EP1667937A1 - Procede de production d'un corps moule en sio sb 2 /sb recouvert de si sb 3 /sb n sb 4 /sb - Google Patents

Procede de production d'un corps moule en sio sb 2 /sb recouvert de si sb 3 /sb n sb 4 /sb

Info

Publication number
EP1667937A1
EP1667937A1 EP04764750A EP04764750A EP1667937A1 EP 1667937 A1 EP1667937 A1 EP 1667937A1 EP 04764750 A EP04764750 A EP 04764750A EP 04764750 A EP04764750 A EP 04764750A EP 1667937 A1 EP1667937 A1 EP 1667937A1
Authority
EP
European Patent Office
Prior art keywords
powder
green body
precursor
sintered layer
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764750A
Other languages
German (de)
English (en)
Inventor
Fritz Schwertfeger
Jens GÜNSTER
Jürgen Heinrich
Sven Engler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP1667937A1 publication Critical patent/EP1667937A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/225Nitrides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment

Definitions

  • the invention relates to a method for producing an Si 3 N 4 coated Si0 2 molded body.
  • Porous, open-pore, amorphous Si0 2 moldings are used in many technical fields. Filter materials, thermal insulation materials or heat shields may be mentioned as examples. Furthermore, porous, open-pore, amorphous Si0 2 shaped bodies in a rectangular shape are used for crystallizing silicon in the production of polycrystalline solar silicon blocks. These rectangular crucibles are referred to below as solar crucibles.
  • the porous, open-pore, amorphous solar crucibles are generally produced using a ceramic slip casting process.
  • Si0 2 particles are dispersed in water, e.g. B. shaped by means of a die casting process, then dried and solidified (sintered) by means of a heat treatment (sintering).
  • Si 3 N 4 powder which is applied to the crucible surface by means of a plasma process (so-called plasma spraying) and forms the Si 3 N 4 layer there.
  • the solar crucibles to be sintered are heated by the transfer of thermal energy or thermal radiation. If the solar crucibles to be produced in this way are to have an extremely high purity with regard to any kind of foreign atoms, the use of hot gases or hot contact surfaces leads to undesirable contamination with foreign atoms.
  • the object of the present invention is to provide a process for the production of Si 3 N 4 -coated SiO 2 moldings in which the risk of contamination of both the Si 3 N layer and the SiO 2 -For ⁇ r ⁇ body is reduced.
  • This object is achieved by a method in which a precursor which is suitable for forming an Si 3 N 4 sintered layer is applied to the surface of an amorphous open-pore SiO 2 green body and then this surface of the SiO 2 green body by a con "tactless heating is heated by means of a laser beam in such a way that the precursor is converted into an Si 3 N 4 sintered layer in situ in the laser beam.
  • a laser beam can be used, but a laser with a beam with a wavelength of 10.6 ⁇ m is preferred. All commercially available CO 2 lasers are particularly suitable as lasers.
  • An Si0 2 _ green body is to be understood as a porous amorphous open-pore shaped body produced from amorphous Si0 2 particles (silica glass) by shaping steps.
  • the green body has preferably not yet been subjected to solidification by means of temperature treatment.
  • Si0 2 green bodies are known from the prior art. Their manufacture is e.g. B. in the patents EP 705797, EP 318100, EP 653381, DE-OS 2218766, GB-B-2329893, JP 5294610, US-A-4, 929, 579. SiO 2 green bodies, the production of which is described in DE-Al-19943103, are particularly suitable.
  • All materials which can form an Si 3 N 4 sintered layer after heating can be used as precursors for forming the Si 3 N 4 layer.
  • Such materials are, for example, Si 3 N 4 powder, silicon powder, silicon oxide-carbon mixtures or polysilazanes. If the shaped body according to the invention is a solar crucible, preference is given to applying the precursor on one side to the inside surface of the SiO 2 green body.
  • An Si 3 N 4 powder is preferred as the precursor. It is applied to the surface of the green body, dried if necessary and forms an Si 3 N sintered layer through the adsorbed energy of the laser beam.
  • All commercially available powders can be used as Si 3 N 4 powder.
  • the Si 3 N4-P ⁇ lver can be applied to the surface of the Si0 2 green body by all methods known to the person skilled in the art. Spraying the surface with an Si 3 N 4 powder dispersion is preferred.
  • all solvents are suitable as dispersants; alcohols, acetone and water are preferred, and water is particularly preferred.
  • all additives known to the person skilled in the art can also be used for better dispersion of the Si 3 N 4 powder, such as, for. B. dispersants and plasticizers.
  • the layer is preferably dried after the application. Drying is carried out using methods known to those skilled in the art, such as vacuum drying, drying using hot gases such as nitrogen or air, or contact drying. A combination of the individual drying methods is also possible. Drying using hot gases is preferred.
  • the Si 3 N 4 powder layer thus obtained generally has a layer thickness of 1 to 100 ⁇ m, preferably a layer thickness of 1 to 500 ⁇ m and particularly preferably of 1 to 100 ⁇ m. 1 shows a correspondingly coated surface.
  • the green body is irradiated after the application of the precursor by a laser beam with a focal spot diameter of preferably at least 2 cm.
  • the irradiation is preferably carried out with a radiant power density of 50W to 500W per square centimeter, particularly preferably from 100 to 200 and very particularly preferably from 130 to 180 W / cm 2 .
  • the output per cm 2 must be at least so large that an Si 3 N sintered layer is formed.
  • the Si 3 N 4 sintered layer formation preferably takes place at a temperature between 1000 ° C. and 1600 ° C., particularly preferably between 1000 ° C. and 1200 ° C.
  • the irradiation is preferably carried out uniformly and continuously.
  • the uniform, continuous irradiation of the pretreated Si0 2 green body can in principle be carried out by means of movable laser optics and / or a corresponding movement of the crucible in the laser beam.
  • the movement of the laser beam can be carried out using all methods known to the person skilled in the art, eg. B. by means of a beam guidance system that enables movement of the laser focus in all directions.
  • the movement of the green body in the laser beam can also be carried out using all methods known to the person skilled in the art, eg. B. using a robot. A combination of both movements is also possible.
  • the formation of the Si 3 N 4 sintered layer is controlled at every location via the input of laser power.
  • the formation of the Si 3 N 4 sintered layer is as uniform as possible. Due to the geometry of the Si0 2 green body, it may be that the laser beam does not always strike the green body surface at a constant angle during the irradiation of the green body. Since the absorption of the laser radiation depends on the angle, this results in an unevenly thick Si3N 4 sintered layer. A uniform Si3N 4 sintered layer is obtained in that the temperature in the focal spot of the laser can be measured at any time with a corresponding focal spot temperature measurement. Part of the reflective heat radiation is transferred via a special mirror system to a pyrometer, which is used for temperature measurement.
  • one or more of the process variables laser power, travel distance, travel speed and laser focus can be adjusted during the laser irradiation of the green body so that a uniform Si 3 N 4 sintered layer can be achieved ( 2 and 3).
  • the Si0 2 green bodies have a porous structure and thus precursors can easily be infiltrated into the region of the green body near the surface. This enables the formation of a silicon-oxi-nitride interface between SiO 2 shards and Si 3 N 4 sintered layer.
  • the Si 3 N 4 sintered layer formation can preferably be carried out under reduced pressure or vacuum during the entire process.
  • the pressure is below the normal pressure of 1013.25 mbar, particularly preferably between 0.01 and 100 mbar, very particularly preferably between 0.01 and 1 mbar.
  • the solidification of the green body can be controlled right up to complete glazing.
  • the sintered open-pore Si0 2 shaped body provided on the inside with an Si 3 N 4 sintered layer is preferably a crucible for the crystallization of solar silicon.
  • Fig. 1 shows a SEM photograph of a Si0 2 green body coated with Si 3 N 4 powder.
  • Fig. 2 shows a SEM image of a Si0 2 molded body with a Si 3 N 4 sintered layer after performing the method according to the invention. Points are marked with an arrow at which a sinter neck formation is visible.
  • Fig. 3 shows the X-ray diffractometer spectrum (RDA) of a Si0 2 molded body with an Si 3 N 4 sintered layer after performing the inventive method.
  • Example 1 Production of an open-pore porous amorphous Si0 2 green body in crucible shape
  • the dispersion prepared in this way consisted of 8900 g of solid, which corresponds to a solids content of 70% by weight (of which in turn 92% fused silica and 8% fumed silica).
  • the green body was manufactured using ceramic die-casting technology.
  • the Si0 2 dispersion is pressed from a storage container with a pressure of 10 bar through a line system between two open-pore plastic membranes made of methyl methacrylate.
  • the membranes have a porosity of 30% by volume and. have an average pore radius of 20 ⁇ m. The distance between the two membranes allows the formation of a 10 mm thick body.
  • a closing pressure of 200 bar is applied to the two membranes.
  • the pressure on the dispersion forces most of the water in the dispersion into the membrane.
  • the Si0 2 shards are formed.
  • the pressure in the reservoir is reduced to 0 bar overpressure.
  • Special air and water lines laid in the membrane allow air or water to be applied to the formed body through the porous membrane for final shaping.
  • the molded body detaches from the membrane. First the molded body is detached from the outer membrane, then from the inner one.
  • the amorphous, open-pore, porous molded body produced in this way has a solids content of 89% by weight and a residual water content from 11% by weight. After drying at 90 ° C for 3 hours, the molded body is completely dry.
  • Example 2 Coating on the inside with Si 3 N 4 powder
  • Example 3 Formation of the Si 3 N4 sintered layer using a CO 2 laser
  • the crucible was irradiated with an ABB robot (type IRB 2400) in the focus of a C0 2 laser (type TLF 3000 Turbo) with 3 kW beam power.
  • the laser was equipped with a rigid beam guidance system and all degrees of freedom of movement were provided by the robot.
  • the beam guide was equipped with optics for expanding the primary beam.
  • the primary beam was 16 mm in diameter. After the parallel primary beam had passed through the widening optics, a divergent beam path resulted.
  • the focal spot on the crucible had a diameter of 50 mm with a distance of approx. 450 mm between the optics and the crucible.
  • the robot was controlled using a program adapted to the crucible geometry.
  • the upper edge of the crucible was first swept by the laser in an angular range of 375 °.
  • the rest of the inner surface of the crucible was then removed in the form of a screw.
  • the speed of rotation and feed rate of the crucible on an axis from the edge of the crucible to the center were accelerated so that the swept ne area was constant per time.
  • the irradiation was carried out at 150 TW / cm 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Silicon Compounds (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention concerne un procédé de production d'un corps moulé en SiO2 recouvert de Si3N4 à partir d'un corps vert en SiO2 . L'invention est caractérisée en ce qu'un précurseur qui convient à la formation d'une couche frittée Si3N4, est appliqué sur la surface du corps vert SiO2 à pores ouverts et amorphe puis le précurseur se transforme en une couche frittée Si3N4 in suti dans le faisceau.
EP04764750A 2003-09-11 2004-09-02 Procede de production d'un corps moule en sio sb 2 /sb recouvert de si sb 3 /sb n sb 4 /sb Withdrawn EP1667937A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10342042A DE10342042A1 (de) 2003-09-11 2003-09-11 Verfahren zur Herstellung eines Si3N4 beschichteten SiO2-Formkörpers
PCT/EP2004/009792 WO2005026067A1 (fr) 2003-09-11 2004-09-02 Procede de production d'un corps moule en sio2 recouvert de si3n4

Publications (1)

Publication Number Publication Date
EP1667937A1 true EP1667937A1 (fr) 2006-06-14

Family

ID=34258574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764750A Withdrawn EP1667937A1 (fr) 2003-09-11 2004-09-02 Procede de production d'un corps moule en sio sb 2 /sb recouvert de si sb 3 /sb n sb 4 /sb

Country Status (8)

Country Link
US (1) US20070013098A1 (fr)
EP (1) EP1667937A1 (fr)
JP (1) JP2007505026A (fr)
KR (1) KR100734970B1 (fr)
CN (1) CN1849269A (fr)
DE (1) DE10342042A1 (fr)
TW (1) TW200514760A (fr)
WO (1) WO2005026067A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005416A1 (fr) * 2004-07-08 2006-01-19 Deutsche Solar Ag Procede pour realiser une coquille presentant un revetement anti-adhesif
JP4863637B2 (ja) * 2005-03-29 2012-01-25 京セラ株式会社 シリコン鋳造装置及び多結晶シリコンインゴットの鋳造方法
NO327122B1 (no) * 2007-03-26 2009-04-27 Elkem Solar As Beleggingssystem
DE102008031766A1 (de) 2008-07-04 2009-10-15 Schott Ag Verfahren zur Herstellung eines beschichteten Tiegels aus einem Tiegelgrünkörper oder aus einem zwischengebrannten Tiegelkörper sowie die Verwendung solch eines beschichteten Tiegels
DE102009048741A1 (de) 2009-03-20 2010-09-30 Access E.V. Tiegel zum Schmelzen und Kristallisieren eines Metalls, eines Halbleiters oder einer Metalllegierung, Bauteil für einen Tiegelgrundkörper eines Tiegels und Verfahren zum Herstellen eines Bauteils
FR2964117B1 (fr) * 2010-08-27 2012-09-28 Commissariat Energie Atomique Creuset pour la solidification de lingot de silicium
CN101913776B (zh) * 2010-09-03 2012-07-04 山东理工大学 氮化硅涂层石英坩埚的制备方法
US8747538B2 (en) * 2011-09-20 2014-06-10 Chung-Hou Tony Hsiao Photovoltaic ingot mold release
FR2986228B1 (fr) * 2012-01-31 2014-02-28 Commissariat Energie Atomique Creuset pour la solidification de lingot de silicium.
KR101431457B1 (ko) * 2012-04-09 2014-08-22 한국화학연구원 도가니 보호막 제조 방법
CN102898034B (zh) * 2012-09-28 2015-02-18 东海晶澳太阳能科技有限公司 一种晶体硅铸锭用坩埚氮化硅涂层的制作方法
DE102012019519B4 (de) * 2012-10-05 2015-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung einer diffusionshemmenden Beschichtung, Tiegel zum Schmelzen und/oder Kristallisieren von Nichteisenmetallen sowie Verwendungszwecke
CN112521139B (zh) * 2019-09-03 2022-09-23 南京优登科技有限公司 一种跨尺度多孔陶瓷及其制备方法
CN116606166B (zh) * 2023-04-26 2024-05-24 贵州省紫安新材料科技有限公司 一种快速制备碳化硅非晶涂层的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929579A (en) * 1988-06-29 1990-05-29 Premier Refractories & Chemicals Inc. Method of manufacturing cast fused silica articles
US6491971B2 (en) * 2000-11-15 2002-12-10 G.T. Equipment Technologies, Inc Release coating system for crucibles
DE10128664A1 (de) * 2001-06-15 2003-01-30 Univ Clausthal Tech Verfahren und Vorrichtung zur Herstellung von keramischen Formförpern
DE10158521B4 (de) * 2001-11-29 2005-06-02 Wacker-Chemie Gmbh In Teilbereichen oder vollständig verglaster SiO2-Formkörper und Verfahren zu seiner Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005026067A1 *

Also Published As

Publication number Publication date
US20070013098A1 (en) 2007-01-18
WO2005026067A1 (fr) 2005-03-24
DE10342042A1 (de) 2005-04-07
CN1849269A (zh) 2006-10-18
KR100734970B1 (ko) 2007-07-03
TW200514760A (en) 2005-05-01
JP2007505026A (ja) 2007-03-08
KR20060087556A (ko) 2006-08-02

Similar Documents

Publication Publication Date Title
EP1789370B1 (fr) Composant en verre de silice revetu et son procede de production
DE4440104C2 (de) Formkörper aus Quarzglas, Verfahren zur Herstellung eines Formkörpers aus Quarzglas und Behälter aus Quarzglas
EP2878584B1 (fr) Procédé de fabrication d'un composant revêtu avec verre de quartz ou silice fondue
DE102006062166B4 (de) Quarzglas-Bauteil mit Reflektorschicht sowie Verfahren zur Herstellung desselben
EP1667937A1 (fr) Procede de production d'un corps moule en sio sb 2 /sb recouvert de si sb 3 /sb n sb 4 /sb
DE102005055524B4 (de) Verfahren, Vorrichtung und System zur Herstellung eines keramischen Formkörpers
EP2070886B1 (fr) Procédé de liaison de composants à partir de matière première à forte teneur en silice
EP0920543A2 (fr) Composant de verre au quartz pour enveloppe de reacteur, son procede de fabrication et son utilisation
DE19943103A1 (de) Hochgefüllte SiO2-Dispersion, Verfahren zu ihrer Herstellung und Verwendung
DE102007053023A1 (de) Oxidverbindungen als Beschichtungszusammensetzung
EP1791796A1 (fr) Agent d'assemblage pour assembler des elements constitutifs, procede d'assemblage d'elements constitutifs a base d'un materiau contenant de l'acide silicique a haute densite, a l'aide de l'agent d'assemblage et element composite obtenu selon ledit procede
DE102004054392A1 (de) Verfahren zum Verbinden von Bauteilen aus hochkieselsäurehaltigem Werkstoff, sowie aus derartigen Bauteilen zusammengefügter Bauteil-Verbund
DE10260320B4 (de) Verglaster SiO2-Formkörper, Verfahren zu seiner Herstellung und Vorrichtung
DE10158521B4 (de) In Teilbereichen oder vollständig verglaster SiO2-Formkörper und Verfahren zu seiner Herstellung
DE10324440A1 (de) Verfahren zur Herstellung eines innenseitig verglasten SiO2-Tiegels
DE2544437C3 (de) Verfahren zur Herstellung von silizhimnitridhaltigen mit einer Selbstglasur Überzogenen Gegenständen
DE102004047453B3 (de) Herstellung einer gasdichten, kristallinen Mullitschicht mit Hilfe eines thermischen Spritzverfahrens
EP0775672B1 (fr) Procédé de fabrication d'un corps moulé plat, vitreux ou en céramique, à surface structurée
EP3173386A1 (fr) Procédé de fabrication d'un corps composite à partir de matière à haute teneur en silice
WO2007039390A1 (fr) Corps moule amorphe constitue de sio2, qui est partiellement ou entierement vitrifie et dont la zone vitrifiee cristallise a des temperatures elevees, procede de production de ce corps moule, et utilisation de celui-ci
DE102015102858B4 (de) Verfahren zur Herstellung eines Licht absorbierenden Quarzglases
DE3440346A1 (de) Werkstoff aus in gegenwart von kohlenstoff reaktionsgebundenen, elementares silicium enthaltenden partikeln und verfahren zu seiner herstellung
DE102011120932A1 (de) Verfahren für die Herstellung eines Quarzglasbauteils miteiner transparenten Oberflächenschicht
DE3101257A1 (de) "keramisches waermeisoliermaterial und verfahren zur herstellung"
DE102015009423A1 (de) Formstabile Silikatglaskeramik und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060302

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

17Q First examination report despatched

Effective date: 20060714

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080401