EP1658356B1 - Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter - Google Patents

Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter Download PDF

Info

Publication number
EP1658356B1
EP1658356B1 EP04734666A EP04734666A EP1658356B1 EP 1658356 B1 EP1658356 B1 EP 1658356B1 EP 04734666 A EP04734666 A EP 04734666A EP 04734666 A EP04734666 A EP 04734666A EP 1658356 B1 EP1658356 B1 EP 1658356B1
Authority
EP
European Patent Office
Prior art keywords
ether
alkoxylated
polyglycerols
diglycidyl ether
glycerol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04734666A
Other languages
English (en)
French (fr)
Other versions
EP1658356A1 (de
Inventor
Dirk Leinweber
Franz Xaver Scherl
Elisabeth Wasmund
Heidi Grundner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP1658356A1 publication Critical patent/EP1658356A1/de
Application granted granted Critical
Publication of EP1658356B1 publication Critical patent/EP1658356B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means

Definitions

  • the present invention relates to the use of alkoxylated crosslinked polyglycerols for the splitting of water-oil emulsions, in particular in crude oil production.
  • Crude oil accumulates in its promotion as an emulsion with water. Before further processing of the crude oil these crude oil emulsions must be split into the oil and water content. For this purpose, one generally uses so-called petroleum splitters. Petroleum breakers are surface-active polymeric compounds capable of effecting, within a short time, the required separation of the emulsion components.
  • alkoxylated glycerin as a demulsifying ingredient in lubricating oils has been disclosed in US 5,256,064 DD-229 006 described.
  • glycerol is reacted with alkylene oxides to either a block copolymer or a random copolymer.
  • alkoxylated di- and triglycerols as petroleum emulsion breakers has also been described ( U.S. 3,110,737 . US 2,944,982 such as U.S. 4,342,657 ).
  • Alkoxylated polyglycerols are known per se. They are described in the prior art for various applications. For example, in U.S. 5,502,219 alkoxylated polyglycerols esterified to produce a low calorie substitute for vegetable oils. In U.S. 4,061,684 For example, the alkoxylated polyglycerols were esterified and used as water-swelling gels. Alkoxylated polyglycerols reacted with alpha olefin epoxides act accordingly WO-98/03243 as a defoamer. Sulfation of alkoxylated polyglycerols leads to substances used in hair shampoos, such as U.S. 4,263,178 disclosed.
  • Alkoxylated polyglycerols have been used in DE 101 07 880 A1 disclosed as effective emulsion breakers.
  • alkoxylated crosslinked polyglycerols show excellent action as petroleum breakers even at very low dosage. In addition, they showed significantly better biological Degradability (according to OECD 306) compared to conventional commercial emulsion breakers and alkoxylated non-crosslinked polyglycerols.
  • the invention therefore relates to the use of alkoxylated polyglycerols crosslinked with multifunctional electrophilic compounds and having a molecular weight of from 1000 to 100,000 units comprising from 5 to 100 glycerol units alkoxylated with C 2 -C 4 -alkylene oxide groups or a mixture of such alkylene oxide groups such that the crosslinked, alkoxylated polyglycerol has a degree of alkoxylation of from 1 to 100 alkylene oxide units per free OH group, to cleave oil / water emulsions in amounts of 0.0001 to 5 wt .-%, based on the oil content of the emulsion to be cleaved.
  • alkoxylated crosslinked polyglycerols are obtainable from crosslinked polyglycerols having 5 to 100 glycerol units by alkoxylation of the free OH groups with a C 2 -C 4 -alkylene oxide or a mixture of such alkylene oxides in a molar excess, so that the alkoxylated crosslinked polyglycerol has the stated degree of alkoxylation.
  • the preparation of the polyglycerol is known in the art and is generally carried out by acid or alkali catalyzed condensation of glycerol.
  • the reaction temperature is generally between 150 and 300 ° C, preferably at 200 to 250 ° C.
  • the reaction is usually carried out at atmospheric pressure.
  • the catalyzing acids for example, HCl, H 2 SO 4 , sulfonic acids or H 3 PO 4 are mentioned, as bases NaOH or KOH, which are used in amounts of 0.1 to 50 wt .-%, based on the weight of the reaction mixture.
  • the condensation generally takes 3 to 10 hours.
  • Polyglycerols can be represented by formula 1.
  • n is the degree of condensation, ie the number of glycerol units. n increases with increasing reaction time and is determined by OH number.
  • the polyglycerols thus prepared are crosslinked with di- or multifunctional, electrophilic compounds. This achieves a very easily controllable increase in the molecular weight of the polyglycerols.
  • Suitable crosslinkers include di- or polyglycidyl ethers, di- or polyepoxides, di- or polycarboxylic acids, carboxylic anhydrides, di- or polyisocyanates, dialkoxydialkylsilanes, trialkoxyalkylsilanes and tetraalkoxysilanes. The crosslinking is carried out as known in the art.
  • crosslinkers are particularly preferred:
  • crosslinkers or chemically related compounds mentioned are preferably used in the range of 0.1-10, more preferably 0.5-5 and especially 1.0-2.5% by weight, based on the polyglycerol.
  • the crosslinking step is carried out after the glycerol condensation and before the alkoxylation.
  • Crosslinking after glycerol condensation and subsequent alkoxylation can According to the invention also be carried out.
  • the crosslinked polyglycerols obtained from glycerol condensation and subsequent crosslinking are then alkoxylated with one or more C 2 -C 4 -alkylene oxides, preferably ethylene oxide (EO) or propylene oxide (PO).
  • EO ethylene oxide
  • PO propylene oxide
  • the alkoxylating agent is used in molar excess.
  • the alkoxylation is carried out, as known in the art, by reacting the polyglycerols with an alkylene oxide under elevated pressure of generally 1.1 to 20 bar at temperatures of 50 to 200 ° C.
  • the alkoxylation takes place on the free OH groups of the polyglycerols. So much alkylene oxide is used that the average degree of alkoxylation is between 1 and 100 alkylene oxide units per free OH group. By medium degree of alkoxylation is meant here the average number of alkoxy units which is attached to each free OH group. It is preferably from 2 to 70, especially from 5 to 50, especially from 20 to 40.
  • the alkoxylation is carried out first with PO and then with EO.
  • the ratio of EO to PO in the alkoxylated polyglycerol is preferably between 1: 1 and 1:10.
  • the alkoxylation can also be carried out in the reverse order, first EO then PO or with a mixture of PO and EO.
  • the polyglycerol obtained after condensation, subsequent crosslinking and alkoxylation preferably has a molecular weight of from 3,000 to 50,000 units, in particular from 5,000 to 30,000 units, especially from 8,000 to 25,000.
  • (AO) k , l, m O are the alkoxylated OH radicals in which AO is a C 2 -C 4 -alkylene oxide unit and k, l, m are the degrees of alkoxylation.
  • n stands for the degree of condensation of glycerol. n is preferably a number from 5 to 50, more preferably 8 to 30, especially 10 to 20.
  • a preferred subject of the present invention is the use of the alkoxylated polyglycerols as a splitter for oil / water emulsions in petroleum production.
  • the cross-linked alkoxylated polyglycerols are added to the water-oil emulsions, preferably in solution.
  • solvents for the crosslinked alkoxylated polyglycerols paraffinic or aromatic solvents are preferred.
  • the crosslinked alkoxylated polyglycerols are used in amounts of 0.0001 to 5, preferably 0.0005 to 2, in particular 0.0008 to 1 and especially 0.001 to 0.1 wt .-% based on the oil content of the emulsion to be cleaved.
  • the crosslinked polyglycerols described above were introduced into a 1 l glass autoclave and the pressure in the autoclave was brought to about 10 bar with nitrogen. 0.2 bar overpressure set. It was slowly heated to 140 ° C and after reaching this temperature, the pressure is again set to 0.2 bar overpressure. Thereafter, the desired amount of EO (see Table 1) was added at 140 ° C, the pressure should not exceed 4.5 bar. After completion of EO addition was allowed to react for 30 minutes at 140 ° C.
  • the crosslinked polyglycerols described above were introduced into a 1 l glass autoclave and the pressure in the autoclave was adjusted to about 0.2 bar overpressure with nitrogen. It was slowly heated to 130 ° C and after reaching this temperature, the pressure is again set to 0.2 bar overpressure. Thereafter, the desired amount of PO was metered in at 130 ° C. (see Table 1), the pressure not exceeding 4.0 bar. After completion of the addition of PO was allowed to react for 30 minutes at 130 ° C.
  • the degree of alkoxylation was determined by means of 13 C-NMR.
  • emulsion breaker To determine the effectiveness of an emulsion breaker, the water separation from a crude oil emulsion per time and the drainage and desalting of the oil was determined.
  • 100 ml of the crude oil emulsion were introduced into breaker glasses (conically tapered, screwable, graduated glass bottles), in each case a defined amount of the emulsion separator was metered with a micropipette just below the surface of the oil emulsion, and the breaker was mixed into the emulsion by intensive shaking. Thereafter, the breaker glasses were placed in a tempering bath (30 ° C and 50 ° C) and followed by the separation of water.
  • samples were taken from the oil from the upper part of the splitter glass (so-called top oil) and the water content according to Karl Fischer and the salt content were determined by conductometry.

Description

  • Die vorliegende Erfindung betrifft die Verwendung alkoxylierter vernetzter Polyglycerine zur Spaltung von Wasser-Öl-Emulsionen, insbesondere in der Rohölgewinnung.
  • Rohöl fällt bei seiner Förderung als Emulsion mit Wasser an. Vor der Weiterverarbeitung des Rohöls müssen diese Rohölemulsionen in den Öl- und den Wasseranteil gespalten werden. Hierzu bedient man sich im allgemeinen sogenannter Erdölspalter. Es handelt sich bei Erdölspaltern um grenzflächenaktive polymere Verbindungen, die in der Lage sind, innerhalb kurzer Zeit die erforderliche Trennung der Emulsionsbestandteile zu bewirken.
  • Als Erdölspalter sind in US-4 321 146 Alkylenoxid-Blockcopolymere und in US-5 445 765 alkoxylierte Polyethylenimine offenbart. Diese können als einzelne Komponenten, in Mischungen mit anderen Emulsionsspaltern, oder auch als vernetzte Produkte eingesetzt werden. Vernetzungen werden beispielsweise mittels Umsetzungen von alkoxylierten niedermolekularen Alkoholen (wie z.B. Glycerin oder Pentaerythrol) oder alkoxylierten Alkylphenolformaldehydharzen mit bifunktionellen Verbindungen wie Diepoxiden oder Diisocyanaten durchgeführt. Solche vemetzten Verbindungen werden in US-5 759 409 und US-5 981 687 offenbart.
  • Die Verwendung alkoxylierten Glycerins als demulgierendem Bestandteil in Schmierölen wurde in DD-229 006 beschrieben. Hierbei wird Glycerin mit Alkylenoxiden entweder zu einem Blockcopolymer oder einem statistischen Copolymer umgesetzt.
  • Die Verwendung von alkoxylierten Di- und Triglycerinen als Erdölemulsionsspalter ist ebenfalls beschrieben worden ( US-3 110 737 , US-2 944 982 sowie US-4 342 657 ).
  • Alkoxylierte Polyglycerine sind per se bekannt. Sie sind im Stand der Technik für verschiedene Anwendungen beschrieben. Beispielsweise wurden in US-5 502 219 alkoxylierte Polyglycerine verestert, um ein kalorienarmen Ersatzstoff für Pflanzenöle herzustellen. In US-4 061 684 wurden die alkoxylierten Polyglycerine verestert und als in Wasser quellende Gele verwendet. Alkoxylierte Polyglycerine, die mit alpha-Olefinepoxiden umgesetzt wurden, wirken gemäß WO-98/03243 als Entschäumer. Durch Sulfatierung von alkoxylierten Polyglycerinen gelangt man zu Substanzen, die in Haarshampoos verwendet werden, wie in US-4 263 178 offenbart.
  • Alkoxylierte Polyglycerine wurden in DE 101 07 880 A1 als effektive Emulsionsspalter offenbart.
  • Die unterschiedlichen Eigenschaften (z.B. Asphalten-, Paraffin- und Salzgehalt, chemische Zusammensetzung der natürlichen Emulgatoren) und Wasseranteile verschiedener Rohöle machen es unabdingbar, die bereits vorhandenen Erdölspalter weiter zu entwickeln. Insbesondere steht eine niedrige Dosierrate und breite Anwendbarkeit des einzusetzenden Erdölspalters neben der anzustrebenden höheren Effektivität aus ökonomischer und ökologischer Sicht im Vordergrund. Weiterhin werden zunehmend Emulsionsspalter benötigt, die eine gute biologische Abbaubarkeit sowie eine geringe Bioakkumulation aufweisen, um die in Diskussion geratenen Produkte auf Alkylphenolbasis zu ersetzen.
  • Es ergab sich somit die Aufgabe, neue Erdölspalter entwickeln, die den bereits bekannten alkoxylierten Polyglycerinen in der Wirkung überlegen sind, in noch niedrigerer Dosierung eingesetzt werden können und eine bessere biologische Abbaubarkeit aufweisen.
  • Es stellte sich überraschenderweise heraus, dass alkoxylierte vernetzte Polyglycerine bereits bei sehr niedriger Dosierung eine ausgezeichnete Wirkung als Erdölspalter zeigen. Zudem zeigten sie deutlich bessere biologische Abbaubarkeiten (nach OECD 306) im Vergleich zu herkömmlichen kommerziellen Emulsionsspaltern sowie alkoxylierten nicht-vernetzten Polyglycerinen.
  • Gegenstand der Erfindung ist daher die Verwendung alkoxylierter, mit multifunktionalen elektrophilen Verbindungen vernetzter Polyglycerine mit einem Molekulargewicht von 1000 bis 100.000 Einheiten, welche 5 bis 100 Glycerineinheiten umfassen, die mit C2-C4-Alkylenoxidgruppen oder einer Mischung solcher Alkylenoxidgruppen alkoxyliert sind, so dass das vernetzte, alkoxylierte Polyglycerin einen Alkoxylierungsgrad von 1 bis 100 Alkylenoxideinheiten pro freier OH-Gruppe aufweist, zur Spaltung von Öl/Wasser-Emulsionen in Mengen von 0,0001 bis 5 Gew.-%, bezogen auf den Ölgehalt der zu spaltenden Emulsion.
  • Diese alkoxylierten vemetzten Polyglycerine sind aus vernetzten Polyglycerinen mit 5 bis 100 Glycerineinheiten durch Alkoxylierung der freien OH-Gruppen mit einem C2-C4-Alkylenoxid oder einer Mischung solcher Alkylenoxide im molaren Überschuss erhältlich, so dass das alkoxylierte vernetzte Polyglycerin den genannten Alkoxylierungsgrad aufweist.
  • Die Herstellung des Polyglycerins ist im Stand der Technik bekannt und erfolgt im allgemeinen durch sauer oder alkalisch katalysierte Kondensation von Glycerin. Die Reaktionstemperatur liegt im allgemeinen zwischen 150 und 300°C, vorzugsweise bei 200 bis 250°C. Die Reaktion wird normalerweise bei Atmosphärendruck durchgeführt. Als katalysierende Säuren sind beispielsweise HCl, H2SO4, Sulfonsäuren oder H3PO4 zu nennen, als Basen NaOH oder KOH, die in Mengen von 0,1 bis 50 Gew.-%, bezogen auf das Gewicht des Reaktionsgemisches verwendet werden. Die Kondensation nimmt im allgemeinen 3 bis 10 Stunden in Anspruch. Polyglycerine lassen sich durch Formel 1 darstellen.
    Figure imgb0001
  • In Formel 1 steht n für den Kondensationsgrad, also die Zahl der Glycerineinheiten. n nimmt mit zunehmender Reaktionszeit zu und wird mittels OH-Zahl bestimmt.
    Im nächsten Schritt werden die so hergestellten Polyglycerine mit di- oder multifunktionalen, elektrophilen Verbindungen vernetzt. Hierdurch wird eine sehr einfach steuerbare Erhöhung des Molekulargewichts der Polyglycerine erreicht. Als Vernetzer werden unter anderem Di- bzw. Polyglycidylether, Di- bzw. Polyepoxide, Di- bzw. Polycarbonsäuren, Carbonsäureanhydride, Di- bzw. Polyisocyanate, Dialkoxydialkylsilane, Trialkoxyalkylsilane sowie Tetraalkoxysilane verwendet. Die Vernetzung wird wie im Stand der Technik bekannt durchgeführt.
  • Folgende Vernetzer sind besonders bevorzugt:
  • Bisphenol-A-diglycidylether, Butan-1,4-dioldiglycidylether, Hexan-1,6-dioldiglycidylether, Ethylenglykoldiglycidylether, Cyclohexandimethanoldiglycidylether, Resorcindiglycidylether, Glycerindiglycidylether, Glycerintriglycidylether, Glycerinpropoxylattriglycidylether, Polyglycerinpolyglycidylether, p-Aminophenoltriglycidylether, Polypropylenglykoldiglycidylether, Pentaerythritteträglycidylether, Sorbitolpolyglycidylether, Trimethylolpropantriglycidylether, Castoröltriglycidylether, Diaminobiphenyltetraglycidylether, Sojaölepoxid, Adipinsäure, Maleinsäure, Phthalsäure, Maleinsäureanhydrid, Bernsteinsäureanhydrid, Dodecylbernsteinsäureanhydrid, Phthalsäureanhydrid, Trimellitsäureanhydrid, Pyromellitsäureanhydrid, Dimethoxydimethylsilan, Diethoxydimethylsilan, Tetraalkoxysilane, Toluoldiisoyanat, Diphenylmethandiisocyanat.
  • Die genannten Vernetzer bzw. chemisch verwandte Verbindungen werden bevorzugt im Bereich von 0,1 -10, besonders bevorzugt 0,5 - 5 und speziell 1,0 - 2;5 Gew.%, bezogen auf das Polyglycerin, eingesetzt.
  • In der Regel und besonders bevorzugt wird der Vernetzungsschritt nach der Glycerin-Kondensation und vor der Alkoxylierung durchgeführt. Eine Vernetzung nach Glycerin-Kondensation und anschließender Alkoxylierung kann erfindungsgemäß ebenfalls durchgeführt werden.
    Die aus Glycerin-Kondensation und anschließender Vernetzung erhaltenen vernetzten Polyglycerine werden anschließend mit einem oder mehreren C2-C4-Alkylenoxiden, vorzugsweise Ethylenoxid (EO) oder Propylenoxid (PO), alkoxyliert. Das Alkoxylierungsmittel wird im molaren Überschuss angewandt. Die Alkoxylierung erfolgt, wie im Stand der Technik bekannt, durch Umsetzung der Polyglycerine mit einem Alkylenoxid unter erhöhtem Druck von im allgemeinen 1,1 bis 20 bar bei Temperaturen von 50 bis 200°C. Die Alkoxylierung erfolgt an den freien OH-Gruppen der Polyglycerine. Es wird so viel Alkylenoxid eingesetzt, dass der mittlere Alkoxylierungsgrad zwischen 1 und 100 Alkylenoxideinheiten pro freier OH-Gruppe liegt. Unter mittlerem Alkoxylierungsgrad wird hier die durchschnittliche Zahl von Alkoxyeinheiten verstanden, die an jede freie OH-Gruppe angelagert wird. Er liegt vorzugsweise bei 2 bis 70, insbesondere bei 5 bis 50, speziell bei 20 bis 40.
  • Vorzugsweise wird die Alkoxylierung erst mit PO und dann mit EO durchgeführt. Das Verhältnis von EO zu PO im alkoxylierten Polyglycerin liegt vorzugsweise zwischen 1:1 und 1:10. Erfindungsgemäß kann die Alkoxylierung allerdings auch in umgekehrter Reihenfolge, erst EO dann PO oder mit einer Mischung aus PO und EO erfolgen.
  • Das nach Kondensation, anschließender Vernetzung und Alkoxylierung erhaltene Polyglycerin hat vorzugsweise ein Molekulargewicht von 3000 bis 50.000 Einheiten, insbesondere von 5000 bis 30.000 Einheiten, speziell 8000 bis 25000.
  • Die nach dem beschriebenen Verfahren hergestellten alkoxylierten vernetzten Polyglycerine werden beispielhaft für den Fall des Vernetzers Phthalsäureanhydrid durch folgende Struktur wiedergegeben (Formel 2):
    Figure imgb0002
  • (AO)k, l, mO stehen für die alkoxylierten OH-Reste, worin AO eine C2-C4-Alkylenoxideinheit und k, l, m die Alkoxylierungsgrade darstellen. n steht für den Kondensationsgrad des Glycerins. n ist vorzugsweise eine Zahl von 5 bis 50, besonders bevorzugt 8 bis 30, speziell 10 bis 20.
    Ein bevorzugter Gegenstand vorliegender Erfindung ist die Verwendung der alkoxylierten Polyglycerine als Spalter für ÖI/Wasser-Emulsionen in der Erdölförderung.
  • Zur Verwendung als Erdölspalter werden die vernetzten alkoxylierten Polyglycerine den Wasser-ÖI-Emulsionen zugesetzt, was vorzugsweise in Lösung geschieht. Als Lösungsmittel für die vemetzten alkoxylierten Polyglycerine werden paraffinische oder aromatische Lösungsmittel bevorzugt. Die vemetzten alkoxylierten Polyglycerine werden in Mengen von 0,0001 bis 5, vorzugsweise 0,0005 bis 2, insbesondere 0,0008 bis 1 und speziell 0,001 bis 0,1 Gew.-% bezogen auf den Ölgehalt der zu spaltenden Emulsion verwendet.
  • Beispiele Beispiel 1 Herstellung von Pentadecaglycerin
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Wasserauskreiser wurden 100,0 g Glycerin und 3,7 g NaOH (18 %ig) vermischt. Unter Rühren und Stickstoffspülung wurde das Reaktionsgemisch schnell auf 240°C erhitzt. Bei dieser Temperatur wurde das Reaktionswasser über 8 h abdestilliert. Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 67,3 g) und die Molmasse über GPC (M* ≈ 1100 g/mol, Standard Polyethylenglykol) analysiert. Die Kettenlänge n wurde per OH-Zahl bestimmt.
  • Beispiel 2 Vernetzung von Pentadecaglycerin mit Bisphenol-A-diglycidylether
  • In einem 500 ml Dreihalskolben mit Kontaktthermometer, Rührer und Rückflusskühler wurden 250,0 g Pentadecaglycerin unter leichter Stickstoffspülung auf 80°C aufgeheizt. Bei dieser Temperatur wurden 13,2 g Bisphenol-A-diglycidylether (80%ige Lösung in einem aromatischen Lösungsmittel) zügig zugetropft. Daraufhin wurde die Reaktionstemperatur auf 120°C erhöht und die Reaktionsmischung 8 h rühren gelassen bis mittels Titration der Epoxidzahl kein unumgesetzter Diglycidylether mehr nachgewiesen werden konnte. Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 260,0 g) und die Molmasse über GPC (M* ≈ 2600 g/mol, Standard Polyethylenglykol) analysiert.
  • Beispiel 3 Vernetzung von Pentadecaglycerin mit Dodecylbernsteinsäureanhydrid
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Wasserabscheider wurden 100,0 g Pentadecaglycerin, 1,5 g Alkylbenzolsulfonsäure und 2,7 g Dodecylbernsteinsäureanhydrid bei Raumtemperatur vorgelegt. Daraufhin wurde die Reaktionsmischung auf 165°C aufgeheizt und weitere 8 h bei dieser Temperatur rühren gelassen, bis sich im Wasserabscheider kein Reaktionswasser mehr bildete (Reaktionskontrolle: Säurezahl). Das Produkt wurde am Rotations-verdampfer zur Trockene einrotiert (Ausbeute: 102,0 g) und die Molmasse über GPC (M* ≈ 2450 g/mol, Standard Polyethylenglykol) analysiert.
  • Beispiel 4 Vernetzung von Pentadecaglycerin mit Toluol-2,4-diisocyanat
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Rückflusskühler wurden 100,0 g Pentadecaglycerin unter leichter Stickstoff-Spülung auf 60°C aufgeheizt. Daraufhin wurden bei dieser Temperatur 2,4 g Toluol-2,4-diisocyanat langsam zugetropft. Die Reaktionstemperatur wurde auf 100°C erhöht und die Reaktionsmischung weitere 8 h bei dieser Temperatur gerührt (Reaktionskontrolle: Isocyanatzahl). Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 102,2 g) und die Molmasse über GPC (M* ≈ 2380 g/mol, Standard Polyethylenglykol) analysiert.
  • Beispiel 5 Herstellung von Decaglycerin
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Wasserauskreiser wurden 100,0 g Glycerin und 3,7 g NaOH (18 %ig) vermischt. Unter Rühren und Stickstoffspülung wurde das Reaktionsgemisch schnell auf 240°C erhitzt. Bei dieser Temperatur wurde das Reaktionswasser über 5 h abdestilliert. Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 74,9 g) und über GPC (M*≈ 730 g/mol) analysiert. Die Kettenlänge n wurde per OH-Zahl bestimmt.
  • Beispiel 6 Vernetzung von Decaglycerin mit Bisphenol-A-diglycidylether
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Rückflusskühler wurden 100,0 g Decaglycerin unter leichter Stickstoffspülung auf 80°C aufgeheizt. Bei dieser Temperatur wurden 3,0 g Bisphenol-A-diglycidylether (80%ige Lösung in einem aromatischen Lösungsmittel) zügig zugetropft. Daraufhin wurde die Reaktionstemperatur auf 120°C erhöht und die Reaktionsmischung 8 h rühren gelassen bis mittels Titration der Epoxidzahl kein unumgesetzter Diglycidylether mehr nachgewiesen werden konnte. Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 102,3 g) und die Molmasse über GPC (M*≈ 1530 g/mol, Standard Polyethylenglykol) analysiert.
  • Beispiel 7 Vernetzung von Decaglycerin mit Dodecylbernsteinsäureanhydrid
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Wasserabscheider wurden 100,0 g Decaglycerin, 1,5 g Alkylbenzolsulfonsäure und 2,5 g Dodecylbernsteinsäureanhydrid bei Raumtemperatur vorgelegt. Daraufhin wurde die Reaktionsmischung auf 165°C aufgeheizt und weitere 8 h bei dieser Temperatur rühren gelassen, bis sich im Wasserabscheider kein Reaktionswasser mehr bildete (Reaktionskontrolle: Säurezahl). Das Produkt wurde am Rotations-verdampfer zur Trockene einrotiert (Ausbeute: 101.8 g) und die Molmasse über GPC (M* ≈ 1420 g/mol, Standard Polyethylenglykol) analysiert.
  • Beispiel 8 Vernetzung von Decaglycerin mit Toluol-2,4-diisocyanat
  • In einem 250 ml Dreihalskolben mit Kontaktthermometer, Rührer und Rückflusskühler wurden 100,0 g Decaglycerin unter leichter Stickstoff-Spülung auf 60°C aufgeheizt. Daraufhin wurden bei dieser Temperatur 2,4 g Toluol-2,4-diisocyanat langsam zugetropft. Die Reaktionstemperatur wurde auf 100°C erhöht und die Reaktionsmischung weitere 8 h bei dieser Temperatur gerührt (Reaktionskontrolle: Isocyanatzahl). Das Produkt wurde am Rotationsverdampfer zur Trockene einrotiert (Ausbeute: 102,1 g) und die Molmasse über GPC (M* ≈ 1650 g/mol, Standard Polyethylenglykol) analysiert.
  • Oxalkylierung der vernetzten Polyglycerine Ethylenoxid
  • Die oben beschriebenen vemetzten Polyglycerine wurden in einen 1 I-Glasautoklaven eingebracht und der Druck im Autoklaven mit Stickstoff auf ca. 0,2 bar Überdruck eingestellt. Es wurde langsam auf 140°C aufgeheizt und nach Erreichen dieser Temperatur der Druck erneut auf 0,2 bar Überdruck eingestellt. Danach wurde bei 140°C die gewünschte Menge EO (siehe Tabelle 1) zudosiert, wobei der Druck 4,5 bar nicht übersteigen sollte. Nach beendeter EO-Zugabe ließ man noch 30 Minuten bei 140°C nachreagieren.
  • Propylenoxid
  • Die oben beschriebenen vernetzten Polyglycerine wurden in einen 1 I-Glasautoklaven eingebracht und der Druck im Autoklaven mit Stickstoff auf ca. 0,2 bar Überdruck eingestellt. Es wurde langsam auf 130°C aufgeheizt und nach Erreichen dieser Temperatur der Druck erneut auf 0,2 bar Überdruck eingestellt. Danach wurde bei 130°C die gewünschte Menge PO zudosiert (siehe Tabelle 1), wobei der Druck 4,0 bar nicht übersteigen sollte. Nach beendeter PO-Zugabe ließ man noch 30 Minuten bei 130°C nachreagieren
  • Der Alkoxylierungsgrad wurde mittels 13C-NMR bestimmt.
  • Bestimmung der Spaltwirksamkeit von Erdölemulsionsspaltern
  • Zur Bestimmung der Wirksamkeit eines Emulsionsspalters wurde die Wasserabscheidung aus einer Rohölemulsion pro Zeit sowie die Entwässerung und Entsalzung des Öls bestimmt. Dazu wurden in Spaltergläser (konisch zulaufende, verschraubbare, graduierte Glasflaschen) jeweils 100 ml der Rohölemulsion eingefüllt, jeweils eine definierte Menge des Emulsionsspalters mit einer Mikropipette knapp unter die Oberfläche der Ölemulsion zudosiert und der Spalter durch intensives Schütteln in die Emulsion eingemischt. Danach wurden die Spaltergläser in ein Temperierbad (30°C und 50°C) gestellt und die Wasserabscheidung verfolgt.
  • Während und nach beendeter Emulsionsspaltung wurden Proben von dem Öl aus dem oberen Teil des Spalterglases (sog. Topöl) entnommen und der Wassergehalt nach Karl Fischer und der Salzgehalt konduktometrisch bestimmt.
  • Auf diese Weise konnten die neuen Spalter nach Wasserabscheidung sowie Entwässerung und Entsalzung des Öls beurteilt werden.
  • Spaltwirkung der beschriebenen Spalter
  • Ursprung der Rohölemulsion: Holzkirchen Sonde 3, Deutschland
    Wassergehalt der Emulsion: 46 %
    Salzgehalt der Emulsion: 5 %
    Demulgiertemperatur: 50°C
    Tabelle 1:
    Wirksamkeit von alkoxylierten vernetzten Polyglycerinen als Emulsionsspalter im Vergleich zum entsprechenden alkoxylierten unvernetzten Polyglycerin sowie Dissolvan 4738 (Dosierrate 20 ppm)
    Wasserabscheidung [ml] pro Zeit [min] 5 10 20 30 45 60 90 120 180 Wasser im Topöl [%] Salz im Topöl [ppm]
    Produkt aus 1 + 30 PO + 20 EO (Vergleich) 2 6 12 21 28 36 40 42 43 0,85 156
    Produkt aus 2 + 30 PO + 20 EO 4 10 22 30 38 43 46 46 46 0,15 35
    Produkt aus 3 + 30 PO + 20 EO 6 13 27 35 42 45 46 46 46 0,13 25
    Produkt aus 4 + 30 PO +20 EO 4 11 24 33 40 44 45 46 46 0,31 56
    Produkt aus 5 + 40 PO + 30 EO (Vergleich) 0 4 10 19 26 34 40 42 42 0,92 189
    Produkt aus 6 + 40 PO + 30 EO 3 12 25 33 40 44 46 46 46 0,11 12
    Produkt aus 7 + 40 PO + 30 EO 2 5 12 26 37 42 45 45 46 0,19 21
    Produkt aus 8 + 40 PO + 30 EO 5 14 28 35 42 43 45 46 46 0,15 19
    Standard: Dissolvan 4738 (Vergleich) 0 0 0 5 11 25 32 38 39 0,97 220
    Tabelle 2:
    Biologische Abbaubarkeit alkoxylierter vernetzter Polyglycerinen (closed bottle test nach OECD 306) im Vergleich zum entsprechenden alkoxylierten unvernetzten Polyglycerin sowie Dissolvan 4738
    Biologische Abbaubarkeit [%] nach 14 Tagen 28 Tagen
    Produkt aus 1 + 30 PO + 20 EO (Vergleich) 16,5 22,4
    Produkt aus 2 + 30 PO + 20 EO 33,5 46,1
    Produkt aus 3 + 30 PO + 20 EO 40,6 50,3
    Produkt aus 4 + 30 PO +20 EO 38,5 53,4
    Produkt aus 5 + 40 PO + 30 EO (Vergleich) 10,5 19,5
    Produkt aus 6 + 40 PO + 30 EO 42,7 63,5
    Produkt aus 7 + 40 PO + 30 EO 38,2 58,3
    Produkt aus 8 + 40 PO + 30 EO 33,5 54,7
    Standard: Dissolvan 4738 (Vergleich) 20,5 27,5
    Referenz (Natriumbenzoat) (Vergleich) 62,5 81,4

Claims (8)

  1. Verwendung alkoxylierter, mit multifunktionalen elektrophilen Verbindungen vernetzter Polyglycerine mit einem Molekulargewicht von 1000 bis 100.000 Einheiten, welche 5 bis 100 Glycerineinheiten umfassen, die mit C2-C4-Alkylenoxidgruppen oder einer Mischung solcher Alkylenoxidgruppen alkoxyliert sind, so dass das vernetzte, alkoxylierte Polyglycerin einen Alkoxylierungsgrad von 1 bis 100 Alkylenoxideinheiten pro freier OH-Gruppe aufweist, zur Spaltung von Öl/Wasser-Emulsionen in Mengen von 0,0001 bis 5 Gew.-%, bezogen auf den Ölgehalt der zu spaltenden Emulsion.
  2. Verwendung gemäß Anspruch 1, worin die Zahl der Glycerineinheiten zwischen 5 und 50 liegt.
  3. Verwendung gemäß Anspruch 1 und/oder 2, wobei die alkoxylierten vernetzten Polyglycerine ein Molekulargewicht von 3000 bis 50.000 Einheiten aufweisen.
  4. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 3, bei denen der mittlere Alkoxylierungsgrad zwischen 1 und 70 Alkylenoxideinheiten pro freier OH-Gruppe beträgt.
  5. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 4, worin das Alkylenoxid Ethylenoxid oder Propylenoxid ist.
  6. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 5, worin eine Mischalkoxylierung mit Ethylenoxid und Propylenoxid im Verhältnis von 1:2 bis 1:10 vorliegt.
  7. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 6, wobei die Vernetzung der Polyglycerine mittels Bisphenol-A-diglycidylether, Butan-1,4-dioldiglycidylether, Hexan-1,6-dioldiglycidylether, Ethylenglykoldiglycidylether, Cyclohexandimethanoldiglycidylether, Resorcindiglycidylether, Glycerindiglycidylether, Glycerintriglycidylether, Glycerinpropoxylattriglycidylether, Polyglycerinpolyglycidylether, p-Aminophenoltriglycidylether, Polypropylenglykoldiglycidylether, Pentaerythrittetraglycidylether, Sorbitolpolyglycidylether, Trimethylolpropantriglycidylether, Castoröltriglycidylether, Diaminobiphenyltetraglycidylether, Sojaölepoxid, Adipinsäure, Maleinsäure, Phthalsäure, Maleinsäureanhydrid, Bernsteinsäureanhydrid, Dodecylbernsteinsäureanhydrid, Phthalsäureanhydrid, Trimellitsäureanhydrid, Pyromellitsäureanhydrid, Dimethoxydimethylsilan, Diethoxydimethylsilan, Toluoldiisocyanat, Diphenytmethandiisocyanat erfolgt.
  8. Verwendung gemäß einem oder mehreren der Ansprüche 1 bis 7, wobei der Vernetzungsschritt nach der Alkoxylierung der Polyglycerine erfolgt.
EP04734666A 2003-06-04 2004-05-25 Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter Expired - Fee Related EP1658356B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10325198A DE10325198B4 (de) 2003-06-04 2003-06-04 Verwendung von alkoxylierten vernetzten Polyglycerinen als biologisch abbaubare Emulsionsspalter
PCT/EP2004/005587 WO2004108863A1 (de) 2003-06-04 2004-05-25 Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter

Publications (2)

Publication Number Publication Date
EP1658356A1 EP1658356A1 (de) 2006-05-24
EP1658356B1 true EP1658356B1 (de) 2007-07-18

Family

ID=33494818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04734666A Expired - Fee Related EP1658356B1 (de) 2003-06-04 2004-05-25 Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter

Country Status (5)

Country Link
US (1) US7671098B2 (de)
EP (1) EP1658356B1 (de)
DE (2) DE10325198B4 (de)
NO (1) NO336950B1 (de)
WO (1) WO2004108863A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2659450A1 (en) * 2006-08-03 2008-08-07 Dow Global Technologies Inc. New fill compositions and method for making the same
US7981979B2 (en) * 2006-09-22 2011-07-19 Nalco Company Siloxane cross-linked demulsifiers
DE102009019177A1 (de) * 2009-04-28 2010-11-11 Clariant International Ltd. Verwendung biologisch abbaubarer alkoxylierter (Meth)acrylat-Copolymere als Rohöl-Emulsionsspalter
CN102597329B (zh) 2009-07-30 2015-12-16 巴斯夫欧洲公司 包含抑制剂的无空隙亚微米结构填充用金属电镀组合物
DE102009041983A1 (de) 2009-09-17 2011-04-07 Clariant International Ltd. Alkoxylierte Trialkanolaminkondensate und deren Verwendung als Emulsionsspalter
DE102009042971A1 (de) 2009-09-24 2011-09-15 Clariant International Ltd. Alkoxylierte cyclische Diamine und deren Verwendung als Emulsionsspalter
US20110201534A1 (en) * 2010-02-12 2011-08-18 Jennifer Beth Ponder Benefit compositions comprising polyglycerol esters
US9416490B2 (en) * 2010-03-10 2016-08-16 Nalco Company Cross-linked glycerol based polymers as digestion aids for improving wood pulping processes
US20120059088A1 (en) * 2010-09-02 2012-03-08 Baker Hughes Incorporated Novel Copolymers for Use as Oilfield Demulsifiers
US20130237641A1 (en) 2010-11-17 2013-09-12 Dow Brasil Sudeste Industiral Ltda Filia Poliestireno Process using bisphenol a aminated and alkoxylated derivative as demulsifier
DE102012005377A1 (de) 2012-03-16 2013-03-14 Clariant International Ltd. Alkoxylierte Polyamidoamine und deren Verwendung als Emulsionsspalter
DE102012005279A1 (de) 2012-03-16 2013-03-14 Clariant International Limited Alkoxylierte, vernetzte Polyamidoamine und deren Verwendung als Emulsionsspalter
EP2855410B1 (de) * 2012-05-31 2016-11-23 Nalco Company Glycerolbasiertes polymer mit oberflächenaktiver chemie und herstellung davon
US9663726B2 (en) * 2014-02-10 2017-05-30 Baker Hughes Incorporated Fluid compositions and methods for using cross-linked phenolic resins
US10478498B2 (en) 2014-06-20 2019-11-19 Reform Biologics, Llc Excipient compounds for biopolymer formulations
US20160074515A1 (en) 2014-06-20 2016-03-17 Reform Biologics, Llc Viscosity-reducing excipient compounds for protein formulations
FR3048975B1 (fr) 2016-03-18 2019-11-29 Oleon Nv Desemulsifiant pour petrole
US10279048B2 (en) 2016-07-13 2019-05-07 Reform Biologics, Llc Stabilizing excipients for therapeutic protein formulations
WO2019036619A1 (en) * 2017-08-18 2019-02-21 Reform Biologics, Llc STABILIZING EXCIPIENTS FOR FORMULATIONS OF THERAPEUTIC PROTEIN
CN107519672A (zh) * 2017-10-25 2017-12-29 成都凯米拉科技有限公司 一种用于油田的水处理用破乳剂
KR20220004676A (ko) 2019-04-29 2022-01-11 에코랍 유에스에이 인코퍼레이티드 산소화 아미노페놀 화합물 및 단량체 중합 방지 방법
CA3196316A1 (en) 2020-10-21 2022-04-28 Ecolab Usa Inc. (hydroxyalkyl)aminophenol polymers and methods of use

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE229006C (de)
US2944982A (en) 1954-06-10 1960-07-12 Petrolite Corp Process for breaking petroleum emulsions employing certain oxyalkylated acyclic diglycerols
US3110737A (en) 1958-09-15 1963-11-12 Petrolite Corp Certain oxyalkylated polyols
US4061684A (en) 1976-10-29 1977-12-06 Basf Wyandotte Corporation Highly branched polyether polyols of high molecular weight
US4342657A (en) 1979-10-05 1982-08-03 Magna Corporation Method for breaking petroleum emulsions and the like using thin film spreading agents comprising a polyether polyol
US4263178A (en) 1979-11-26 1981-04-21 The Gillette Company Hair shampoo composition
US4321146A (en) 1980-05-22 1982-03-23 Texaco Inc. Demulsification of bitumen emulsions with a high molecular weight mixed alkylene oxide polyol
DE4023834A1 (de) * 1990-07-27 1992-01-30 Huels Chemische Werke Ag Demulgatoren zur spaltung von erdoelemulsionen
DE4040022A1 (de) 1990-12-14 1992-06-17 Bayer Ag Spaltung von wasser-in-oel-emulsionen
DE4104610A1 (de) 1991-02-15 1992-08-20 Basf Ag Reaktionsprodukte aus alkoxylaten und vinylischen monomeren, verfahren zu ihrer herstellung und ihre verwendung als demulgatoren fuer rohoelemulsionen
DE4136661A1 (de) 1991-11-07 1993-05-13 Basf Ag Erdoelemulsionsspalter
US5399371A (en) 1993-06-17 1995-03-21 Henkel Corporation Low calorie substitute for an edible oil
DE4418800A1 (de) * 1994-05-30 1995-12-07 Basf Ag Verfahren zur Abtrennung vom Wasser aus Rohöl und hierbei verwendete Erdölemulsionsspalter
US5667727A (en) 1995-06-26 1997-09-16 Baker Hughes Incorporated Polymer compositions for demulsifying crude oil
DE19629038A1 (de) 1996-07-19 1998-01-22 Henkel Kgaa Verwendung von mit alpha-Olefinepoxiden umgesetzten Ethylenoxid/Propylenoxid-Anlagerungsverbindungen des Glycerins oder Polyglycerins als Entschäumer
DE10107880B4 (de) 2001-02-20 2007-12-06 Clariant Produkte (Deutschland) Gmbh Alkoxylierte Polyglycerine und ihre Verwendung als Emulsionsspalter

Also Published As

Publication number Publication date
WO2004108863A1 (de) 2004-12-16
NO20056114L (no) 2005-12-21
EP1658356A1 (de) 2006-05-24
DE502004004384D1 (de) 2007-08-30
DE10325198B4 (de) 2007-10-25
US20060281931A1 (en) 2006-12-14
DE10325198A1 (de) 2005-01-13
US7671098B2 (en) 2010-03-02
NO336950B1 (no) 2015-11-30

Similar Documents

Publication Publication Date Title
EP1658356B1 (de) Alkoxylierte vernetzte polyglycerine und ihre verwendung als biologisch abbaubare emulsionsspalter
EP1646705B1 (de) Alkoxylierte dendrimere und ihre verwendung als biologisch abbaubare emulsionsspalter
DE2719978C3 (de) Erdölemulsionsspalter
EP3744753A1 (de) Verfahren zur aufreinigung von acetoxysiloxanen
EP0541018A2 (de) Erdölemulsionsspalter
EP0549918A1 (de) Erdölemulsionsspalter auf der Basis eines Alkoxilats und Verfahren zur Herstellung dieses Alkoxilats
WO2011032640A2 (de) Alkoxylierte trialkanolaminkondensate und deren verwendung als emulsionsspalter
EP2480591B1 (de) Alkoxylierte cyclische diamine und deren verwendung als emulsionsspalter
EP1363715B1 (de) Alkoxylierte polyglycerine und ihre verwendung als emulsionsspalter
EP0333141B1 (de) Verfahren zum Trennen von Erdölemulsionen vom Typ Wasser-in-Oel
DE10224275B4 (de) Emulsionsspalter
EP1904554B1 (de) Aminocarbonsäureester mit eo/po/buo-blockpolymerisaten und deren verwendung als emulsionsspalter
EP0333135B1 (de) Veresterte Glycidylether-Additionsprodukte und deren Verwendung
EP0147743B1 (de) Vernetzte oxalkylierte Polyalkylenpolymaine und ihre Verwendung als Erdölemulsionsspalter
DE10057044B4 (de) Harze aus Alkylphenolen und Glyoxalsäurederivaten, und ihre Verwendung als Emulsionsspalter
DE10057043B4 (de) Alkylphenolglyoxalharze und ihre Verwendung als Emulsionsspalter
EP0414174A2 (de) Aminfreie veresterte Glycidylether-Additionsprodukte und deren Verwendung
DE19916945C1 (de) Aromatische Aldehydharze und ihre Verwendung als Emulsionsspalter
DE102012005279A1 (de) Alkoxylierte, vernetzte Polyamidoamine und deren Verwendung als Emulsionsspalter
DD231948A3 (de) Verfahren zur chemischen entwaesserung und entsalzung von erdoelen
DE102012005377A1 (de) Alkoxylierte Polyamidoamine und deren Verwendung als Emulsionsspalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004004384

Country of ref document: DE

Date of ref document: 20070830

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071004

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080421

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140416

Year of fee payment: 11

Ref country code: IT

Payment date: 20140423

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150525

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170526

Year of fee payment: 14

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210729

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004384

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220525

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201