EP1658581A1 - Modulbrücken für smart labels - Google Patents

Modulbrücken für smart labels

Info

Publication number
EP1658581A1
EP1658581A1 EP04764400A EP04764400A EP1658581A1 EP 1658581 A1 EP1658581 A1 EP 1658581A1 EP 04764400 A EP04764400 A EP 04764400A EP 04764400 A EP04764400 A EP 04764400A EP 1658581 A1 EP1658581 A1 EP 1658581A1
Authority
EP
European Patent Office
Prior art keywords
module
chip modules
carrier tape
module bridges
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04764400A
Other languages
English (en)
French (fr)
Inventor
Ralf God
Volker Brod
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muehlbauer GmbH and Co KG
Original Assignee
Muehlbauer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10358423A external-priority patent/DE10358423B4/de
Application filed by Muehlbauer GmbH and Co KG filed Critical Muehlbauer GmbH and Co KG
Publication of EP1658581A1 publication Critical patent/EP1658581A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07718Constructional details, e.g. mounting of circuits in the carrier the record carrier being manufactured in a continuous process, e.g. using endless rolls
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07745Mounting details of integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • G06K19/07752Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna using an interposer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to module bridges for smart labels for positioning chip modules on supports and for bridging-like connection of connection elements of the chip modules with connection elements of antenna elements arranged on or in the carriers according to the preamble of patent claim 1.
  • Smart labels which in addition to an antenna also comprise an RFID chip (radio frequency identification chip), preferably made of silicon, are produced in large numbers at high production speeds.
  • RFID chip radio frequency identification chip
  • the dimensions of such chips continuously decrease due to their development, so that a precise positioning of the chips on an antenna substrate with respect to connection elements of an antenna element becomes more and more difficult and device-intensive.
  • the RFID chips have been applied to the antenna substrate using a so-called pick-and-place method using a flip-chip technique.
  • a robot operating in the high-precision range removes a silicon chip from a silicon wafer, rotates it by 180 °, so that the top of the silicon chip with connection elements arranged thereon points down, and mounts the chip in this upside-down position on the Antenna and the antenna substrate.
  • the connection elements of the chip which have very small dimensions, must be made to coincide with the connection elements of the antenna with high precision.
  • the antenna substrates with the antennas are usually located on wide, flexible tracks with a width of approximately 500 mm during the smart label production process, a device-complex robot design is required for a precise placement of the chips on the antenna substrates. Placement accuracies in a range of 10 - 20 ⁇ m are usually necessary.
  • module bridges are used as bridging-type connections between the small-dimensioned connection elements of the chip modules and the connection elements of the antenna.
  • Such module bridges have contact lines which extend from the inside to the outside. The inside ends are connected to a chip module arranged on the module bridge and the outside ends are provided for contacting the connection elements of the antenna.
  • the chip modules are preassembled on the module bridges in a locally limited small working area using the high-precision method, which are then mounted on the antenna substrates or the antennas with reduced accuracy and high speed within a large working area.
  • the module bridges conventionally used for this purpose consist of high-priced plastic materials and are manufactured individually before the chip module is preassembled.
  • the object of the present invention is module bridges for smart
  • An essential point of the invention is that in module bridges for smart labels for positioning chip modules on carriers and for bridging-like connection of connection elements of the chip modules with connection elements of antenna elements arranged on or in the carriers, a plurality of module bridges are arranged one behind the other on a carrier tape, wherein the carrier tape has a plurality of depressions arranged one behind the other for receiving a chip module each associated with a module bridge and contact layers covering the connection elements of the chip modules and having dimensions that are larger than the connection element dimensions.
  • the inventive simple design of a large number of module bridges on the carrier tape by means of the contact layers, which extend in a simple manner, for example by means of a printing process, over the previously arranged chip modules, makes it possible to produce a large amount of module bridges quickly and easily without having to do so high material costs arise.
  • inexpensive plastic or paper materials can be used as the carrier tape material, which can be shaped three-dimensionally by using appropriate forming techniques, such as thermoplastic molding or an embossing technique. This technique can also be forming 'continuously carried out quickly and easily within a device, while the carrier tape is traveling or is stopped temporarily.
  • depressions within the carrier tape enables the rapid insertion of the chip modules with their connection elements oriented upwards, which are preferably covered by two band-like contact layers running parallel to one another and having interruptions between the chip modules. Since the contact layers have larger surface expansions than the connection element of the individual chip module, it is possible with greater inaccuracy to assemble a module bridge designed in this way on the connection elements of the antenna element, which are arranged on the carrier, which can be designed as an antenna substrate. This consequently advantageously results in a quick and simple assembly of the module bridges containing the chip modules on the antenna substrates within a large working area.
  • the simple structure of the module bridges also proves to be advantageous when they are separated from the carrier tape, in which the individual module bridges can be exposed quickly and easily, for example by a longitudinal cutting process in the longitudinal direction of the carrier tape or by cutting through remaining half-webs in the transverse direction of the carrier tape. It is essential here that both the carrier tape and the contact layer have interruptions extending in the transport width direction between the chip modules.
  • adhesive layers are attached to the contact layers for the adhesive attachment of individual module bridges on the carriers in the region of the connection elements of the antenna element.
  • the adhesive layers preferably consist of two tape-like adhesive layers running parallel to one another in the longitudinal direction of the carrier tape, with interruptions which correspond to the interruptions within the carrier tape and the contact layers depending on the location.
  • the contact layers can be self-adhesive.
  • they can either consist of prepolymerized epoxy resin with conductive particles contained therein or of a hot melt adhesive with conductive particles contained therein.
  • the contact layers consist of a first, band-like contact layer extending in the carrier tape direction, which covers the first connection elements of the first connection sides of the chip modules, and of a second, band-like contact layer, which extends in the carrier tape longitudinal direction, which covers the second connection elements of the second connection sides of the chip modules.
  • a first, band-like contact layer extending in the carrier tape direction, which covers the first connection elements of the first connection sides of the chip modules
  • a second, band-like contact layer which extends in the carrier tape longitudinal direction, which covers the second connection elements of the second connection sides of the chip modules.
  • the depressions preferably have a sufficient depth to arrange the chip modules in such a way that their upper sides and a surface of the carrier tape surrounding the depression lie in one plane. This ensures that the contact layers, which extend both over the upper sides of the chip modules and over the surface of the carrier tape, extend in one piece without unwanted interruptions within a plane.
  • the depressions are complementary to the outer shapes of the chip modules to be accommodated therein, in order to ensure an optimal and precisely fitting placement of the chip modules within the carrier tape.
  • the carrier tape can be deformed or embossed in such a way that almost any type of chip module can be positioned therein.
  • the chip module is self-centered while the chip module is inserted into the shaped recess.
  • the depressions can optionally be provided on the underside with at least one hole on which the chip module is arranged. Such a punched hole has an advantageous effect on a curing process necessary for the adhesive, since this enables direct action on the adhesive, for example by UV light.
  • Fig.-En 1a - 1f sequentially the structure of the module bridges according to the invention in a plan view
  • FIG. 2 shows a schematic cross-sectional view of the structure of a module bridge including a chip module
  • 3 shows a schematic plan view of the positioning of a module bridge according to the invention with a chip module on connection elements of an antenna element.
  • FIGS. 1a-1c each show a top view sequentially of the structure of the module bridges according to the invention.
  • a carrier tape shown in FIG. 1a made of a plastic and / or paper material has, after a thermoplastic deformation, an embossing process and / or a punching process, depressions 2 arranged one behind the other, which may have through holes, for receiving chip modules.
  • Hole rows 3 arranged on the edge serve to move the carrier tape 1 forward within a device by means of a transport element (not shown here).
  • FIG. 1c shows that chip modules 5 with first and second connection sides 5a and 5b are inserted into the depressions 2. To fix the chip modules, they are used within an adhesive depot arranged in the recess 2, as shown by reference number 6 in FIG. 1d. This adhesive is cured by means of UV radiation, electron beam radiation or thermal radiation.
  • a first band-like contact layer 7a extending over the first connection side 5a of the chip modules 5 is arranged.
  • a second contact layer 7b extends parallel to the first contact layer 7a in a band-like manner over the second connection side of the chip modules.
  • the surface dimensions of the contact layers 7a and 7b are larger than the dimensions of connection elements of the chip modules.
  • Both the first and the second contact layers 7a and 7b have interruptions 4 which are congruent with the interruptions in the carrier tape 1.
  • the on the other arranged module bridges 10 two tape-like adhesive layers 8a and 8b arranged parallel to each other, again with interruptions 4.
  • a module bridge according to the invention with the chip module 5 is shown in a schematic cross-sectional illustration in FIG. 2.
  • the chip module 5 is arranged within the depression 2 of the carrier tape 1 in such a way that its top side 5c is in one plane with a surface 1a of the carrier tape 1 surrounding the depression 2.
  • the chip module 5 fixing adhesive parts 9a and 9b are arranged.
  • the contact layers 7a and 7b extend over the connection elements 5d and 5e of the chip module 5, which are indicated as indicated, and the surface 1a of the carrier tape.
  • the module bridge can advantageously be bent without the contact between the connection elements 5d, 5e and the contact layers 7a and 7b being lost thereby.
  • FIG. 3 shows a schematic illustration of the positioning of an individual module bridge with a chip module on connection elements of an antenna element.
  • a single module bridge 10 including the chip module 5 and a carrier tape portion is cut out of the module bridge assembly and, with the adhesive layers 8a and 8b facing downward, placed and fixed on connection elements 11a and 11b of the antenna 11.
  • An indication of an antenna substrate 12 is shown.
  • connection elements of the chip module hardened adhesive, a first tape-like contact layer, second tape-like contact layer, first tape-like adhesive layer, second tape-like adhesive layer, 9b adhesive components, 0 module bridges, 1 antenna element, 1 a, 11 b, connection element of the antenna element, 2 antennas

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Aerials (AREA)

Abstract

Die Erfindung betrifft Modulbrücken für Smart Labels zur Positionierung von Chipmodulen (5) auf Trägern (12) und zur überbrückungsartigen Verbindung von Anschlusselementen der Chipmodule (5) mit Anschlusselementen (11a, 11b) von auf oder in den Trägern (12) angeordneten Antennenelementen (11), eine Mehrzahl von Modulbrücken (10) auf einem Trägerband (1) hintereinander angeordnet ist, wobei das Trägerband (1) eine Mehrzahl von hintereinander angeordneten Vertiefungen (2) zur Aufnahme jeweils eines einer Modulbrücke (10) zugeordneten Chipmoduls (5) und Kontaktschichten (7a, 7b); welche die Anschlusselemente der Chipmodule (5) überdecken, mit gegenüber den Anschlusselementenabmessungen vergrößerten Abmessungen aufweist.

Description

Modulbrücken für Smart Labels
Beschreibung
Die Erfindung betrifft Modulbrücken für Smart Labels zur Positionierung von Chipmodulen auf Trägem und zur überbrückungsartigen Verbindung von Anschlusselementen der Chipmodule mit Anschlusselementen von auf oder in den Trägern angeordneten Antennenele- menten gemäß dem Oberbegriff des Patentanspruches 1.
Smart Labels, die neben einer Antenne auch einen RFID-Chip (Radio Frequency Identificati- on-Chip) vorzugsweise aus Silizium umfassen, werden in großer Stückzahl mit hoher Produktionsgeschwindigkeit hergestellt. Üblicherweise verringern sich die Abmessungen derar- tiger Chips durch deren Entwicklung fortlaufend, so dass eine ortsgenaue Positionierung der Chips auf einem Antennensubstrat bezüglich Anschlusselemente eines Antennenelementes immer schwieriger und vorrichtungsaufwendiger wird.
Bisher wurden die RFID-Chips mittels sogenannter Pick-and-Place-Verfahren in einer Flip- Chip-Technik auf das Antennensubstrat aufgebracht. Hierbei entnimmt ein im Hochpräzisionsbereich arbeitender Roboter einer Silizium-Chip von einem Silizium-Wafer, dreht diesen um 180°, so dass die Oberseite des Silizium-Chips mit darauf angeordneten Anschlusselementen nach unten weist, und montiert den Chip in dieser Kopfüber-Stellung auf die Antenne und das Antennensubstrat. Hierbei müssen die Anschlusselemente des Chips, welche sehr geringe Abmessungen aufweisen, mit hoher Präzision mit den Anschlusselementen der Antenne in Deckung gebracht werden. Da sich die Antennensubstrate mit den Antennen üblicherweise auf breiten, flexiblen Bahnen mit einer Breite von ca. 500 mm während des Smart Label-Herstellungsvorganges befinden, ist eine vorrichtungsaufwendige Roboterkonstruktion für eine ortsgenaue Platzierung der Chips auf den Antennensubstraten erforderlich. Üblicherweise sind hierbei Platzierungsgenauigkeiten in einem Bereich von 10 - 20 μm notwendig.
Derartige Roboterkonstruktionen, die im Hochpräzisionsbereich über größere Entfernungen hinweg arbeiten müssen, weisen zum einen eine hohe Zahl an Genauigkeitsfehlern auf und reduzieren zum anderen die Verarbeitungsgeschwindigkeit während des Chipmontagevorganges auf dem Antennensubstrat erheblich. Dies hat wiederum eine Reduzierung der gesamten Produktionsgeschwindigkeit bei der Herstellung von Smart Labels sowie hohe Herstellungskosten zur Folge.
Es ist bekannt, dass einzelne Modulbrücken als überbrückungsartige Verbindungen zwischen den gering dimensionierten Anschlusselementen der Chipmodule und den Anschlusselementen der Antenne eingesetzt werden. Derartige Modulbrücken weisen Kontaktleitungen auf, die sich von innen nach außen erstrecken. Die innenseitigen Enden sind mit einem auf der Modulbrücke angeordneten Chipmodul verbunden und die außenseitigen Enden sind zur Kontaktierung mit den Anschlusselementen der Antenne vorgesehen.
Um Chipmodule mittels der Modulbrücken auf den Antennensubstraten anzuordnen, werden die Chipmodule in einem örtlich begrenzten kleinen Arbeitsfeld auf die Modulbrücken im Hochpräzisionsverfahren vormontiert, welche anschließend innerhalb eines großen Arbeits- bereiches mit reduzierter Genauigkeit und hoher Geschwindigkeit auf die Antennensubstrate beziehungsweise die Antennen montiert werden. Die hierfür herkömmlicherweise verwendeten Modulbrücken bestehen aus hochpreisigen Kunststoffmaterialien und werden einzeln angefertigt, bevor eine Vormontage des Chipmoduls erfolgt.
Demzufolge liegt der vorliegenden Erfindung die Aufgabe zugrunde, Modulbrücken für Smart
Labels zur Positionierung von Chipmodulen auf Träger zur Verfügung zu stellen, deren Herstellung kostengünstig ist und schnell durchgeführt werden kann und die eine schnelle sowie einfache Hochpräzisionsmontage der Chipmodule auf unterschiedlichen Trägern zulassen. Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst.
Ein wesentlicher Punkt der Erfindung liegt darin, dass bei Modulbrücken für Smart Labels zur Positionierung von Chipmodulen auf Trägern und zur überbrückungsartigen Verbindung von Anschlusselementen der Chipmodule mit Anschlusselementen von auf oder in den Trägern angeordneten Antennenelementen eine Mehrzahl von Modulbrücken auf einem Trägerband hintereinander angeordnet sind, wobei das Trägerband eine Mehrzahl von hintereinander angeordneten Vertiefungen zur Aufnahme jeweils eines einer Modulbrücke zugeordneten Chipmoduls und die Anschlusselemente der Chipmodule überdeckende Kontaktschichten mit gegenüber den Anschlusselementenabmessungen vergrößerte Abmessungen aufweist.
Durch die erfindungsgemäß einfache Ausbildung einer Vielzahl von Modulbrücken auf dem Trägerband mittels der Kontaktschichten, die sich in einfacher Weise beispielsweise durch einen Druckvorgang über die zuvor angeordneten Chipmodule hinweg erstrecken, ist eine endlosbandartige schnelle und einfache Herstellung einer großen Menge von Modulbrücken möglich, ohne dass hierbei hohe Materialkosten anfallen. Vielmehr können als Trägerbandmaterial kostengünstige Kunststoff- oder Papiermaterialien verwendet werden, die durch Anwendung entsprechender Umformtechniken, wie beispielsweise thermoplastisches Ver- formen oder einer Prägetechnik, dreidimensional geformt werden können. Diese Umform- technik kann ebenso schnell und einfach 'fortlaufend innerhalb einer Vorrichtung durchgeführt werden, während sich das Trägerband fortbewegt oder kurzzeitig angehalten wird.
Die Ausbildung von Vertiefungen innerhalb des Trägerbandes ermöglicht das schnelle Einsetzen der Chipmodule mit ihren nach oben ausgerichteten Anschlusselementen, die vor- zugsweise von zwei parallel zueinander verlaufenden bandartigen Kontaktschichten, welche zwischen den Chipmodulen Unterbrechungen aufweisen, abgedeckt sind. Da die Kontaktschichten größere Flächenausdehnungen aufweisen als das Anschlusselement des einzelnen Chipmoduls, ist eine Montage einer derartig ausgestalteten Modulbrücke auf den Anschlusselementen des Antennenelements, welche auf dem Träger, der als Antennensubstrat ausgebildet sein kann, angeordnet sind, mit größerer Ungenauigkeit möglich. Dies ergibt folglich vorteilhaft eine schnelle und einfache Montage der die Chipmodule enthaltenden Modulbrücken auf den Antennensubstraten innerhalb eines großen Arbeitsfeldes. Auch die bisher in einem kleinen Arbeitsfeld im Zusammenhang mit der Vormontage eines Chipmoduls auf einer Modulbrücke erforderliche Hochpräzisionsarbeit ist mit einem derartigen Präzisionsgrad nicht mehr notwendig, da die Chipmodule auf einfache Weise in die Vertiefungen eingelegt und mit den Kontaktschichten einfach überdeckt werden. Der einfache Aufbau der Modulbrücken erweist sich auch als vorteilhaft bei ihrer Vereinzelung aus dem Trägerband, bei der beispielsweise durch einen Längsschneidevorgang in Trägerbandlängsrichtung oder durch Durchtrennen von noch verbleibenden Halbstegen in Trägerbandquer- richtung die einzelnen Modulbrücken einfach und schnell freigelegt werden können. Wesentlich hierbei ist, dass zwischen den Chipmodulen sowohl das Trägerband, als auch die Kon- taktschicht sich in Transportbreitenrichtung erstreckende Unterbrechungen aufweisen.
Gemäß einer bevorzugten Ausführungsform sind auf den Kontaktschichten Klebstoffschichten zur klebenden Anbringung einzelner Modulbrücken auf den Trägern im Bereich der Anschlusselemente des Antennenelements angebracht. Die Klebstoffschichten bestehen vor- zugsweise aus zwei parallel zueinander in Trägerbandlängsrichtung verlaufende, bandartige Klebstoffschichten mit Unterbrechungen, die mit den Unterbrechungen innerhalb des Trägerbandes und der Kontaktschichten ortsabhängig übereinstimmen.
Alternativ können die Kontaktschichten selbstklebend ausgebildet sein. Hierfür können sie entweder aus vorpolymerisiertem Epoxidharz mit darin enthaltenden Leitpartikeln oder aus einem Heißschmelzklebstoff mit darin enthaltenden Leitpartikeln bestehen.
Die Kontaktschichten bestehen aus einer ersten sich in Trägerbandrichtung erstreckenden, bandartigen Kontaktschicht, welche die ersten Anschlusselemente erster Anschlussseiten der Chipmodule abdeckt, und aus einer zweiten sich in Trägerbandlängsrichtung erstreckenden, bandartigen Kontaktschicht, welche die zweiten Anschlusselemente zweiter Anschlussseiten der Chipmodule abdeckt. Auf diese Weise ist ein schnelles Aufbringen der parallel zueinander verlaufenden beiden Kontaktschichten während des Transports des Trägerbandes durch Bedrucken mit einer Silberpaste möglich. Hierdurch werden vergrößerte An- schlussflächen für die Chipmodule erhalten. Gemäß einer bevorzugten Ausführungsform werden die Chipmodule innerhalb der Vertiefungen mittels Klebstoff angeordnet, so dass eine dauerhafte Verbindung zwischen dem Trägerband und den Chipmodulen besteht.
Vorzugsweise weisen die Vertiefungen eine ausreichende Tiefe auf, um die Chipmodule derart darin anzuordnen, dass ihre Oberseiten und eine die Vertiefung umgebende Oberfläche des Trägerbandes in einer Ebene liegen. Somit ist sichergestellt, dass die sich sowohl über die Oberseiten der Chipmodule als auch über die Oberfläche des Trägerbandes hinweg erstreckende Kontaktschichten einstückig ohne ungewollte Unterbrechungen innerhalb einer Ebene erstrecken.
Die Vertiefungen sind komplementär zu Außenformen der darin aufzunehmenden Chipmodule geformt, um eine optimale und passgenaue Platzierung der Chipmodule innerhalb des Trägerbandes sicherzustellen. Auf diese Weise kann durch Verwendung des entsprechenden Werkzeuges das Trägerband derart verformt beziehungsweise geprägt werden, dass nahezu jede Art von Chipmodul darin positionierbar ist. Zudem findet während des Einlegens des Chipmoduls in die ausgeformte Vertiefung eine Selbstzentrierung des Chipmoduls statt. Die Vertiefungen können wahlweise unterseitig mit jeweils mindestens einem Loch versehen sein, auf welcher das Chipmodul angeordnet ist. Eine derartige Lochstanzung wirkt sich vorteilhaft bei einem für den Klebstoff notwendigen Aushärtevorgang auf, da hierdurch ein direktes Einwirken auf den Klebstoff, beispielsweise durch UV-Licht, ermöglicht wird.
Weitere vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
Vorteile und Zweckmäßigkeiten sind der nachfolgenden Beschreibung in Verbindung mit der Zeichnung zu entnehmen. Hierbei zeigen:
Fig.-en 1a — 1f sequenziell den Aufbau der erfindungsgemäßen Modulbrücken in einer Draufsicht;
Fig. 2 in einer schematischen Querschnittsansicht den Aufbau einer Modulbrücke einschließlich einem Chipmodul; und Fig. 3 in einer schematischen Draufsicht das Positionieren einer erfindungsgemäßen Modulbrücke mit Chipmodul auf Anschlusselementen eines Antennenelementes.
Die Figuren 1a - 1c zeigen jeweils in einer Draufsicht sequenziell den Aufbau der erfindungsgemäßen Modulbrücken. Ein in Fig. 1a dargestelltes Trägerband aus einem Kunststoff- und/oder Papiermaterial weist nach einer thermoplastischen Verformung, einem Prägungsvorgang und/oder Stanzvorgang hintereinander angeordnete Vertiefungen 2, die Durchgangslöcher aufweisen können, zur Aufnahme von Chipmodulen auf. Randseitig angeordnete Lochreihen 3 dienen dazu, das Trägerband 1 mittels eines hier nicht gezeigten Transportelementes innerhalb einer Vorrichtung vorwärts zu bewegen.
Zwischen den Vertiefungen 2 sind drei sich in Trägerbandbreitenrichtung erstreckende schlitzartige Unterbrechungen 4 innerhalb des Trägerbandes 1 angeordnet, die für das spätere Vereinzeln der Modulbrücken aus dem Modulbrückenverbund vorteilhaft sind.
In Fig. 1c wird gezeigt, dass Chipmodule 5 mit ersten und zweiten Anschlussseiten 5a und 5b in die Vertiefungen 2 eingesetzt sind. Zur Fixierung der Chipmodule werden diese inner- halb eines in der Vertiefung 2 angeordneten Klebstoffdepots eingesetzt, wie es in Fig. 1d durch das Bezugszeichen 6 gezeigt wird. Dieser Klebstoff ist mittels UV-Bestrahlung, Elektronenstrahl-Bestrahlung oder thermischer Bestrahlung ausgehärtet.
Wie der Fig. 1e zu entnehmen ist, ist eine sich über die erste Anschlussseite 5a der Chipmo- dule 5 erstreckende erste bandartige Kontaktschicht 7a angeordnet. Eine zweite Kontaktschicht 7b erstreckt sich parallel zu der ersten Kontaktschicht 7a ebenso bandartig über die zweite Anschlussseite der Chipmodule. Die Flächenabmessungen der Kontaktschichten 7a und 7b sind größer als die Abmessungen von Anschlusselementen der Chipmodule.
Sowohl die erste als auch die zweite Kontaktschicht 7a und 7b weisen Unterbrechungen 4 auf, die deckungsgleich mit den Unterbrechungen des Trägerbandes 1 sind. Um eine mechanische und gegebenenfalls auch zusätzliche elektrische Verbindung der Modulbrücken 10 mit Anschlusselementen eines Antennenelementes zu ermöglichen, weisen die hinterein- ander angeordneten Modulbrücken 10 zwei parallel zueinander angeordnete bandartige Klebstoffschichten 8a und 8b, wiederum mit Unterbrechungen 4, auf.
In Fig. 2 wird in einer schematischen Querschnittsdarstellung eine erfindungsgemäße Modulbrücke mit dem Chipmodul 5 gezeigt. Wie dieser Darstellung zu entnehmen ist, ist innerhalb der Vertiefung 2 des Trägerbandes 1 das Chipmodul 5 derart angeordnet, dass dessen Oberseite 5c in einer Ebene mit einer die Vertiefung 2 umgebende Oberfläche 1a des Trägerbandes 1 ist. Zusätzlich sind das Chipmodul 5 fixierende Klebstoffteile 9a und 9b angeordnet.
Die Kontaktschichten 7a und 7b erstrecken sich über die andeutungsweise dargestellten Anschlusselemente 5d und 5e des Chipmoduls 5 und die Oberfläche 1a des Trägerbandes.
Vorteilhaft kann aufgrund dieses erfindungsgemäßen Aufbaus einer Modulbrücke eine Ver- biegung der Modulbrücke durchgeführt werden, ohne dass hierdurch der Kontakt zwischen den Anschlusselementen 5d, 5e und den Kontaktschichten 7a und 7b verloren geht.
In Fig. 3 wird in einer schematischen Darstellung die Positionierung einer einzelnen Modulbrücke mit Chipmodul auf Anschlusselementen eines Antennenelementes gezeigt. Wie der Fig. 3 zu entnehmen ist, wird aus dem Modulbrückenverbund eine einzelne Modulbrücke 10 einschließlich dem Chipmodul 5 und einem Trägerbandanteil herausgeschnitten und mit den Klebstoffschichten 8a und 8b nach unten gewandt auf Anschlusselemente 11 a und 11 b der Antenne 11 aufgelegt und fixiert. Andeutungsweise wird ein Antennensubstrat 12 gezeigt.
Sämtliche in den Anmeldungsunterlagen offenbarten Bauteile und Merkmale sind sowohl einzeln als auch in Kombination als erfindungswesentlich zu betrachten.
Bezugszeichenliste
1 Trägerband
1a Oberfläche des Trägerbandes
2 Vertiefungen Lochreihen schlitzartige Unterbrechungen Chipmodulea erste Anschlussseiteb zweite Anschlussseitec Oberseite des Chipmodulsd, 5e Anschlusselemente des Chipmoduls ausgehärteter Klebstoffa erste bandartige Kontaktschichtb zweite bandartige Kontaktschichta erste bandartige Klebstoffschichtb zweite bandartige Klebstoffschichta, 9b Klebstoffanteile0 Modulbrücken1 Antennenelement 1 a, 11 b Anschlusselement des Antennenelements2 Antennensubstrat

Claims

Modulbrücken für Smart Labels Patentansprüche
1. Modulbrücken für Smart Labels zur Positionierung von Chipmodulen (5) auf Trägern (12) und zur überbrückungsartigen Verbindung von Anschlusselementen der Chipmodule (5) mit Anschlusselementen (11a, 11b) von auf oder in den Trägern (12) angeordneten Antennenelementen (11 ), dadurch gekennzeichnet, dass eine Mehrzahl von Modulbrücken (10) auf einem Trägerband (1) hintereinander angeordnet ist, wobei das Trägerband (1) eine Mehrzahl von hintereinander angeordneten Vertiefungen (2) zur Aufnahme jeweils eines einer Modulbrücke (10) zugeordne- ten Chipmoduls (5) und Kontaktschichten (7a, 7b); welche die Anschlusselemente der Chipmodule (5) überdecken, mit gegenüber den Anschlusselementenabmessun- gen vergrößerten Abmessungen aufweist.
2. Modulbrücken nach Anspruch 1 , dadurch gekennzeichnet, dass auf den Kontaktschichten (7a, 7b) Klebstoffschichten (8a, 8b) zur klebenden Anbringung einzelner Modulbrücken (10) auf den Trägern (12) im Bereich der Anschlusselemente (11a, 11b) der Antennenelemente (11) angebracht sind.
3. Modulbrücke nach Anspruch 1 , dadurch gekennzeichnet, dass die Kontaktschichten (7a, 7b) selbstklebend ausgebildet sind.
4. Modulbrücken nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass die Kontaktschichten (7a, 7b) aus einer ersten sich in Trägerbandlaufrichtung erstreckenden, bandartigen Kontaktschicht (7a), welche die ersten Anschlusselemente ers- ter Anschlussseiten (5a) der Chipmodule (5) abdeckt, und einer zweiten sich in Trägerbandlängsrichtung erstreckenden, bandartigen Kontaktschicht (7b), welche die zweiten Anschlusselemente zweiter Anschlussseiten (5b) der Chipmodule (5) abdeckt, bestehen.
5. Modulbrücken nach Anspruch 4, dadurch gekennzeichnet, dass die ersten und zweiten bandartigen Kontaktschichten (7a, 7b) sich in Trägerbandbreitenrichtung erstreckende Unterbrechungen (4) zwischen den Chipmodulen (5) aufweisen.
6. Modulbrücken nach einem der Ansprüche 2-5, dadurch gekennzeichnet, dass die Klebstoffschichten (8a, 8b) aus zwei parallel zueinander in Trägerband längsrich- tung verlaufende, bandartige Klebstoffschichten (8a, 8b) mit Unterbrechungen (4) be- stehen.
7. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Chipmodule (5) innerhalb der Vertiefungen (2) mittels Klebstoff (9a, 9b) angeord- netsind.
8. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vertiefungen (2) eine ausreichende Tiefe aufweisen, um die Chipmodule (5) der- art darin anzuordnen, dass ihre Oberseiten (5c) und eine die Vertiefungen (2) umgebende Oberfläche (1a) des Trägerbandes (1) in einer Ebene liegen.
9. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vertiefungen (2) komplementär zu Außenformen der darin aufzunehmenden Chipmodule (5) geformt sind.
10. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die Vertiefungen (2) unterseitig jeweils mindestens ein Loch aufweisen.
11. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Transportband (1) randseitig Lochreihen (3) zum Eingreifen von Transportelementen aufweist.
12. Modulbrücken nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Trägerband (1) aus einem verformbaren Kunststoff- und/oder Papiermaterial besteht.
EP04764400A 2003-08-26 2004-08-24 Modulbrücken für smart labels Withdrawn EP1658581A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10339547 2003-08-26
DE10358423A DE10358423B4 (de) 2003-08-26 2003-12-13 Modulbrücken für Smart Labels
PCT/EP2004/009420 WO2005022455A1 (de) 2003-08-26 2004-08-24 Modulbrücken für smart labels

Publications (1)

Publication Number Publication Date
EP1658581A1 true EP1658581A1 (de) 2006-05-24

Family

ID=34276521

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04764400A Withdrawn EP1658581A1 (de) 2003-08-26 2004-08-24 Modulbrücken für smart labels

Country Status (4)

Country Link
US (1) US20060289979A1 (de)
EP (1) EP1658581A1 (de)
JP (1) JP2007503634A (de)
WO (1) WO2005022455A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4855849B2 (ja) 2006-06-30 2012-01-18 富士通株式会社 Rfidタグの製造方法、およびrfidタグ
US7759777B2 (en) * 2007-04-16 2010-07-20 Infineon Technologies Ag Semiconductor module
EP2380238A1 (de) * 2008-12-17 2011-10-26 Fci Verfahren zur herstellung von kontaktlosen ic-kommunikationseinrichtungen
JP7312355B2 (ja) 2019-03-27 2023-07-21 大日本印刷株式会社 Icタグ、icタグの製造方法、及びic保持部の製造方法
FR3137194A1 (fr) * 2022-06-23 2023-12-29 Inkjet Engine Technology Bande d’étiquettes d'identification par fréquence radio (« RFID ») sans puce
DE102022003764A1 (de) * 2022-10-12 2024-04-18 Giesecke+Devrient ePayments GmbH Modulträgerband

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US125842A (en) * 1872-04-16 Improvement in paper collars and cuffs
US149486A (en) * 1874-04-07 Improvement in hanging loose pulleys
US3763404A (en) * 1968-03-01 1973-10-02 Gen Electric Semiconductor devices and manufacture thereof
US3611883A (en) * 1969-08-05 1971-10-12 Equitable Bag Co Inc Apparatus and method for making baglike containers with boxlike top
JP3241139B2 (ja) * 1993-02-04 2001-12-25 三菱電機株式会社 フィルムキャリア信号伝送線路
FR2738077B1 (fr) * 1995-08-23 1997-09-19 Schlumberger Ind Sa Micro-boitier electronique pour carte a memoire electronique et procede de realisation
US5681662A (en) * 1995-09-15 1997-10-28 Olin Corporation Copper alloy foils for flexible circuits
CA2171526C (en) * 1995-10-13 1997-11-18 Glen E. Mavity Combination article security target and printed label and method and apparatus for making and applying same
US5847929A (en) * 1996-06-28 1998-12-08 International Business Machines Corporation Attaching heat sinks directly to flip chips and ceramic chip carriers
DE19651566B4 (de) * 1996-12-11 2006-09-07 Assa Abloy Identification Technology Group Ab Chip-Modul sowie Verfahren zu dessen Herstellung und eine Chip-Karte
DE10014620A1 (de) * 2000-03-24 2001-09-27 Andreas Plettner Verfahren zur Herstellung eines Trägerbandes mit einer Vielzahl von elektrischen Einheiten, jeweils aufweisend einen Chip und Kontaktelemente
DE10120269C1 (de) * 2001-04-25 2002-07-25 Muehlbauer Ag Verfahren zum Verbinden von Mikrochips mit auf einem Trägerband angeordneten Antennen zum Herstellen eines Transponders
DE10136359C2 (de) * 2001-07-26 2003-06-12 Muehlbauer Ag Verfahren zum Verbinden von Mikrochipmodulen mit auf einem ersten Trägerband angeordneten Antennen zum Herstellen eines Transponders
FR2828570B1 (fr) * 2001-08-09 2003-10-31 Cybernetix Procede de fabrication de cartes a puce sans contact et/ou mixte
EP1479040A1 (de) * 2002-02-19 2004-11-24 Koninklijke Philips Electronics N.V. Verfahren zum herstellen von einem transponder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005022455A1 *

Also Published As

Publication number Publication date
WO2005022455A1 (de) 2005-03-10
JP2007503634A (ja) 2007-02-22
US20060289979A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
DE69634877T2 (de) Ein siliziumsubstrat mit einer ausnehmung zur aufnahme eines elements, und verfahren zur herstellung einer solchen ausnehmung
EP0484353B1 (de) Trägerelement mit wenigstens einem integrierten schaltkreis, insbesondere zum einbau in chip-karten
EP0706214A2 (de) Elektronikmodul und Chipkarte
EP0115803A2 (de) Scheibenförmige Solarzelle
EP1269410B1 (de) Verfahren zur herstellung eines trägerbandes mit einer vielzahl von elektrischen einheiten, jeweils aufweisend einen chip und kontaktelemente
EP0643366A2 (de) Elektronisches Modul für Karten und Herstellung eines solchen Moduls
EP1122685B1 (de) Chipkarte mit Sollbiegestellen
DE10145752B4 (de) Nicht-leitendes, ein Band oder einen Nutzen bildendes Substrat, auf dem eine Vielzahl von Trägerelementen ausgebildet ist
DE102017110317A1 (de) Abdeckung für ein optoelektronisches Bauelement und optoelektronisches Bauteil
DE102013202910A1 (de) Optoelektronisches Bauelement und Verfahren zu seiner Herstellung
DE19623826A1 (de) Trägerelement für Halbleiterchips sowie Verfahren zur Herstellung eines Trägerelements
EP1658581A1 (de) Modulbrücken für smart labels
DE10358423B4 (de) Modulbrücken für Smart Labels
EP3161864B1 (de) Bandförmiges substrat zur herstellung von chipträgern, elektronisches modul mit einem solchen chipträger, elektronische einrichtung mit einem solchen modul und verfahren zur herstellung eines substrates
EP2260511B1 (de) Bauelementanordnung und verfahren zur herstellung einer bauelementanordnung
EP2529398B1 (de) Verbesserung der ebenheit durch freischnitte an den prägen
EP0992065B1 (de) Folie als träger von integrierten schaltungen
DE19809073A1 (de) Chipmodul und Verfahren zur Herstellung einer Chipkarte
EP1215725A2 (de) Anordnung zur Aufnahme elektrischer Bauteile und kontaktloser Transponder
DE102004062212A1 (de) Elektronische Vorrichtung, Chipkontaktierungsverfahren und Kontaktierungsvorrichtung
DE102019114148B4 (de) Verfahren zum Herstellen einer flächigen Elektronikanordnung, Elektronikanordnung und Luftfahrzeug mit einer flächigen Elektronikanordnung
EP1224618B1 (de) Verfahren zur herstellung kontaktloser chipkarten sowie zur herstellung von elektrischen einheiten, bestehend aus chips mit kontaktelementen
EP1104910A1 (de) Chipkarte und Verfahren zu deren Herstellung
DE10210841A1 (de) Modul und Verfahren zur Herstellung von elektrischen Schaltungen und Modulen
EP1658582A1 (de) Verfahren zur herstellung von modulbrücken

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060317

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20080208