EP1692399A1 - K hlungsverfahren - Google Patents

K hlungsverfahren

Info

Publication number
EP1692399A1
EP1692399A1 EP04797255A EP04797255A EP1692399A1 EP 1692399 A1 EP1692399 A1 EP 1692399A1 EP 04797255 A EP04797255 A EP 04797255A EP 04797255 A EP04797255 A EP 04797255A EP 1692399 A1 EP1692399 A1 EP 1692399A1
Authority
EP
European Patent Office
Prior art keywords
cooling
liquid
compressor wheel
droplets
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04797255A
Other languages
English (en)
French (fr)
Inventor
Ennio Codan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Publication of EP1692399A1 publication Critical patent/EP1692399A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection

Definitions

  • the invention relates to the field of exhaust gas powered turbochargers. It relates to a method for cooling the compressor impeller.
  • Cooling with a gas is associated with less effort, because the gaseous cooling medium only has to be directed at the component to be cooled and flow around it. Often the gas is not recovered, i.e. no complex circuit and no heat exchanger are necessary. However, the cooling effect is limited.
  • the invention has for its object to provide an efficient method for cooling the compressor wheel of an exhaust gas turbocharger.
  • a cooling liquid is applied to the surface of the rotating compressor wheel that comes into contact with the gaseous medium to be compressed.
  • the coolant evaporates at least partially due to the high temperatures of the compressor wheel.
  • the temperature of the coolant drops and the cooled liquid thus has a cooling effect on the compressor wheel.
  • the cooling liquid is advantageously applied to the surface of the compressor wheel by supplying the cooling liquid to the gaseous medium upstream of the compressor wheel.
  • the figure shows schematically the cooling according to the invention on a compressor wheel. Way of carrying out the invention
  • An exhaust gas turbocharger mainly consists of a compressor and an exhaust gas turbine.
  • the compressor mainly comprises a housing and a compressor wheel arranged rotatably on a shaft in the housing.
  • the housing surrounds an inflow channel, through which the air, as the medium to be compressed, is guided to the compressor wheel.
  • the air is compressed by blades on the compressor wheel and then fed to a fuel engine through an outflow channel.
  • an evaporable cooling liquid is added to the medium to be compressed upstream of the compressor wheel, that is to say before the flow reaches the compressor wheel and is consequently still not compressed and has a correspondingly low temperature.
  • the cooling liquid is water or a water mixture.
  • the cooling liquid is advantageously injected into the flow channel as a mist from many very fine droplets by means of at least one nozzle.
  • the droplets advantageously have a diameter of less than 20 micrometers, with special nozzles even droplets with a diameter of less than 3 micrometers can be produced. The finer the droplets, the better the vaporizability. Shortly after the injection, due to the high friction heat mixing with the strong flow, the droplets partially evaporate, which lowers the temperature of the sprayed liquid mist.
  • the compressor wheel must compress the combustion air for the engine as high as possible. Although the air is heated by the compression, the static temperature in the compressor channels is not particularly high due to the fast main flow in the compressor channels. However, heat flows which is formed by the deceleration and the intense friction on the back of the compressor wheel, from the back through the material of the compressor wheel and is released into the main flow via the surface.
  • the droplets 21 come close to or against the wall of the compressor wheel 1, they are braked in the boundary layer (a) and can form a thin film 22.
  • This film from the injected coolant absorbs heat on the one hand from the hot compressor wheel (e) and on the other hand due to friction from the main flow 3, since the speed difference between the main flow and the area of the film is much higher (b). Because of this heat absorption, at least a part of the film 23 is removed in gaseous form in the flow 3 by evaporation (c). The unevaporated part of the liquid film 24 is released into the flow again by the large, centrifugal forces (d). The evaporation has a cooling effect on the film and on the surface of the compressor wheel.
  • the surface temperature is in the range of the so-called "wet bulb” temperature, i.e. the temperature that a moistened thermometer measures in the flow and which is lower than the temperature of the flow.
  • the method according to the invention is extremely efficient.
  • the use of the cooling method according to the invention is particularly interesting for compressors of turbochargers, since the compressor wheel is very difficult to cool with other methods.
  • cooling the main flow improves compressor efficiency and water vapor reduces the NOx emissions of the internal combustion engine connected to the turbocharger.
  • the compressor wheels of ordinary turbochargers are made of aluminum for economic reasons.
  • the creep rupture strength of the material decreases very strongly with the temperature, which is the limit of use of aluminum compressors today limited to pressure ratios of about 5. If water is injected into the air flow shortly before the wheel enters, a significant reduction in the material temperature can be achieved, which allows pressure ratios up to 6 or 7 to be reached without having to switch to materials that are sometimes more expensive, such as titanium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

Auf die mit dem zu verdichtenden, gasförmigen Medium in Berührung kommende Oberfläche des rotierenden Verdichterrades (1) wird eine Kühlflüssigkeit (21) aufgebracht. Die Kühlflüssigkeit verdampft (23) aufgrund der hohen Temperaturen des Verdichterrades mindestens teilweise. Die Temperatur der Kühlflüssigkeit (22) sinkt und die gekühlte Flüssigkeit übt damit eine kühlende Wirkung auf das Verdichterrad aus. Mit Zugabe von kleinen Mengen Flüssigkeit kann der Wärmeübergangskoeffizient alpha zwischen dem Verdichterrad und der Strömung bereits wesentlich erhöht werden.

Description

Kühlungsverfahren
B E S C H R E I B U N G
Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der abgasbetriebenen Turbolader. Sie betrifft ein Verfahren zum Kühlen des Verdichterrades eines.
Stand der Technik
In der Technik sind verschiedene Verfahren bekannt, in denen Bauteile, die thermisch beansprucht sind, durch Zirkulation eines flüssigen oder gasförmigen Mediums gekühlt werden. Die Kühlung durch Flüssigkeiten ist sehr wirksam, wenn die Flüssigkeit bis in die Nähe der kritischen Stellen des Bauteils geführt werden kann. Diese Art Kühlung ist jedoch relativ aufwendig, denn in der Regel wird die Flüssigkeit in einem Kreislauf betrieben. Die Kühlflüssigkeit wird durch Kühlkanäle in den zu kühlenden Teilen gepumpt, nimmt dort Wärme auf und gibt die aufgenommene Wärme anschliessend in einem separaten Wärmetauscher wieder ab.
Die Kühlung mit einem Gas ist mit weniger Aufwand verbunden, denn das gasförmige Kühlmedium muss lediglich auf das zu kühlende Bauteil gerichtet werden und dieses umströmen. Oftmals wird das Gas nicht zurückgewonnen, d.h. kein aufwendiger Kreislauf und kein Wärmetauscher sind notwendig. Die Kühlwirkung ist dadurch jedoch beschränkt.
Die maximale Wärmemenge, die abgeführt werden kann, ist durch die Formel geregelt: Q = α S Dt wobei S eine Wärmeübergangsfläche darstellt, Dt ist die mittlere Temperaturdifferenz zwischen Bauteil und Medium und α (alpha) ist ein Wärmeübergangskoeffizient, der typisch in den folgenden Bereichen liegt: α = 1000 - 10000 W K"1 m"2 für Wasser, α = 10 - 100 W K- 1 m"2 für Luft.
Kurze Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, effizientes Verfahren zum Kühlen des Verdichterrades eines Abgasturboladers zu schaffen.
Erfindungsgemäss wird diese Aufgabe mit den Merkmalen des Patentanspruchs 1 gelöst.
Auf die mit dem zu verdichtenden, gasförmigen Medium in Berührung kommende Oberfläche des rotierenden Verdichterrades wird eine Kühlflüssigkeit aufgebracht. Die Kühlflüssigkeit verdampft aufgrund der hohen Temperaturen des Verdichterrades mindestens teilweise. Die Temperatur der Kühlflüssigkeit sinkt und die gekühlte Flüssigkeit übt damit eine kühlende Wirkung auf das Verdichterrad aus.
Vorteilhafterweise wird die Kühlflüssigkeit auf die Oberfläche des Verdichterrades aufgebracht, indem die Kühlflüssigkeit stromauf des Verdichterrades dem gasförmigen Medium zugeführt wird.
Bereits mit Zugabe von kleinsten Mengen Flüssigkeit (im Bereich 1 bis 3%) kann der Wärmeübergangskoeffizient α zwischen dem Verdichterrad und der Strömung wesentlich erhöht werden. Im extremen Fall kann α sogar negativ werden, d.h. die Wärme fliesst von dem kälteren Bauteil in die wärmere Strömung.
Weitere Vorteile ergeben sich aus den abhängigen Ansprüchen.
Kurze Beschreibung der Zeichnungen
Im folgenden wird anhand einer Figur das erfindungsgemässe Verfahren näher erläutert.
Die Figur zeigt schematisch die erfindungsgemässe Kühlung an einem Verdichterrad. Weg zur Ausführung der Erfindung
Ein Abgasturbolader besteht hauptsächlich aus einem Verdichter und einer Abgasturbine. Der Verdichter umfasst hauptsächlich ein Gehäuse und ein im Gehäuse auf einer Welle drehbar angeordnetes Verdichterrad. Das Gehäuse umgibt einen Anströmkanal, durch welchen die Luft als zu verdichtendes Medium auf das Verdichterrad geführt wird. Durch Schaufeln auf dem Verdichterrad wird die Luft komprimiert und anschliessend durch einen Abströmkanal einem Brennstoffmotor zugeführt.
Im erfindungsgemässen Verfahren wird dem zu verdichtenden Medium stromauf des Verdichterrades, also bevor die Strömung das Verdichterrad erreicht und demzufolge noch unverdichtet ist und eine entsprechend tiefe Temperatur aufweist, eine verdampfungsfähige Kühlflüssigkeit zugegeben.
Bei der Kühlflüssigkeit handelt es sich um Wasser oder ein Wassergemisch. Vorteilhafterweise wird die Kühlflüssigkeit mittels mindestens einer Düse als Nebel aus vielen, sehr feinen Tröpfchen in den Strömungskanal eingedüst. Die Tröpfchen weisen vorteilhafterweise einen Durchmesser kleiner als 20 Mikrometer auf, mit speziellen Düsen lassen sich sogar Tröpfchen mit einem Durchmesser unter 3 Mikrometer erzeugen. Je feiner die Tröpfchen sind, desto besser ist die Verdampfungsfähigkeit. Kurz nach der Eindüsung, findet aufgrund der grosse Reibungswärme erzeugenden Vermischung mit der starken Strömung eine teilweise Verdampfung der Tröpfchen statt, welche die Temperatur des eingedüsten Flüssigkeitsnebels senkt.
Anschliessend wird die weitere Verdampfung in der Strömung stark verlangsamt, da die Geschwindigkeitsdifferenz zwischen Strömung u nd den mitgeschleppten Tröpfchen sehr klein wird. Demzufolge bekommen die Tröpfchen zu wenig Wärme von der Strömung, um signifikant weiter zu verdampfen.
Das Verdichterrad muss die Verbrennungsluft für den Motor möglichst hoch verdichten. Obwohl die Luft durch die Verdichtung erwärmt wird, ist aufgrund der schnellen Hauptströmung in den Verdichterkanälen die statische Temperatur in den Verdichterkanälen nicht besonders hoch ist. Allerdings fliesst Wärme, welche sich durch die Verzögerung und die intensive Reibung an der Rückseite des Verdichterrades bildet, von der Rückseite durch das Material des Verdichterrades und wird über die Oberfläche in die Hauptströmung abgegeben.
Wenn, wie in der Figur dargestellt, die Tröpfchen 21 in die Nähe oder an die Wand des Verdichterrades 1 kommen, werden sie in der Grenzschicht gebremst (a) und können einen dünnen Film 22 bilden. Dieser Film aus der eingedüsten Kühlflüssigkeit nimmt Wärme einerseits vom heissen Verdichterrad auf (e) und andererseits reibungsbedingt von der Hauptströmung 3, da die Geschwindigkeitsdifferenz zwischen Hauptströmung und dem Bereich des Films viel höher ist (b). Aufgrund dieser Wärmeaufnahme wird zumindest ein Teil des Filmes 23 durch Verdampfung (c) in die Strömung 3 gasförmig abgetragen. Der nicht verdampfte Teil des Flüssigkeitsfilmes 24 wird du rch die grossen, zentrifugal wirkenden Kräfte wieder in die Strömung abgegeben (d). Die Verdampfung hat eine kühlende Wirkung auf den Film und auf die Oberfläche des Verdichterrades. Die Oberflächentemperatur liegt im Bereich der sogenannten "wet bulb" Temperatur, d.h. die Temperatur, die ein angefeuchtetes Thermometer in der Strömung misst, und welche tiefer ist als die Temperatur der Strömung. Die eingedüste Flüssigkeit und der allenfalls entstehende Wasserfilm führt zu einer wesentlichen Erhöhung des Wärmeübergangskoeffizienten α zwischen dem Bauteil und der Strömung. Im extremen Fall kann α sogar negativ werden, d.h. die Wärme fliesst dann von dem kälteren Bauteil in die wärmere Strömung.
Das erfindungsgemässe Verfahren ist aus Sicht der Kühlwirkung extrem effizient. Trotz des grossen Flüssigkeits- und Energieverbrauchs für die Eindüsung ist die Anwendung des erfindungsgemässen Kühlverfahrens insbesondere bei Verdichtern von Turbolader interessant, da das Verdichterrad mit anderen Verfahren sehr schwierig zu kühlen ist. Zudem verbessert die Abkühlung der Hauptströmung den Verdichterwirkungsgrad und der Wasserdampf reduziert die NOx-Emissionen des mit dem Turbolader verbundenen Verbrennungsmotors.
Die Verdichterräder der gewöhnlichen Turbolader sind aus wirtschaftlichen Gründen aus Aluminium. Die Zeitstandfestigkeit des Materials nimmt sehr stark mit der Temperatur ab, was heute die Einsatzgrenze von Aluminiumverdichter auf Druckverhältnisse von etwa 5 beschränkt. Wird kurz vor dem Radeintritt Wasser in die Luftströmung eingedüst, kann man eine erhebliche Senkung der Materialtemperatur erzeugen, die das Erreichen von Druckverhältnisse bis 6 oder 7 ohne den Wechsel auf mitunter mehrfach teurere Materialien, wie beispielsweise Titan erlaubt.
Bezugszeichenliste
1 Verdichterrad
21 Flüssigkeitstropfen
22 Flüssigkeitsfilm
23 Dampf
24 Flüssigkeitstropfen

Claims

PATE NTANS P R Ü C H E
1. Verfahren zum Kühlen des Verdichterrades eines Turboladers, dadurch gekennzeichnet, dass auf die mit dem zu verdichtenden, gasförmigen Medium in Berührung kommende Oberfläche des rotierenden Verdichterrades eine Kühlflüssigkeit aufgebracht wird, wobei die Kühlflüssigkeit stromauf des Verdichterrades dem unverdichteten und eine entsprechend tiefe Temperatur aufweisenden gasförmigen Medium zugeführt wird, und die Kühlflüssigkeit aufgrund der hohen Temperaturen des Verdichterrades mindestens teilweise verdampft, die Temperatur der Kühlflüssigkeit durch die Verdampfung sinkt und die gekühlte Flüssigkeit damit eine kühlende Wirkung auf das Verdichterrad ausübt.
2. Kühlverfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Kühlflüssigkeit in Form eines Flüssigkeitsfilms auf die Oberfläche aufgebracht wird.
3. Kühlverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kühlflüssigkeit in Form von Tröpfchen in den Strömungskanal eingedüst wird, und dass die Grosse der Tröpfchen derart gewählt wird, dass die eingedüste Flüssigkeit vor und während dem Verdichtungsvorgang im gasförmigen Medium nicht vollständig verdampft, so dass die Kühlflüssigkeit in flüssigem Zustand in Kontakt mit der Oberfläche des Verdichterrades kommt.
4. Kühlverfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Kühlflüssigkeit in Form von Tröpfchen mit einem maximalen Durchmesser von 20 Mikrometer in den Strömungskanal eingedüst wird.
EP04797255A 2003-12-09 2004-11-19 K hlungsverfahren Withdrawn EP1692399A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003157711 DE10357711A1 (de) 2003-12-09 2003-12-09 Kühlungsverfahren
PCT/CH2004/000698 WO2005057019A1 (de) 2003-12-09 2004-11-19 Kühlungsverfahren

Publications (1)

Publication Number Publication Date
EP1692399A1 true EP1692399A1 (de) 2006-08-23

Family

ID=34672546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04797255A Withdrawn EP1692399A1 (de) 2003-12-09 2004-11-19 K hlungsverfahren

Country Status (3)

Country Link
EP (1) EP1692399A1 (de)
DE (1) DE10357711A1 (de)
WO (1) WO2005057019A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028224A1 (de) * 2004-06-09 2006-01-05 Man B & W Diesel Ag Verfahren zum Betreiben eines Turboladers sowie Turbolader

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB705387A (en) * 1951-02-15 1954-03-10 Power Jets Res & Dev Ltd Improvements relating to radial-flow turbine or centrifugal compressors
DE1056426B (de) * 1951-05-16 1959-04-30 Power Jets Res & Dev Ltd Kuehleinrichtung an Gasturbinenanlagen
JPH03130503A (ja) * 1989-10-13 1991-06-04 Jinichi Nishiwaki ガスタービン高温部の水冷却方法
US6389799B1 (en) * 1997-04-22 2002-05-21 Hitachi, Ltd. Gas turbine Installation
NL1011383C2 (nl) * 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.
DE10390644B4 (de) * 2002-02-19 2019-07-25 Ansaldo Energia Switzerland AG Turboverdichter und Verfahren zum Betrieb eines Turboverdichters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005057019A1 *

Also Published As

Publication number Publication date
DE10357711A1 (de) 2005-07-14
WO2005057019A1 (de) 2005-06-23

Similar Documents

Publication Publication Date Title
EP3797217B1 (de) Flugzeugantriebssystem mit abgasbehandlungsvorrichtung und verfahren zum behandeln eines abgasstromes
DE102007018420B4 (de) System und Verfahren zur Konditionierung einer Gasturbinenzuluft
DE112009004531B4 (de) System zum Versorgen von Maschinendichtungen mit Trockengas und Verfahren zum Bereitstellen sauberen Trockengases für Gasdichtungen in Maschinen
DE2413507A1 (de) Gasturbine fuer kryogenen kraftstoff
CH701949A2 (de) Verfahren und Systeme, die Kohlenstoffabscheidung und Antriebssysteme einschliessen.
DE2519371A1 (de) Vorrichtung zum klimatisieren
WO2006021520A1 (de) Flüssigkeitseinspritzung in einer gasturbine während einer abkühlphase
DE544474T1 (de) Klimaanlage.
JPS6325463A (ja) 混成冷凍機またはヒ−トポンプの仕事率を向上させるための方法及び装置
DE3935367A1 (de) Verfahren zum betreiben einer motorbremse fuer brennkraftmaschinen, insbesondere von fahrzeugen, und nach diesem verfahren betriebene motorbremse
EP1692399A1 (de) K hlungsverfahren
DE10159148A1 (de) Klimaanlage
DE102004050182B4 (de) Verfahren zur Luftkonditionierung
CH697997B1 (de) Verfahren zum Betreiben eines Turboladers sowie Turbolader.
DE2729998A1 (de) Verbrennungskraftmaschine
DE10042314B4 (de) Gasturbinenanordnung mit einer Brennstoffzelle
DE2345420A1 (de) Verfahren zum betreiben von kraftmaschinen, kaeltemaschinen oder dergleichen sowie arbeitsmittel zur durchfuehrung dieses verfahrens
DE4310100C2 (de) Verfahren und Vorrichtung zum Verdichten eines gasförmigen Mediums
CH248608A (de) Verfahren zum Betrieb von Gasturbinenanlagen, insbesondere für Luft- und Wasserfahrzeuge.
DE701457C (de) Einrichtung zur Energiegewinnung aus den Abgasen von Verbrennungskraftmaschinen
DE3904851A1 (de) Lufteinlass fuer die vortriebsvorrichtung eines luftfahrzeuges
DE102004014151A1 (de) Wärmekraftanlage und Verfahren zum Betrieb
DE102012002705A1 (de) Verfahren mit den dazu gehörigen Vorrichtungen zum Pumpen und Saugen von Flüssigkeiten sowie Druckerhöhen und Druckmindern, Heizen und Kühlen von Gasen unter Einsatz einer neuartigen Scheibenläuferturbine
WO2000028220A1 (de) Verfahren und vorrichtung zum konditionieren von zuluft für eine kraft- oder arbeitsmaschine
DE186385C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI NL

17P Request for examination filed

Effective date: 20060516

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FI NL

17Q First examination report despatched

Effective date: 20091020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130705

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131116