ultraschall
DE19548433A1 (de) Verfahren und Vorrichtung zur Durchflußmessung bei offenen Kanälen mittels einer Ultraschallwelle
DE102019123359B4 (de) Magnetisch-induktive Durchflussmesssonde und Verfahren zum Betreiben einer magnetisch-induktiven Durchflussmesssonde
WO2021224035A1 (fr) Dispositif de mesure de débit à induction magnétique et procédé de détermination d'un niveau de remplissage
EP3314210B1 (fr) Appareil émetteur de champs doté d'un circuit de compensation pour l'élimination des impacts environnementaux
EP1037022B1 (fr) Dispositif pour déterminer la vitesse ou le poids moleculaire des fluides
AT520557B1 (de) Verfahren zur Ermittlung eines korrigierten Werts für die viskositätsabhängige Schallgeschwindigkeit in einem zu untersuchenden Fluid
DE19633558A1 (de) Ultraschall-Durchflußmeßverfahren
DE19843806A1 (de) Verfahren und Vorrichtung zur Durchflußmessung mit schallinduzierter Frequenzmischung in aktiven Meßaufnehmern
DE10118934A1 (de) Kontrollvorrichtung für Ultraschallwandler
DE102012202189B3 (de) Verfahren und Vorrichtung zur Wavelet basierten Laufzeitmessung von Ultraschallimpulsen
EP0025026B1 (fr) Dispositif pour la mesure de la vitesse d'un fluide
DE19605923C2 (de) Durchflußmesser
DE102013218522A1 (de) System oder ein Verfahren für das Messen einer Strömung eines Fluids oder eines Gases
DE3732834C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060511

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701