EP1659163B1 - Procédé de transformation des composés soufrés saturés d'une coupe hydrocarbonée contenant peu ou pas d'oléfines - Google Patents

Procédé de transformation des composés soufrés saturés d'une coupe hydrocarbonée contenant peu ou pas d'oléfines Download PDF

Info

Publication number
EP1659163B1
EP1659163B1 EP05292373A EP05292373A EP1659163B1 EP 1659163 B1 EP1659163 B1 EP 1659163B1 EP 05292373 A EP05292373 A EP 05292373A EP 05292373 A EP05292373 A EP 05292373A EP 1659163 B1 EP1659163 B1 EP 1659163B1
Authority
EP
European Patent Office
Prior art keywords
conversion method
olefins
mercaptan
stage
mercaptans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05292373A
Other languages
German (de)
English (en)
Other versions
EP1659163A1 (fr
Inventor
Sébastien Leplat
Florent Picard
Nathalie Marchal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1659163A1 publication Critical patent/EP1659163A1/fr
Application granted granted Critical
Publication of EP1659163B1 publication Critical patent/EP1659163B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil

Definitions

  • the invention relates to a process for softening and desulfurizing hydrocarbon fractions generally containing less than 1% by weight of olefins, and sulfur mainly in the form of mercaptans.
  • the process described in the present invention is particularly suitable for the treatment of hydrocarbon fractions derived from atmospheric distillation, such as, for example, gasoline, kerosene or light gas oil fractions. These hydrocarbon fractions contain varying amounts of mercaptans which give them a corrosive and malodorous acid character.
  • the solutions generally used to treat these mercaptans consist of oxidizing the mercaptans to disulfides, and then separating the latter, which are heavier, generally by distillation.
  • the present invention provides a technical solution for softening the fractions to be treated by converting the mercaptans to sulphides, and optionally to desulfurize the fractions to be treated by separating the sulphides thus formed.
  • the process consists in mixing the hydrocarbon fraction to be treated with, on the one hand, another hydrocarbon fraction containing unsaturated compounds, and on the other hand with hydrogen, then on passing the mixture over a metal sulphide catalyst in optimized conditions to promote the addition of mercaptans to the unsaturated compounds to form sulphide sulfur compounds.
  • the sulfur compounds thus transformed have a boiling point higher than their initial temperature and can then be separated to recover a sulfur-depleted hydrocarbon fraction.
  • the reduction of the mercaptan content in the hydrocarbon fractions directly from atmospheric distillation is generally carried out by a so-called "softening" process.
  • Many softening processes do not implement the reduction of the overall sulfur content, but only the dimerization of the mercaptans to disulfides to meet specifications.
  • This oxidation of mercaptans is generally carried out catalytically using oxygen as the oxidizing agent.
  • the extractive softening processes make it possible to subtract the sulfur from the feedstock. They consist in contacting the distillate to be treated with a basic aqueous solution (most often based on sodium hydroxide) which makes it possible to recover the mercaptans.
  • the basic solution is then regenerated by catalytic oxidation of sodium mercaptides to disulfides.
  • the US Patent 3,574,093 describes the implementation of such a process for gasolines and cuts lighter (C3-C4).
  • Many improvements have been made to the process, such as the use of aliphatic amines in small amounts in sodium hydroxide solutions ( US Patents 2,546,345 and US 2,853,431 ).
  • the method requires a very large volume of solution and many extraction stages, which limits its interest.
  • the use of metal hydroxides is not limited to liquid-liquid extraction.
  • the softening of the hydrocarbon fractions may also be carried out by addition reaction of the mercaptans to the diolefins.
  • These reactions are in particular envisaged in the case of the treatment of gasolines containing both mercaptans and unsaturated hydrocarbon compounds, such as, for example, FCC (Fluid Catalytic Cracking) gasolines in which the unsaturated compounds, which are most often olefinic in nature, are widely present.
  • FCC Fluid Catalytic Cracking
  • the Patent FR 2821851 A1 also describes a process for adding mercaptans to olefins by means of a catalyst comprising at least one Group VIII element.
  • a catalyst comprising at least one Group VIII element.
  • the same type of reactions is envisaged in the US Patent 5,659,106A on an acid catalyst such as a sulfonated resin. In this case, the reaction is carried out in the absence of hydrogen.
  • Non-catalytic solutions are also presented in the literature.
  • a softening method involving unsaturated compounds is developed.
  • a saturated mercaptan-rich naphtha is treated by adding an olefinic compound (from 1 to 10% by weight) in the presence of a phenylene diamine inhibitor, at a rate of 0.0001% to 1% weight. After a sufficient storage period, the mercaptan concentration of the mixture meets the specifications.
  • the process described in the present invention provides a solution for partially softening or partially desulfurizing hydrocarbon fractions that are free of olefins or contain low levels of unsaturated compounds.
  • the process described in the present invention is particularly suitable for the treatment of hydrocarbon fractions derived from atmospheric distillation, such as, for example, gasoline, kerosene or light gas oil fractions.
  • the process consists in mixing, with the hydrocarbon fraction to be treated, hydrogen and possibly another hydrocarbon fraction containing olefinic olefins.
  • This olefinic fraction is generally derived from cracking processes such as the FCC, the steam cracker, or a coking unit.
  • Hydrogen can come from any source in the refinery. The quantities of hydrogen required are generally low enough not to require the complementary implantation of a dedicated hydrogen production unit.
  • the resulting mixture must be such that on the one hand the molar ratio H 2 / olefins is between 0.03 and 2, preferably between 0.05 and 1, so more preferably between 0.2 and 0.8, and secondly the molar ratio olefins / mercaptans is between 5 and 5000 and preferably between 10 and 1000, more preferably between 80 and 600, or even between 150 and 400 .
  • the mixture corresponding to the two preceding conditions is then injected into a reactor containing a catalyst capable of reacting the saturated sulfur compounds such as the mercaptans present. To be effective, the reaction must be carried out in the presence of hydrogen.
  • the non-olefinic feedstock treated is a gasoline fraction resulting from atmospheric distillation, the boiling point of which is less than 250.degree. C., and preferably less than 220.degree.
  • the charge to be treated may itself contain a certain amount of olefins to which it will be necessary to add only a quantity of hydrogen determined to be in the range of ratio H2 olefins defined above, namely between 0.03 and 2, and preferably between 0.05 and 1.
  • the latter will generally come from an olefinic gasoline such as for example a cracking gasoline generally from a catalytic or thermal cracking unit.
  • the process for converting the mercaptans contained in a hydrocarbon feed containing less than 1% olefins according to the invention may comprise an additional step of separation of the sulfur compounds formed during the reaction step, so as to produce an effluent containing less than 50% by weight of the sulfur compounds present in the feed, and a cut containing the majority of the sulfur compounds.
  • the process according to the invention thus makes it possible to convert the mercaptans into heavier sulfur compounds with a conversion rate generally of at least 50% by weight.
  • the olefinic fractions present in the refinery are generally derived from cracking units such as catalytic cracking, thermal cracking or steam cracking.
  • the boiling temperatures of this olefinic fraction are generally below 250 ° C. However, it is preferable to use hydrocarbon fractions containing olefins with 4, 5 or 6 carbon atoms in order to improve the yield of the weighting reaction of the sulfur compounds. Hydrogen is also most often from the refinery. Hydrogen substantially free of H 2 S is used because this compound can react with olefins to form undesirable sulfur compounds.
  • the hydrogen may come either from a specific hydrogen production unit or, for example, from the catalytic reforming unit of the gasolines.
  • the reaction step consists of passing the mixture formed at the end of the mixing step on a catalyst operated in a fixed bed, under optimized operating conditions.
  • the catalyst used in the reactor is a catalyst comprising at least one Group VIII metal deposited on an inert support based on porous metal oxide.
  • the support is made of alumina, silica, titanium oxide or contains at least 50% alumina.
  • Another Group VIb metal may be associated with the Group VIII metal to form a bimetallic catalyst.
  • the amount of Group VIII metal in oxide form is between 1% and 30% by weight.
  • the amount of metal of group Vlb in oxide form is between 0% and 20% by weight.
  • Nickel-based catalysts or catalysts based on mixed nickel and molybdenum or tungsten oxide are preferably used.
  • the catalyst used in the reaction stage contains between 1 and 30% by weight of NiO and between 0% and 20% by weight of MoO 3 .
  • the catalyst may undergo a preliminary sulphurization step in order to convert the metal oxides to sulphides. Sulfurization is carried out in the presence of H 2 S, either directly injected in a mixture with hydrogen, or generated in situ in the reactor by hydrogenolysis of a sulfur compound, so that the metal sulphidation rate of the catalyst is greater than 50%, and preferably greater than 90%.
  • the temperature of the reactor is generally between 100 ° C. and 250 ° C., and preferably between 140 ° C. and 200 ° C.
  • the reactor is operated at a pressure of between 0.5 MPa and 5 MPa, and preferably between 1 MPa and 3 MPa, and at a VVH between 1 h -1 and 10 h -1, and preferably between 1, 5 h -1 and 8 h -1 .
  • the flow of hydrogen is generally adjusted to obtain a molar ratio between hydrogen and olefins of between 0.03 and 2 and preferably between 0.05 and 1.
  • the saturated sulfur compounds present in the feed are converted into saturated sulfur compounds of higher boiling point.
  • the saturated compounds belong to the families consisting of mercaptans, sulphides and CS 2 .
  • the conversion is measured by the conversion rate of mercaptans into heavier compounds, ie having a higher boiling point.
  • the molar ratio between the olefins and hydrogen is optimized in order to limit the deactivation of the catalyst by the carbon deposition from the olefinic compounds. In the absence of hydrogen, the catalyst undergoes a strong deactivation, and the conversion rate of the mercaptans is significantly reduced.
  • the effluent is depleted in light saturated sulfur compounds and more particularly in mercaptans.
  • the degree of conversion of the mercaptans containing 1 to 4 carbon atoms is generally between 50% and 100%.
  • the fraction thus produced is therefore softened in the sense well known to those skilled in the art.
  • a third step can be carried out optionally if one seeks to reduce the sulfur content of the feedstock to be treated.
  • This third step consists in separating the sulfur compounds formed during the reaction stage from the hydrocarbon effluent of said reaction stage.
  • the separation step may consist of any method capable of achieving this separation. However, it will be preferred to use a physical separation method based on the boiling temperatures of the compounds to be separated, such as, for example, a simple flash, or distillation in a distillation column.
  • the light fraction recovered at the top of the column contains the majority of the saturated hydrocarbon fraction, and is depleted in sulfur compounds and in mercaptans.
  • the heavy fraction recovered at the bottom of the column concentrates the sulfur compounds formed during the reaction step. This fraction can be treated in a hydrodesulfurization unit to extract the sulfur.
  • the implementation of the separation step subsequent to the reaction step therefore allows to desulfurize the hydrocarbon feedstock to be treated without resorting to a conventional hydrodesulphurization process for at least a portion of the hydrocarbon effluent.
  • a series of tests was conducted in a pilot unit loaded with 100 cm 3 of catalyst.
  • the catalyst used contains nickel and molybdenum on an alumina support (catalyst marketed under the reference HR845 by the company Axens). Before the charge is injected, the catalyst is sulphurated with an H 2 + H 2 S mixture at 350 ° C. During the tests, the temperature, the pressure and the space velocity are kept constant at 180 ° C., 2.5 MPa and 4 h -1 respectively for all the tests carried out.
  • a gasoline A of atmospheric distillation of a crude oil is injected into a reactor in the absence of hydrogen.
  • the effluent B1 is separated by distillation into two fractions with a cutting point corresponding to a temperature of 100 ° C.
  • the two fractions obtained are denoted LCN1 (light fraction) and HCN1 (heavy fraction).
  • LCN1 light fraction
  • HCN1 heavy fraction
  • the presence of the catalyst makes it possible to reduce the mercaptan content by 20%.
  • the mercaptan content of the LCN1 cut remains high, and the distribution of the mercaptans between the LCN1 cuts and the HCN1 shows that the observed conversion equally affects the light mercaptans and the heavy mercaptans, of at least five carbon atoms. .
  • the organic sulfur content remains unchanged during the treatment on the catalyst.
  • the sulfur of this fraction is found exclusively in the form of mercaptans, which has the consequence of concentrating the non-mercaptan sulfur in the heavy fraction.
  • Gasoline A is mixed with an olefinic cracking gasoline C obtained from a catalytic cracking unit before being injected into the reactor in the presence of hydrogen at the rate of 5 liters of hydrogen per liter of feedstock.
  • Gasoline C represents 10% by weight of the mixture noted as D1 gasoline .
  • the gasoline D1 mixed with hydrogen is injected onto the catalyst.
  • the effluent B2 is separated by distillation into two fractions with a cutting point corresponding to a temperature of 100 ° C.
  • the two fractions obtained are denoted LCN2 (light fraction) and HCN2 (heavy fraction).
  • Table 2 presents the characteristics of species A, C and D1. The characteristics of the different sections are summarized in Table 3.
  • Gasoline A is mixed with gasoline C before being injected into the reactor in the presence of hydrogen at 5 liters of hydrogen per liter of feed.
  • Gasoline C represents 20% by weight of the mixture noted as D2 gasoline .
  • the effluent B3 is separated by distillation into two fractions with a cutting point corresponding to a temperature of 100 ° C.
  • the two fractions obtained are denoted LCN3 (light fraction) and HCN3 (heavy fraction).
  • Table 4 presents the characteristics of species A, C and D2. Those of the different sections are grouped together in Table 5.
  • Gasoline A is mixed with gasoline C before being injected into the reactor in the presence of hydrogen at a rate of 10 liters of hydrogen per liter of feedstock.
  • Gasoline C representing 10% of the mixture which is noted the essence D3.
  • the effluent B4 is separated by distillation into two fractions with a cutting point corresponding to a temperature of 100 ° C.
  • the two fractions obtained are denoted LCN4 (light fraction) and HCN4 (heavy fraction).
  • Table 6 groups the characteristics of the different species.
  • H 2 / olefins ratio must also be optimized to limit the deactivation of the catalyst, the hydrogen consumption and the saturation of the olefins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

    Domaine technique de l'invention
  • L'invention concerne un procédé d'adoucissement et de désulfuration de fractions hydrocarbonées contenant généralement moins de 1 % poids d'oléfines, et du soufre principalement sous forme de mercaptans. Le procédé décrit dans la présente invention est particulièrement adapté au traitement des fractions hydrocarbonées issues de la distillation atmosphérique, telles que par exemple les fractions essence, kérosène ou gasoil légers.
    Ces fractions hydrocarbonées contiennent des quantités variables de mercaptans qui leur confèrent un caractère acide corrosif et malodorant. Les solutions généralement mises en oeuvre pour traiter ces mercaptans consistent à oxyder les mercaptans en disulfures, puis à séparer ces derniers, plus lourds, généralement par distillation.
    La présente invention propose une solution technique pour adoucir les fractions à traiter en transformant les mercaptans en sulfures, et éventuellement pour désulfurer les fractions à traiter en séparant les sulfures ainsi formés.
  • Le procédé consiste à mélanger la fraction hydrocarbonée à traiter avec d'une part une autre fraction hydrocarbonée contenant des composés insaturés, et d'autre part avec de l'hydrogène, puis à faire passer le mélange sur un catalyseur de type sulfure métallique dans des conditions optimisées pour promouvoir l'addition des mercaptans sur les composés insaturés de manière à former des composés soufrés de type sulfures. Les composés soufrés ainsi transformés présentent une température d'ébullition supérieure à leur température initiale et peuvent ensuite être séparés pour récupérer une fraction hydrocarbonée appauvrie en soufre.
  • Art antérieur
  • La réduction de la teneur en mercaptans dans les fractions hydrocarbonées directement issues de la distillation atmosphérique est généralement réalisée par un procédé dit "d'adoucissement".
    Beaucoup de procédés d'adoucissement ne mettent pas en oeuvre la diminution de la teneur en soufre global, mais seulement la dimérisation des mercaptans en disulfures pour répondre aux spécifications. Cette oxydation des mercaptans est en général réalisée catalytiquement en utilisant l'oxygène comme agent d'oxydation.
    Les procédés d'adoucissement extractifs permettent en revanche de soustraire le soufre de la charge. Ils consistent à mettre en contact le distillat à traiter avec une solution aqueuse basique (le plus souvent à base d'hydroxyde de sodium) qui permet de récupérer les mercaptans. La solution basique est ensuite régénérée par oxydation catalytique des mercaptides de sodium en disulfures.
    Le brevet US 3,574,093 décrit la mise en oeuvre d'un tel procédé pour des essences et des coupes plus légères (C3-C4). De nombreuses améliorations ont été apportées au procédé, telles que l'utilisation d'amines aliphatiques en petites quantités dans des solutions à base d'hydroxyde de sodium ( brevets US 2,546,345 et US 2,853,431 ). La méthode nécessite cependant un très important volume de solution et de nombreux étages d'extraction, ce qui limite son intérêt.
    L'utilisation d'hydroxydes de métaux ne se limite pas à l'extraction liquide-liquide. L'enseignement du brevet US 2,808,365 nous montre qu'un « solide alcalin » obtenu par action d'hydroxyde de sodium sur du carbonate de calcium peut servir de catalyseur à l'oxydation des mercaptans en présence d'époxydes en faibles quantités dans la charge.
    D'autres supports, tels que des charbons actifs, ont été imprégnés d'une solution basique pour jouer le rôle de catalyseurs (brevet GB 763625 ).
    De nombreuses molécules oxydantes sont utilisées sous forme supportée pour réaliser l'oxydation des mercaptans. Elles présentent toutefois l'inconvénient de laisser le plus souvent des traces indésirables de métaux dans l'effluent adouci.
    Le brevet US 2,255,394 fait état de l'utilisation du cuivre sous sa forme CuCl2, alors que l'adoucissement est réalisé en présence d'oxygène par l'ajout de composés organométalliques du type Et2Ni directement dans la charge selon le brevet US,3,053,756 .
    Des catalyseurs à base de CrO3 ou plus récemment de phtalocyanine de Cobalt sont aussi utilisés. L'avantage du procédé au phtalocyanine de Cobalt est de pouvoir se dérouler en phase supportée pour un adoucissement simple, ou en phase aqueuse basique dans sa variante extractive.
    La liste est non exhaustive et d'autres métaux ont été testés, toujours dans le but d'oxyder les mercaptans en disulfures.
  • L'adoucissement des fractions hydrocarbonées peut également être réalisée par réaction d'addition des mercaptans sur les dioléfines.
    Ces réactions sont notamment envisagées dans le cas du traitement des essences contenant à la fois des mercaptans et des composés hydrocarbonés insaturés, comme par exemple les essences de FCC (Fluid Catalytic Cracking) dans lesquelles les composés insaturés, de nature le plus souvent oléfinique, sont largement présents.
    Le brevet US 2003/0094399 A1 décrit un procédé dans lequel on utilise une colonne à distiller dans laquelle la conversion des mercaptans en sulfures est réalisée en tête de colonne au contact d'un catalyseur d'hydrogénation mettant en jeu un métal du Groupe VIII.
    Le brevet FR 2821851 A1 décrit également un procédé pour alourdir des mercaptans par addition sur les oléfines à l'aide d'un catalyseur comprenant au moins un élément du Groupe VIII.
    Le même type de réactions est envisagé dans le brevet US 5,659,106A sur un catalyseur acide tel qu'une résine sulfonée. Dans ce cas, la réaction est mise en oeuvre en absence d'hydrogène.
  • Des solutions non catalytiques sont également présentées dans la littérature.
    Par exemple, dans le brevet US 2,694,034 , une méthode d'adoucissement faisant intervenir des composés insaturés est développée. Un naphta saturé riche en mercaptans est traité en ajoutant un composé oléfinique (de 1 à 10% poids) en présence d'un inhibiteur du type phenylène diamine, à raison de 0,0001% à 1% poids. Après une durée de stockage suffisante, la concentration en mercaptans du mélange répond aux spécifications.
  • En conclusion, il n'existe aucune solution proposée dans la littérature qui permette de transformer les mercaptans pour adoucir, voire désulfurer les fractions hydrocarbonées issues de la distillation atmosphérique, par des voies catalytiques autres que l'oxydation des mercaptans en disulfures.
    Les solutions basées sur l'addition des mercaptans sur des composés insaturés ne sont décrites que pour des fractions hydrocarbonées contenant des quantités importantes d'oléfines telles que les essences de craquage catalytique ou thermique. La présente invention propose une solution simple pour transformer, voire séparer les composés soufrés saturés présents dans les fractions hydrocarbonées issues de la distillation atmosphérique.
  • Description sommaire de l'invention
  • Le procédé décrit dans la présente invention propose une solution pour adoucir, voire désulfurer partiellement, les fractions hydrocarbonées dépourvues d'oléfines ou contenant de faibles proportions de composés insaturés. On entend par fractions hydrocarbonées contenant peu ou pas d'oléfines, des fractions ayant moins de 5% d'oléfines, et préférentiellement moins de 1 % d'oléfines.
    Le procédé décrit dans la présente invention est particulièrement adapté au traitement des fractions hydrocarbonées issues de la distillation atmosphérique, telles que par exemple les fractions essence, kérosène ou gasoil légers.
    Le procédé consiste à mélanger à la fraction d'hydrocarbures à traiter, de l'hydrogène et éventuellement une autre fraction d'hydrocarbures contenant des oléfines dite fraction oléfinique. Cette fraction oléfinique est généralement issue de procédés de craquage tels que le FCC, le vapocraqueur, ou une unité de cokage. L'hydrogène peut provenir de toute source présente dans la raffinerie. Les quantités d'hydrogène nécessaires sont généralement suffisamment faibles pour ne pas nécessiter l'implantation complémentaire d'une unité de production d'hydrogène dédiée. Le mélange résultant doit être tel que d'une part le rapport molaire H2/oléfines soit compris entre 0,03 et 2 de préférence entre 0,05 et 1, de manière plus préférée entre 0,2 et 0,8, et d'autre part le rapport molaire oléfines/mercaptans soit compris entre 5 et 5000 et de préférence entre 10 et 1000, de manière plus préférée entre 80 et 600, voire entre 150 et 400.
    Le mélange répondant aux deux conditions précédentes est ensuite injecté dans un réacteur contenant un catalyseur susceptible de faire réagir les composés soufrés saturés tels que les mercaptans présents. Pour être effective, la réaction doit être réalisée en présence d'hydrogène.
  • Selon un mode préféré de réalisation de l'invention, la charge non oléfinique traitée est une fraction essence issue de la distillation atmosphérique dont le point final d'ébullition est inférieur à 250°C, et de préférence inférieur à 220°C. Mais dans certains cas qui font toujours partie du domaine de l'invention, la charge à traiter pourra elle même contenir une certaine quantité d'oléfines à laquelle il faudra rajouter seulement une quantité d'hydrogène déterminée pour se retrouver dans la plage de rapport H2/oléfines définie précédemment, soit entre 0,03 et 2, et de préférence entre 0,05 et 1.
    Dans les cas où il faut également rajouter à la charge à traiter une certaine quantité d'oléfines, ces dernières proviendront généralement d'une essence oléfinique telle que par exemple une essence de craquage généralement issue d'une unité de craquage catalytique ou thermique.
  • Le procédé de transformation des mercaptans contenus dans une charge hydrocarbonée contenant moins de 1% d'oléfines selon l'invention pourra comporter une étape additionnelle de séparation des composés soufrés formés lors de l'étape réactionnelle, de manière à produire un effluent contenant moins de 50 % poids des composés soufrés présents dans la charge, et une coupe contenant la majorité des composés soufrés.
  • Le procédé selon l'invention permet donc de transformer les mercaptans en composés soufrés plus lourds avec un taux de conversion généralement d'au moins 50 % poids.
  • Description détaillée de l'invention
  • L'invention peut se définir comme un procédé de traitement d'une charge hydrocarbonée, généralement une essence contenant peu ou pas d'oléfines, généralement moins de 5% d'oléfines, et typiquement moins de 1 % d'oléfines, de manière à transformer et éventuellement éliminer les composés soufrés qu'elle contient, notamment les mercaptans. Le procédé selon l'invention comprend au moins 2 étapes.
    • Une première étape dite de mélange, qui consiste à mélanger la charge hydrocarbonée à traiter et contenant les mercaptans avec une certaine quantité d'hydrogène et éventuellement avec une fraction oléfinique.
    • Une seconde étape dite réactionnelle, qui consiste à faire réagir le mélange résultant de la première étape sur un catalyseur comportant au moins un métal du groupe VIII de manière à transformer les mercaptans en sulfures. On appellera dans la suite du texte cette réaction transformation des mercaptans en sulfures.
    La charge hydrocarbonée à traiter contient généralement moins de 1% poids d'oléfines et plus de 50 ppm poids de soufre principalement sous forme de mercaptans.
    La présente invention s'applique plus particulièrement au traitement des coupes essences directement issues de la distillation atmosphérique qui sont généralement pratiquement dépourvues d'oléfines et riches en composés soufrés saturés. Mais elle peut s'appliquer à d'autres charges tels que des distillats contenant également peu ou pas d'oléfines.
    Par composés soufrés saturés, on entend les composés soufrés appartenant aux familles des mercaptans ou sulfures.
    Les températures d'ébullition de la charge à traiter sont inférieures à 350°C, et de préférence inférieure à 250°C, ce qui correspond généralement à une coupe essence.
  • Les fractions oléfiniques présentes dans la raffinerie sont généralement issues d'unités de craquage tel que le craquage catalytique, thermique ou le vapocraquage.
  • Les températures d'ébullition de cette fraction oléfinique sont généralement inférieures à 250°C.
    Toutefois, il est préférable d'utiliser des fractions hydrocarbonées contenant des oléfines à 4, 5 ou 6 atomes de carbone afin d'améliorer le rendement de la réaction d'alourdissement des composés soufrés.
    L'hydrogène est également le plus souvent issu de la raffinerie. On utilise un hydrogène pratiquement dépourvu d'H2S car ce composé peut réagir avec les oléfines pour former des composés soufrés indésirables. L'hydrogène pourra provenir soit d'une unité spécifique de production d'hydrogène soit par exemple de l'unité de reformage catalytique des essences.
  • L'étape réactionnelle consiste à faire passer le mélange constitué à l'issue de l'étape de mélange sur un catalyseur opéré en lit fixe, dans des conditions opératoires optimisées.
    Le catalyseur utilisé dans le réacteur est un catalyseur comprenant au moins un métal du groupe VIII déposé sur un support inerte à base d'oxyde de métal poreux. De préférence, le support est constitué d'alumine, de silice, d'oxyde de titane ou contient au moins 50 % d'alumine.
    Un autre métal du groupe Vlb peut être associé au métal du groupe VIII pour former un catalyseur bimétallique.
    La quantité de métal du groupe VIII sous forme oxyde est comprise entre 1 % et 30% poids. La quantité de métal du groupe Vlb sous forme oxyde est comprise entre 0% et 20% poids.
    On utilisera de préférence les catalyseurs à base de nickel, ou les catalyseurs à base d'oxyde mixte de nickel et de molybdène ou de tungstène.
    Typiquement le catalyseur utilisé dans l'étape réactionnelle contient entre 1 et 30 % poids de NiO et entre 0% et 20% poids de MoO3.
    Avant injection des charges à traiter, le catalyseur peut subir une étape préalable de sulfuration afin de transformer les oxydes métalliques en sulfures.
    La sulfuration est réalisée en présence d'H2S, soit injecté directement en mélange avec de l'hydrogène, soit généré in situ dans le réacteur par hydrogénolyse d'un composé soufré, de sorte que le taux de sulfuration des métaux du catalyseur soit supérieur à 50%, et de préférence supérieur à 90%.
    La température du réacteur est généralement comprise entre 100°C et 250°C, et de préférence entre 140°C et 200°C.
    Le réacteur est opéré à une pression comprise entre 0,5 MPa et 5 MPa, et de préférence entre 1 MPa et 3 MPa, et à une VVH comprise entre 1 h-1 et 10 h-1, et de façon préférée entre 1,5 h-1 et 8 h-1.
    Le débit d'hydrogène est généralement ajusté afin d'obtenir un rapport molaire entre l'hydrogène et les oléfines compris entre 0,03 et 2 et de préférence entre 0,05 et 1.
    Dans ces conditions, et de manière inattendue, les composés soufrés saturés présents dans la charge sont transformés en composés soufrés saturés de température d'ébullition supérieure.
    Les composés saturés appartiennent aux familles constituées des mercaptans, sulfures et CS2.
    La conversion est mesurée par le taux de transformation des mercaptans en composés plus lourds, c'est à dire présentant une température d'ébullition plus élevée.
    Par ailleurs, le rapport molaire entre les oléfines et l'hydrogène est optimisé afin de limiter la désactivation du catalyseur par le dépôt de carbone issu des composés oléfiniques.
    En l'absence d'hydrogène, le catalyseur subit une forte désactivation, et le taux de conversion des mercaptans est nettement diminué.
  • A l'issue de l'étape réactionnelle, l'effluent est appauvri en composés soufrés saturés légers et plus particulièrement en mercaptans.
    Le taux de transformation des mercaptans contenant 1 à 4 atomes de carbone est généralement compris entre 50% et 100%. La fraction ainsi produite est donc adoucie au sens bien connu de l'homme du métier.
  • Une troisième étape peut être mise en oeuvre de façon optionnelle si l'on cherche à diminuer la teneur en soufre de la charge à traiter.
  • Cette troisième étape, dite de séparation, consiste à séparer les composés soufrés formés au cours de l'étape réactionnelle, de l'effluent hydrocarboné de la dite étape réactionnelle.
    L'étape de séparation peut consister en toute méthode capable de réaliser cette séparation.
    Toutefois, on préfèrera utiliser une méthode de séparation physique basée sur les températures d'ébullition des composés à séparer, comme par exemple, un simple flash, ou une distillation dans une colonne à distiller.
    Dans ce cas, la fraction légère récupérée en tête de colonne contient la majorité de la fraction hydrocarbonée saturée, et est appauvrie en composés soufrés et en mercaptans.
    La fraction lourde récupérée en fond de colonne concentre les composés soufrés formés lors de l'étape réactionnelle. Cette fraction peut être traitée dans une unité d'hydrodésulfuration pour en extraire le soufre. La mise en oeuvre de l'étape de séparation consécutivement à l'étape réactionnelle, permet donc de désulfurer la charge hydrocarbonée à traiter sans avoir recours à un procédé classique d'hydrodésulfuration pour au moins une partie de l'effluent hydrocarboné.
  • Exemples
  • Une série de tests a été menée dans une unité pilote chargée avec 100 cm3 de catalyseur.
    Le catalyseur utilisé contient du nickel et du molybdène sur un support alumine (catalyseur commercialisé sous la référence HR845 par la société Axens). Avant injection de la charge, le catalyseur est sulfuré par un mélange H2 + H2S à 350°C. Au cours des essais, la température, la pression et la vitesse spatiale sont maintenues constantes respectivement à 180°C, 2,5 MPa et 4 h-1 pour l'ensemble des essais réalisés.
  • Exemple 1 (selon l'art antérieur)
  • Dans cet exemple, une essence A de distillation atmosphérique d'un pétrole brut est injectée dans un réacteur en absence d'hydrogène.
  • En sortie du réacteur, l'effluent B1 est séparé par distillation en deux fractions avec un point de coupe correspondant à une température de 100°C. Les deux fractions obtenues sont notées LCN1 (fraction légère) et HCN1 (fraction lourde). Les caractéristiques des différentes essences sont regroupées dans le tableau 1. Tableau 1
    Caractéristiques Essence A Effluent B1 LCN1 HCN1
    T5% - T95% 25-125 25-125 25-100 100-125
    Rendement par fraction (%) 100 100 74,6 25,4
    Densité 15/4 0,702 0,705 0,68 0,763
    Soufre total (ppm) 300 300 135 783
    Soufre mercaptan (ppm) 160 129 135 111
    Oléfine / RSH (mol/mol) 2,4 - - -
    H2 / Oléfine (mol/mol) 0 - - -
    Chromatographie Gaz (%pds)
    Paraffines 67,4 67,4 74,6 47,4
    Oléfines 0,1 0,1 0,1 0,0
    Naphtènes 26,2 26,2 23,4 34,0
    Aromatiques 6,3 6,3 1,9 18,6
  • La présence du catalyseur permet de réduire de 20% la teneur en mercaptans. Cependant, la teneur en mercaptans de la coupe LCN1 demeure élevée, et la répartition des mercaptans entre les coupes LCN1 et la HCN1 montre que la conversion observée affecte de manière équivalente les mercaptans légers et les mercaptans lourds, d'au moins cinq atomes de carbone. De plus on observe que la teneur en soufre organique reste inchangée au cours du traitement sur le catalyseur.
  • L'absence d'hydrogène et une teneur très basse en composés insaturés dans la charge ne permet pas d'obtenir une coupe légère notablement désulfurée.
  • Cependant, le soufre de cette fraction s'y trouve exclusivement sous forme de mercaptans, ce qui a pour conséquence de concentrer le soufre non mercaptan dans la fraction lourde.
  • Exemple 2 (selon l'invention)
  • L'essence A est mélangée à une essence de craquage oléfinique C issue d'une unité de craquage catalytique avant d'être injectée dans le réacteur en présence d'hydrogène à raison de 5 litres d'hydrogène par litre de charge. L'essence C représente 10% en poids du mélange noté essence D1. L'essence D1 mélangée à l'hydrogène est injectée sur le catalyseur.
  • En sortie du réacteur, l'effluent B2 est séparé par distillation en deux fractions avec un point de coupe correspondant à une température de 100°C. Les deux fractions obtenues sont notées LCN2 (fraction légère) et HCN2 (fraction lourde). Le tableau 2 présente les caractéristiques des essences A, C et D1. Les caractéristiques des différentes coupes sont regroupées dans le tableau 3. Tableau 2
    Caractéristiques Essence A Essence C Essence D1
    T50% - T95% 25-125 25-215 25-215
    Densité 15/4 0,702 0,746 0,707
    Soufre total (ppm) 300 177 279
    Soufre mercaptan (ppm) 160 8 151
    Oléfines / RSH (mol/mol) 2,4 16430 91
    Chromatographie Gaz (%pds)
    Paraffines 67,4 28,9 63,5
    Oléfines 0,1 34,5 3,6
    Naphtènes 26,2 7,6 24,4
    Aromatiques 6,3 29 8,5
    Tableau 3
    Caractéristiques Essence D1 Effluent B2 LCN2 HCN2
    T5% - T95% 25-215 25-215 25-100 100-215
    Fraction/Essence D1 (%w) 100 100 71,5 28,5
    Densité 15/4 0,707 0,708 0,683 0,779
    Soufre total (ppm) 279 279 34 893
    Soufre mercaptan (ppm) 151 64,5 34 141
    Oléfines / RSH (mol/mol) 91 - - -
    H2 / Oléfine (mol/mol) 0,71 - - -
    Chromatographie Gaz (%pds)
    Paraffines 63,5 63,6 72,3 43
    Oléfines 3,6 3,5 3,2 4,1
    Naphtènes 24,4 24,4 22,7 28,4
    Aromatiques 8,5 8,5 1,9 24,6
  • La présence simultanée d'oléfines et d'hydrogène dans le mélange D1 permet de réduire de 57% la teneur en mercaptans initiale. La conversion est trois fois supérieure à celle observée dans l'exemple 1. De plus, la répartition des mercaptans entre les coupes LCN2 et la HCN2 est largement modifiée, les mercaptans légers contenus dans la coupe LCN2 sont convertis préférentiellement.
  • Exemple 3 (selon l'invention)
  • L'essence A est mélangée à l'essence de craquage C avant d'être injectée dans le réacteur en présence d'hydrogène à raison de 5 litres d'hydrogène par litre de charge. L'essence C représente 20% poids du mélange noté essence D2.
  • En sortie du réacteur, l'effluent B3 est séparé par distillation en deux fractions avec un point de coupe correspondant à une température de 100°C. Les deux fractions obtenues sont notées LCN3 (fraction légère) et HCN3 (fraction lourde). Le tableau 4 présente les caractéristiques des essences A, C et D2. Celles des différentes coupes sont regroupées dans le tableau 5. Tableau 4
    Caractéristique Essence A Essence C Essence D2
    T5% - T95% 25-125 25-215 25-215
    Densité 15/4 0,702 0,746 0,715
    Soufre total (ppm) 300 177 270
    Soufre mercaptan (ppm) 160 8 134
    Oléfines / RSH (mol/mol) 2,4 16430 196
    Chromatographie Gaz (%pds)
    Paraffines 67,4 28,9 59,8
    Oléfines 0,1 34,5 6,9
    Naphtènes 26,2 7,6 22,5
    Aromatiques 6,3 29 10,8
    Tableau 5
    Caractéristiques Essence D2 Effluent B3 LCN3 HCN3
    T50% - T95% 25-215 25-215 25-100 100-215
    Fraction/Essence D2 (%w) 100 100 68,5 31,5
    Densité 15/4 0,715 0,717 0,685 0,788
    Soufre total (ppm) 270 270 32 789
    Soufre mercaptan (ppm) 134 71 32 156
    Oléfines / RSH (mol/mol) 196 - - -
    H2 / Oléfine (mol/mol) 0,37 - - -
    Chromatographie Gaz (%pds)
    Paraffines 59,8 59,9 69,7 39,4
    Oléfines 6,9 6,8 6,6 7,2
    Naphtènes 22,5 22,5 21,9 23,8
    Aromatiques 10,8 10,8 1,8 29,6
  • L'augmentation de la quantité d'oléfines injectée n'améliore pas significativement les performances, la conversion des mercaptans stagne autour de 50%. Le rapport H2 / Oléfine est diminué ce qui favorise les problèmes de désactivation du catalyseur.
  • Exemple 4 (selon l'invention)
  • L'essence A est mélangée à l'essence de craquage C avant d'être injectée dans le réacteur en présence d'hydrogène à raison de 10 litres d'hydrogène par litre de charge.
    L'essence C représentant 10% du mélange qui est noté l'essence D3.
  • En sortie du réacteur, l'effluent B4 est séparé par distillation en deux fractions avec un point de coupe correspondant à une température de 100°C. Les deux fractions obtenues sont notées LCN4 (fraction légère) et HCN4 (fraction lourde). Le tableau 6 regroupe les caractéristiques des différentes essences. Tableau 6
    Caractéristiques Essence D3 Effluent B4 LCN4 HCN4
    T5% - T95% 25-215 25-215 25-100 100-215
    Fraction/Essence D1(%w) 100 100 71,6 28,4
    Densité 15/4 0,707 0,704 0,682 0,78
    Soufre total (ppm) 279 279 32 901
    Soufre mercaptan (ppm) 151 63 32 141
    Oléfines / RSH (mol/mol) 91 - - -
    H2 / Oléfine (mol/mol) 1,43 - - -
    Chromatographie Gaz (%pds)
    Paraffines 63,5 63,8 72,4 43,4
    Oléfines 3,6 3,2 3 3,8
    Naphtènes 24,4 24,4 22,7 28,4
    Aromatiques 8,5 8,5 1,9 24,6
  • La présence d'insaturés et d'hydrogène constituent deux facteurs favorables à la conversion des mercaptans. Cependant, le rapport H2/Oléfines doit aussi être optimisé pour limiter la désactivation du catalyseur, la consommation en hydrogène et la saturation des oléfines.

Claims (13)

  1. Procédé de transformation des mercaptans contenus dans une charge hydrocarbonée contenant moins de 5% poids d'oléfines, comportant au moins deux étapes;
    - une première étape de mélange de la charge à traiter avec une quantité d'hydrogène, et éventuellement une quantité de coupe oléfinique, le mélange résultant étant caractérisé par un rapport molaire H2/oléfines compris entre 0,03 et 2, et de préférence entre 0,05 et 1, et un rapport molaire oléfines/mercaptans compris entre 5 et 5000, et préférentiellement compris entre 10 et 1000, et
    - une deuxième étape de réaction du mélange formé à l'issue de la première étape sur un catalyseur supporté contenant au moins un métal du groupe VIII, le procédé permettant de transformer les mercaptans en composés soufrés plus lourds, avec un taux de conversion d'au moins 50 %.
  2. Procédé de transformation des mercaptans selon la revendication 1 dans lequel ladite charge hydrocarbonée contient moins de 1% poids d'oléfines.
  3. Procédé de transformation des mercaptans selon l'une des revendications 1 ou 2, dans lequel l'étape de réaction est réalisée à une température comprise entre 100°C et 250°C, et de préférence entre 140°C et 200°C.
  4. Procédé de transformation des mercaptans selon l'une des revendications 1 ou 2, dans lequel l'étape de réaction est réalisée à une pression comprise entre 0,5 MPa et 5 MPa, et de préférence entre 1 MPa et 3 MPa.
  5. Procédé de transformation des mercaptans selon l'une des revendications 1 ou 2, dans lequel l'étape de réaction est réalisée à une VVH comprise entre 1 h-1 et 10 h-1, et de préférence entre 1,5 h-1 et 8 h-1.
  6. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 5, dans lequel la charge à traiter est une essence de distillation directe.
  7. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 6, dans lequel l'apport d'oléfines est réalisée en ajoutant à la charge à traiter une certaine quantité d'essence de craquage catalytique.
  8. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 7, dans lequel l'effluent de l'étape réactionnelle appauvri en mercaptans est séparé des composés soufrés formés lors de la dite étape réactionnelle, de manière à produire un effluent contenant moins de 50 % de composés soufrés présents dans la charge, et une coupe contenant la majorité des composés soufrés.
  9. Procédé de transformation des mercaptans selon la revendication 8, dans lequel l'étape de séparation est choisie dans le groupe formé par un flash ou une distillation.
  10. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur utilisé dans l'étape réactionnelle contient en outre au moins un métal du groupe Vlb.
  11. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur utilisé dans l'étape réactionnelle contient entre 1 et 30 % poids de métal du groupe VIII sous forme oxyde, et entre 0% et 20% poids de métal du groupe VIb sous forme oxyde.
  12. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur utilisé dans l'étape réactionnelle contient entre 1 et 30 % poids de NiO, et entre 0% et 20% poids de MoO3.
  13. Procédé de transformation des mercaptans selon l'une quelconque des revendications 1 à 7, dans lequel le catalyseur utilisé dans l'étape réactionnelle subit une étape préalable de sulfuration de sorte que le taux de métal présent sous forme sulfuré soit supérieur à 50% et de préférence supérieur à 90%.
EP05292373A 2004-11-17 2005-11-08 Procédé de transformation des composés soufrés saturés d'une coupe hydrocarbonée contenant peu ou pas d'oléfines Active EP1659163B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0412206A FR2877951B1 (fr) 2004-11-17 2004-11-17 Procede de transformation des composes soufres satures d'une coupe hydrocarbonee contenant peu ou pas d'olefines

Publications (2)

Publication Number Publication Date
EP1659163A1 EP1659163A1 (fr) 2006-05-24
EP1659163B1 true EP1659163B1 (fr) 2009-03-11

Family

ID=34951725

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05292373A Active EP1659163B1 (fr) 2004-11-17 2005-11-08 Procédé de transformation des composés soufrés saturés d'une coupe hydrocarbonée contenant peu ou pas d'oléfines

Country Status (4)

Country Link
US (1) US20060124508A1 (fr)
EP (1) EP1659163B1 (fr)
DE (1) DE602005013173D1 (fr)
FR (1) FR2877951B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461293B2 (en) 2010-08-03 2013-06-11 Chevron Phillips Chemical Company Lp Methods of mercaptanizing olefinic hydrocarbons and compositions produced therefrom

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2255394A (en) 1938-11-09 1941-09-09 Phillips Petroleum Co Process for treating oils
US2546345A (en) 1950-03-04 1951-03-27 Texas Co Dethiolizing hydrocarbons
US2694034A (en) 1950-06-30 1954-11-09 Universal Oil Prod Co Treatment of saturated distillates
GB763625A (en) 1953-02-06 1956-12-12 Gelsenberg Benzin Ag Improvements in or relating to the purification of hydrocarbons
US2808365A (en) 1955-02-07 1957-10-01 Sun Oil Co Petroleum refining
US2853431A (en) 1955-05-31 1958-09-23 Sun Oil Co Sweetening petroleum hydrocarbons with a nu, nu'-dialkyl-phenylene diamine and oxygen in the presence of refinery slop oil
DE1105087B (de) 1958-07-03 1961-04-20 Basf Ag Verfahren zur Raffination von technischen Kohlenwasserstoff-gemischen
US3574093A (en) 1969-01-22 1971-04-06 Universal Oil Prod Co Combination process for treatment of hydrocarbon streams containing mercapto compounds
US3894941A (en) * 1973-12-14 1975-07-15 Gulf Research Development Co Process for converting mercaptans to alkyl sulfides
FR2476118B1 (fr) * 1980-02-19 1987-03-20 Inst Francais Du Petrole Procede de desulfuration d'un effluent de craquage catalytique ou de craquage a la vapeur
US5659106A (en) 1995-06-22 1997-08-19 Uop Catalytic distillation process for mercaptan and olefin removal
FR2807061B1 (fr) * 2000-03-29 2002-05-31 Inst Francais Du Petrole Procede de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
US6495030B1 (en) 2000-10-03 2002-12-17 Catalytic Distillation Technologies Process for the desulfurization of FCC naphtha
FR2821851B1 (fr) 2001-03-12 2004-06-04 Inst Francais Du Petrole Procede de production d'essence a faible teneur en soufre comprenant une etape de transformation des composes soufres, un traitement sur catalyseur acide et une desulfuration
US7374667B2 (en) * 2001-03-12 2008-05-20 Bp Corporation North America, Inc. Process for the production of gasoline with a low sulfur content comprising a stage for transformation of sulfur-containing compounds, an acid-catalyst treatment and a desulfurization

Also Published As

Publication number Publication date
DE602005013173D1 (de) 2009-04-23
FR2877951A1 (fr) 2006-05-19
EP1659163A1 (fr) 2006-05-24
US20060124508A1 (en) 2006-06-15
FR2877951B1 (fr) 2006-12-22

Similar Documents

Publication Publication Date Title
EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
EP1138749B1 (fr) Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
EP2816094B1 (fr) Procédé de production d'une essence à basse teneur en soufre et en mercaptans
EP1746144B1 (fr) Nouveau procédé de désulfuration d'essences oléfiniques permettant de limiter la teneur en mercaptans
EP1369468B1 (fr) Procédé de production d'hydrocarbures à faible teneur en soufre et en azote
EP1031622A1 (fr) Procédé de production d'essences à faible teneur en soufre
FR2837831A1 (fr) Procede de production d'hydrocarbures a faible teneur en soufre et en mercaptans
EP1661965B1 (fr) Procédé d'hydrotraitement d'une essence oléfinique comprenant une étape d'hydrogénation sélective
FR2993571A1 (fr) Procede de desulfuration d'une essence
FR2895417A1 (fr) Procede de desulfurisation comprenant une etape de transformation et une etape d'extraction des composes soufres
WO2014068209A1 (fr) Procédé de production d'une essence a basse teneur en soufre
EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
EP1659163B1 (fr) Procédé de transformation des composés soufrés saturés d'une coupe hydrocarbonée contenant peu ou pas d'oléfines
WO2006114510A1 (fr) Procede de desulfuration d'essences olefiniques
WO2015165664A1 (fr) Procédé de production d'une essence a basse teneur en soufre et en mercaptans
CA2440189C (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
EP1370629B1 (fr) Procede de production d'essence a faible teneur en soufre
FR3007416A1 (fr) Procede de production d'une essence a basse teneur en soufre et en mercaptans

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PICARD, FLORENT

Inventor name: LEPLAT, SEBASTIEN

Inventor name: MARCHAL, NATHALIE

17P Request for examination filed

Effective date: 20061124

AKX Designation fees paid

Designated state(s): DE GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005013173

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005013173

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL MALMAISON, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 19

Ref country code: DE

Payment date: 20231127

Year of fee payment: 19