EP1657295A1 - Compound enthaltend ein Zinksalz und ein kristallines, schichtförmiges Silikat - Google Patents

Compound enthaltend ein Zinksalz und ein kristallines, schichtförmiges Silikat Download PDF

Info

Publication number
EP1657295A1
EP1657295A1 EP05027033A EP05027033A EP1657295A1 EP 1657295 A1 EP1657295 A1 EP 1657295A1 EP 05027033 A EP05027033 A EP 05027033A EP 05027033 A EP05027033 A EP 05027033A EP 1657295 A1 EP1657295 A1 EP 1657295A1
Authority
EP
European Patent Office
Prior art keywords
acid
preferred
water
salts
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05027033A
Other languages
English (en)
French (fr)
Other versions
EP1657295B1 (de
Inventor
Arnd Kessler
Ulrich Dr. Pegelow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1657295A1 publication Critical patent/EP1657295A1/de
Application granted granted Critical
Publication of EP1657295B1 publication Critical patent/EP1657295B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0073Anticorrosion compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2082Polycarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2086Hydroxy carboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/28Heterocyclic compounds containing nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/34Organic compounds containing sulfur
    • C11D3/3418Toluene -, xylene -, cumene -, benzene - or naphthalene sulfonates or sulfates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/18Glass; Plastics

Definitions

  • the present invention is in the field of automatic dishwashing detergents.
  • the present invention relates to automatic dishwashing detergents containing zinc salts and certain silicates.
  • the so-called lower alkaline cleaners required for automatic dishwashing frequently contain mixtures of sodium disilicate and soda as alkali carriers, builders such as citric acid, for example in conjunction with polycarboxylates, and preferably low-foaming nonionic surfactants. Furthermore, bleaching agents, bleach activators, silver and corrosion inhibitors and, to enhance the cleaning power, enzymes may be included.
  • the dishes set in baskets are cleaned by intensive contact with the aqueous detergent solution at about 65 ° C and pH values between 9 and 11 and then rinsed clear.
  • European Patent Application EP 0 383 482 (Procter & Gamble Company) describes automatic dishwashing detergents containing insoluble zinc salts which are distinguished by improved glass corrosion protection.
  • the insoluble zinc salts must have a particle size below 1.7 millimeters to achieve such an effect.
  • phosphate-containing automatic dishwashing agents which contain a powdery to granular additive which contains as essential components a crystalline layered silicate of the general formula NaMSi x O 2x + 1 ⁇ y H 2 O, wherein M represents sodium or hydrogen, x is a number from 1.9 to 22 and y is a number from 0 to 33, and have (co) polymeric polycarboxylic acid and also have excellent cleaning performance in addition to glass or decor-preserving effects.
  • an automatic dishwashing detergent additive should be provided which is suitable as a component of automatic dishwashing detergent of any kind, for example, as a component of powder, tablet, liquid formulations, cleaning foams or depot products, without restricting them by formulation.
  • Element of the third main group of the Periodic Table and / or a subgroup element, preferably iron, and D is an element of the Fifth Main Group of the Periodic Table and / or a subgroup element and further that 0 ⁇ a ⁇ 1; 0 ⁇ b ⁇ 0.5; 0 ⁇ c / x ⁇ 0.05; 0 ⁇ d / x ⁇ 0.25; 1.9 ⁇ x ⁇ 22; 0 ⁇ f ⁇ 40, characterized in that the contained zinc salt (s) and the contained crystalline layered silicate (s) with one or more further active and / or framework substance (s) formulated, in particulate form, as a compound present / present.
  • the automatic dishwashing detergent or automatic dishwashing auxiliary comprises at least one zinc salt and at least one crystalline layered silicate of the general formula (I) a A 2 O • b BO • C 2 O 3 • d D 2 O 5 • x SiO 2 • y H 2 O (I), in which A is an alkali metal and / or hydrogen, B is an alkaline earth metal and / or zinc, C is an element of the third main group of the Periodic Table and D is an element of the Fifth Main Group of the Periodic Table, and furthermore that 0 ⁇ a ⁇ 1; 0 ⁇ b ⁇ 0.5; 0 ⁇ c / x ⁇ 0.05; 0 ⁇ d / x ⁇ 0.25; 1.9 ⁇ x ⁇ 22; 0 ⁇ f ⁇ 40.
  • A is an alkali metal and / or hydrogen
  • B is an alkaline earth metal and / or zinc
  • C is an element of the third main group of the Periodic Table
  • D is an element
  • the automatic dishwashing or machine dishwashing auxiliary comprises at least one zinc salt and at least one crystalline layered silicate of the general formula (I) a A 2 O • b BO • c C 2 O 3 • d D 2 O 5 • x SiO 2 • y H 2 O (I), in which A is an alkali metal and / or hydrogen, B is an alkaline earth metal, C is an element of the third main group of the Periodic Table and D is an element of the Fifth Main Group of the Periodic Table, and further that 0 ⁇ a ⁇ 1; 0 ⁇ b ⁇ 0.5; 0 ⁇ c / x ⁇ 0.05; 0 ⁇ d / x ⁇ 0.25; 1.9 ⁇ x ⁇ 22; 0 ⁇ f ⁇ 40.
  • A is an alkali metal and / or hydrogen
  • B is an alkaline earth metal
  • C is an element of the third main group of the Periodic Table
  • D is an element of the Fifth Main Group of the Periodic Table
  • the crystalline layered silicate contains, by weight, up to 10 mol%, preferably between 0.01 and 10 mol%, preferably between 0.01 and 8 mol% and in particular between 0.01 and 5 mole% boron.
  • the crystalline, layered silicate contains up to 50 mol%, preferably between 0.01 and 50 mol%, preferably between 0.01 and 40 mol% and in particular between 0.01 and 20 Mol% phosphorus.
  • the preferred subject matter of the present application is therefore dishwasher detergents or dishwashing assistants containing at least one zinc salt and at least one crystalline layered silicate of the general formula (Ia) NaMSi x O 2x + 1 ⁇ y H 2 O (Ia), wherein M represents sodium or hydrogen, x is an integer from 1.9 to 22, preferably from 1.9 to 4, and y is a number from 0 to 33.
  • the crystalline layer-form silicates of the formula (Ia) are sold, for example, by the company Clariant GmbH (Germany) under the trade name Na-SKS, eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite), Na -SKS-2 (Na 2 Si 14 O 29 .xH 2 O, magadiite), Na-SKS-3 (Na 2 Si 8 O 17 .xH 2 O) or Na-SKS-4 (Na 2 Si 4 O 9 . xH 2 O, Makatite).
  • Na-SKS eg Na-SKS-1 (Na 2 Si 22 O 45 .xH 2 O, Kenyaite)
  • Na -SKS-2 Na 2 Si 14 O 29 .xH 2 O, magadiite
  • Na-SKS-3 Na 2 Si 8 O 17 .xH 2 O
  • Na-SKS-4 Na 2 Si 4 O 9 . xH 2 O, Makatite
  • x is 2.
  • Na-SKS-5 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-7 ⁇ -Na 2 Si 2 O 5
  • Na-SKS-9 NaHSi 2 O 5 ⁇ H 2 O
  • Na-SKS-10 NaHSi 2 O 5 ⁇ 3H 2 O, kanemite
  • Na-SKS-11 t-Na 2 Si 2 O 5
  • Na-SKS-13 Na-SKS-13 (NaHSi 2 O 5 )
  • An overview of crystalline sheet silicates can be found, for example, in the article published on pages 805-808 in "Soaps Oils-Fette-Wachse, 116 Volume, No. 20/1990".
  • preferred automatic dishwashing detergents or dishwashing assistants have a weight fraction of the crystalline layered silicate of the general formula (I) or of the general formula (Ia) of from 0.1 to 20% by weight, preferably from 0.2 to 15 Wt .-% and in particular from 0.4 to 10 wt .-%, each based on the total weight of these agents, on.
  • compositions according to the invention contain, in addition to the crystalline layered silicates mentioned, zinc salts, it being possible to use both inorganic and organic salts.
  • zinc salt solubility Zinc acetate dihydrate 430 g / l (20 ° C) zinc acetylacetonate 4 g / l (20 ° C) zinc bromide 820 g / l (25 ° C) zinc chloride 4320 g / l (25 ° C) zinc gluconate 100 g / l (20 ° C) zinc hydroxycarbonate Almost insoluble (20 ° C) zinc iodide 4500 g / l (20 ° C) Zinc nitrate hexahydrate 1843 g / l (20 ° C) Zinc nitrate tetrahydrate Slightly soluble (20 ° C) zinc oxide Insoluble zinc stearate 0.9 mg / l (20 °
  • the soluble inorganic interest salts that is, salts having a solubility in water above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and especially above 5 g / L , preferred ingredient of agents according to the invention.
  • Preferred soluble inorganic salts include zinc bromide, zinc chloride, zinc iodide, zinc nitrate and zinc sulfate.
  • Another preferred subject matter of the present application is therefore automatic dishwashing or dishwashing auxiliaries which contain at least one zinc salt selected from the group of inorganic zinc salts, preferably from the group of soluble inorganic zinc salts, in particular from the group zinc bromide, zinc chloride, zinc iodide, zinc nitrate and zinc sulfate ,
  • the spectrum of the inventively preferred zinc salts of organic acids preferably organic carboxylic acids, ranging from salts which are not soluble in water, ie a solubility below 100 mg / L, preferably below 10 mg / L, in particular have no solubility, to such salts, the in water a solubility above 100 mg / L, preferably above 500 mg / L, more preferably above 1 g / L and in particular above 5 g / L (all solubilities at 20 ° C water temperature).
  • the first group of zinc salts include, for example, zinc citrate, zinc laureate, zinc oleate, zinc oxalate, zinc tartrate, and zinc stearate.
  • the group of soluble organic zinc salts includes, for example, zinc acetate, zinc acetylacetonate, zinc benzoate, zinc formate, zinc lactate, the zinc gluconate, the zinc valerate and the zinc salt of p-toluenesulfonic acid.
  • automatic dishwasher detergents or dishwashing auxiliaries therefore comprise at least one zinc salt selected from the group of organic zinc salts, preferably from the group of soluble organic zinc salts, more preferably from the group of soluble zinc salts of monomeric or polymeric organic acids, in particular from Group zinc acetate, zinc acetylacetonate, zinc benzoate, zinc formate, zinc lactate, zinc gluconate, zinc ricinoleate, zinc abietate, zinc valerate, zinc p-toluenesulfonate.
  • group of organic zinc salts preferably from the group of soluble organic zinc salts, more preferably from the group of soluble zinc salts of monomeric or polymeric organic acids, in particular from Group zinc acetate, zinc acetylacetonate, zinc benzoate, zinc formate, zinc lactate, zinc gluconate, zinc ricinoleate, zinc abietate, zinc valerate, zinc p-toluenesulfonate.
  • compositions of the invention may also mixtures of organic and inorganic zinc salts, in particular mixtures of soluble organic zinc salts with insoluble inorganic zinc salts or mixtures of soluble organic zinc salts with soluble inorganic zinc salts or mixtures of insoluble organic zinc salts with insoluble inorganic zinc salts or mixtures of insoluble organic zinc salts with soluble inorganic zinc salts.
  • automatic dishwashing or automatic dishwashing aids in which the proportion by weight of the zinc salt relative to the total weight of this agent is 0.1 to 10% by weight, preferably 0.2 to 7% by weight and in particular 0, are preferred , 4 to 4 wt .-% and regardless of which zinc salts are used, in particular therefore irrespective of whether organic or inorganic zinc salts, soluble or non-soluble zinc salts or mixtures thereof are used.
  • compositions according to the invention are not subject to any restrictions with regard to their packaging and forms of presentation.
  • Machine dishwashing or machine dishwashing aids in the context of the present invention can therefore be provided both in solid and in liquid form.
  • active ingredients and / or active ingredient preparations in a timely manner.
  • This time-controlled release can take place through different mechanisms or, in other words, due to different "switches”.
  • these active substances are preferably added together but with a time offset to one or more further active ingredients and / or active substance preparations, such as builders (builders, cobuilders), surfactants, bleaches, bleach activators, enzymes , Dyes, fragrances, corrosion inhibitors or polymers are released.
  • the zinc salt and / or the phyllosilicate can be released into the aqueous liquor both before and after the release of these active substances.
  • the agents according to the invention are prepared, for example, as combination products of two or more substances or mixtures of substances in different preparation / physical state, then the composition according to the invention which contains the zinc salt and the layered silicate is preferably contained only in one of these agents.
  • liquids, powders, granules, compactates, extrudates, casting bodies, gels, dispersions are considered as different types of preparation / physical states.
  • the assembly of such different means to a combination product can be done for example by means of a common, preferably water-soluble packaging having one, two, three, four or more receiving chambers. Methods for producing such packages are known in the art. These methods include, for example, thermoforming, injection molding or casting. In the following, with reference to single and two-chamber packaging, some preferred combinations of differently prepared compositions are described:
  • Receiving chamber 1 Inventive agent in a powder and liquid Composition according to the invention in a powder and further powder Inventive agent in a powder and granules Inventive agent in a powder and Kompaktat Inventive agent in a powder and extrudate Inventive agent in a powder and casting Inventive agent in a powder and dimensionally stable gel Inventive agent in a melt and liquid Composition according to the invention in a melt and further powder Inventive agent in a melt and granules Inventive agent in a melt and Kompaktat Composition according to the invention in a melt and extrudate Inventive agent in a melt and casting Inventive agent in a melt and dimensionally stable gel Inventive agent in a granule and liquid Composition according to the invention in granules and further powder Inventive agent in granules and granules Inventive agent in a granule and Kompaktat Composition according to the invention in a melt and extrudate Invent
  • Water-soluble or water-dispersible packaging with two receiving chambers Receiving chamber 1 Receiving chamber 2 Composition according to the invention in a dispersion liquid Composition according to the invention in a dispersion powder Composition according to the invention in a dispersion granules Composition according to the invention in a dispersion compacted Composition according to the invention in a dispersion extrudate Composition according to the invention in a dispersion casting body Composition according to the invention in a dispersion Dimensionally stable gel Composition according to the invention in a dispersion dispersion Inventive agent in a powder liquid Inventive agent in a powder powder Inventive agent in a powder granules Inventive agent in a powder compacted Inventive agent in a powder extrudate Inventive agent in a powder casting body Inventive agent in a powder Dimensionally stable gel Inventive agent in a powder dispersion Inventive agent in a powder dispersion Inventive agent in a granule liquid Inventive agent
  • the water-soluble and / or water-dispersible film for the preparation of the water-soluble and / or water-dispersible film, in principle all substances or mixtures of substances which can be formulated in the form of a film are suitable. However, particularly preferred is a process in which the water-soluble and / or water-dispersible film of (acetalized) Polyvinylakohol, polyvinylpyrrolidone, polyethylene oxide, gelatin, starch and starch derivative (s), cellulose and cellulose derivative (s), in particular methylcellulose and / or mixtures of these substances this listing being exemplary and not limiting the invention.
  • the film (s) comprises one or more materials from the group of acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters and polyethers and mixtures thereof ,
  • Embodiments of the water-soluble films which are particularly preferred according to the invention also take account of the fact that the active substances and / or active-substance preparations contained in the receiving troughs are particularly-if not necessarily-water-soluble, preferably controllable, of the film material at a particular point in time of the washing, cleaning or Rinsing process, for example, upon reaching a certain temperature, or upon reaching a certain pH or a certain ionic strength of the wash liquor or due to other controllable events or conditions in the aqueous liquor can be fed.
  • the thickness of the water-soluble film is between 1 .mu.m and 1000 .mu.m, preferably between 5 .mu.m and 500 .mu.m and in particular between 10 .mu.m and 200 .mu.m.
  • Various film thicknesses with the aim of a delayed release of active substances and / or active substance preparations can also be realized, for example, advantageously by the multiple sealing of one or more receiving chambers by means of one or more identical or different water-soluble films.
  • the thickness of the water-soluble film in the sense of the present invention then results as the sum of the thicknesses of the water-soluble individual films sealing one receiving trough.
  • materials for the water-soluble films which-based on a certain thickness, which determines the thickness-dissolve at certain temperatures, pH values, ionic strengths, or after a certain residence time in the aqueous liquor.
  • a release process can capture the film as a whole or only a part thereof, so that parts of the film solve when setting a certain parameter combination, while other parts are not yet (but later) or not at all solved.
  • the latter can be achieved by different quality of the material as well as by different amounts of material (thickness) or different geometries of the water-insoluble container. For example, it is possible to impede the access of water by the outer shape of the water-insoluble container and thus delay the dissolution process.
  • the films may be made of materials of different water solubility, for example of polyvinyl alcohols (PVAL) with different residual acetate content.
  • PVAL polyvinyl alcohols
  • the water-soluble and / or water-dispersible film can also contain one or more washing and cleaning-active substances or consist of these substances (for example: polyvinyl alcohols as film material and builder) in addition to the ingredients mentioned.
  • washing active, cleaning active or active ingredients that are only present in small amounts in the preparations and their uniform incorporation is therefore not unproblematic, in the film or a part of the film, for example, one which is in the state of Washing, cleaning or rinsing dissolves, in which just the active ingredient is needed to be incorporated, whereby it is released when dissolving the film at the right time in the fleet.
  • An example of this may be fragrances which are desired in the final stage of the washing or cleaning or rinsing process, but also optical brighteners, UV protectants, dyes and other detergent-active, cleaning-active or rinse-active preparations.
  • a further embodiment of agents according to the invention which is likewise preferred in the context of the present application is the time-controlled release of one or more of the active substances (s) and / or active substance preparation (s) contained in these agents by the incorporation of matrix or coating materials of different solubility or melting temperature.
  • matrix or coating materials of different solubility or melting temperature.
  • differences in the release rate of active substances and / or active substance mixtures can be achieved by the use of matrix materials or coatings which have different melting temperatures.
  • the use of fusible or softenable substances as matrix or coating material for the active substances or active substance preparations is particularly preferred.
  • the term "coating” encompasses not only the coating of one or more sides or surfaces of an article, such as a solid particulate agent, but also the complete coating, ie, the coating of this particulate article, as well as the sealing of a receiving well by a meltable substance by coating such a substance on a particulate or gel-like active / active substance preparation is referred to as a coating.
  • active substances or “active substance preparations” includes both the zinc salts / sheet silicates which characterize the compositions according to the invention all others optionally included Ingredients.) According to preferred fusible substances have a melting point above 30 ° C.
  • active substance preparations are to be released at different times, for example during the various rinses of a cleaning process, this can be done, for example, by using one or different fusible matrices or coatings. If two or more different fusible matrices are used, the melting points are preferably adapted to the temperature profile of this cleaning process, the difference in the melting points being sufficient to ensure the separate dissolution of the individual matrices or coatings.
  • Such substances are preferred for the different matrices and / or coatings, which differ in their melting point by at least 5 ° C, preferably by 10 ° C, more preferably by 15 ° C and in particular by at least 20 ° C, wherein it further preferred in that the melting point of at least one of the fusible substances forming a matrix or a coating is below 30 ° C, while the melting point of at least one further substance forming a further matrix or coating is above 30 ° C.
  • this mass softenable under the influence of temperature can be mixed by mixing the desired further ingredients with this meltable or softenable substance and heating the mixture to temperatures in the softening range of this substance is processed shaping at these temperatures.
  • the softenable substances are used as coating agents, then such a coating can take place, for example, by dipping, spraying or circulating in a drum coater or coating pan.
  • waxes, paraffins, polyalkylene glycols, etc. as meltable or softenable substances for the matrices or the coatings.
  • meltable or softenable substances do not show a sharply defined melting point, as usually occurs in the case of pure, crystalline substances, but instead have a melting range which may be several degrees Celsius.
  • the meltable or softenable substances preferably have a melting range of between about 35 ° C and about 75 ° C. That is, in the present case, the melting range occurs within the specified temperature interval and does not denote the width of the melting range.
  • the width of the melting range is at least 1 ° C, preferably from about 2 to about 3 ° C.
  • Another preferred possibility for the delayed release of active substances or active substance preparations is the staggered spatial arrangement of these substances in the receiving chamber of a preferably water-soluble packaging or within a casting or compact (onion model) with the aim of a staggered release.
  • a spatially staggered arrangement is, for example, the layer or phase arrangement of the active ingredients or active substance preparations, for example, the layered tabletting or the layered pouring liquid active substances or mixtures of active ingredients and their subsequent solidification by solidification and / or crystallization are suitable. Since access of the solvent in compressed or cast moldings can take place only over their surface, this layered arrangement leads to the release of those active substances or active substance mixtures which are located on the surface of such a multiphase mixture. The phases are thus removed offset in time, the ingredients are released with a time delay.
  • a program for the automatic cleaning of dishes usually includes various cleaning cycles, the nature and number of these cleaning cycles can be determined by the consumer by means of a program selection. Examples of such cleaning cycles are the pre-wash cycle, intermediate and main washes or the rinse cycle. All these different cleaning operations require for an optimum result of the targeted dosage of appropriate active ingredients or active mixtures.
  • a controlled early or delayed release of zinc salts and / or phyllosilicates and / or other active substances may be beneficial, depending on the nature of the other active ingredients used.
  • Solid forms of the machine dishwashing detergents or dishwashing auxiliaries according to the invention are, for example, fine- to coarse-grained powders, as obtained, for example, by spray-drying or granulation, compacted mixtures of roll compacting, but also solidified melts or shaped articles obtained by extrusion or tabletting.
  • Such moldings can in the context of the present invention have virtually all useful manageable embodiments, for example, in the form of a bar, in bar or bar form, a cube, a cuboid and the like Room element with flat side surfaces and in particular cylindrical configurations with circular or oval cross-section. This last embodiment covers the presentation form of the actual tablet to compact cylinder pieces with a height-to-diameter ratio above 1.
  • Preferred tabletted or extruded means in the present invention, two or more phases, for example, by their composition, their Share of the total volume of the molding and / or can distinguish their visual appearance.
  • the phases of such multiphase moldings can additionally be distinguished by a different dissolving behavior in the aqueous phase.
  • Such moldings are suitable for the time-controlled release of certain ingredients (controlled release), for example in certain rinses of the machine wash program.
  • one of the phases of the shaped body as the main constituent has meltable or softenable substances from the group of waxes, paraffins and / or polyalkylene glycols.
  • the melted or softenable substances contained molded body or molded body component is at least largely water insoluble.
  • the solubility in water should not exceed about 10 mg / l at a temperature of about 30 ° C and preferably be below 5 mg / l.
  • meltable or softenable substances should have the lowest possible water solubility, even in water at elevated temperature, in order to avoid as much as possible a temperature-independent release of the active substances.
  • the release of the active substance takes place in this way upon reaching the melting or softening point.
  • a further preferred procedure for obtaining a controlled release of ingredients, in particular the combination of zinc salt and sheet silicate according to the invention, from multiphase tablets is the compaction of the two or more individual phases with different pressures. Since the disintegration and dissolution properties of tablets or tablet phases are known to depend inter alia on the compaction pressure exerted on the tablet phase during tabletting, tablet phases having different disintegration and dissolution properties can be prepared solely by using different compaction pressures.
  • the combination of zinc salt and layered silicate according to the invention are together in the phase which was exposed to the comparatively higher tabletting pressure and therefore decomposes later.
  • automatic dishwashing assistants are those which are added in addition to a commercial detergent, for example in the form of a special glass preservative. Such a dosage can take place both before the beginning of each rinsing program and in the form of a depot product which causes a continuous release of the agent according to the invention.
  • Preferred solid agents according to the invention are in the form of a dosing unit sufficient for a cleaning cycle.
  • An example of such Kon Stammionsformen are dishwashing (auxiliary) stoffeltabletten.
  • the agents according to the invention are in solid particulate form, but not in the form of separate metering units, the problem of segregation of individual constituents arises for these agents, and the segregation of the zinc salts and silicates contained in the agents according to the invention must be avoided.
  • Examples of such particulate forms of supply are powders or granules.
  • Preferred solid forms of the machine dishwashing detergent according to the invention contain, for example, fine to coarse-grained powders, as obtained, for example, by spray-drying or granulation.
  • Such powders can be marketed as a commercial product or used as a premix for compaction, for example for tableting, and generally have a particle size in the range from 0.1 to 10 mm.
  • it is preferred that these compounds have a particle size comparable to the powders.
  • a preferred subject matter of the present application is therefore a machine dishwashing detergent, characterized in that the particle size of the zinc salts and / or crystalline layered silicates compounded with one or more active and / or builder substances is 0.1 and 10 mm, preferably 0.2 and 8 mm and in particular 0.5 and 5 mm, wherein preferred particulate compounds to avoid segregation additionally a density of 0.1 to 2.0 g / cm 3 , preferably from 0.2 to 1.6 g / cm 3 and in particular from 0.4 to 1.2 g / cm 3 .
  • Automated dishwashing agents preferred according to the invention are characterized in particular by the particles of the zinc salts and / or crystalline layered silicates synthesized with one or more active and / or builder substances containing from 0.1 to 80% by weight of the zinc salts or crystalline layered silicates, particularly preferably from 0.2 to 70% by weight and particularly preferably from 0.5 to 60% by weight, in each case based on the total weight of the particles.
  • the abovementioned particulate compounds are obtained according to the invention preferably by spray drying and / or granulation and / or extrusion and / or roller compaction and / or tabletting and / or solidification and / or crystallization, but in particular by spray drying and / or granulation.
  • an aqueous slurry (“slurry") is prepared in a first step of the process, which may contain other thermally stable active and / or builders in addition to the zinc salts according to the invention, which neither volatilize nor decompose under the conditions of spray drying and this then transported via pumps in the spray tower and sprayed via located in the head of the tower nozzles.
  • Ascending hot air dries the slurry and evaporates the adhering water so that the detergent ingredients at the outlet of the tower are obtained as fine powders. These may, if necessary, further Tempertur labile ingredients such.
  • As bleaching agents or perfumes are admixed.
  • compositions according to the invention can be carried out not only by the spray drying described above but also by a fluidized bed process in which fine granular bulk material stored on horizontal, perforated trays, which besides the zinc salts according to the invention can contain further active and / or builder substances, from below by gases (eg hot air) is flowed through. Under certain flow conditions, this creates a state that is similar to that of a boiling liquid; the layer causes bubbles, and the particles of the bulk material are within the layer in a constant, swirling up and down movement and remain so to speak in the balance.
  • gases eg hot air
  • the large surface of the fluidized material then allows, for example, the reaction with other substances such as solvents, solutions of active and / or builders, liquid active substances or other ingredients that are present as solid at room temperature, by increasing the temperature and / or addition of very limited amounts of liquid But soften additives at least superficially and / or form an adhesive and adhesive strength under the influence of temperature.
  • Typical examples of the aforementioned substances are water and aqueous solutions, for example, aqueous solutions of zinc salts according to the invention can be used at room temperature liquid or solid surfactant compounds, especially nonionic surfactants, or polymer compounds of synthetic and / or natural origin, for example (co) -polymere carboxylates ,
  • Another preferred procedure for the granulation is the use of mixers / compressors, as they are provided for this purpose, among other providers, for example, by the company Lödige and which are particularly suitable for the production of preformed particles according to the invention, as by the user Variation of different process parameters such as the number of revolutions of the mixer, the residence time of the individual components, the dosing of individual components during the mixing process, the geometry of the mixing elements used or the energy input offer the possibility of targeted control of the product properties of the resulting granules.
  • the grain size and / or density of granules can be influenced in this way, and the assembly of zinc salts according to the invention with one or more further active and / or builder substance (s) in the aforementioned mixers / compressors is therefore within the scope of the present invention particularly preferred.
  • Preferred in the context of the present invention are therefore mixtures of silicates and / or zinc salts with further active and / or builders, characterized in that the bulk densities of the individual components mixed with one another by a maximum of 200 g / l, preferably by a maximum of 150 g / l, preferably differ by a maximum of 100 g / l and in particular by a maximum of 50 g / l.
  • the scaffolding and / or active substances which can be used in the above-described formulation of preferred automatic dishwashing compositions according to the invention include, among other conventional ingredients of detergents, for example builders, co-builders, surfactants, bleaches, bleach activators, enzymes, dyes, fragrances, corrosion inhibitors or polymers.
  • the one or more active and / or builder substances are formulated Zinc salt compounds, active substances and / or builders from the group of phosphates, carbonates, bicarbonates, sulfates, silicates, citrates, citric acid, acetates, preferably in amounts of from 20 to 99% by weight, particularly preferably from 30 to 98% by weight and particularly preferably from 40 to 95 wt .-%, each based on the total weight of the particles.
  • active and / or builder substances which are particularly preferred for the preparation of the zinc salts in the context of the present invention are the surfactants, preferably the nonionic surfactants, and / or the polymeric carboxylates, in particular the polysulfocarboxylates.
  • silicates present in the machine dishwashing detergents or dishwashing auxiliaries according to the invention are also preferably packaged with other active ingredients or builders in these compositions, in which case active or builder substances from the group of organic monocarboxylic or polycarboxylic acids, hydroxypolycarboxylic acids and phosphonic acids are used ,
  • a further preferred subject matter of the present application is therefore dishwasher detergents or automatic dishwashing assistants, characterized in that the crystalline layered silicate (s) of the general formula (I) or of the general formula (Ia) has a or more further active and / or builder substance (s), preferably with one or more further active and / or builder substances from the group of the organic monocarboxylic or polycarboxylic acids, hydroxypolycarboxylic acids and phosphonic acids, in particulate form, as compound available.
  • the particulate present, with one or more active and / or builders formulated zinc salts and / or crystalline layered silicates may be provided to protect environmental influences and thus to improve their storage stability or to influence the dissolution behavior with a coating (coating).
  • Coating materials and methods for coating particulate agents are widely described in the literature and will be explained below only with respect to particularly preferred embodiments.
  • fusible or softenable substances are particularly preferred.
  • coating means in the context of the present invention, in addition to the coating of single or multiple sides or surfaces of a particulate, inventively prepared agent also a complete coating, so the envelope of this particulate article.
  • fusible substances have a melting point above 30 ° C on.
  • the ready-made zinc salts and / or crystalline layered silicates are to be released at different times, for example during the various rinses of a cleaning process, this can be done, for example, by the use of different fusible coatings which differ in their melting point, the melting points of these substances preferably being on the Adjusted temperature course of this cleaning process and the difference of the melting points is sufficient to ensure the separate dissolution of the individual matrices or coatings. If, for example, it is envisaged to release zinc salts and crystalline layer-form silicates at separate times, then such substances are preferred for the different coatings which, with respect to their melting point, are at least 5 ° C., preferably around 10 ° C., more preferably around 15 ° C.
  • the melting point of at least one of the fusible substances forming a coating is below 30 ° C, while the melting point of at least one further substance forming another matrix or coating, above 30 ° C is.
  • Such coatings can be applied, for example, by dipping, spraying or tumbling in a drum coater or coating pan. Particular preference is given to using waxes, paraffins, polyalkylene glycols, etc., as the meltable or softenable substances for the coatings.
  • meltable or softenable substances do not show a sharply defined melting point, as usually occurs in the case of pure, crystalline substances, but instead have a melting range which may be several degrees Celsius.
  • the meltable or softenable substances preferably have a melting range of between about 45 ° C and about 75 ° C. That is, in the present case, that the melting range occurs within the specified temperature interval and does not indicate the width of the melting range.
  • the width of the melting range is at least 1 ° C, preferably from about 2 to about 3 ° C.
  • waxes are understood to mean a series of naturally or artificially produced substances which generally melt above 40 ° C. without decomposition and are already relatively low-viscosity and non-stringy just above the melting point. They have a strong temperature-dependent consistency and solubility.
  • the waxes are divided into three groups, the natural waxes, chemically modified waxes and the synthetic waxes.
  • the natural waxes include, for example, vegetable waxes such as candelilla wax, carnauba wax, Japan wax, Espartograswachs, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax, or montan wax, animal waxes such as beeswax, shellac wax, spermaceti, lanolin (wool wax), or crepe fat, mineral waxes such as ceresin or ozokerite (groundwax), or petrochemical waxes such as petrolatum, paraffin waxes or microwaxes.
  • vegetable waxes such as candelilla wax, carnauba wax, Japan wax, Espartograswachs, cork wax, guaruma wax, rice germ oil wax, sugarcane wax, ouricury wax, or montan wax
  • animal waxes such as beeswax, shellac wax, spermaceti, lanolin (wool wax), or crepe
  • the chemically modified waxes include, for example, hard waxes such as montan ester waxes, Sassol waxes or hydrogenated jojoba waxes.
  • Synthetic waxes are generally understood as meaning polyalkylene waxes or polyalkylene glycol waxes. It is also possible to use as meltable or softenable substances for the compositions which cure by cooling, and compounds from other substance classes which meet the stated requirements with regard to the softening point. Suitable synthetic compounds have, for example, higher esters of phthalic acid, in particular dicyclohexyl phthalate, which is commercially available under the name Unimoll® 66 (Bayer AG), proved. Also suitable are synthetically produced waxes from lower carboxylic acids and fatty alcohols, for example dimyristyl tartrate, which is available under the name Cosmacol® ETLP (Condea).
  • esters of lower alcohols can be used with fatty acids from natural sources.
  • This class of substances includes, for example, Tegin® 90 (Goldschmidt), a glycerol monostearate palmitate.
  • Shellac for example shellac KPS three-ring SP (Kalkhoff GmbH) can also be used as meltable or softenable substances.
  • Wax alcohols are higher molecular weight, water-insoluble Fatty alcohols with usually about 22 to 40 carbon atoms.
  • the wax alcohols are, for example, in the form of wax esters of higher molecular weight fatty acids (wax acids) as the main constituent of many natural waxes.
  • wax alcohols are lignoceryl alcohol (1-tetracosanol), cetyl alcohol, myristyl alcohol or melissyl alcohol.
  • the coating of the prepared zinc salts or crystalline layered silicates may optionally also contain wool wax alcohols, which are understood to mean triterpenoid and steroid alcohols, for example lanolin, which is obtainable, for example, under the trade name Argowax® (Pamentier & Co).
  • wool wax alcohols which are understood to mean triterpenoid and steroid alcohols, for example lanolin, which is obtainable, for example, under the trade name Argowax® (Pamentier & Co).
  • fatty acid glycerol esters or fatty acid alkanolamides but optionally also water-insoluble or only slightly water-soluble polyalkylene glycol compounds may likewise be used as part of the meltable or softenable substances.
  • meltable or softenable substances are those from the group of polyethylene glycols (PEG) and / or polypropylene glycols (PPG) contains, with polyethylene glycols having molecular weights between 1500 and 36,000 are preferred, those with molecular weights from 2000 to 6000 particularly preferred and those with molecular weights of 3000 to 5000 are particularly preferred. Also, corresponding processes, which are characterized in that the plastically deformable mass (s) at least one substance from the group of polyethylene glycols (PEG) and / or polypropylene glycols (PPG) contains / are preferred.
  • Coating agents which contain propylene glycols (PPG) and / or polyethylene glycols (PEG) as sole meltable or softenable substances are preferred here.
  • Polypropylene glycols which can be used according to the invention are polymers of propylene glycol which have the following general formula satisfy, where n can take values between 10 and 2000.
  • Preferred PPG have molecular weights between 1000 and 10,000, corresponding to values of n between 17 and about 170.
  • Polyethylene glycols which can preferably be used according to the invention are polymers of ethylene glycol, those of the general formula H- (O-CH 2 -CH 2 ) n -OH satisfy, where n can take values between 20 and about 1000.
  • the abovementioned preferred molecular weight ranges correspond to preferred ranges of the value n in formula IV of about 30 to about 820 (exactly: from 34 to 818), more preferably from about 40 to about 150 (exactly: from 45 to 136). and especially from about 70 to about 120 (exactly: from 68 to 113).
  • the coating materials contain paraffin wax.
  • paraffin waxes have the advantage over the other natural waxes mentioned that no hydrolysis of the waxes takes place in an alkaline detergent environment (as is to be expected, for example, in the case of wax esters), since paraffin wax contains no hydrolyzable groups.
  • Paraffin waxes consist mainly of alkanes, as well as low levels of iso- and cycloalkanes.
  • the paraffin to be used according to the invention preferably has substantially no constituents with a melting point of more than 70 ° C., more preferably of more than 60 ° C. Shares of high-melting alkanes in the paraffin can fall below this melting temperature in the detergent leaving unwanted wax residue on the surfaces to be cleaned or the property to be cleaned. Such wax residues usually lead to an unsightly appearance of the cleaned surface and should therefore be avoided.
  • melt or softenable substances to be processed contain at least one paraffin wax with a melting range of 50 ° C to 60 ° C, preferred coating materials being characterized in that they contain a paraffin wax having a melting range of 50 ° C to 55 ° C.
  • the content of the paraffin wax used at ambient temperature (usually about 10 to about 30 ° C) solid alkanes, isoalkanes and cycloalkanes as high as possible.
  • the more solid wax constituents in a wax at room temperature the more useful it is within the scope of the present invention.
  • the proportion of solid wax constituents increases, the end-of-processability of the process end products increases against impacts or friction on other surfaces, resulting in longer-lasting protection.
  • High levels of oils or liquid wax components can weaken the coating, opening pores and exposing the active ingredients to environmental conditions.
  • the meltable or softenable substances may contain, in addition to paraffin as the main constituent, one or more of the abovementioned waxes or waxy substances.
  • the mixture forming the meltable or softenable substances should be such that the composition and the coating formed therefrom are at least substantially insoluble in water.
  • the solubility in water should not exceed about 10 mg / l at a temperature of about 30 ° C and preferably be below 5 mg / l.
  • meltable or softenable substances should have the lowest possible water solubility, even in water at elevated temperature, in order to avoid as much as possible a temperature-independent release of the active substances.
  • Preferred coating materials to be processed according to the invention are characterized in that they contain, as meltable or softenable substances, one or more substances having a melting range from 40 ° C. to 75 ° C. in amounts of from 6 to 30% by weight, preferably from 7.5 to 25 Wt .-% and in particular from 10 to 20 wt .-%, each based on the weight of the coating material.
  • the dissolution behavior of the zinc salt or silicate compounds can also be influenced by the abovementioned compaction methods.
  • aids such as binders
  • compacted silicates, in particular disilicates, and / or polycarboxylates and / or mixtures of various polycarboxylates are suitable as "depot substances" for the zinc salts or crystalline layered form due to their delayed solution / dispersion or due to gelling of these substances or substance mixtures in aqueous liquor silicates.
  • polymer matrices are particularly preferred form of compounding machine dishwashing or automatic dishwashing auxiliaries according to the present invention.
  • Such polymer matrices are universally applicable in various programs, are characterized by a simple and cost-effective method of preparation and may contain varying amounts of active agent.
  • the preferred subject matter of the present application is therefore furthermore dishwasher detergents or dishwashing auxiliaries in which the zinc salt (s) and / or the crystalline layered silicate (s) are packaged in a polymer matrix.
  • the active ingredient-containing polymer matrices can be produced cheaply and in a high variety of forms.
  • the composition of the present invention can even be formulated as a package of automatic dishwashing detergents or as a basket into which the compositions are incorporated. It is also possible to combine both types of incorporation by, for example, a carrier basket of water-insoluble, active ingredient-containing polymer matrix containing a polymer body of water-soluble, active ingredient-containing polymer matrix.
  • Such products can release different levels of active agents from the various matrices at different times, resulting in an optimal concentration of active ingredient at each point in the cleansing program.
  • both the zinc salt and the silicates are packaged in a polymer matrix
  • this preparation can be carried out in the same polymer matrix as well as in different matrices in preferred embodiments of the present invention, ie the zinc salt can be converted, for example, into polymer A pre-assembled, while the silicate was formulated in a polymer B.
  • zinc salt and silicate can also be formulated by means of the same polymer, but in separate matrices.
  • compositions of the invention can therefore be realized both with water-insoluble and with water-soluble polymers or mixtures thereof.
  • Preferred automatic dishwashing or machine dishwashing aids are characterized in that the polymer matrix comprises one or more water-soluble polymer (s).
  • the polymer matrices according to the invention can be formulated universally. For example, it is possible to provide pre-softeners, pre-rinsing agents, cleaning agents for the main rinse or rinse aid according to the invention.
  • compositions according to the invention may also be combination products which combine two or more of the aforementioned agents.
  • the formulation of inventive compositions as an addition product, which is hung for example in the dishwasher is easily possible.
  • the active ingredient-containing polymer matrix can be particulate incorporated into the compositions of the invention, but it can also be a compact molded body, for example, either a core which fills a trough of a detergent tablet, or a shaped product, which as an addition product equal to a deodorant hanger in the dishwasher is introduced.
  • baskets which are suitable for receiving detergent tablets can be prepared from the active ingredient-containing polymer matrix.
  • the active ingredient-containing polymer matrix can also be used as a packaging for automatic dishwasher detergents. This is especially true for completely water-soluble active substance-containing polymer matrices attractive, since the consumer does not have to unpack the product, the direct contact with the product, which is perceived as undesirable, avoids and other packaging materials are saved.
  • the polymer matrix of the agents preferred according to the invention comprises from 5 to 99.5% by weight of one or more polymers.
  • polymers in the context of the following application, based on the IUPAC definition, denotes substances which are composed of a collective of chemically uniformly structured, but generally differing in terms of degree of polymerization, molecular weight and chain length macromolecules.
  • a polymer is "a substance composed of a plurality of molecules in which one kind or more kinds of atoms or atomic groups" so-called constitutive units, basic units or repeating units repeats
  • the different sized macromolecules of a polymer are composed of so many identical or similar low molecular weight building blocks (monomers) that the physical properties of the substance, especially the viscoelasticity, do not appreciably change with a slight increase or decrease in the number of building blocks
  • the size of the macromolecules implies that the end groups have relatively little effect on the properties of the polymers, so that their explicit specification in the structural formulas given below is usually dispensed with.
  • the matrix-forming polymers of the compositions according to the invention may be of natural or synthetic origin.
  • Preferred agents according to the invention are characterized in that the polymer matrix from 7.5 to 95 wt .-%, preferably 10 to 90 wt .-%, particularly preferably 12.5 to 85 wt .-%, more preferably 15 to 82.5 wt .-% and in particular 20 to 80 wt .-% of one or more polymers, wherein the weights are based on the active ingredient-containing polymer matrix.
  • the average molar mass of the polymers contained in the preferred agents according to the invention is preferably at least 5000 g / mol, particularly preferably at least 10,000 g / mol and in particular at least 12,000 g / mol.
  • the agents preferred according to the invention may contain both water-insoluble and water-soluble polymers and mixtures of these polymers.
  • the polymer matrix comprises one or more water-insoluble polymers from the group polyethylene, polypropylene, polytetrafluoroethylene, polystyrene, polyethylene terephthalate, polycarbonate, polyvinyl chloride, polyurethanes, polyamides and mixtures thereof.
  • the active substance-containing polymer matrix has, in addition to the polymer (s), a content of at least one zinc salt and / or at least one crystalline layered silicate of the general formula (I) or the general formula (Ia) which can be released from the matrix.
  • Agents preferred according to the invention are characterized in that they comprise at least one zinc salt and at least one crystalline layered silicate of the general formula (I) or of the general formula (Ia), the sum of the proportions by weight of these constituents being from 1 to 90% by weight, preferably 1.5 to 80 wt .-%, particularly preferably 2 to 70 wt .-%, more preferably 2.5 to 60 wt .-% and in particular 3 to 50 wt .-%, each based on the total weight of the active ingredient-containing polymer matrix is.
  • the automatic dishwasher detergents or automatic dishwashing auxiliaries according to the invention can contain the active ingredient-containing polymer matrix in different amounts.
  • the proportions of the active ingredient-containing polymer matrix can vary in the overall composition.
  • Preferred compositions according to the invention are those which, based on the total mass of the composition, are 1 to 40% by weight, preferably 1.5 to 35% by weight, more preferably 2 to 30% by weight and in particular 2.5 to 20 Wt .-% of the active ingredient-containing polymer matrix included.
  • Particularly preferred polymer matrices contain at least one zinc salt in such amounts that the composition comprises zinc in oxidized form in proportions by weight of from 0.01 to 1% by weight, preferably from 0.02 to 0.5% by weight and in particular from 0.04 to 0.2 wt .-%, each based on the total weight of the polymer matrix contains.
  • compositions according to the invention do not entail any restriction with regard to the forms of preparation or the formulations of these compositions.
  • pre-soaking or pre-rinsing products, rinse aid, machine care or additional products can be provided as a composition according to the invention.
  • a preferred embodiment of the composition of the invention provides that the polymer matrix is provided as a separate part to be introduced into the dishwasher, which releases the agents from the polymer matrix over several rinse cycles.
  • This molding can either be a Dosierkörbchen for other products, such as the cleaner, but it can also embody the added benefit of glass preservation as a separate and independent molding.
  • Possible shapes are based, for example, on the known dishwasher Dodorantien.
  • Visually attractive is the design of the plastic part in translucent, opalescent or completely clear form, for example in the form of a stylized diamond.
  • the active ingredient-containing polymer matrices can be easily converted by conventional methods.
  • the shaping processing takes place according to the usual in the plastics processing industry process, in particular, the film production and processing, blow molding and injection molding are preferred. All methods have in common that a plastic granules are melted by means of an extruder and fed to forming tools. In this case, the plastic granules may already contain the agents for glass corrosion inhibition, but these can also be added during the melting in the extruder, which allows a particularly cost-effective production of the inventively preferred active ingredient-containing polymer matrices.
  • the automatic dishwasher detergents or automatic dishwashing auxiliaries according to the invention are packaged in a manner which makes it possible to selectively apply and meter the active substances contained in these agents.
  • pen-shaped offer form similar to a glue stick, do not change their spatial-geometric shape during storage and transport, but these, the offer form is moved under the influence of pressure over a surface, in their contact area loses with the surface due to the shear forces occurring there.
  • the agent is smeared as a result of the shearing forces acting on the surface and remains there after the end of the action of the shear forces in its new spatial-geometric shape, so in turn is dimensionally stable.
  • Penetration number in the context of the present invention is the numerical value which results when determining the hardness of the agents according to the invention by means of a texture analyzer, model TA-XT2-I from Stable Micro Systems. To perform this measurement, the following test parameters are set: TA Fashion: Mass force in compression direction TA option: Simple test Trigger Value 0.2 g PPS 200
  • the penetration rate is determined by pressing a specific measuring tool (TA-15 45 ° cone made of stainless steel) at a defined feed rate (0.5 mm / s) to a defined penetration depth (5.0 mm) into the test material and then with a defined speed (0.2 mm / s) is pulled out of this material.
  • the tested test materials had a temperature of 23 ° C, the measurements were carried out at 20 ° C room temperature. Based on the test setup described above, the measuring instrument determined a numerical value in units of grams [g]. This numerical value is referred to in the context of the present application as a penetration number.
  • the preferred dimensionally stable automatic dishwashing or machine dishwashing auxiliary penetration numbers of 200 to 1000 g, preferably from 250 to 900 g, more preferably from 300 to 800 g and in particular from 350 to 700 g.
  • Another preferred subject of the present invention are therefore automatic dishwashing detergents or dishwashing auxiliaries according to the invention which are dimensionally stable and have a penetration number of from 200 to 1000 g, preferably from 250 to 900 g, more preferably from 300 to 800 g and in particular from 350 to 700 g.
  • dimensionally stable in the context of the present invention denotes automatic dishwashing detergents or dishwashing auxiliaries which have an intrinsic dimensional stability which enables them, under normal conditions of manufacture, storage, transport and handling by the consumer, to be stable against breakage, to have non-disintegrating spatial form, which does not change even under the conditions mentioned for a long time, that is under the usual conditions of manufacture, storage, transport and handling by the consumer persists in the caused by the production spatial-geometric shape that is, for example, does not melt.
  • the penetration number of 200 to 1000 g which is characteristic for preferred agents according to the invention, can not be realized in their pure form by active substances such as zinc salts or layered silicates. It is therefore necessary to provide a carrier material or matrix material for these active substances, which corresponds to the stated physical requirements for an agent according to the invention.
  • a carrier material or matrix material for these active substances, which corresponds to the stated physical requirements for an agent according to the invention.
  • such a matrix should be compatible with active agents contained in it, ie in particular should not react with them, but stabilize them.
  • the carrier materials should not jeopardize the intended cleaning process, ie they should also be compatible with all other substances used during the cleaning and / or maintenance process.
  • the matrix material should preferably be water-soluble or water-dispersible in order to prevent the occurrence of residues to avoid after the application of the agent according to the invention.
  • preferably dimensionally stable dishwashing detergents or dishwashing auxiliaries are characterized in that they contain polyvinylpyrrolidone (s) and / or polyvinyl alcohol (s) and / or polyvinyl acetate (s) and / or polyacrylate (s) and / or Polyalkylene glycol (s) and / or fat (s) and / or fatty acid (s) and / or fatty acid esters and / or fatty acid amide (s) and / or fatty alcohols and / or wax (s) and / or parrafin (s) and / or Wax alcohols and / or surfactant (s), preferably nonionic (s) surfactant (s), and / or dextrin (s) and / or starch ethers, wherein the proportion by weight of this component / these components in the total weight of dimensionally stable machine dishwashing and / or Dishwashing auxiliary
  • Automatic dishwashing detergents or automatic dishwashing auxiliaries according to the invention can also be formulated in the form of liquid or flowable agents, in addition to the solid or dimensionally stable forms described.
  • the automatic dishwashing or machine dishwashing aids therefore have a viscosity of from 500 to 500,000 mPas, preferably from 900 to 200,000 mPas and in particular from 1300 to 100,000 mPas.
  • the viscosity of the compositions according to the invention is measured by conventional standard methods (for example Brookfield LVT-II viscosimeter at 20 rpm and 20 ° C., spindle 3).
  • the term "liquid or flowable agents" will be used hereafter for agents which have a viscosity of from 500 to 500,000 mPas, preferably from 900 to 200,000 mPas and especially from 1300 to 100,000 mPas.
  • such preferred liquid or flowable compositions of the invention contain one or more non-aqueous solvents.
  • non-aqueous solvents are derived, for example, from the groups of monoalcohols, diols, triols or polyols, ethers, esters and / or amides.
  • nonaqueous solvents which are water-soluble, "water-soluble" solvents in the sense of the present application being solvents which are completely miscible with water at room temperature, ie without a miscibility gap.
  • Suitable nonaqueous solvents are preferably from the group of monohydric or polyhydric alcohols, alkanolamines or glycol ethers, provided that they are miscible with water in the given concentration range.
  • the solvents are selected from ethanol, n- or i-propanol, butanols, glycol, propane or butanediol, glycerol, diglycol, propyl or butyldiglycol, hexylene glycol, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol propyl ether, etheylene glycol mono-n-butyl ether, diethylene glycol methyl ether , Diethylene glycol ethyl ether, propylene glycol methyl, ethyl or propyl ether, dipropylene glycol methyl or ethyl ether, methoxy, ethoxy or butoxy triglycol, 1-butoxyethoxy
  • Nonionic surfactants which are liquid at room temperature are also preferred nonaqueous solvents in the context of the application.
  • a liquid or free-flowing machine dishwashing detergent or machine dishwashing auxiliary which is particularly preferred in the context of the present invention is characterized in that it contains nonaqueous solvents, the solvent (s) preferably being selected from the group of polyethylene glycols and polypropylene glycols, glycerol, glycerol carbonate , Triacetin, ethylene glycol, propylene glycol, propylene carbonate, hexylene glycol, ethanol, and n-propanol and / or iso-propanol.
  • the solvent (s) preferably being selected from the group of polyethylene glycols and polypropylene glycols, glycerol, glycerol carbonate , Triacetin, ethylene glycol, propylene glycol, propylene carbonate, hexylene glycol, ethanol, and n-propanol and / or iso-propanol.
  • Polyethylene glycols which can preferably be used according to the invention are liquid at room temperature.
  • PEG are polymers of ethylene glycol which are of the general formula (II) H- (O-CH 2 -CH 2 ) n -OH (II) n, where n can assume values between 1 (ethylene glycol, see below) and about 16.
  • n can assume values between 1 (ethylene glycol, see below) and about 16.
  • polyethylene glycols for example, under the trade name Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HUBS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone -Poulenc), Lutrol® E300 (BASF) and the corresponding trade name with higher numbers.
  • Glycerin is a colorless, clear, heavy-bodied, odorless sweet-tasting hygroscopic liquid of density 1.261 that solidifies at 18.2 ° C.
  • Glycerol was originally a by-product of fat saponification but is now technically synthesized in large quantities. Most technical processes are based on propene, which is processed into glycerol via the intermediates allyl chloride, epichlorohydrin. Another technical process is the hydroxylation of allyl alcohol with hydrogen peroxide at the WO 3 contact via the step of the glycide.
  • Glycerol carbonate is accessible by transesterification of ethylene carbonate or dimethyl carbonate with glycerol, as by-products of ethylene glycol or methanol incurred. Another synthetic route is based on glycidol (2,3-epoxy-1-propanol), which is converted under pressure in the presence of catalysts with CO 2 to glycerol carbonate. Glycerine carbonate is a clear, easily agitated liquid with a density of 1.398 gcm -3 , which boils at 125-130 ° C (0.15 mbar).
  • Ethylene Glycol (1,2-Ethanediol, "Glycol”) is a colorless, viscous, sweet-tasting, highly hygroscopic liquid that is miscible with water, alcohols and acetone and has a density of 1.113.
  • the solidification point of ethylene glycol is -11.5 ° C, the liquid boils at 198 ° C.
  • ethylene glycol is recovered from ethylene oxide by heating with water under pressure. Promising manufacturing processes can also be built on the acetoxylation of ethylene and subsequent hydrolysis or on synthesis gas reactions.
  • 1,3-Propanediol trimethylene glycol
  • 1,0597 a neutral, colorless and odorless, sweet-tasting liquid of density 1,0597, which solidifies at -32 ° C and boils at 214 ° C.
  • the preparation of 1,3-propanediol succeeds from acrolein and water with subsequent catalytic hydrogenation.
  • 1,2-propanediol (propylene glycol), which is an oily, colorless, almost odorless liquid, density 1.0381, which solidifies at -60 ° C and boils at 188 ° C.
  • 1,2-Propanediol is prepared from propylene oxide by water addition.
  • Propylene carbonate is a water-bright, easily mobile liquid, with a density of 1.21 gcm -3 , the melting point is -49 ° C, the boiling point at 242 ° C. Also propylene carbonate is industrially accessible by reaction of propylene oxide and CO 2 at 200 ° C and 80 bar.
  • the nonaqueous solvent (s) is / are in amounts of from 0.1 to 70% by weight, preferably from 0.5 to 60% by weight, more preferably from 1 to 50 wt .-%, most preferably from 2 to 40 wt .-% and in particular from 2.5 to 30 wt .-%, each based on the total agent included.
  • non-aqueous is to be understood as meaning a state in which the content of free water in the agents is significantly below 5% by weight, based on the agent. It is preferred that the level of the automatic dishwashing or machine dishwashing aids of the invention be free, i. not present in the form of water of hydration and / or water of constitution below 10% by weight, preferably below 8% by weight and in particular even below 6% by weight, in each case based on the agent. Accordingly, water can be introduced into the agent substantially only in chemically and / or physically bound form or as a constituent of the raw materials or compounds present as solid, but not as a liquid, solution or dispersion.
  • preferred liquid or free-flowing automatic dishwasher detergents or dishwashing auxiliaries according to the invention comprise one or more nonionic surfactants, in short nonionic surfactants.
  • the amounts in which the nonionic surfactants are used are according to the invention preferably between 5 and 30% by weight, whereby according to the invention those agents which are 1 to 25% by weight are particularly preferred, preferably 2 to 22.5 wt .-%, particularly preferably 3 to 20 wt .-% and in particular 4 to 17.5 wt .-% nonionic (s) surfactant (s) included.
  • nonionic surfactants For a detailed description of these nonionic surfactants, reference is made to the following remarks on the preferred washing or cleaning-active ingredients of preferred compositions according to the invention in order to avoid repetitions at these points.
  • compositions according to the invention may comprise further ingredients, the use of which, for example, the settling behavior or the pourability or flowability can be specifically controlled.
  • the settling behavior or the pourability or flowability can be specifically controlled.
  • non-aqueous systems in particular combinations of structurizers and thickeners have proven to be useful.
  • the structurant a) comes from the group of bentonites and / or at least partially etherified sorbitols. These substances are used to ensure the physical stability of the agents and to adjust the viscosity. Although conventional thickeners such as polyacrylates or polyurethanes fail in non-aqueous media, the viscosity control with the substances mentioned succeeds in the non-aqueous system.
  • Bentonites are contaminated clays caused by the weathering of volcanic tuffs. Due to their high content of montmorillonite, bentonites have valuable properties such as swellability, ion exchange capacity and thixotropy. It is possible to modify the properties of the bentonite according to the intended use. Bentonites are common as clay constituents in tropical soils and are used as sodium bentonite, e.g. mined in Wyoming / USA. Sodium bentonite has the most favorable application properties (swelling capacity), so that its use is preferred in the context of the present invention. Naturally occurring calcium bentonites originate, for example, from Mississippi / USA or Texas / USA or from Landshut / D. The naturally obtained Ca-bentonites are artificially converted by exchange of Ca for Na in the more swellable Na-bentonites.
  • montmorillonites which can also be used in their pure form in the context of the present invention.
  • Montmorillonites are too the clay silicates and here to the dioctahedral smectites belonging clay minerals, which crystallize monoclinic pseudohexagonal.
  • Montmorillonite form predominantly white, grayish-white to yellowish, completely amorphous appearing, easily friable, in the water swelling, but not plasticizing masses, by the general formulas Al 2 [(OH) 2 / Si 4 O 10 ] .nH 2 O respectively.
  • Al 2 O 3 ⁇ 4SiO 2 ⁇ H 2 O ⁇ nH 2 O respectively.
  • Al 2 [(OH) 2 / Si 4 O 10 ] (dried at 150 °) can be described.
  • Preferred automatic dishwashing detergents or dishwashing auxiliaries are characterized in that montmorillonites are used as structurants.
  • Montmorillonites have a three-layer structure consisting of two tetrahedral layers, which are electrostatically crosslinked via the cations of an octahedral intermediate layer. The layers are not rigidly connected, but can swell by reversible incorporation of water (in 2-7 times the amount) and other substances such as alcohols, glycols, pyridine, ⁇ -picolin, ammonium compounds, hydroxy-aluminosilicate ions, etc.
  • the above. Formulas are only approximate formulas since montmorillonites have a large ion exchange capacity.
  • Al can be exchanged for Mg, Fe 2+ , Fe 3+ , Zn, Cr, Cu and other ions.
  • a negative charge of the layers results, which is balanced by other cations, especially Na + and Ca 2+ .
  • At least partially etherified sorbitols can be used as structurants.
  • Sorbitol is a hexavalent 6-valent alcohol (sugar alcohol) that is relatively easy to split one or two moles of water intramolecularly and forms cyclic ethers (eg, sorbitan and sorbide). The removal of water is also possible intermolecularly, forming noncyclic ethers of sorbitol and the alcohols in question. Again, the formation of mono-ethers and bis-ethers is possible, with higher degrees of etherification such as 3 and 4 may occur.
  • At least partially etherified sorbitols to be used in the context of the present invention are doubly etherified sorbitols, of which the dibenzylidenesorbitol is particularly preferred.
  • automatic dishwashing detergents which contain twice etherified sorbitols, in particular dibenzylidenesorbitol, as structurants are preferred.
  • the preferred liquid or flowable compositions according to the invention may contain the structurants in amounts of from 0.1 to 1.0% by weight, based on the total agent and on the active substance of the structurizer.
  • Preferred agents contain the modifier in amounts of from 0.2 to 0.9% by weight, preferably in amounts of from 0.25 to 0.75% by weight and in particular in amounts of from 0.3 to 0.5% by weight. %, in each case based on the total mean.
  • the preferred liquid or flowable agents according to the invention may contain inorganic salts from the group of carbonates, sulfates and amorphous or crystalline disilicates.
  • the said salts of all metals can be used, the alkali metal salts being preferred.
  • Alkaline carbonate (s), alkali metal sulphate (s) and / or amorphous (s) and / or crystalline alkali metal disilicate (s), preferably sodium carbonate, sodium sulphate and / or amorphous or crystalline sodium disilicate, are particularly preferably used in the context of the present invention as thickener ,
  • the preferred liquid or flowable compositions according to the invention contain the thickeners in amounts of from 5 to 30% by weight, based on the total agent.
  • Particularly preferred compositions contain the thickener (s) in amounts of 7.5 to 28 wt .-%, preferably in amounts of 10 to 26 wt .-% and in particular in amounts of 12.5 to 25 wt .-%, each based on the entire remedy.
  • the solids present in the agents according to the invention are used as finely divided as possible. This is particularly advantageous in the case of inorganic thickeners and bleaching agents.
  • automatic dishwashing detergents according to the invention are preferred in which the average particle size of the bleaching agents and thickeners and of the optionally used builder is less than 75 ⁇ m, preferably less than 50 ⁇ m and in particular less than 25 ⁇ m.
  • liquid automatic dishwashing compositions according to the invention may also contain other viscosity regulators or thickeners for adjusting a possibly desired higher viscosity.
  • viscosity regulators or thickeners for adjusting a possibly desired higher viscosity.
  • all known thickening agents can be used, ie those based on natural or synthetic polymers.
  • Naturally derived polymers which are used as thickening agents are, for example, agar-agar, carrageenan, tragacanth, gum arabic, alginates, pectins, polyoses, guar flour, locust bean gum, starch, dextrins, gelatin and casein.
  • Modified natural products come mainly from the group of modified starches and celluloses, examples which may be mentioned here carboxymethylcellulose and other cellulose ethers, hydroxyethyl and propylcellulose and core flour ethers.
  • preferred liquid or free-flowing automatic dishwashing or machine dishwashing aids comprise, as thickening agents, hydroxyethylcellulose and / or hydroxypropylcellulose, preferably in amounts of from 0.01 to 4.0% by weight, more preferably in amounts of from 0.01 to 3, 0 wt .-% and in particular in amounts of 0.01 to 2.0 wt .-%, each based on the total agent.
  • a large group of thickeners which find wide use in a variety of applications, are the fully synthetic polymers such as polyacrylic and polymethacrylic compounds, vinyl polymers, polycarboxylic acids, polyethers, polyimines, polyamides and polyurethanes.
  • Thickeners from the substance classes mentioned are commercially widely available and are described, for example, under the trade names Acusol®-820 (methacrylic acid (stearyl alcohol-20-EO) ester-acrylic acid copolymer, 30% in water, Rohm & Haas), Dapral® GT 282-S (alkyl polyglycol ether, Akzo), Deuterol® polymer 11 (dicarboxylic acid copolymer, Schöner GmbH), Deuteron®-XG (anionic heteropolysaccharide based on ⁇ -D-glucose, D-mannose, D-glucuronic acid, Schöner GmbH ), Deuteron®-XN (nonionic polysaccharide, Schöner GmbH), Dicrylan® thickener-O (ethylene oxide adduct, 50% in water / isopropanol, Pfersse Chemie), EMA®-81 and EMA®-91 (ethylene-maleic anhydride Copolymer, Monsanto), thickener-
  • a preferred polymeric thickener is xanthan gum, a microbial anionic heteropolysaccharide produced by Xanthomonas campestris and some other species under aerobic conditions and having a molecular weight of from 2 to 15 million daltons.
  • Xanthan is formed from a chain of ⁇ -1,4-linked glucose (cellulose) with side chains.
  • the structure of the subgroups consists of glucose, mannose, glucuronic acid, acetate and pyruvate, the number of pyruvate units determining the viscosity of the xanthan gum.
  • thickeners are polyurethanes or modified polyacrylates, which, based on the total agent, for example, in amounts of 0.1 to 5 wt .-% can be used.
  • Polyurethanes are prepared by polyaddition from dihydric and higher alcohols and isocyanates and can be described by the general formula IV in which R 1 is a low molecular weight or polymeric diol radical, R 2 is an aliphatic or aromatic group and n is a natural number.
  • R 1 is preferably a linear or branched C 2-12 -alk (en) yl group, but may also be a residue of a higher-valent alcohol, whereby crosslinked polyurethanes are formed, which differ from the formula VIII given above in that the Rest R 1 further -O-CO-NH groups are bonded.
  • TDI 2,4- and 2,6-toluene diisocyanate
  • MDI C 6 H 4 -CH 2 -C 6 H 4
  • polyurethane-based thickeners are known, for example, under the names Acrysol®PM 12 V (3-5% modified starch mixture and 14-16% PUR resin in water, Rohm & Haas), Borchigel® L75-N (nonionic PUR dispersion, 50% in water, Borchers), Coatex® BR-100-P (PUR dispersion, 50% in water / butylglycol, Dimed), Nopco® DSX-1514 (polyurethane dispersion, 40% in water / butyltriglycol, Henkel-Nopco), thickener QR 1001 (20% PUR emulsion in water / diglycol ether, Rohm & Haas) and Rilanit® VPW-3116 (PUR dispersion, 43% in water, Henkel).
  • aqueous dispersions when using aqueous dispersions, care must be taken that the water content of the agents according to the invention remains within the abovementioned limits. If the use of the aqueous dispersions for these reasons is not possible, dispersions in other solvents, or even the solids can be used.
  • Modified polyacrylates which can be used in the context of the present invention are derived, for example, from acrylic acid or methacrylic acid and can be described by the general formula V.
  • R 3 is H or a branched or unbranched C 1-4 -alk (en) yl radical
  • X is NR 5 or O
  • R 4 is an optionally alkoxylated branched or unbranched, possibly substituted C 8-22- Alk (en ) ylrest
  • R 5 is H or R 4
  • n is a natural number.
  • such modified polyacrylates are esters or amides of acrylic acid or of an ⁇ -substituted acrylic acid. Preferred among these polymers are those in which R 3 is H or a methyl group.
  • Preferred alkoxylation levels are between 2 and 30, with degrees of alkoxylation between 10 and 15 being particularly preferred.
  • the designation of the radicals bound to X represents a statistical mean value which, in individual cases, can vary with regard to chain length or degree of alkoxylation.
  • the formula V indicates only formulas for idealized homopolymers. In the context of the present invention, however, it is also possible to use copolymers in which the proportion of monomer units which satisfy the formula V is at least 30% by weight. For example, it is also possible to use copolymers of modified polyacrylates and acrylic acid or salts thereof which still have acidic H atoms or basic -COO - groups.
  • Modified polyacrylates which are preferably used for the purposes of the present invention are polyacrylate-polymethacrylate copolymers which satisfy the formula Va in which R 4 is a preferably unbranched, saturated or unsaturated C 8-22- alk (en) yl radical, R 6 and R 7 independently of one another are H or CH 3 , the degree of polymerization n is a natural number and the degree of alkoxylation a is a natural number between 2 and 30, preferably between 10 and 20.
  • Products of the formula Va are commercially available, for example, under the name Acusol® 820 (Rohm & Haas) in the form of 30% strength by weight dispersions in water.
  • R 4 is a stearyl radical
  • R 6 is a hydrogen atom
  • R 7 is H or CH 3
  • the degree of ethoxylation a is 20.
  • the above applies to the water content of the Mitttel said.
  • preferred liquid or free-flowing automatic dishwasher detergents or dishwashing auxiliaries are characterized in that they additionally contain 0.01 to 5 wt.%, Preferably 0.02 to 4 wt.%, Particularly preferably 0.05 to 3 wt .-% and in particular 0.1 to 1.5 wt .-%, of a polymeric thickener, preferably from the group of polyurethanes or modified polyacrylates, with particular preference to thickeners of formula VI in the R 3 is H or a branched or unbranched C 1-4 -alk (en) yl radical, X is NR 5 or O, R 4 is an optionally alkoxylated branched or unbranched, possibly substituted C 8-22- Alk (en ) yl radical, R 5 is H or R 4 and n is a natural number.
  • the solid or dimensionally stable and liquid or free-flowing automatic dishwashing or dishwashing auxiliaries according to the invention can be offered to the consumer in conventional containers, for example bottles, screw jars, canisters, balloons, cups or spray vessels, from which they are dosed for use. Higher viscosity products can also be offered in tubes or dispensers as known from toothpaste or sealants.
  • Such containers are today usually made of non-water-soluble polymers and may for example consist of all common water-insoluble packaging materials, which are well known to those skilled in the art. In particular, polymers based on hydrocarbons may be mentioned as preferred polymers.
  • Particularly preferred polymers include polyethylene, polypropylene (more preferably oriented polypropylene) and polymer blends such as blends of said polymers with polyethylene terephthalate. Also suitable are one or more polymers from the group consisting of polyvinyl chloride, polysulfones, polyacetals, water-insoluble cellulose derivatives, cellulose acetate, cellulose propionate, cellulose acetobutyrate and mixtures of said polymers or copolymers comprising said polymers.
  • a particularly preferred embodiment of the present invention aims to provide the consumer with pre-portioned means according to the invention so that he can use the dosing advantages known to him from the "tablet" offering and combine them with the rapid dissolution and release rates and the performance advantages of the agents according to the invention can.
  • Such pre-portioned agents according to the invention may also be present in water-insoluble packaging, so that the consumer must open them before use in a suitable manner.
  • it is also possible and preferred to package portioned compositions according to the invention so that the consumer can give them without further handling steps directly, ie together with the packaging, into the dishwasher.
  • Such packages include water-soluble or decomposable packages such as bags of water-soluble film (so-called pouches), bags or other packaging of water-soluble or decomposable nonwovens or flexible or rigid bodies of water-soluble polymers, preferably in the form of filled hollow body, which for example by deep drawing, injection molding , Blow molding, calendering, etc. can be made.
  • a preferred subject matter of the present invention are therefore automatic dishwashing detergents or dishwashing auxiliaries according to the invention, which are packaged in portions in a water-soluble casing.
  • Dishwasher detergents or dishwashing auxiliaries according to the invention preferably comprise a completely or partially water-soluble coating.
  • the shape of the wrapper is not limited to specific shapes. Basically, all Archimedean and Platonic bodies, ie three-dimensional shaped bodies, come into question as forms of envelopment. Examples of the shape of the wrapper are capsules, cubes, spheres, ovoid moldings, cuboids, cones, rods or bags. Also hollow body with one or more compartments are suitable as a sheath for the Geschirthesesmittel.
  • the wrappers are in the form of capsules, such as those used in pharmacy for the administration of drugs, spheres or bags. The latter are preferably welded or glued on at least one side, wherein the adhesive used in particularly preferred embodiments of the invention is an adhesive that is water-soluble.
  • the water-soluble polymer material which partially or completely surrounds the automatic dishwashing or dishwashing auxiliary is a water-soluble packaging.
  • This is understood to mean a flat part which partially or completely surrounds the dishwashing detergent.
  • the exact form of such packaging is not critical and can be largely adapted to the conditions of use.
  • processed plastic foils or sheets, capsules and other conceivable forms come into consideration for various forms (such as hoses, cushions, cylinders, bottles, disks or the like).
  • Particularly preferred according to the invention are films which, for example, can be bonded and / or sealed to packagings such as hoses, cushions or the like, after they have been filled with partial portions of the cleaning agents according to the invention or with the cleaning agents according to the invention.
  • plastic film packaging of water-soluble polymer materials are basically known from the prior art.
  • both hollow body of any shape which can be produced by injection molding, bottle blowing, deep drawing, etc., as well as hollow body of films, in particular bags (so-called pouches) as packages for portioned inventive Medium preferred.
  • Preferred automatic dishwasher detergents or dishwashing auxiliaries according to the invention are thus characterized in that the water-soluble casing comprises a bag of water-soluble film and / or an injection-molded part and / or a blow-molded part and / or a deep-drawn part.
  • the one or more enclosures are / are completed. This has the advantage that the Geschirthesessch are optimally protected against the effects of the environment, especially against moisture.
  • the invention can be further developed such that the detergents contain at least one gas to protect the contents of the enclosure (s) from moisture, see below.
  • Suitable materials for the completely or partially water-soluble coating are in principle all materials in question, which can completely or partially dissolve in the aqueous phase under the given conditions of a washing process, rinsing or cleaning process (temperature, pH, concentration of detergent components).
  • the polymer materials may particularly preferably the groups (optionally partially acetalized) polyvinyl alcohol, polyvinylpyrrolidone, poly-ethylene oxide, gelatin, cellulose and derivatives thereof, starch and derivatives thereof, in particular modified starches, and mixtures (polymer blends, composites, coextrudates, etc.) of belong to the materials mentioned.
  • Particularly preferred are gelatin and polyvinyl alcohols and the two materials mentioned in each case in combination with starch or modified starch.
  • Preferred automatic dishwasher detergents or dishwashing auxiliaries according to the invention are characterized in that the coating comprises one or more materials from the group of acrylic acid-containing polymers, polyacrylamides, oxazoline polymers, polystyrene sulfonates, polyurethanes, polyesters and polyethers and mixtures thereof.
  • the coating comprises one or more water-soluble polymer (s), preferably a material from the group (optionally acetalised) polyvinyl alcohol (PVAL), polyvinylpyrrolidone, polyethylene oxide, gelatin, cellulose, and their derivatives and mixtures thereof, more preferably (optionally acetalized) polyvinyl alcohol (PVAL).
  • PVAL polyvinyl alcohol
  • PVAL polyvinylpyrrolidone
  • Polyvinyl alcohols (abbreviated PVAL, occasionally PVOH) is the name for polymers of the general structure in small proportions (about 2%) also structural units of the type contain.
  • polyvinyl alcohols which are available as white-yellowish powders or granules with degrees of polymerization in the range of about 100 to 2500 (molar masses of about 4000 to 100,000 g / mol), have degrees of hydrolysis of 98-99 or 87-89 mol%. , so still contain a residual content of acetyl groups.
  • the polyvinyl alcohols are characterized by the manufacturer by indicating the degree of polymerization of the starting polymer, the degree of hydrolysis, the saponification number or the solution viscosity.
  • polyvinyl alcohols are soluble in water and a few highly polar organic solvents (formamide, dimethylformamide, dimethyl sulfoxide); They are not attacked by (chlorinated) hydrocarbons, esters, fats and oils.
  • Polyvinyl alcohols are classified as toxicologically safe and are biologically at least partially degradable.
  • the water solubility can be reduced by aftertreatment with aldehydes (acetalization), by complexation with Ni or Cu salts or by treatment with dichromates, boric acid or borax.
  • the coatings of polyvinyl alcohol are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
  • the coating comprises a polyvinyl alcohol whose degree of hydrolysis is 70 to 100 mol%, preferably 80 to 90 mol%, particularly preferably 81 to 89 mol% and in particular 82 to 88 mol% ,
  • Polyvinyl alcohols of a certain molecular weight range are preferably used as materials for the coating, it being preferred according to the invention for the coating to comprise a polyvinyl alcohol whose molecular weight is in the range from 10,000 to 100,000 gmol -1 , preferably from 11,000 to 90,000 gmol -1 , more preferably from 12,000 to 80,000 gmol -1 and in particular from 13,000 to 70,000 gmol -1 .
  • the degree of polymerization of such preferred polyvinyl alcohols is between about 200 to about 2100, preferably between about 220 to about 1890, more preferably between about 240 to about 1680, and most preferably between about 260 to about 1500.
  • polyvinyl alcohols described above are widely available commercially, for example under the trademark Mowiol® (Clariant).
  • Polyvinyl alcohols which are particularly suitable for the purposes of the present invention are, for example, Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 and Mowiol® 8-88.
  • ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (trademark of Du Pont)
  • ALCOTEX ® 72.5, 78, B72, F80 / 40, F88 / 4, F88 / 26, F88 / 40, F88 / 47 (trademark of Harlow Chemical Co.)
  • Gohsenol® NK-05, A-300, AH-22, C -500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Trademark of Nippon Gohsei KK ).
  • the water solubility of PVAL can be altered by post-treatment with aldehydes (acetalization) or ketones (ketalization).
  • Polyvinyl alcohols which are acetalated or ketalized with the aldehyde or keto groups of saccharides or polysaccharides or mixtures thereof have proven to be particularly advantageous and particularly advantageous on account of their pronounced cold water solubility.
  • To use extremely advantageous are the reaction products of PVAL and starch.
  • the water solubility can be changed by complexing with Ni or Cu salts or by treatment with dichromates, boric acid, borax and thus set specifically to desired values.
  • Films made of PVAL are largely impermeable to gases such as oxygen, nitrogen, helium, hydrogen, carbon dioxide, but allow water vapor to pass through.
  • PVAL films examples include the PVAL films available under the name "SOLUBLON®” from Syntana bottlesgesellschaft E. Harke GmbH & Co. Their solubility in water can be adjusted to the exact degree, and films of this product series are available which are soluble in aqueous phase in all temperature ranges relevant for the application.
  • PVP Polyvinylpyrrolidones
  • PVP are prepared by radical polymerization of 1-vinylpyrrolidone.
  • Commercially available PVP have molecular weights in the range of about 2,500 to 750,000 g / mol and are offered as white, hygroscopic powders or as aqueous solutions.
  • Polyethylene oxides PEOX for short, are polyalkylene glycols of the general formula H- [O-CH 2 -CH 2 ] n -OH the technically by alkaline-catalyzed polyaddition of ethylene oxide (oxirane) in mostly small amounts of water-containing systems are prepared with ethylene glycol as the starting molecule. They have molar masses in the range of about 200 to 5,000,000 g / mol, corresponding to degrees of polymerization n of about 5 to> 100,000. Polyethylene oxides have an extremely low concentration of reactive hydroxy end groups and show only weak glycol properties.
  • Gelatin is a polypeptide (molecular weight: about 15,000 to> 250,000 g / mol), which is obtained primarily by hydrolysis of the collagen contained in the skin and bones of animals under acidic or alkaline conditions.
  • the amino acid composition of gelatin is broadly similar to that of the collagen from which it was obtained and varies depending on its provenance.
  • the use of gelatin as the water-soluble shell material is especially in pharmacy in the form of hard or soft gelatin capsule extremely widespread. In the form of films, gelatin has little use because of its high price compared to the polymers mentioned above.
  • dishwashing detergents whose packaging consists of at least partially water-soluble film of at least one polymer from the group starch and starch derivatives, cellulose and cellulose derivatives, in particular methylcellulose and mixtures thereof.
  • Starch is a homoglycan, wherein the glucose units are linked ⁇ -glycosidically.
  • Starch is composed of two components of different molecular weight: from about 20 to 30% straight chain amylose (MW about 50,000 to 150,000) and 70 to 80% branched chain amylopectin (MW about 300,000 to 2,000,000).
  • small amounts of lipids, phosphoric acid and cations are still included. While the amylose forms long, helical, entangled chains with about 300 to 1,200 glucose molecules as a result of the binding in the 1,4-position, the chain branched in amylopectin after an average of 25 glucose building blocks by 1,6-bonding to a branch-like structure with about 1,500 to 12,000 molecules of glucose.
  • starch-derivatives which are obtainable from starch by polymer-analogous reactions are also suitable for the preparation of water-soluble coatings of the detergent, detergent and cleaner portions in the context of the present invention.
  • Such chemically modified starches include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted. But even starches in which the hydroxy groups have been replaced by functional groups that are not bound by an oxygen atom, can be used as starch derivatives.
  • the group of starch derivatives includes, for example, alkali starches, carboxymethyl starch (CMS), starch esters and ethers, and amino starches.
  • Pure cellulose has the formal gross composition (C 6 H 10 O 5 ) n and is formally a ⁇ -1,4-polyacetal of cellobiose, which in turn is composed of two molecules of glucose.
  • Suitable celluloses consist of about 500 to 5,000 glucose units and therefore have average molecular weights of 50,000 to 500,000.
  • Cellulose-based disintegrating agents which can be used in the context of the present invention are also cellulose derivatives obtainable by polymer-analogous reactions of cellulose.
  • Such chemically modified celluloses include, for example, products of esterifications or etherifications in which hydroxy hydrogen atoms have been substituted.
  • Celluloses in which the hydroxy groups have been replaced by functional groups which are not bonded via an oxygen atom can also be used as cellulose derivatives.
  • the group of cellulose derivatives includes, for example, alkali metal celluloses, carboxymethylcellulose (CMC), cellulose esters and ethers, and aminocelluloses.
  • Preferred casings of at least partially water-soluble film comprise at least one polymer having a molecular weight between 5,000 and 500,000 g / mol, preferably between 7,500 and 250,000 g / mol and in particular between 10,000 and 100,000 g / mol.
  • the casing has different material thicknesses, automatic dishwashing agents or automatic dishwashing auxiliaries according to the invention being preferred in which the wall thickness of the casing is 10 to 5000 ⁇ m, preferably 20 to 3000 ⁇ m, particularly preferably 25 to 2000 ⁇ m and in particular 100 to 1500 ⁇ m ,
  • the water-soluble film forming the coating preferably has a thickness of 1 to 300 ⁇ m, preferably 2 to 200 ⁇ m, more preferably 5 to 150 ⁇ m and in particular 10 to 100 ⁇ m, up.
  • these water-soluble films can be produced by various production methods. Blow molding, calendering and casting processes should be mentioned here in principle.
  • the films are blown starting from a melt with air through a mandrel to a hose.
  • the calendering process which is likewise one of the preferred production processes
  • the raw materials plasticized by suitable additives are atomized to form the films.
  • an aqueous polymer preparation is placed on a heatable drying roller, after the evaporation of the water is optionally cooled and the film is peeled off as a film.
  • this film is additionally powdered before or during the removal.
  • an embodiment is preferred in accordance with which the coating is water-soluble as a whole, ie, dissolves completely under normal use during mechanical cleaning when the conditions for release are reached.
  • Particularly preferred as completely water-soluble coatings z.
  • gelatin capsules advantageously of soft gelatin, or bags of (optionally partially acetalized) PVAL or balls of gelatin or (optionally partially acetalized) PVAL or of one or more organic and / or inorganic salts, preferably spheres of soft gelatin.
  • the essential advantage of this embodiment is that the sheath within a practically relevant short time - as a non-limiting example can be a few seconds to 5 min - at least partially dissolves under precisely defined conditions in the cleaning liquor and thus according to the requirements, the coated content, ie the cleaning-active material or several materials in the fleet brings.
  • the water-soluble coating comprises regions which are less soluble or not water-soluble or only water-soluble at relatively high temperatures and regions which are readily soluble in water or soluble in water at low temperature.
  • the coating does not consist of a uniform material that has the same water solubility in all areas, but of materials of different water solubility.
  • areas of good water solubility are to be distinguished from areas with less good water solubility, with poor or even absent water solubility or areas in which the water solubility reaches the desired value only at a higher temperature or only at a different pH value or only when the electrolyte concentration has changed achieved, on the other hand.
  • an envelope provided with pores or holes is formed, into which water and / or liquor can penetrate, which can dissolve washing-active, rinse-active or cleaning-active ingredients and remove them from the casing.
  • wrapping systems in the form of multi-chamber bags or in the form of nested hollow bodies (eg balls: "onion system") can also be provided.
  • controlled release systems of the detergent-active, rinse-active or cleaning-active ingredients can be produced.
  • wraps can be provided in which a uniform polymeric material comprises small areas of incorporated compounds (for example, salts) which are more rapidly soluble in water than the polymeric material.
  • incorporated compounds for example, salts
  • several polymer materials with different water solubility can be mixed (polymer blend), so that the faster soluble polymer material is disintegrated faster under defined conditions by water or the liquor than the slower soluble.
  • the less readily water-soluble or water-insoluble areas or areas of the enclosure which are water-soluble at higher temperatures are areas of a material chemically substantially that of the water-soluble or water-soluble areas but has a higher layer thickness and / or has a modified degree of polymerization of the same polymer and / or has a higher degree of crosslinking of the same polymer structure and / or a higher degree of acetalization (in PVAL, for example with saccharides, polysaccharides, such as starch) and / or has a content of water-insoluble salt components and / or has a content of a water-insoluble polymer.
  • PVAL for example with saccharides, polysaccharides, such as starch
  • the water-soluble shell material is preferably transparent.
  • transparency means that the transmittance within the visible spectrum of the light (410 to 800 nm) is greater than 20%, preferably greater than 30%, more preferably greater than 40% and in particular greater than 50%.
  • a wavelength of the visible spectrum of the light has a transmittance greater than 20%, it is to be regarded as transparent within the meaning of the invention.
  • Dishwashing detergents according to the invention which are packaged in transparent envelopes or containers, can contain a stabilizing agent as an essential constituent.
  • Stabilizing agents in the context of the invention are materials which protect the detergent components in their water-soluble, transparent sheaths from decomposition or deactivation by light irradiation. Antioxidants, UV absorbers and fluorescent dyes have proven to be particularly suitable here.
  • antioxidants are particularly suitable stabilizing agents in the context of the invention.
  • the formulations may contain antioxidants.
  • antioxidants which may be used here are sterically hindered groups, substituted phenols, bisphenols and thiobisphenols. Further examples are propyl gallate, butylhydroxytoluene (BHT), butylhydroxyanisole (BHA), t-butylhydroquinone (TBHQ), tocopherol and the long chain (C8-C22) esters of gallic acid, such as dodecyl gallate.
  • aromatic amines preferably secondary aromatic amines and substituted p-phenylenediamines
  • phosphorus compounds with trivalent phosphorus such as phosphines, phosphites and phosphonites
  • citric acids and citric acid derivatives such as isopropyl citrate, endiol group-containing compounds, so-called reductones such as ascorbic acid and its derivatives, such as ascorbic palmitate
  • organosulfur compounds such as the esters of 3,3'-thiodipropionic acid with C 1-18 alkanols, especially C 10-18 alkanols
  • metal ion deactivators capable of auto-oxidation catalyzing metal ions, such as Copper, such as nitrilotriacetic acid and its derivatives and their mixtures.
  • Antioxidants may be present in the formulations in amounts of up to 35% by weight, preferably up to 25% by weight, particularly preferably from 0.01 to 20 and in particular from 0.03 to 20% by weight.
  • UV absorbers can improve the light stability of the formulation ingredients.
  • organic substances unsunscreen filters
  • Compounds having these desired properties include, for example, the non-radiative deactivating compounds and derivatives of benzophenone having substituents in the 2- and / or 4-position.
  • substituted benzotriazoles such as the water-soluble benzenesulfonic acid 3- (2H-benzotriazol-2-yl) -4-hydroxy-5- (methylpropyl) monosodium salt (Cibafast® H), in the 3-position phenyl-substituted acrylates (cinnamic acid derivatives) , optionally with cyano groups in the 2-position, salicylates, organic Ni complexes and natural substances such as umbelliferone and the body's urocanic acid suitable.
  • biphenyl derivatives in particular stilbene derivatives, which are commercially available as Tinosorb® FD or Tinosorb® FR ex Ciba.
  • UV-B absorbers there may be mentioned 3-benzylidene camphor or 3-benzylidene norcamphor and its derivatives, e.g. 3- (4-methylbenzylidene) camphor; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester; Esters of cinnamic acid, preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester, 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene); Esters of salicylic acid, preferably 2-ethylhexyl salicylate, 4-isopropylbenz
  • 2,4,6-trianilino p-carbo-2'-ethyl-1'-hexyloxy
  • octyl triazone or dioctyl butamido triazone Uvasorb® HEB
  • Propane-1,3-diones such as e.g. 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione
  • Ketotricyclo (5.2.1.0) decane derivatives e.g. 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione
  • Ketotricyclo 5.2.1.0
  • 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts Sulfonic acid derivatives of benzophenones, preferably 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid and its salts
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-Oxo-3-bomylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • UV-A filter in particular derivatives of benzoylmethane are suitable, such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl 4'-methoxydibenzoylmethane (Parsol 1789), 1-phenyl-3- (4'-isopropylphenyl) -propane-1,3-dione and enamine compounds.
  • the UV-A and UV-B filters can also be used in mixtures be used.
  • insoluble photoprotective pigments namely finely dispersed, preferably nano-metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are in particular zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • silicates (talc) barium sulfate or zinc stearate can be used.
  • the oxides and salts are already used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They may have a spherical shape, but it is also possible to use those particles which have an ellipsoidal or otherwise deviating shape from the spherical shape.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck).
  • Suitable hydrophobic coating agents are in particular silicones and in particular trialkoxyoctylsilanes or simethicones.
  • micronized zinc oxide is used.
  • UV absorbers may be present in the dishwashing detergents in amounts of up to 5% by weight, preferably up to 3% by weight, particularly preferably from 0.01 to 2.0 and in particular from 0.03 to 1% by weight.
  • fluorescent dyes include the 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methyl umbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole, benzisoxazole and Benzimidazole systems and substituted by heterocycles pyrene derivatives.
  • fluorescent dyes include the 4,4'-diamino-2,2'-stilbenedisulfonic acids (flavonic acids), 4,4'-distyrylbiphenyls, methyl umbelliferones, coumarins, dihydroquinolinones, 1,3-diarylpyrazolines, naphthalimides, benzoxazole, benzisoxazole and Benzimidazole systems and substituted by heterocycles pyrene derivatives.
  • Fluorescent substances can be present in the formulations in amounts of up to 5% by weight, preferably up to 1% by weight, particularly preferably from 0.01 to 0.5 and in particular from 0.03 to 0.1% by weight.
  • the abovementioned stabilizers are used in any mixtures.
  • the stabilizers are used in amounts of up to 40% by weight, preferably up to 30% by weight, particularly preferably from 0.01 to 20% by weight, in particular from 0.02 to 5% by weight.
  • preferred automatic dishwashing or machine dishwashing aids comprise at least one washing or cleaning substance from the group of bleaching agents, bleach activators, polymers, builders, surfactants, enzymes, electrolytes, pH adjusters, fragrances, perfume carriers, dyes, hydrotropes, Foam inhibitors, antimicrobial agents, germicides, fungicides, corrosion inhibitors, non-aqueous solvents.
  • bleaching agents bleach activators
  • polymers builders, surfactants, enzymes, electrolytes, pH adjusters, fragrances, perfume carriers, dyes, hydrotropes, Foam inhibitors, antimicrobial agents, germicides, fungicides, corrosion inhibitors, non-aqueous solvents.
  • all builders commonly used in detergents and cleaning agents in particular silicates, carbonates, organic cobuilders and also the phosphates, may be incorporated in the automatic dishwashing or dishwashing auxiliaries.
  • Suitable crystalline layered sodium silicates have the general formula NaMSi x O 2x + 1 H 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4 are.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 yH 2 O are preferred.
  • amorphous sodium silicates with a Na 2 O: SiO 2 modulus of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2.6, which Delayed and have secondary washing properties.
  • the dissolution delay compared with conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not yield sharp X-ray reflections typical of crystalline substances in X-ray diffraction experiments, but at most one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred. Particularly preferred are compacted / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • both the monoalkali metal salts and the dialkali metal salts of carbonic acid as well as sesquicarbonates can be contained in the compositions.
  • Preferred alkali metal ions represent sodium and / or potassium ions.
  • Compounds of, for example, carbonate, silicate and optionally other auxiliaries such as, for example, anionic surfactants or other, in particular organic builders, may be present as a separate component in the finished compositions.
  • the alkali metal phosphates with a particular preference for pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate), have the greatest importance in the washing and cleaning agent industry.
  • Alkali metal phosphates is the summary term for the alkali metal (especially sodium and potassium) salts of various phosphoric acids, in which one can distinguish metaphosphoric acids (HPO 3 ) n and orthophosphoric H 3 PO 4 in addition to higher molecular weight representatives.
  • the phosphates combine several advantages: they act as alkali carriers, prevent limescale deposits on machine parts or limescale deposits on the items to be washed and also contribute to the cleaning performance.
  • Suitable phosphates are the sodium dihydrogen phosphate, NaH 2 PO 4 , the disodium hydrogen phosphate (secondary sodium phosphate), Na 2 HPO 4 , the trisodium phosphate, tertiary sodium phosphate, Na 3 PO 4 , the tetrasodium diphosphate (sodium pyrophosphate), Na 4 P 2 O 7 , by condensation of NaH 2 PO 4 and KH 2 PO 4 , respectively, form relatively high molecular weight sodium and potassium phosphates, in which cyclic representatives, which can distinguish sodium or potassium metaphosphates and chain types, the sodium and potassium polyphosphates, as well as the pentasodium triphosphate, Na 5 P 3 O 10 (sodium tripolyphosphate).
  • sodium phosphate In addition to the sodium phosphate, it is also possible to use the corresponding potassium salts or mixtures of these two; Mixtures of sodium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of potassium tripolyphosphate and sodium potassium tripolyphosphate or mixtures of sodium tripolyphosphate and potassium tripolyphosphate and sodium potassium tripolyphosphate can also be used according to the invention.
  • preferred automatic dishwashing or machine dishwashing aids contain no sodium and / or potassium hydroxide.
  • water-soluble builders are, for example, tripotassium citrate and the potassium water glasses.
  • Preferred automatic dishwashing or dishwashing auxiliaries contain from 20 to 60% by weight of one or more water-soluble builders, preferably citrates and / or phosphates, preferably alkali metal phosphates, with particular preference of pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
  • water-soluble builders preferably citrates and / or phosphates, preferably alkali metal phosphates, with particular preference of pentasodium or pentapotassium triphosphate (sodium or potassium tripolyphosphate).
  • the level of water-soluble builders is within narrower limits.
  • compositions according to the invention may contain phosphates condensed as water-softening substances. These substances form a group of - because of their production also mentioned melting or annealing phosphates - phosphates, which can be derived from acidic salts of orthophosphoric acid (phosphoric acids) by condensation.
  • the condensed phosphates can be classified into the metaphosphates [Mnn (PO 3 ) n ] and polyphosphates (M I n + 2 P n O 3n + 1 or M I n H 2 P n O 3n + 1 ).
  • Metaphoaphates are obtained as accompanying substances of Graham's salt - mistakenly referred to as sodium hexametaphosphate - by melting NaH 2 PO 4 to temperatures above 620 ° C., so-called Maddrell's salt also being produced as an intermediate.
  • This and Kurrolsches salt are linear polyphosphates, which are usually not one of the metaphosphates today, but also in the context of the present invention are also used with preference as water-softening substances.
  • the quenched, glassy melt is depending on Reaction conditions, the water-soluble Graham's salt, (NaPO 3 ) 40-50 , or a glassy condensed phosphate of the composition (NaPO 3 ) 15-20 , which is known as Calgon.
  • the misleading term hexametaphosphate is still in use.
  • Kurrol's salt (NaPO 3 ) n with n »5000, is also produced from the 600 ° C hot melt of Maddrell's salt, if this is left for a short time at about 500 ° C. It forms high polymer water-soluble fibers.
  • Particularly preferred water-softening substances from the abovementioned classes of condensed phosphates are the "hexametaphosphates" Budit® H6 or H8 from Budenheim.
  • automatic dishwashing or machine dishwashing auxiliaries which additionally comprise one or more substances from the group of acidifying agents, chelating agents or coating-inhibiting polymers are particularly preferred.
  • Acidifying agents are both inorganic acids and organic acids, provided that they are compatible with the other ingredients.
  • the solid mono-, oligo- and polycarboxylic acids are used. Again preferred from this group are citric acid, tartaric acid, succinic acid, malonic acid, adipic acid, maleic acid, fumaric acid, oxalic acid and also polyacrylic acid.
  • the anhydrides of these acids can be used as Acidisersstoff, in particular maleic anhydride and succinic anhydride are commercially available.
  • Organic sulfonic acids such as sulfamic acid are also usable.
  • Sokalan® DCS commercially available and likewise preferably usable as acidifying agent in the context of the present invention is Sokalan® DCS (trademark of BASF), a mixture of succinic acid (maximum 31% by weight), glutaric acid (maximum 50% by weight) and adipic acid ( at most 33% by weight).
  • Chelating agents are substances which form cyclic compounds with metal ions, with a single ligand occupying more than one coordination site on a central atom, i. H. at least "bidentate". In this case, normally stretched compounds are closed by complex formation over an ion to rings. The number of bound ligands depends on the coordination number of the central ion.
  • chelate complex images are, for example, polyoxycarboxylic acids, polyamines, ethylenediaminetetraacetic acid (EDTA) and Nitrilotriacetic acid (NTA).
  • complex-forming polymers ie polymers which carry functional groups either in the main chain itself or laterally to it, which can act as ligands and react with suitable metal atoms generally with the formation of chelate complexes, can be used according to the invention.
  • the polymer-bound ligands of the resulting metal complexes can originate from only one macromolecule or belong to different polymer chains. The latter leads to the crosslinking of the material, provided that the complex-forming polymers were not previously crosslinked via covalent bonds.
  • Complexing groups (ligands) of conventional complexing polymers are iminodiacetic, hydroxyquinoline, thiourea, guanidine, dithiocarbamate, hydroxamic, amidoxime, aminophosphoric, (cyclic) polyamino, mercapto, 1,3-dicarbonyl and Crown ether residues with z. T. very specific. Activities towards ions of different metals.
  • Base polymers of many also commercially important complex-forming polymers are polystyrene, polyacrylates, polyacrylonitriles, polyvinyl alcohols, polyvinylpyridines and polyethyleneimines. Natural polymers such as cellulose, starch or chitin are also complex-forming polymers. In addition, these can be provided by polymer-analogous transformations with other ligand functionalities.
  • polycarboxylic acids a) are understood as meaning carboxylic acids, including monocarboxylic acids, in which the sum of carboxyl and the hydroxyl groups contained in the molecule is at least 5.
  • Complexing agents from the group of nitrogen-containing polycarboxylic acids, in particular EDTA are preferred.
  • these complexing agents are at least partially present as anions. It is irrelevant whether they are introduced in the form of acids or in the form of salts.
  • alkali metal, ammonium or alkylammonium salts, in particular sodium salts are preferred.
  • Scale-inhibiting polymers can likewise be present in the agents according to the invention. These substances, which could be constructed chemically different, for example, from the groups of low molecular weight polyacrylates having molecular weights between 1000 and 20,000 daltons, with polymers having molecular weights below 15,000 daltons are preferred.
  • Scale-inhibiting polymers may also have co-builder properties.
  • organic cobuilders it is possible in particular to use polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders (see below) and phosphonates in the dishwasher detergents according to the invention. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning such carboxylic acids which carry more than one acidity function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates are suitable, these are, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a molecular weight of 500 to 70000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • the organic cobuilders used may in particular be polycarboxylates / polycarboxylic acids, polymeric polycarboxylates, aspartic acid, polyacetals, dextrins, further organic cobuilders (see below) and also phosphonates. These classes of substances are described below.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, methylglycinediacetic acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are in particular polyacrylates, which preferably have a molecular weight of from 1000 to 20 000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molecular weights of from 1,000 to 10,000 g / mol, and more preferably from 1,200 to 4,000 g / mol, may again be preferred from this group.
  • Both polyacrylates and copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionogenic monomers are particularly preferably used in the compositions according to the invention.
  • the sulfonic acid-containing copolymers will be described in detail below.
  • R 1 (R 2 ) C C (R 3 ) COOH (VII), in which R 1 to R 3 each independently -H, -CH 3, a straight-chain or branched saturated alkyl radical having 2 to 12 carbon atoms, a straight-chain or branched, mono- or polyunsaturated alkenyl radical having 2 to 12 carbon atoms, -NH 2, -OH or - COOH substituted alkyl or alkenyl radicals as defined above or is -COOH or - COOR 4 , wherein R 4 is a saturated or unsaturated, straight-chain or branched hydrocarbon radical having 1 to 12 carbon atoms.
  • R 5 (R 6 ) C C (R 7 ) -X-SO 3 H (VIII)
  • H 2 C CH-X-SO 3 H (VIIIa)
  • H 2 C C (CH 3 ) -X-SO 3 H (VIIIb)
  • HO 3 SX- (R 6 ) C C (R 7 ) -X-SO 3 H (VIIIc)
  • R 6 and R 7 are independently selected from -H, -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH (CH 3 ) 2
  • Suitable further ionic or nonionic monomers are, in particular, ethylenically unsaturated compounds.
  • the content of the polymers used according to the invention to monomers of group iii) is preferably less than 20% by weight, based on the polymer.
  • Particularly preferred polymers to be used consist only of monomers of groups i) and ii).
  • the copolymers used in the compositions may contain the monomers from groups i) and ii) and optionally iii) in varying amounts, all representatives of group i) with all representatives from group ii) and all representatives from group iii) can be combined.
  • Particularly preferred polymers have certain structural units, which are described below.
  • These polymers are prepared by copolymerization of acrylic acid with a sulfonic acid-containing acrylic acid derivative. Copolymerizing the sulfonic acid-containing acrylic acid derivative with methacrylic acid, one arrives at another polymer whose use in the agents according to the invention is also preferred and characterized in that the agents contain one or more copolymers, the structural units of the formula X.
  • maleic acid can also be used as a particularly preferred monomer from group i).
  • machine dishwashing detergents or dishwashing auxiliaries which comprise one or more copolymers as ingredient b), the structural units of the formulas IX and / or X and / or XI and / or XII and / or XIII and / or XIV - [CH 2 -CHCOOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p - (IX), - [CH 2 -C (CH 3 ) COOH] m - [CH 2 -CHC (O) -Y-SO 3 H] p - (X), - [CH 2 -CHCOOH] m - [CH 2 -C (CH 3) C (O) -Y-SO 3 H] p - (XI), - [CH 2 -C (CH 3 ) COOH] m - (CH 2 -C (CH 3 ) C (O) -Y-SO 3 H]
  • the sulfonic acid groups may be wholly or partially in neutralized form, i. in that the acidic hydrogen atom of the sulfonic acid group in some or all sulfonic acid groups can be exchanged for metal ions, preferably alkali metal ions and in particular for sodium ions.
  • metal ions preferably alkali metal ions and in particular for sodium ions.
  • Corresponding agents which are characterized in that the sulfonic acid groups are partially or fully neutralized in the copolymer, are preferred according to the invention.
  • the monomer distribution of the copolymers used in the agents according to the invention in the case of copolymers which contain only monomers from groups i) and ii) is preferably in each case from 5 to 95% by weight i) or ii), particularly preferably from 50 to 90% by weight. % Of monomer from group i) and from 10 to 50% by weight of monomer from group ii), in each case based on the polymer.
  • terpolymers particular preference is given to those containing from 20 to 85% by weight of monomer from group i), from 10 to 60% by weight of monomer from group ii) and from 5 to 30% by weight of monomer from group iii) ,
  • the molecular weight of the polymers used in the agents according to the invention can be varied in order to adapt the properties of the polymers to the desired use.
  • Preferred automatic dishwashing detergents are characterized in that the copolymers Molar masses of 2000 to 200,000 gmol -1 , preferably from 4000 to 25,000 gmol -1 and in particular from 5000 to 15,000 gmol -1 have.
  • the content of one or more copolymers in the compositions according to the invention can vary depending on the intended use and the desired product performance, preferred machine dishwashing agents according to the invention being characterized in that they contain the copolymer (s) in amounts of from 0.25 to 50% by weight. %, preferably from 0.5 to 35 wt .-%, particularly preferably from 0.75 to 20 wt .-% and in particular from 1 to 15 wt .-%.
  • polyacrylates As already mentioned above, in the agents according to the invention it is particularly preferable to use both polyacrylates and the above-described copolymers of unsaturated carboxylic acids, monomers containing sulfonic acid groups and optionally further ionic or nonionogenic monomers.
  • the polyacrylates were described in detail above. Particularly preferred are combinations of the above-described sulfonic acid-containing copolymers with low molecular weight polyacrylates, for example in the range between 1000 and 4000 daltons.
  • Such polyacrylates are commercially available under the trade names Sokalan® PA15 and Sokalan® PA25 (BASF).
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their molecular weight relative to free acids is generally from 2000 to 100,000 g / mol, preferably from 20,000 to 90,000 g / mol and in particular from 30,000 to 80,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those which contain as monomers salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or as monomers salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives ,
  • copolymers preferably contain acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives are particularly preferred.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • the oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • a product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced heavy metal binding capacity. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • agents according to the invention are characterized in that they comprise builders, preferably from the group of silicates, carbonates, organic cobuilders and / or phosphates, in amounts of from 0.1 to 99.5% by weight, preferably from 1 to 95% Wt .-%, particularly preferably from 5 to 90 wt .-% and in particular from 10 to 80 wt .-%, each based on the composition.
  • preferred cleaners comprise one or more surfactants from the groups of anionic, nonionic, cationic and / or amphoteric surfactants.
  • anionic surfactants for example, those of the sulfonate type and sulfates are used.
  • surfactants of the sulfonate type preferably come C 9-13 alkyl benzene sulfonates, olefin sulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and Disulfonates, as obtained for example from C 12-18 monoolefins having terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation, into consideration.
  • alkanesulfonates which are obtained from C 12-18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids for example the ⁇ -sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids are suitable.
  • sulfated fatty acid glycerol esters are to be understood as meaning the mono-, di- and triesters and mixtures thereof, as obtained in the preparation by esterification of a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol.
  • Preferred sulfated fatty acid glycerol esters are the sulfonation products of saturated fatty acids having 6 to 22 carbon atoms, for example caproic acid, caprylic acid, capric acid, myristic acid, lauric acid, palmitic acid, stearic acid or behenic acid.
  • Alk (en) ylsulfates are the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols, for example coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of these chain lengths are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical having an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 -C 15 alkyl sulfates are preferred.
  • 2,3-alkyl sulfates which can be obtained as commercial products of the Shell Oil Company under the name DAN®, are suitable anionic surfactants.
  • EO ethylene oxide
  • Fatty alcohols with 1 to 4 EO are suitable. Due to their high foaming behavior, they are only used in detergents in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • Suitable anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8-18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which in themselves constitute nonionic surfactants (see description below).
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • anionic surfactants are particularly soaps into consideration.
  • Suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid, and in particular of natural fatty acids, e.g. Coconut, palm kernel or tallow fatty acids, derived soap mixtures.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • nonionic surfactants are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12-14 alcohols with 3 EO or 4 EO, C 9-11 alcohols with 7 EO, C 13-15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12-18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12-14 -alcohol with 3 EO and C 12-18 -alcohol with 5 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include tallow fatty alcohol with 14 EO, 25 EO, 30 EO or 40 EO.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated Fatty acid alkyl esters, preferably having 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters.
  • alkyl polyglycosides Another class of nonionic surfactants that can be used to advantage are the alkyl polyglycosides (APG).
  • APG alkyl polyglycosides
  • Usable Alkypolyglycoside meet the general formula RO (G) z , in which R is a linear or branched, especially in the 2-position methyl branched, saturated or unsaturated, aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the Is a symbol which represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of glycosidation z is between 1.0 and 4.0, preferably between 1.0 and 2.0 and in particular between 1.1 and 1.4.
  • Preference is given to using linear alkyl polyglucosides, that is to say alkyl polyglycosides which consist of a glucose residue and an n-alkyl chain.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably having from 1 to 4 carbon atoms in the alkyl chain.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • polyhydroxy fatty acid amides of the formula (XV) wherein RCO is an aliphatic acyl group having 6 to 22 carbon atoms, R 1 is hydrogen, an alkyl or hydroxyalkyl group having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl group having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups.
  • the polyhydroxy fatty acid amides are known substances which can usually be obtained by reductive amination of a reducing sugar with ammonia, an alkylamine or an alkanolamine and subsequent acylation with a fatty acid, a fatty acid alkyl ester or a fatty acid chloride.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (XVI) in the R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 1 is a linear, branched or cyclic alkyl radical or an aryl radical having 2 to 8 carbon atoms and R 2 is a linear, branched or cyclic alkyl radical or an aryl radical or an oxyalkyl radical having from 1 to 8 carbon atoms, with C 1-4 alkyl or phenyl radicals being preferred and [Z] being a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated Derivatives of this residue.
  • R is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 1 is a linear, branched or cyclic alkyl radical or an aryl
  • [Z] is preferably obtained by reductive amination of a reduced sugar, for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a reduced sugar for example glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be converted into the desired polyhydroxy fatty acid amides by reaction with fatty acid methyl esters in the presence of an alkoxide as catalyst.
  • nonionic surfactants in detergents and cleaners for automatic dishwashing come as surfactants in general all surfactants in question.
  • the nonionic surfactants described above and, above all, the low-foaming nonionic surfactants are preferred for this purpose.
  • Particularly preferred are the alkoxylated alcohols, especially the ethoxylated and / or propoxylated alcohols.
  • alkoxylated alcohols the reaction products of alkylene oxide, preferably ethylene oxide, with alcohols, preferably in the context of the present invention, the longer-chain alcohols (C 10 to C 18 , preferably between C 12 and C 16 , such as, for example, C 11 , C 12 , C 13 , C 14 , C 15 , C 16 , C 17 and C 18 alcohols).
  • C 10 to C 18 the longer-chain alcohols
  • n moles of ethylene oxide and one mole of alcohol form a complex mixture of addition products of different degrees of ethoxylation.
  • a further embodiment consists in the use of mixtures of the alkylene oxides, preferably the mixture of ethylene oxide and propylene oxide.
  • the substance class of "closed" alcohol ethoxylates reach, which can also be used in the context of the invention.
  • Very particularly preferred for the purposes of the present invention are highly ethoxylated fatty alcohols or mixtures thereof with end-capped fatty alcohol ethoxylates.
  • nonionic surfactants have been low foaming nonionic surfactants which have alternating ethylene oxide and alkylene oxide units.
  • surfactants with EO-AO-EO-AO blocks are preferred, wherein in each case one to ten EO or AO groups are bonded to each other before a block of the other groups follows.
  • Machine dishwashing agents which contain surfactants of the general formula XVII as nonionic surfactant (s) are preferred here in which R 1 is a straight-chain or branched, saturated or mono- or polyunsaturated C 6-24 alkyl or alkenyl radical; each group R 2 or R 3 is independently selected from -CH 3 ; -CH 2 CH 3 , -CH 2 CH 2 -CH 3 , -CH (CH 3 ) 2 and the indices w, x, y, z independently of one another are integers from 1 to 6.
  • the preferred nonionic surfactants of formula XVII can be prepared by known methods from the corresponding alcohols R 1 -OH and ethylene or alkylene oxide.
  • the radical R 1 in the above formula XVII may vary depending on the origin of the alcohol. If native sources are used, the radical R 1 has an even number of carbon atoms and is usually undisplayed, wherein the linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example from coconut, palm, tallow or Oleyl alcohol, are preferred.
  • Alcohols accessible from synthetic sources are, for example, the Guerbet alcohols or methyl-branched or linear and methyl-branched radicals in the 2-position in the mixture, as they are usually present in oxo alcohol radicals.
  • R 1 in formula XVII is an alkyl group having 6 to 24, preferably 8 to 20, more preferably 9 to 15 and in particular 9 to 11 carbon atoms.
  • alkylene oxide unit which is contained in the preferred nonionic surfactants in alternation with the ethylene oxide unit, in particular butylene oxide is considered in addition to propylene oxide.
  • R 2 or R 3 are independently selected from - CH 2 CH 2 -CH 3 or -CH (CH 3 ) 2 are suitable.
  • Preferred automatic dishwashing detergents are characterized in that R 2 and R 3 are each a residue -CH 3 , w and x independently of one another for values of 3 or 4 and y and z independently of one another represent values of 1 or 2.
  • nonionic surfactants which have a C 9-15 -alkyl radical having 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units, followed by 1 to 4 ethylene oxide units, followed by 1 to 4 propylene oxide units.
  • the automatic dishwasher detergents according to the invention contain a nonionic surfactant which has a melting point above room temperature.
  • preferred agents are characterized by containing nonionic surfactant (s) having a melting point above 20 ° C, preferably above 25 ° C, more preferably between 25 and 60 ° C, and most preferably between 26.6 and 43, 3 ° C, included.
  • Suitable nonionic surfactants in addition to the nonionic surfactants according to the invention which have melting or softening points in the temperature range mentioned are, for example, low-foaming nonionic surfactants which may be solid or highly viscous at room temperature. If high-viscosity nonionic surfactants are used at room temperature, it is preferred that they have a viscosity above 20 Pas, preferably above 35 Pas and in particular above 40 Pas. Nonionic surfactants which have waxy consistency at room temperature are also preferred.
  • Preferred nonionic surfactants to be used at room temperature are from the groups of the alkoxylated nonionic surfactants, in particular the ethoxylated primary alcohols, and mixtures of these surfactants with structurally complicated surfactants such as polyoxypropylene / polyoxyethylene / polyoxypropylene (PO / EO / PO) surfactants.
  • Such (PO / EO / PO) nonionic surfactants are also characterized by good foam control.
  • the nonionic surfactant having a melting point above room temperature is an ethoxylated nonionic surfactant consisting of the reaction of a monohydroxyalkanol or alkylphenol having 6 to 20 carbon atoms, preferably at least 12 mol, more preferably at least 15 mol, especially at least 20 moles of ethylene oxide per mole of alcohol or alkylphenol emerged.
  • a particularly preferred room temperature solid nonionic surfactant is selected from a straight chain fatty alcohol of 16 to 20 carbon atoms (C 16-20 alcohol), preferably a C 18 -alcohol and at least 12 moles, preferably at least 15 moles and in particular at least 20 moles of ethylene oxide.
  • C 16-20 alcohol a straight chain fatty alcohol of 16 to 20 carbon atoms
  • C 18 -alcohol preferably a C 18 -alcohol and at least 12 moles, preferably at least 15 moles and in particular at least 20 moles of ethylene oxide.
  • the so-called “narrow range ethoxylates" are particularly preferred.
  • particularly preferred agents according to the invention contain ethoxylated nonionic surfactant (s) consisting of C 6-20 monohydroxyalkanols or C 6-20 alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide per mole of alcohol was recovered (n).
  • ethoxylated nonionic surfactant consisting of C 6-20 monohydroxyalkanols or C 6-20 alkylphenols or C 16-20 fatty alcohols and more than 12 mol, preferably more than 15 mol and in particular more than 20 moles of ethylene oxide per mole of alcohol was recovered (n).
  • the nonionic surfactant preferably additionally has propylene oxide units in the molecule.
  • such PO units make up to 25 wt .-%, more preferably up to 20 wt .-% and in particular up to 15 wt .-% of the total molecular weight of the nonionic surfactant from.
  • Particularly preferred nonionic surfactants are ethoxylated monohydroxyalkanols or alkylphenols which additionally have polyoxyethylene-polyoxypropylene block copolymer units.
  • the alcohol or alkylphenol part of such nonionic surfactant molecules preferably constitutes more than 30% by weight, more preferably more than 50% by weight and in particular more than 70% by weight of the total molecular weight of such nonionic surfactants.
  • Preferred automatic dishwashing detergents are characterized in that they contain ethoxylated and propoxylated nonionic surfactants in which the propylene oxide units in the molecule contain up to 25% by weight, preferably up to 20% by weight and in particular up to 15% by weight of the total molecular weight of the nonionic surfactant.
  • More particularly preferred nonionic surfactants having melting points above room temperature contain from 40 to 70% of a polyoxypropylene / polyoxyethylene / polyoxypropylene block polymer blend containing 75% by weight of a reverse block copolymer of polyoxyethylene and polyoxypropylene with 17 moles of ethylene oxide and 44 moles of propylene oxide and 25% by weight. % of a block copolymer of polyoxyethylene and polyoxypropylene initiated with trimethylolpropane and containing 24 moles of ethylene oxide and 99 moles of propylene oxide per mole of trimethylolpropane.
  • Nonionic surfactants which may be used with particular preference are available, for example, under the name Poly Tergent® SLF-18 from Olin Chemicals.
  • a further preferred machine dishwashing detergent according to the invention contains nonionic surfactants of the formula R 1 O [CH 2 CH (CH 3 ) O] x [CH 2 CH 2 O] y [CH 2 CH (OH) R 2 ].
  • R 1 is a linear or branched aliphatic hydrocarbon radical having 4 to 18 carbon atoms or mixtures thereof
  • R 2 denotes a linear or branched hydrocarbon radical having 2 to 26 carbon atoms or mixtures thereof and x for values between 0.5 and 1.5 and y is a value of at least 15.
  • nonionic surfactants are the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, n- Butyl, 2-butyl or 2-methyl-2-butyl radical, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5.
  • each R 3 in the above formula may be different.
  • R 1 and R 2 are preferably linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 6 to 22 carbon atoms, with radicals having 8 to 18 carbon atoms being particularly preferred.
  • R 3 H, -CH 3 or -CH 2 CH 3 are particularly preferred.
  • Particularly preferred values for x are in the range from 1 to 20, in particular from 6 to 15.
  • each R 3 in the above formula may be different if x ⁇ 2.
  • the alkylene oxide unit in the square bracket can be varied.
  • the value 3 for x has been selected here by way of example and may well be greater, with the variation width increasing with increasing x values and including, for example, a large number (EO) groups combined with a small number (PO) groups, or vice versa ,
  • R 1 , R 2 and R 3 are as defined above and x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18.
  • Particularly preferred are surfactants in which the radicals R 1 and R 2 has 9 to 14 C atoms, R 3 is H and x assumes values of 6 to 15.
  • dishwashing agents according to the invention are preferred, the end-capped poly (oxyalkylated) nonionic surfactants of the formula R 1 O [CH 2 CH (R 3 ) O] x [CH 2 ] k CH (OH) [CH 2 ] j OR 2 in which R 1 and R 2 are linear or branched, saturated or unsaturated, aliphatic or aromatic hydrocarbon radicals having 1 to 30 carbon atoms, R 3 is H or a methyl, ethyl, n-propyl, iso-propyl, x is n-butyl, 2-butyl or 2-methyl-2-butyl, x are values between 1 and 30, k and j are values between 1 and 12, preferably between 1 and 5, surfactants of the type R 1 O [CH 2 CH (R 3 ) O] x CH 2 CH (OH) CH 2 OR 2 in which x is from 1 to 30, preferably from 1 to 20 and in particular from 6 to 18, are particularly preferred.
  • R 1 and R 2 are linear or
  • Anionic, cationic and / or amphoteric surfactants may also be used in conjunction with the surfactants mentioned, these having only minor importance because of their foaming behavior in dishwasher detergents and usually only in amounts below 10% by weight, in most cases even below 5% by weight .-%, for example, from 0.01 to 2.5 wt .-%, each based on the agent used.
  • the agents according to the invention can thus also contain anionic, cationic and / or amphoteric surfactants as surfactant component.
  • the automatic dishwashing or machine dishwashing aids comprise surfactant (s), preferably nonionic surfactant (s), in amounts of from 0.5 to 10% by weight, preferably from 0.75 to 7.5 wt .-% and in particular from 1.0 to 5 wt .-%, each based on the total agent included.
  • surfactant preferably nonionic surfactant (s)
  • s nonionic surfactant
  • Bleaching agents and bleach activators are important constituents of detergents and cleaners, and a preferred automatic dishwashing detergent or automatic dishwashing auxiliary may in the context of the present invention comprise one or more substances from the said groups.
  • sodium percarbonate has particular significance.
  • Further useful bleaching agents are, for example, sodium perborate tetrahydrate and the sodium perborate monohydrate, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • Sodium percarbonate is a term used in unspecified form for sodium carbonate peroxohydrates, which strictly speaking are not “percarbonates” (ie salts of percarbonic acid) but hydrogen peroxide adducts of sodium carbonate.
  • the commercial product has the average composition 2 Na 2 CO 3 ⁇ 3 H 2 O 2 and is therefore no peroxycarbonate.
  • Sodium percarbonate forms a white, water-soluble powder with a density of 2.14 gcm -3 , which readily decomposes into sodium carbonate and bleaching or oxidizing oxygen.
  • Dishwashing detergents may also contain bleaches from the group of organic bleaches.
  • Typical organic bleaching agents which can be used as ingredients in the present invention are the diacyl peroxides, e.g. Dibenzoyl.
  • Other typical organic bleaches are the peroxyacids, examples of which include the alkyl peroxyacids and the aryl peroxyacids.
  • Preferred representatives are (a) the peroxybenzoic acid and its ring-substituted derivatives, such as alkylperoxybenzoic acids, but also peroxy- ⁇ -naphthoic acid and magnesium monoperphthalate, (b) the aliphatic or substituted aliphatic peroxyacids, such as peroxylauric acid, peroxystearic acid, ⁇ -phthalimidoperoxycaproic acid [phthaloiminoperoxyhexanoic acid (PAP )], o-carboxybenzamidoperoxycaproic acid, N-nonenylamidoperadipic acid and N-nonenylamidopersuccinate, and (c) aliphatic and araliphatic peroxydicarboxylic acids such as 1,12-diperoxycarboxylic acid, 1,9-diperoxyazelaic acid, diperoxysebacic acid, diperoxybrassic acid, the diperoxyphthalic acids, 2-decyldip
  • chlorine or bromine releasing substances can also be used according to the present invention.
  • suitable chlorine or bromine releasing materials are, for example, heterocyclic N-bromo- and N-chloroamides, for example trichloroisocyanuric acid, tribromoisocyanuric acid, dibromoisocyanuric acid and / or dichloroisocyanuric acid (DICA) and / or their salts with cations such as potassium and sodium.
  • DICA dichloroisocyanuric acid
  • Hydantoin compounds such as 1,3-dichloro-5,5-dimethylhydantoin are also suitable.
  • Advantageous agents in the context of the present invention contain one or more bleaching agents, preferably from the group of the oxygen or halogen bleaches, in particular the chlorine bleach, with particular preference of sodium percarbonate and / or sodium perborate monohydrate, in amounts of 0.5 to 40 wt .-%, preferably from 1 to 30 wt .-%, particularly preferably from 2.5 to 25 wt .-% and in particular from 5 to 20 wt .-%, each based on the total agent.
  • one or more bleaching agents preferably from the group of the oxygen or halogen bleaches, in particular the chlorine bleach, with particular preference of sodium percarbonate and / or sodium perborate monohydrate, in amounts of 0.5 to 40 wt .-%, preferably from 1 to 30 wt .-%, particularly preferably from 2.5 to 25 wt .-% and in particular from 5 to 20 wt .-%, each based on the total agent.
  • cleaning agents in the context of the present invention may contain bleach activators.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • TAED tetraacet
  • bleach catalysts can also be incorporated into the detergents according to the present invention.
  • These substances are bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • agents which comprise one or more substances from the group of bleach activators, in particular from the groups of the polyacylated alkylenediamines, in particular tetraacetylethylenediamine (TAED), N-acylimides, in particular N-nonanoylsuccinimide (NOSI), the acylated phenolsulfonates, in particular Nonanoyl or Isononanoyloxybenzolsulfonat (n- or iso-NOBS) and n-methyl-morpholinium acetonitrile-methyl sulfate (MMA), in amounts of 0.1 to 20 wt .-%, preferably from 0.5 to 15 wt .-% and in particular from 1 to 10 wt .-%, each based on the total agent.
  • TAED tetraacetylethylenediamine
  • N-acylimides in particular N-nonanoylsuccinimide (NOSI)
  • the bleach activators preferred in the context of the present invention furthermore include the "nitrile quats", cationic nitriles of the formula (XVIII), in which R 1 is -H, -CH 3 , a C 2-24 -alkyl or -alkenyl radical, a substituted C 2-24 -alkyl or -alkenyl radical having at least one substituent from the group -Cl, -Br, - OH, -NH 2, -CN, an alkyl or alkenylaryl radical with a C 1-24 alkyl group, or a substituted alkyl- or alkenylaryl radical with a C 1-24 alkyl group and at least one further substituent on the aromatic ring, R 2 and R 3 are independently selected from -CH 2 -CN, -CH 3 , -CH 2 -CH 3 , -CH 2 -CH 2 -CH 3 , -CH (CH 3 ) -CH 3 , -CH 2 -
  • the general formula (XVIII) includes a variety of cationic nitriles useful in the present invention.
  • the detergent tablets according to the invention comprise cationic nitriles in which R 1 represents methyl, ethyl, propyl, isopropyl or an n-butyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-butyl Tetradecyl, n-hexadecyl or n-octadecyl stands.
  • R 2 and R 3 are preferably selected from methyl, ethyl, propyl, isopropyl and hydroxyethyl, wherein one or both radicals may advantageously also be a Cyanomethylenrest.
  • radicals R 1 to R 3 are identical, for example (CH 3 ) 3 N (+) CH 2 -CN X - , (CH 3 CH 2 ) 3 N (+) CH 2 -CN X -, (CH 3 CH 2 CH 2) 3 N (+) CH 2 -CN X -, (CH 3 CH (CH 3)) 3 N (+) CH 2 -CN X -, or (HO -CH 2 -CH 2 ) 3 N (+) CH 2 -CN X - , where X - is preferably an anion selected from the group consisting of chloride, bromide, iodide, hydrogensulfate, methosulfate, p-toluenesulfonate (tosylate) or xylenesulfonate is selected.
  • X - is preferably an anion selected from the group consisting of chloride, bromide, iodide, hydrogensulfate, methosulfate, p-toluene
  • Automatic dishwashing or dishwashing assistants preferred in the context of the present invention are characterized in that they contain the cationic nitrile of the formula (XVIII) in amounts of 0.1 to 20 wt .-%, preferably from 0.25 to 15 wt .-% and in particular from 0.5 to 10 wt .-%, each based on the total weight of the composition.
  • Particularly suitable enzymes are those from the classes of hydrolases such as the proteases, esterases, lipases or lipolytic enzymes, amylases, cellulases or other glycosyl hydrolases and mixtures of the enzymes mentioned. All of these hydrolases in the wash contribute to the removal of stains such as proteinaceous, greasy or starchy stains and graying. In addition, cellulases and other glycosyl hydrolases may contribute to color retention and to enhancing the softness of the fabric by removing pilling and microfibrils. It is also possible to use oxidoreductases for bleaching or inhibiting color transfer.
  • Bacillus subtilis Bacillus subtilis
  • Bacillus licheniformis Bacillus licheniformis
  • Streptomyceus griseus Streptomyceus griseus
  • Coprinus cinereus and Humicola insolens
  • enzymatically-derived variants derived from their genetically modified variants e.g., Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus cinereus and Humicola insolens
  • subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • enzyme mixtures for example from protease and amylase or protease and lipase or lipolytic enzymes or protease and cellulase or from cellulase and lipase or lipolytic enzymes or from protease, amylase and lipase or lipolytic enzymes or protease, lipase or lipolytic enzymes and cellulase, but in particular protease and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • lipolytic enzymes are the known cutinases.
  • Peroxidases or oxidases have also proved suitable in some cases.
  • Suitable amylases include, in particular, alpha-amylases, iso-amylases, pullulanases and pectinases.
  • As cellulases are preferably cellobiohydrolases, endoglucanases and - glucosidases, which are also called cellobiases, or mixtures thereof used. Since different cellulase types differ by their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes may be adsorbed to carriers or embedded in encapsulants to protect against premature degradation.
  • Preferred agents according to the invention contain enzymes, preferably in the form of liquid and / or solid enzyme preparations, in amounts of from 0.1 to 10% by weight, preferably from 0.5 to 8% by weight and in particular from 1 to 5% by weight. , in each case based on the total mean.
  • Dyes which are preferred in the context of the present invention and whose selection does not present any difficulty to a person skilled in the art have a high storage stability and insensitivity to the other ingredients of the compositions and to light, as well as no pronounced substantivity towards the items to be dyed.
  • Preferred for use in the machine dishwashing detergents or dishwashing auxiliaries according to the invention are all colorants which can be oxidatively destroyed in the cleaning process and mixtures thereof with suitable blue dyes, so-called blue toners. It has proved to be advantageous to use colorants which are soluble in water or at room temperature in liquid organic substances. Suitable are, for example, anionic colorants, e.g. anionic nitrosofarads. A possible colorant is, for example, naphthol green (Color Index (CI) Part 1: Acid Green 1, Part 2: 10020), which is available as a commercial product, for example as Basacid® Green 970 from BASF, Ludwigshafen, and mixtures thereof with suitable blue dyes.
  • CI Color Index
  • Pigmosol® Blue 6900 (CI 74160), Pigmosol® Green 8730 (CI 74260), Basonyl® Red 545 FL (CI 45170), Sandolan® Rhodamine EB400 (CI 45100), Basacid® Yellow 094 (CI 47005), Sicovit® Patent Blue 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blue GLW (CAS 12219-32-8, CI Acidblue 221 ), Nylosan® Yellow N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) and / or Sandolan® Blue (CI Acid Blue 182, CAS 12219-26-0).
  • Fragrances are added to the compositions within the scope of the present invention in order to improve the aesthetics of the products and to provide the consumer, in addition to the performance of the product, with a visually and sensory "typical and unmistakable" product.
  • fragrance compounds for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons, can be used in the context of the present invention.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, Ethyl methyl phenyl glycinate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and methyl cedrylketone , the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures such as are available from vegetable sources, e.g. Pine, citrus, jasmine, patchouly, rose or ylang-ylang oil. Also suitable are muscatel, sage, chamomile, clove, lemon balm, mint, cinnamon, lime, juniper, vetiver, olibanum, galbanum and labdanum, and orange blossom, neroliol, orange peel and sandalwood.
  • Detergents for machine dishwashing may contain corrosion inhibitors to protect the items to be washed or the machine, with silver protectants in particular being of particular importance in the field of automatic dishwashing. It is possible to use the known substances of the prior art. In general, silver protectants selected from the group of triazoles, benzotriazoles, bisbenzotriazoles, aminotriazoles, alkylaminotriazoles and transition metal salts or complexes can be used in particular. Particularly preferred to use are benzotriazole and / or alkylaminotriazole. In addition, cleaner formulations often contain active chlorine-containing agents which can markedly reduce the corrosion of the silver surface.
  • chlorine-free cleaners are particularly oxygen and nitrogen-containing organic redox-active compounds, such as di- and trihydric phenols, eg. As hydroquinone, pyrocatechol, hydroxyhydroquinone, gallic acid, phloroglucinol, pyrogallol or derivatives of these classes of compounds. Also, salt and complex inorganic compounds, such as salts of the metals Mn, Ti, Zr, Hf, V, Co and Ce are often used.
  • transition metal salts which are selected from the group of manganese and / or cobalt salts and / or complexes, more preferably the cobalt (amine) complexes, the cobalt (acetate) complexes, the cobalt (carbonyl) complexes , the chlorides of cobalt or manganese and of manganese sulfate and the manganese complexes [Me-TACN) Mn IV (m-O) 3 Mn IV (Me-TACN)] 2+ (PF 6 - ) 2 , [Me-MeTACN) Mn IV (m-0) 3 Mn IV (Me-MeTACN)] 2+ (PF 6 - ) 2 , [Me-TACN) Mn III (m-0) (m-OAc) 2 Mn III (Me-TACN)] 2+ (PF 6 - ) 2 and [Me-MeTACN) Mn III (m-O) (m -OAc)
  • automatic dishwasher detergents or dishwashing auxiliaries which additionally contain at least one silver protectant selected from the group of the triazoles, the benzotriazoles, the bisbenzotriazoles, the aminotriazoles, the alkylaminotriazoles, preferably benzotriazole and / or alkylaminotriazole, in amounts of from 0.001 to 1 Wt .-%, preferably from 0.01 to 0.5 wt .-% and in particular from 0.05 to 0.25 wt .-%, each based on the total agent included.
  • a further subject of the present application is the use of a machine dishwashing detergent or automatic dishwashing auxiliary according to the invention for reducing the glass corrosion in automatic dishwashing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Compounds, enthaltend mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I) a A 2 O b BO c C 2 O 3 d D 2 O 5 x SiO 2 f H 2 O
Figure imga0001

in der A ein Alkalimetall und/oder Wasserstoff, B ein Erdalkalimetall und/oder ein Nebengruppenelement, vorzugsweise ein Element aus der Gruppe Zink, Eisen Mangan, C ein Element der Dritten Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement, vorzugsweise Eisen, und D ein Element der Fünften Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement bedeuten und weiterhin gilt, daß 0 ≤ a ≤ 1; 0 ≤ b ≤ 0,5; 0 ≤ c/x ≤ 0,05; 0 ≤ d/x ≤ 0,25; 1,9 ≤ x ≤ 22; 0 ≤ f ≤ 40, dadurch gekennzeichnet, daß das/die enthaltene(n) Zinksalz(e) und das/die enthaltene(n) kristalline(n) schichtförmige(n) Silikat(e) mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en) konfektioniert, in partikulärer Form, als Compound vorliegt/vorliegen, verbessern die Glaskorrosionseigenschaften maschineller Geschirrspülmittel.

Description

  • Die vorliegende Erfindung liegt auf dem Gebiet der maschinellen Geschirrspülmittel. Insbesondere betrifft die vorliegende Erfindung maschinelle Geschirrspülmittel, die Zinksalze sowie bestimmte Silikate enthalten.
  • Mit der fortschreitenden Automatisierung verschiedenster Wasch- und Reinigungsprozesse in Haushalt und Industrie haben maschinelle Wasch- und Reinigungsmittel für Textilien und Geschirr in den vergangenen Jahrzehnten zunehmend an Bedeutung gewonnen.
    Die für das maschinelle Geschirrspülen erforderlichen sogenannten niederalkalischen Reiniger enthalten als Alkaliträger häufig Mischungen aus Natriumdisilikat und Soda, Builder wie Citronensäure beispielsweise in Verbindung mit Polycarboxylaten sowie vorzugsweise schwachschäumende, nichtionische Tenside. Weiterhin können Bleichmittel, Bleichaktivatoren, Silber- und Korrosionschutzmittel und, zur Verstärkung des Reinigungsvermögens, Enzyme enthalten sein. In einem typischen maschinellen Reinigungsgang wird das in Körben eingestellte Geschirr durch intensiven Kontakt mit der wässrigen Reinigerlösung bei etwa 65°C und pH-Werten zwischen 9 und 11 gesäubert und anschließend klargespült.
    Ein wichtiges Kriterium zur Beurteilung eines maschinellen Geschirrspülmittels ist neben dessen Reinigungsleistung das optische Erscheinungsbild des trockenen Geschirrs nach erfolgter Reinigung. Eventuell auftretende Calciumcarbonat-Ablagerungen auf Geschirr oder im Maschineninnenraum können beispielsweise die Kundenzufriedenheit beeinträchtigen und haben damit ursächlichen Einfluß auf den wirtschaftlichen Erfolg eines derartigen Reinigungsmittels. Ein weiteres seit langem bestehendes Problem beim maschinellen Geschirrspülen ist die Korrosion von Glasspülgut, die sich in der Regel durch Auftreten von Trübungen, Schlieren und Kratzern aber auch durch ein Irisieren der Glasoberfläche äußern kann. Die beobachteten Effekte beruhen dabei im wesentlichen auf zwei Vorgängen, dem Austritt von Alkali- und Erdalkaliionen aus dem Glas in Verbindung mit einer Hydrolyse des Silikat-Netzwerks, zum anderen in einer Ablagerung silikatischer Verbindungen auf der Glasoberfläche. Zur Vermeidung derartiger Korrosionsvorgänge gibt es im Stand der Technik eine Reihe von Vorschlägen, beispielsweise bezüglich des Einsatzes von Zinksalzen.
  • Nach der Lehre der amerikanischen Patentschrift US 3 677 820 (Whirlpool Corporation) verhindert ein im Innenraum der Geschirrspülmaschine angebrachter Zinkstreifen die Korrosion von Glasoberflächen während des Reinigungsvorgangs.
  • Die europäische Patentanmeldung EP 0 383 482 (Procter & Gamble Company) beschreibt schließlich maschinelle Geschirrspülmittel, enthaltend unlösliche Zinksalze, die sich durch einen verbesserten Glaskorrosionsschutz auszeichnen. Die unlöslichen Zinksalze müssen zur Erzielung eines derartigen Effekts eine Partikelgröße unterhalb 1,7 Millimeter aufweisen.
  • Aber auch die Verwendung von Silikaten zur Verhinderung der Glaskorrosion beim maschinellen Geschirrspülen wurde beschrieben.
  • So offenbart die internationale Patentanmeldung WO 96/12783 (Henkel KGaA) phosphatfreie bis phosphatarme maschinelle Geschirrspülmittel mit verbesserter Dekor- und Glasschonung auf Basis von Citrat-haltigen Rezepturen, welche kristalline schichtförmige Silikate enthalten.
  • Gegenstand der internationalen Patentanmeldung WO 99/57237 (Clariant GmbH, Henkel KGaA) sind phosphathaltige maschinelle Geschirrspülmittel die ein pulverförmiges bis granulares Additiv enthalten, welches als wesentliche Bestandteile ein kristallines schichtförmiges Silikat der allgemeinen Formel NaMSixO2x+1 · y H2O, worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22 ist und y für eine Zahl von 0 bis 33 steht, und (co-)polymere Polycarbonsäure aufweisen und neben Glas- oder Dekor-schonenden Wirkungen auch hervorragende Reinigungsleistungen besitzen.
  • Der vorliegenden Erfindung lag nun die Aufgabe zugrunde, ein maschinelles Geschirrspülmittel bereitzustellen, das auch bei wiederholter Benutzung die Oberflächen gläsernen Spülguts nicht korrosiv verändert, insbesondere keine Trübungen, Schlieren oder Kratzer aber auch kein Irisieren der Glasoberflächen verursacht. Vorzugsweise sollte ein Additiv für ein maschinelles Geschirreinigungsmittel bereitgestellt werden, das sich als Bestandteil maschineller Geschirrspülmittel jedweder Angebotsform beispielsweise als Bestandteil von Pulver-, Tabletten-, Flüssigformulierungen, Reinigungsschäumen oder Depotprodukten eignet, ohne diese rezepturell einzuschränken.
  • Es wurde nun gefunden, daß die zuvor genannten Aufgaben durch solche Compounds gelöst werden, die mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I)

             a A2O • b BO • c C2O3 • d D2O5 • x SiO2 • f H2O     (I),

    in der A ein Alkalimetall und/oder Wasserstoff, B ein Erdalkalimetall und/oder ein Nebengruppenelement, vorzugsweise ein Element aus der Gruppe Zink, Eisen Mangan, C ein Element der Dritten Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement, vorzugsweise Eisen, und D ein Element der Fünften Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement bedeuten und weiterhin gilt, daß 0 ≤ a ≤ 1; 0 ≤ b ≤ 0,5; 0 ≤ c/x ≤ 0,05; 0 ≤ d/x ≤ 0,25; 1,9 ≤ x ≤ 22; 0 ≤ f ≤ 40 enthalten, dadurch gekennzeichnet, daß das/die enthaltene(n) Zinksalz(e) und das/die enthaltene(n) kristalline(n) schichtförmige(n) Silikat(e) mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en) konfektioniert, in partikulärer Form, als Compound vorliegt/vorliegen.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I)

             a A2O • b BO • C2O3 • d D2O5 • x SiO2 • y H2O     (I),

    in der A ein Alkalimetall und/oder Wasserstoff, B ein Erdalkalimetall und/oder Zink, C ein Element der Dritten Hauptgruppe des Periodensystems und D ein Element der Fünften Hauptgruppe des Periodensystems bedeuten und weiterhin gilt, daß 0 ≤ a ≤ 1; 0 ≤ b ≤ 0,5; 0 ≤ c/x ≤ 0,05; 0 ≤ d/x ≤ 0,25; 1,9 ≤ x ≤ 22; 0 ≤ f ≤ 40.
  • Schließlich ist es besonders bevorzugt, daß das maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I)

             a A2O • b BO • c C2O3 • d D2O5 • x SiO2 • y H2O     (I),

    enthält, in der A ein Alkalimetall und/oder Wasserstoff, B ein Erdalkalimetall, C ein Element der Dritten Hauptgruppe des Periodensystems und D ein Element der Fünften Hauptgruppe des Periodensystems bedeuten und weiterhin gilt, daß 0 ≤ a ≤ 1; 0 ≤ b ≤ 0,5; 0 ≤ c/x ≤ 0,05; 0 ≤ d/x ≤ 0,25; 1,9 ≤ x ≤ 22; 0 ≤ f ≤ 40.
  • In besonders bevorzugten erfindungsgemäßen Mitteln enthält das kristalline schichtförmige Silikat, bezogen auf dessen Gewicht, bis zu 10 Mol-%, vorzugsweise zwischen 0,01 und 10 Mol-%, bevorzugt zwischen 0,01 und 8 Mol-% und insbesondere zwischen 0,01 und 5 Mol-% Bor.
  • In einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Mittel enthält das kristalline, schichtförmige Silikat bis zu 50 Mol-%, vorzugsweise zwischen 0,01 und 50 Mol-%, bevorzugt zwischen 0,01 und 40 Mol-% und insbesondere zwischen 0,01 und 20 Mol-% Phosphor.
  • In einer weiteren bevorzugten Ausführungsform erfindungsgemäßer Mittel gilt für die Formel (I): a = 1 und b = c = d = 0; A steht für Natrium bzw. Natrium oder Wasserstoff. Bevorzugter Gegenstand der vorliegenden Anmeldung sind daher maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, enthaltend mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (la)

             NaMSixO2x+1 · y H2O     (Ia),

    worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, ist und y für eine Zahl von 0 bis 33 steht.
    Als besonders vorteilhaft für die korrosionsinhibierende Wirkung erfindungsgemäßer Mittel hat es sich dabei erwiesen, wenn das/die Zinksalz(e) sowie das/die kristalline(n) schichtförmige(n) Silikat(e) der allgemeinen Formel (I) bzw. der allgemeinen Formel (la) im Verhältnis 10:1 bis 1:50, vorzugsweise von 5:1 bis 1:30 und insbesondere von 3:1 bis 1:10 in diesen Mitteln enthalten sind.
  • Die kristallinen schichtförmigen Silikate der Formel (la) werden beispielsweise von der Fa. Clariant GmbH (Deutschland) unter dem Handelsnamen Na-SKS vertrieben, z.B. Na-SKS-1 (Na2Si22O45·xH2O, Kenyait), Na-SKS-2 (Na2Si14O29·xH2O, Magadiit), Na-SKS-3 (Na2Si8O17·xH2O) oder Na-SKS-4 (Na2Si4O9·xH2O, Makatit).
  • Für die Zwecke der vorliegenden Erfindung besonders geeignet sind Mittel, die kristalline Schichtsilikate der Formel (la) enthalten, in denen x für 2 steht. Von diesen eignen sich vor allem Na-SKS-5 (α-Na2Si2O5), Na-SKS-7 (β-Na2Si2O5, Natrosilit), Na-SKS-9 (NaHSi2O5·H2O), Na-SKS-10 (NaHSi2O5·3H2O, Kanemit), Na-SKS-11 (t-Na2Si2O5) und Na-SKS-13 (NaHSi2O5), insbesondere aber Na-SKS-6 (δ-Na2Si2O5). Einen Überblick über kristalline Schichtsilikate findet sich z.B. in dem in "Seifen-Öle-Fette-Wachse, 116 Jahrgang, Nr. 20/1990" auf den Seiten 805 - 808 veröffentlichten Artikel.
  • Bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel weisen im Rahmen der vorliegenden Anmeldung einen Gewichtsanteil des kristallinen schichtförmigen Silikats der allgemeinen Formel (I) bzw. der allgemeinen Formel (la) von 0,1 bis 20 Gew.-%, vorzugsweise von 0,2 bis 15 Gew.-% und insbesondere von 0,4 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht dieser Mittel, auf.
  • Erfindungsgemäße Mittel enthalten neben den genannten kristallinen schichtförmigen Silikaten Zinksalze, wobei bevorzugt sowohl anorganische als auch organische Salze einsetzbar sind. Eine nicht abschließende Auflistung einiger bevorzugter Zinksalze zeigt die folgende Tabelle:
    Zinksalz Löslichkeit
    Zinkacetat-Dihydrat 430 g/l (20°C)
    Zinkacetylacetonat 4 g/l (20°C)
    Zinkbromid 820 g/l (25°C)
    Zinkchlorid 4320 g/l (25°C)
    Zinkgluconat 100 g/l (20°C)
    Zinkhydroxycarbonat Fast unlöslich (20°C)
    Zinkiodid 4500 g/l (20°C)
    Zinknitrat Hexahydrat 1843 g/l (20°C)
    Zinknitrat-Tetrahydrat Leicht löslich (20°C)
    Zinkoxid Unlöslich
    Zinkstearat 0,9 mg/l (20°C)
    Zinksulfat-Heptahydat 960 g/l (20°C)
    Zinksulfat-Monohydrat ~350 g/l (20°C)
  • Neben den nicht löslichen anorganischen Zinksalzen, also Salzen, welche eine Löslichkeit unterhalb 100 mg/L (20°C), vorzugsweise unterhalb 10 mg/L (20°C), insbesondere keine Löslichkeit (20°C) aufweisen (Bsp.: Zinkoxid), sind im Rahmen der vorliegenden Anmeldung die löslichen anorganischen Zinsalze, das heißt Salze, die in Wasser eine Löslichkeit oberhalb 100 mg/L, vorzugsweise oberhalb 500 mg/L, besonders bevorzugt oberhalb 1 g/L und insbesondere oberhalb 5 g/L aufweisen, bevorzugter Bestandteil erfindungsgemäßer Mittel. Zu den bevorzugten löslichen anorganischen Salzen zählen das Zinkbromid, das Zinkchlorid, das Zinkiodid, das Zinknitrat und das Zinksulfat. Ein weiterer bevorzugter Gegenstand der vorliegenden Anmeldung sind daher maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, welche mindestens ein Zinksalz ausgewählt aus der Gruppe der anorganischen Zinksalze, vorzugsweise aus der Gruppe der löslichen anorganischen Zinksalze, insbesondere aus der Gruppe Zinkbromid, Zinkchlorid, Zinkiodid, Zinknitrat und Zinksulfat enthalten.
  • Das Spektrum der erfindungsgemäß bevorzugten Zinksalze organischer Säuren, vorzugsweise organischer Carbonsäuren, reicht von Salzen die in Wasser nicht löslich sind, also eine Löslichkeit unterhalb 100 mg/L, vorzugsweise unterhalb 10 mg/L, insbesondere keine Löslichkeit aufweisen, bis zu solchen Salzen, die in Wasser eine Löslichkeit oberhalb 100 mg/L, vorzugsweise oberhalb 500 mg/L, besonders bevorzugt oberhalb 1 g/L und insbesondere oberhalb 5 g/L aufweisen (alle Löslichkeiten bei 20°C Wassertemperatur). Zu der ersten Gruppe von Zinksalzen gehören beispielsweise das Zinkcitrat, das Zinlaureat, das Zinkoleat, das Zinkoxalat, das Zinktartrat und das Zinkstearat, zu der Gruppe der löslichen organischen Zinksalze gehören beispielsweise das Zinkacetat, das Zinkacetylacetonat, das Zinkbenzoat, das Zinkformiat, das Zinklactat, das Zinkgluconat, das Zinkvalerat sowie das Zinksalz der p-Toluolsulfonsäure.
  • In einer weiteren bevorzugten Ausführungsform enthalten erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel daher mindestens ein Zinksalz ausgewählt aus der Gruppe der organischen Zinksalze, vorzugsweise aus der Gruppe der löslichen organischen Zinksalze, besonders bevorzugt aus der Gruppe der löslichen Zinksalze monomerer oder polymerer organischer Säuren, insbesondere aus der Gruppe Zinkacetat, Zinkacetylacetonat, Zinkbenzoat, Zinkformiat, Zinklactat, Zinkgluconat, Zinkricinoleat, Zinkabietat, Zinkvalerat, Zink-p-toluolsulfonat.
  • Selbstverständlich können bevorzugte erfindungsgemäße Mittel auch Gemische organischer und anorganischer Zinksalze, insbesondere Mischungen löslicher organischer Zinksalze mit nicht löslichen anorganischen Zinksalzen oder Mischungen löslicher organischer Zinksalze mit löslichen anorganischen Zinksalzen oder Mischungen nicht löslicher organischer Zinksalze mit nicht löslichen anorganischen Zinksalzen oder Mischungen nicht löslicher organischer Zinksalze mit löslichen anorganischen Zinksalzen, enthalten.
  • Als bevorzugt gelten im Rahmen der vorliegenden Anmeldung dabei maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, bei denen der Gewichtsanteil des Zinksalz bezogen auf das Gesamtgewicht dieses Mittels 0,1 bis 10 Gew.-%, vorzugsweise 0,2 bis 7 Gew.-% und insbesondere 0,4 bis 4 Gew.-% beträgt und zwar unabhängig davon welche Zinksalze eingesetzt werden, insbesondere also unabhängig davon ob organische oder anorganische Zinksalze, lösliche oder nicht lösliche Zinksalze oder deren Mischungen eingesetzt werden.
  • Erfindungsgemäße Mittel unterliegen keiner Einschränkung bezüglich ihrer Konfektionierung und Anbietungsformen. Maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel im Rahmen der vorliegenden Erfindung können daher sowohl in fester als auch in flüssiger Form bereitgestellt werden.
  • In Abhängigkeit von dem Anwendungsbereich des erfindungsgemäßen Verfahrens kann es notwendig oder erwünscht sein, verschiedene oder gleiche in den erfindungsgemäßen Mitteln enthaltene Aktivstoffe und/oder Aktivstoffzubereitungen in zeitlich kontrollierter Weise freizusetzen. Diese zeitlich kontrollierte Freisetzung kann dabei durch unterschiedliche Mechanismen oder, mit anderen Worten, aufgrund unterschiedlicher "Schalter" erfolgen. Bezogen auf die in den erfindungsgemäßen Mitteln enthaltenen Zinksalze und schichtförmigen Silikate bedeutet dies, das diese Aktivsubstanzen vorzugsweise gemeinsam, jedoch zeitlich versetzt zu einem oder mehreren weiteren Aktivstoffen und/oder Aktivstoffzubereitungen, wie beispielsweise Gerüststoffen (Builder, Cobuilder), Tensiden, Bleichmitteln Bleichaktivatoren, Enzymen, Farbstoffen, Duftstoffen, Korrosionschutzmitteln oder Polymeren freigesetzt werden. Dabei können das Zinksalz und/oder das Schichtsilikat sowohl vor als auch nach der Freisetzung dieser Aktivsubstanzen in die wässrige Flotte freigesetzt werden.
  • Mögliche "Schalter", welche das Freisetzungsverhalten von Aktivstoffen oder Aktivstoffzubereitungen beeinflussen sind beispielsweise
    • der Aggregatzustand und die Konfektionsform der Mittel; flüssige Mittel lösen sich häufig schneller als feste Mittel; feste Mittel mit großer Oberfläche (z.B. Pulver, Granulate) lösen sich schneller als feste Mittel mit vergleichsweise kleiner Oberfläche (z.B. Tabletten);
    • die mechanische Stabilität, welche - in Abhängigkeit von der Zeit, von der Temperatur oder von anderen Parametern - ein die Desintegration bestimmender Faktor sein kann;
    • die Temperatur, d. h. das Erreichen eines bestimmten Temperaturwertes im Verlauf des Temperaturprofils des Wasch-, Reinigungs- oder Spülvorgangs; die Steuerung über die Temperatur stellt insbesondere bei Geschirrspülmitteln wegen der mit jeder Stufe des Spülvorgangs steigenden Temperatur eine zuverlässige und damit bevorzugte Ausführungsform dar;
    • der pH-Wert, d. h. die Einstellung eines bestimmten pH-Wertes im Verlauf eines Wasch-, Reinigungs- oder Spülvorgangs durch Komponenten der waschaktiven, reinigungsaktiven oder spülaktiven Zubereitung oder das Verlassen eines bestimmten pH-Wertes nach Zerfall einer den pH-Wert beeinflussenden oder bestimmenden Komponente;
    • die lonenstärke;
    • die Anwesenheit von Enzymen
    • der Einsatz von vorzugsweise wasserlöslichen Verpackungsmaterialien, sowie deren Permeabilität für eine bestimmte - vornehmlich gasförmige oder flüssige - Komponente; usw..
  • Die vorgenannten Parameter stellen nur Beispiele dar, welche die Erfindung nicht beschränken sollen.
  • Werden die erfindungsgemäßen Mittel beispielsweise als Kombinationsprodukte aus zwei oder mehr Substanzen oder Substanzgemischen in unterschiedlicher Konfektionsform/Aggregatzustand hergestellt, so ist das erfindungsgemäße Mittel, welches das Zinksalz und das Schichtsilikat enthält, vorzugsweise nur in einem dieser Mittel enthalten. Als unterschiedliche Konfektionsformen/Aggregatzustände gelten dabei in der vorliegenden Anmeldung beispielsweise Flüssigkeiten, Pulver, Granulate, Kompaktate, Extrudate, Gießkörper, Gele, Dispersionen. Die Konfektionierung derartiger unterschiedlicher Mittel zu einem Kombinationsprodukt kann dabei beispielsweise mittels einer gemeinsamen, vorzugsweise wasserlöslichen Verpackung erfolgen, welche eine, zwei, drei, vier oder mehr Aufnahmekammern aufweist. Verfahren zur Herstellung derartiger Verpackungen sind dem Fachmann bekannt. Zu diesen Verfahren zählen beispielsweise Tiefzieh-, Spritzguß- oder Gießverfahren. In der Folge sind anhand von Ein- und Zwei-Kammer-Verpackungen einige erfindungsgemäß bevorzugte Kombinationen unterschiedlich konfektionierter Mittel beschrieben:
  • Wasserlösliche oder wasserdispergierbare Verpackung mit einer Aufnahmekammer:
    Aufnahmekammer 1
    Erfindungsgemäßes Mittel in einem Pulver und Flüssigkeit
    Erfindungsgemäßes Mittel in einem Pulver und weiteres Pulver
    Erfindungsgemäßes Mittel in einem Pulver und Granulat
    Erfindungsgemäßes Mittel in einem Pulver und Kompaktat
    Erfindungsgemäßes Mittel in einem Pulver und Extrudat
    Erfindungsgemäßes Mittel in einem Pulver und Gießkörper
    Erfindungsgemäßes Mittel in einem Pulver und formstabiles Gel
    Erfindungsgemäßes Mittel in einer Schmelze und Flüssigkeit
    Erfindungsgemäßes Mittel in einer Schmelze und weiteres Pulver
    Erfindungsgemäßes Mittel in einer Schmelze und Granulat
    Erfindungsgemäßes Mittel in einer Schmelze und Kompaktat
    Erfindungsgemäßes Mittel in einer Schmelze und Extrudat
    Erfindungsgemäßes Mittel in einer Schmelze und Gießkörper
    Erfindungsgemäßes Mittel in einer Schmelze und formstabiles Gel
    Erfindungsgemäßes Mittel in einem Granulat und Flüssigkeit
    Erfindungsgemäßes Mittel in einem Granulat und weiteres Pulver
    Erfindungsgemäßes Mittel in einem Granulat und Granulat
    Erfindungsgemäßes Mittel in einem Granulat und Kompaktat
    Erfindungsgemäßes Mittel in einem Granulat und Extrudat
    Erfindungsgemäßes Mittel in einem Granulat und Gießkörper
    Erfindungsgemäßes Mittel in einem Granulat und formstabiles Gel
  • Wasserlösliche oder wasserdispergierbare Verpackung mit zwei Aufnahmekammern:
    Aufnahmekammer 1 Aufnahmekammer 2
    Erfindungsgemäßes Mittel in einer Dispersion Flüssigkeit
    Erfindungsgemäßes Mittel in einer Dispersion Pulver
    Erfindungsgemäßes Mittel in einer Dispersion Granulat
    Erfindungsgemäßes Mittel in einer Dispersion Kompaktat
    Erfindungsgemäßes Mittel in einer Dispersion Extrudat
    Erfindungsgemäßes Mittel in einer Dispersion Gießkörper
    Erfindungsgemäßes Mittel in einer Dispersion Formstabiles Gel
    Erfindungsgemäßes Mittel in einer Dispersion Dispersion
    Erfindungsgemäßes Mittel in einem Pulver Flüssigkeit
    Erfindungsgemäßes Mittel in einem Pulver Pulver
    Erfindungsgemäßes Mittel in einem Pulver Granulat
    Erfindungsgemäßes Mittel in einem Pulver Kompaktat
    Erfindungsgemäßes Mittel in einem Pulver Extrudat
    Erfindungsgemäßes Mittel in einem Pulver Gießkörper
    Erfindungsgemäßes Mittel in einem Pulver Formstabiles Gel
    Erfindungsgemäßes Mittel in einem Pulver Dispersion
    Erfindungsgemäßes Mittel in einem Granulat Flüssigkeit
    Erfindungsgemäßes Mittel in einem Granulat Pulver
    Erfindungsgemäßes Mittel in einem Granulat Granulat
    Erfindungsgemäßes Mittel in einem Granulat Kompaktat
    Erfindungsgemäßes Mittel in einem Granulat Extrudat
    Erfindungsgemäßes Mittel in einem Granulat Gießkörper
    Erfindungsgemäßes Mittel in einem Granulat Formstabiles Gel
    Erfindungsgemäßes Mittel in einem Granulat Dispersion
    Erfindungsgemäßes Mittel in einem Kompaktat Flüssigkeit
    Erfindungsgemäßes Mittel in einem Kompaktat Pulver
    Erfindungsgemäßes Mittel in einem Kompaktat Granulat
    Erfindungsgemäßes Mittel in einem Kompaktat Kompaktat
    Erfindungsgemäßes Mittel in einem Kompaktat Extrudat
    Erfindungsgemäßes Mittel in einem Kompaktat Gießkörper
    Erfindungsgemäßes Mittel in einem Kompaktat Formstabiles Gel
    Erfindungsgemäßes Mittel in einem Kompaktat Dispersion
    Erfindungsgemäßes Mittel in einem Extrudat Flüssigkeit
    Erfindungsgemäßes Mittel in einem Extrudat Pulver
    Erfindungsgemäßes Mittel in einem Extrudat Granulat
    Erfindungsgemäßes Mittel in einem Extrudat Kompaktat
    Erfindungsgemäßes Mittel in einem Extrudat Extrudat
    Erfindungsgemäßes Mittel in einem Extrudat Gießkörper
    Erfindungsgemäßes Mittel in einem Extrudat Formstabiles Gel
    Erfindungsgemäßes Mittel in einem Extrudat Dispersion
    Erfindungsgemäßes Mittel in einem Gießkörper Flüssigkeit
    Erfindungsgemäßes Mittel in einem Gießkörper Pulver
    Erfindungsgemäßes Mittel in einem Gießkörper Granulat
    Erfindungsgemäßes Mittel in einem Gießkörper Kompaktat
    Erfindungsgemäßes Mittel in einem Gießkörper Extrudat
    Erfindungsgemäßes Mittel in einem Gießkörper Gießkörper
    Erfindungsgemäßes Mittel in einem Gießkörper Formstabiles Gel
    Erfindungsgemäßes Mittel in einem Gießkörper Dispersion
  • Für die Herstellung der wasserlöslichen und/oder wasserdispergierbaren Folie eignen sich prinzipiell alle Substanzen oder Substanzgemische, die sich in Form einer Folie konfektionieren lassen. Besonders bevorzugt ist jedoch ein Verfahren, in dem die wasserlösliche und/oder wasserdispergierbare Folie aus (acetalisiertem) Polyvinylakohol, Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Stärke und Stärkederivat(en), Cellulose und Cellulosederivat(en), insbesondere Methylcellulose und/oder Mischungen dieser Substanzen besteht, wobei diese Aufzählung als beispielhaft und die Erfindung nicht einschränkend zu werten ist.
  • In einer weiteren, ebenfalls bevorzugten Ausführungsform ist es erfindungsgemäß von Vorteil, wenn die Folie(n) ein oder mehrere Materialien aus der Gruppe Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester und Polyether und deren Mischungen umfaßt/umfassen.
  • Mit besonderem Vorteil kann/können ein oder mehrere Material(ien) aus der folgenden beispielhaften, jedoch nicht beschränkenden Aufzählung genannt werden:
    • Mischungen aus 50 bis 100 % Polyvinylalkohol oder Poly(vinylalkohol - co - vinylacetat) mit Molekulargewichten im Bereich von 10.000 bis 200.000 g/mol und Acetatgehalten von 0 bis 30 Mol-%; diese können Verarbeitungszusätze wie Weichmacher (Glycerin, Sorbit, Wasser, PEG usw.), Gleitmittel (Stearinsäure und andere Mono-, Di- und Tricarbonsäuren), sogenannte "Slipmittel" (z. B. "Aerosil"), organische und anorganische Pigmente, Salze, Blasformmittel (Citronensäure-Natriumbicarbonat-Mischungen) enthalten;
    • Acrylsäure-haltige Polymere, wie z. B. Copolymere, Terpolymere oder Tetrapolymere, die mindestens 20 % Acrylsäure enthalten und ein Molekulargewicht von 5.000 bis 500.000 g/mol besitzen; als Comonomere sind besonders bevorzugt Acrylsäureester wie Ethylacrylat, Methylacrylat, Hydroxy-ethylacrylat, Ethylhexylacrylat, Butylacrylat, und Salze der Acrylsäure wie Natriumacrylat, Methacrylsäure und deren Salze und deren Ester wie Methylmethacrylat, Ethylmethacrylat, Trimethylammoniummethylmethacrylatchlorid (TMAEMC), Methacrylatamidopropyl-trimethylammoniumchlorid (MAPTAC). Weitere Monomere wie Acrylamid, Styrol, Vinylacetat, Maleinsäureanhydrid, Vinylpyrrolidon sind ebenfalls mit Vorteil verwendbar;
    • Polyalkylenoxide, bevorzugt Polyethylenoxide mit Molekulargewichten von 600 bis 100.000 g/mol und deren durch Pfropfcopolymerisation mit Monomeren wie Vinylacetat, Acrylsäure und deren Salzen und deren Estern, Methacrylsäure und deren Salzen und deren Estern, Acrylamid, Styrol, Styrolsulfonat und Vinylpyrrolidon modifizierte Derivate (Beispiel: Poly-(ethylenglykol - graft - vinylacetat). Der Polyglykol-Anteil sollte 5 bis 100 Gew.-% betragen, der Pfropfanteil sollte 0 bis 95 Gew.-% betragen; letzterer kann aus einem oder aus mehreren Monomeren bestehen. Besonders bevorzugt ist ein Pfropfanteil von 5 bis 70 Gew.-%; dabei sinkt die Wasserlöslichkeit mit dem Pfropfanteil;
    • Polyvinylpyrrolidon (PVP) mit einem Molekulargewicht von 2.500 bis 750.000 g/mol;
    • Polyacrylamid mit einem Molekulargewicht von 5.000 bis 5.000.000 g/mol;
    • Polyethyloxazolin und Polymethyloxazolin mit einem Molekulargewicht von 5.000 bis 100.000 g/mol;
    • Polystyrolsulfonate und deren Copolymere mit Comonomeren wie Ethyl-(meth-)acrylat, Methyl(meth-)acrylat, Hydroxyethyl(meth-)acrylat, Ethylhexyl(meth-)acrylat, Butyl(meth)acrylat und den Salzen der (Meth-) Acrylsäure wie Natrium-(meth-)acrylat, Acrylamid, Styrol, Vinylacetat, Maleinsäureanhydrid, Vinylpyrrolidon; der Comonomer-Gehalt sollte 0 bis 80 Mol-% betragen, und das Molekulargewicht sollte im Bereich von 5.000 bis 500.000 g/mol liegen;
    • Polyurethane, insbesondere die Umsetzungsprodukte von Diisocyanaten (z. B. TMXDI) mit Polyalkylenglykolen, insbesondere Polyethylenglykolen des Molekulargewichts 200 bis 35.000, oder mit anderen difunktionellen Alkoholen zu Produkten mit Molekulargewichten von 2.000 bis 100.000 g/mol;
    • Polyester mit Molekulargewichten von 4.000 bis 100.000 g/mol, basierend auf Dicarbonsäuren (z. B. Terephthalsäure, Isophthalsäure, Phthalsäure, Sulfoisophthalsäure, Oxalsäure, Bernsteinsäure, Sulfobernsteinsäure, Glutarsäure, Adipinsäure, Sebacinsäure usw.) und Diolen (z. B. Polyethylenglykole, beispielsweise mit Molekulargewichten von 200 bis 35.000 g/mol);
    • Celluloseether/ester, z. B. Celluloseacetate, Cellulosebutyrate, Methylcellulose, Hydroxypropylcellulose, Hydroxyethylcellulose, Methylhydroxypropylcellulose usw.;
    • Polyvinylmethylether mit Molekulargewichten von 5.000 bis 500.000 g/mol.
  • Erfindungsgemäß besonders bevorzugte Ausführungsformen der wasserlöslichen Folien berücksichtigen auch, daß mit besonderem Vorteil - wenn auch nicht zwingend - die in den Aufnahmemulden enthaltenen Aktivstoffe und/oder Aktivstoffzubereitungen durch eine - vorzugsweise steuerbare - Wasserlöslichkeit des Folienmaterials zu einem bestimmten Zeitpunkt des Wasch-, Reinigungs- oder Spülvorgangs, beispielsweise bei Erreichen einer bestimmten Temperatur, oder bei Erreichen eines bestimmten pH-Werts oder einer bestimmten lonenstärke der Waschflotte oder auch aufgrund anderer steuerbarer Ereignisse oder Bedingungen in die wäßrige Flotte eingespeist werden können.
  • Die Qualität des Materials wie auch dessen Quantität/Stärke nehmen auf diese Löslichkeitseigenschaften direkten Einfluß. Es ist daher im Rahmen der vorliegenden Erfindung ein solches Verfahren besonders bevorzugt, das dadurch gekennzeichnet ist, daß die Dicke der wasserlöslichen Folie zwischen 1 µm und 1000 µm, vorzugsweise zwischen 5 µm und 500 µm und insbesondere zwischen 10 µm und 200 µm beträgt. Verschiedene Foliendicken mit dem Ziel einer verzögerten Freisetzung von Aktivstoffen und/oder Aktivstoffzubereitungen lassen sich beispielsweise auch vorteilhaft durch die mehrfache Versiegelung einer oder mehrerer Aufnahmekammern mittels einer oder mehrerer gleicher oder unterschiedlicher wasserlöslicher Folien realisieren. Die Dicke der wasserlöslichen Folie im Sinne der vorliegenden Erfindung ergibt sich dann als die Summe der Dicken der eine Aufnahmemulde versiegelnden, übereinanderliegenden wasserlöslichen Einzelfolien.
  • Besonders bevorzugt sind Materialien für die wasserlöslichen Folien, die sich - eine bestimmte, die Stabilität mitbestimmende Dicke zugrundegelegt - bei bestimmten Temperaturen, pH-Werten, lonenstärken, oder nach einer bestimmten Verweilzeit in der wäßrigen Flotte lösen. Dabei kann ein solcher Lösevorgang die Folie als ganzes erfassen oder nur einen Teil davon, so daß sich Teile der Folie bei Einstellung einer bestimmten Parameterkombination lösen, während sich andere Teile noch nicht (sondern erst später) oder auch gar nicht lösen. Letzteres kann durch unterschiedliche Qualität des Materials wie auch durch unterschiedlichen Materialmengen (Dicke) oder auch unterschiedliche Geometrien des wasserunlöslichen Behältnisses erreicht werden. Beispielsweise ist es möglich, durch die äußere Form des wasserunlöslichen Behältnisses den Wasserzutritt zu erschweren und damit den Lösevorgang zu verzögern. In einer anderen bevorzugten Ausführungsform ist es möglich, die Folien unterschiedlich dick (gleichwohl aus demselben Material) zu gestalten und damit an den dünneren Stellen ein früheres Lösen zu ermöglichen. Werden solche unterschiedlich dicken wasserlöslichen Folien zur Abdeckung unterschiedlicher Aufnahmemulden eingesetzt, werden die in diesen Aufnahmemulden befindlichen Aktivstoffe zu unterschiedlichen Zeiten freigesetzt. In einer weiteren ebenfalls bevorzugten Ausführungsformen können die Folien aus Materialien unterschiedlicher Wasserlöslichkeit hergestellt werden, beispielsweise aus Polyvinalalkoholen (PVAL) mit unterschiedlichem Rest-Acetatgehalt.
  • In einer besonders bevorzugten Ausführungsform kann die wasserlösliche und/oder wasserdispergierbare Folie neben den genannten Inhaltsstoffen auch eine oder mehrere wasch- und reinigungsaktive Substanzen enthalten oder aus diesen Substanzen bestehen (Bsp.: Polyvinylalkohole als Folienmaterial und Builder). Im erstgenannten Fall können beispielsweise waschaktive, reinigungsaktive oder spülaktive Wirkstoffe, die nur in kleinen Mengen in den Zubereitungen zugegen sind und deren gleichmäßige Einarbeitung deswegen nicht unproblematisch ist, in die Folie oder einen Teil der Folie, beispielsweise einen solchen, der sich in dem Stadium des Wasch-, Reinigungs- oder Spülgangs löst, in dem gerade der Wirkstoff benötigt wird, eingearbeitet werden, wodurch er beim Auflösen der Folie zum richtigen Zeitpunkt in die Flotte freigesetzt wird. Ein Beispiel hierfür mögen Duftstoffe sein, die in der letzten Phase des Wasch- oder Reinigungs- oder Spülvorgangs erwünscht sind, jedoch auch optische Aufheller, UV-Schutzsubstanzen, Farbstoffe und andere waschaktive, reinigungsaktive oder spülaktive Zubereitungen.
  • Eine weitere im Rahmen der vorliegenden Anmeldung ebenfalls bevorzugte Ausgestaltungsform erfindungsgemäßer Mittel ist die zeitlich kontrollierte Freisetzung eines oder mehrerer der in diesen Mitteln enthaltenen Aktivstoffe(s) und/oder Aktivstoffzubereitung(en) durch die Einarbeitung von Matrix- oder Beschichtungsmaterialien unterschiedlicher Löslichkeit oder Schmelztemperatur.
    Nach dem zuvor Gesagten lassen sich Unterschiede in der Freisetzungsgeschwindigkeit von Aktivstoffen und/oder Aktivstoffgemischen durch den Einsatz von Matrixmaterialien oder Beschichtungen erzielen, welche unterschiedliche Schmelztemperaturen aufweisen. Besonders bevorzugt ist dabei die Verwendung von schmelzbaren oder erweichbaren Substanzen als Matrix- oder Beschichtungsmaterial für die Aktivstoffe oder Aktivstoffzubereitungen. (Die Bezeichnung "Beschichtung" umfaßt im Rahmen der vorliegenden Erfindung neben der Beschichtung einzelner oder mehrerer Seiten oder Oberflächen eines Gegenstandes wie beispielsweise eines festen partikulären Mittels auch die vollständige Beschichtung, also die Umhüllung dieses partikulären Gegenstandes. Auch die Versiegelung einer Aufnahmemulde durch eine schmelzbare Substanz durch Aufgießen einer solchen Substanz auf eine(n) partikuläre(n) oder gelförmige(n) Aktivstoff/Aktivstoffzubereitung wird als Beschichtung bezeichnet. Unter die Bezeichung "Aktivstoffe" oder "Aktivstoffzubereitungen" fallen sowohl die für die erfindungsgemäßen Mittel kennzeichnenden Zinksalze/Schichtsilikate als auch alle übrigen optional enthaltenen Inhaltsstoffe.) Erfindungsgemäß bevorzugte schmelzbare Substanzen weisen dabei einen Schmelzpunkt oberhalb 30°C auf. Sollen Aktivstoffzubereitungen zu unterschiedlichen Zeiten beispielsweise während der verschiedenen Spülgänge eines Reinigungsprozesses freigesetzt werden, so kann dies beispielsweise durch den Einsatz einer oder verschiedener schmelzbarer Matrizes oder Beschichtungen erfolgen. Werden zwei oder mehr unterschiedliche schmelzbare Matrizes eingesetzt, so sind die Schmelzpunkte vorzugsweise an den Temperaturverlauf dieses Reinigungsprozesses angepaßt, wobei die Differenz der Schmelzpunkte ausreicht, um das gesonderte Auflösen der einzelnen Matrizes oder Beschichtungen zu gewährleisten. Dabei werden solche Substanzen für die unterschiedliche Matrizes und/oder Beschichtungen bevorzugt, die sich bezüglich ihres Schmelzpunktes um mindestens 5°C, vorzugsweise um 10°C, besonders bevorzugt um 15°C und insbesondere um mindestens 20°C unterscheiden, wobei es weiterhin bevorzugt ist, daß der Schmelzpunkt mindestens einer der schmelzbaren Substanzen, die eine Matrix oder eine Beschichtung bilden unterhalb 30°C liegt, während der Schmelzpunkt mindestens einer weiteren Substanz, die eine weitere Matrix oder Beschichtung bilden, oberhalb 30°C liegt.
  • Ist es vorgesehen eine erweichbare Substanz als Matrix für einen Aktivstoff oder eine Aktivstoffzubereitung einzusetzen, so läst sich diese unter Temperatureinwirkung erweichbare Masse konfektionieren, indem die gewünschten weiteren Inhaltsstoffe mit diesem schmelz- oder erweichbaren Stoff vermischt und die Mischung auf Temperaturen im Erweichungsbereich dieses Stoffes erwärmt und bei diesen Temperaturen formgebend verarbeitet wird. Werden die erweichbaren Substanzen als Beschichtungsmittel eingesetzt, so kann eine derartige Beschichtung beispielsweise durch Tauchen, Besprühen oder Umwälzen in einem Trommelcoater oder Dragierkessel erfolgen. Besonders bevorzugt werden als schmelz- oder erweichbare Substanzen für die Matrizes oder die Beschichtungen Wachse, Paraffine, Polyalkylenglycole usw. eingesetzt.
  • Es hat sich als vorteilhaft erwiesen, wenn die schmelz- oder erweichbaren Substanzen keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweisen. Die schmelz- oder erweichbaren Substanzen weisen vorzugsweise einen Schmelzbereich auf, der zwischen etwa 35°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.
  • Die oben genannten Eigenschaften werden außer von Paraffinen und Polyethylenglykolen in der Regel auch von sogenannten Wachsen erfüllt. Genauere Beschreibungen dieser Stoffgruppen finden sich weiter unten in der Beschreibung. Auf diese Ausführungen wird zur Vermeidung von Wiederholungen an dieser Stelle verwiesen.
  • Eine weitere bevorzugte Möglichkeit zur zeitlich verzögerten Freisetzung von Aktivstoffen oder Aktivstoffzubereitungen ist die gestaffelte räumliche Anordnung dieser Substanzen in der Aufnahmekammer einer vorzugsweise wasserlöslichen Verpackung oder innerhalb eines Gieß- oder Preßkörpers (Zwiebelmodell) mit dem Ziel einer zeitlich gestaffelten Freisetzung. Eine derartige räumlich gestaffelte Anordnung ist beispielsweise die schicht- oder phasenweise Anordnung der Aktivstoffe oder Aktivstoffzubereitungen, für die sich beispielsweise die schichtweise Tablettierung oder das schichtweise Eingießen flüssiger Aktivstoffe oder Aktivstoffgemische und deren nachfolgende Verfestigung durch Erstarren und/oder Kristallisation eignen. Da ein Zutritt des Lösungsmittels bei verpreßten oder gegossenen Formkörpern nur über deren Oberfläche erfolgen kann, führt diese schichtweise Anordnung zur Freisetzung derjenigen Aktivstoffe oder Aktivstoffgemische, welche sich an der Oberfläche eines solchen mehrphasigen Gemischs befinden. Die Phasen werden folglich zeitlich versetzt abgetragen, deren Inhaltsstoffe werden zeitlich versetzt freigesetzt.
  • Die zuvor beschriebenen Methoden zur zeitlich kontrollierten Freisetzung von Aktivstoffen und/oder Aktivstoffgemischen sind selbstverständlich nicht Selbstzweck, sondern dienen der gezielten Steuerung des Reinigungsverfahrens. So umfaßt ein Programm für die maschinelle Reinigung von Geschirr in der Regel verschiedene Reinigungsgänge, wobei die Art und Anzahl dieser Reinigungsgänge durch den Verbraucher mittels einer Programmwahl bestimmt werden können. Beispiele für derartige Reinigungsgänge sind der Vorspülgang, Zwischen- und Hauptspülgänge oder der Klarspülgang. All diese unterschiedlichen Reinigungsgänge bedürfen für ein optimales Ergebnis der gezielten Dosierung entsprechender Aktivstoffe oder Aktivstoffgemische. Insbesondere zur Optimierung der erfindungsgemäß eingesetzten Wirkstoffkombination von Zinksalzen mit Schichtsilikaten kann dabei in Abhängigkeit von der Natur der weiteren eingesetzten Aktivstoffe eine kontrollierte frühzeitige oder verzögerte Freisetzung von Zinksalzen und/oder Schichtsilikaten und/oder weiteren Aktivstoffen förderlich sein.
  • Feste Angebotsformen der erfindungsgemäßen maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel sind beispielsweise fein- bis grobkörnige Pulver, wie sie zum Beispiel durch Sprühtrocknung oder Granulation erhalten werden, verdichtete Stoffgemische aus der Walzenkompaktierung, aber auch erstarrte Schmelzen oder durch Extrusion bzw. Tablettierung erhaltene Formkörper. Derartige Formkörper können im Rahmen der vorliegenden Erfindung praktisch alle sinnvoll handhabbaren Ausgestaltungen aufweisen, beispielsweise also in Form einer Tafel, in Stab- bzw. Barrenform, eines Würfel, eines Quader und entsprechendes Raumelement mit ebenen Seitenflächen sowie insbesondere zylinderförmige Ausgestaltungen mit kreisförmigem oder ovalem Querschnitt aufweisen. Diese letzte Ausgestaltung erfaßt dabei die Darbietungsform von der eigentlichen Tablette bis zu kompakten Zylinderstücken mit einem Verhältnis von Höhe zu Durchmesser oberhalb 1. Bevorzugte tablettierte oder extrudierte Mittel weisen im Rahmen der vorliegenden Erfindung zwei oder mehr Phasen auf, die sich beispielsweise durch ihre Zusammensetzung, ihren Anteil am Gesamtvolumen des Formkörpers und/oder ihr optisches Erscheinungsbild unterscheiden können.
  • Die Phasen derartiger mehrphasiger Formkörper können sich zusätzlich durch ein unterschiedliches Auflöseverhalten in wässriger Phase auszeichnen. Derartige Formkörper eignen sich zur zeitlich kontrollierten Freisetzung bestimmter Inhaltsstoffe (controlled release), beispielsweise in bestimmten Spülgängen des maschinellen Spülprogramms. In einer bevorzugten Ausführungsform weist eine der Phasen des Formkörpers als Hauptbestandteil schmelz- oder erweichbare Substanzen aus der Gruppe der Wachse, Paraffine und/oder Polyalkylenglycole auf. Weiterhin hat es sich als vorteilhaft erwiesen, wenn der diese schmelz- oder erweichbaren Substanzen enthaltene Formkörper bzw. Formkörperbestandteil wenigstens weitgehend wasserunlöslich ist. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen. In solchen Fällen sollten die schmelz- oder erweichbaren Substanzen jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu vermeiden. Die Freisetzung der Aktivsubstanz erfolgt auf diese Weise bei Erreichen des Schmelz- oder Erweichungspunkts. Ein weiteres bevorzugtes Vorgehen zur Erlangung einer kontrollierten Freisetzung von Inhaltsstoffen, insbesondere der erfindungsgemäßen Kombination von Zinksalz und Schichtsilikat, aus mehrphasigen Tabletten ist die Kompaktierung der zwei oder mehr Einzelphasen mit unterschiedlichen Drucken. Da die Zerfalls- und Auflöseeigenschaften von Tabletten bzw. Tablettenphasen bekanntlich u.a. auch von dem bei der Tablettierung auf die Tablettenphase ausgeübten Kompaktierungsdruck abhängig ist, können allein durch den Einsatz unterschiedlicher Kompaktierungsdrucke Tablettenphasen mit unterschiedlichen Zerfalls- und Auflöseeigenschaften hergestellt werden. Dabei kann es erfindungsgemäß bevorzugt sein, daß sich die erfindungsgemäße Kombination von Zinksalz und Schichtsilikat gemeinsam in der Phase befinden, welche dem vergleichsweise höheren Tablettierdruck ausgesetzt war und daher später zerfällt. Es kann aber, je nach Zusammensetzung des Reinigungsmittels auch vorteilhaft sein, Zinksalz und Schichtsilikat gemeinsam in der Tablettenphase zu konfektionieren, welche mit der vergleichsweise niedrigeren Druck tablettiert wurde. Schließlich ist es auch bevorzugt Zinksalz und Schichtsilikat in unterschiedlichen Tablettenphasen zu konfektionieren, wobei sich das Zinksalz in einer vorteilhaften Ausführungsform in der vergleichsweise stark kompaktierten Tablettenphase befindet, während es in einer anderen bevorzugten Ausführungsform in der vergleichsweise geringer kompaktierten Tablettenphase befindet.
  • Als maschinelle Geschirrspülhilfsmittel werden im Rahmen der vorliegenden Anmeldung solche Mittel bezeichnet, die zusätzlich zu einem handelsüblichen Reinigungsmittel, beispielsweise in Form eines speziellen Glasschutzmittels zudosiert werden. Eine derartige Dosierung kann dabei sowohl vor dem Beginn jedes Spülprogramms als auch in Form eines Depotproduktes, das eine kontinuierliche Freisetzung des erfindungsgemäßen Mittels bewirkt, erfolgen.
  • Bevorzugte feste erfindungsgemäße Mittel liegen in Form einer für einen Reinigungsgang ausreichenden Dosiereinheit vor. Ein Beispiel für derartige Konfektionsformen sind Geschirrspül(hilfs)mitteltabletten.
  • Liegen die erfindungsgemäßen Mittel in fester partikulärer Form, jedoch nicht in Form abgeteilter Dosiereinheiten vor, so ergibt sich für diese Mittel das Problem der Entmischung einzelner Bestandteile, wobei es insbesondere die Entmischung der in den erfindungsgemäßen Mitteln enthaltenen Zinksalze und Silikate zu vermeiden gilt. Beispiele für derartige partikulären Angebotsformen sind Pulver oder Granulate. In einer bevorzugten Ausführungsform der vorliegenden Erfindung liegt/liegen das/die in den maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel enthaltene(n) Zinksalz(e) und/oder das/die enthaltene(n) kristalline(n) schichtförmige(n) Silikat(e) mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en) konfektioniert, in partikulärer Form, als Compound vor.
  • Da die Zinksalze und kristallinen schichtförmigen Silikate nur einen geringen Gewichtsanteil bevorzugter maschineller Geschirrspülmittel ausmachen, vereinfacht eine Compoundierung auf Grund ihres "Verdünnungseffektes" die Dosierung dieser Salze bei der Herstellung erfindungsgemäßer maschineller Geschirrspülmittel. Aber auch in dem Falle, daß ein erfindungsgemäßes Mittel in Form eines Spezialproduktes zum Glaskorrosionsschutz einem handelsüblichen Reinigungsmittel erst durch den Verbraucher zugesetzt wird, wird die Dosierung durch die Compoundierung erleichtert. Die Vorteile der Compoundierung ergeben sich dabei völlig unabhängig davon, ob das maschinelle Geschirrspülmittel, welchem die entsprechenden Compounds zudosiert werden, fest, flüssig oder gelförmig ist.
  • Bevorzugte feste Angebotsformen des erfindungsgemäßen maschinellen Geschirrspülmittels enthalten beispielsweise fein- bis grobkörnige Pulver, wie sie zum Beispiel durch Sprühtrocknung oder Granulation erhalten werden. Derartige Pulver können als Handelsprodukt vermarktet oder als Vorgemisch zur Kompaktierung, beispielsweise für die Tablettierung, eingesetzt werden und weisen in der Regel eine Partikelgröße im Bereich von 0,1 bis 10 mm auf. Um eine Entmischung dieser Pulver von den zudosierten Silikat- und/oder Zinksalzcompounds zu verhindern, ist es bevorzugt, daß diese Compounds eine den Pulvern vergleichbare Partikelgröße aufweisen.
  • Ein bevorzugter Gegenstand der vorliegenden Anmeldung ist daher ein maschinelles Geschirrspülmittel, dadurch gekennzeichnet, daß die Partikelgröße der mit einem oder mehreren Aktiv- und/oder Gerüstsubstanzen konfektionierten Zinksalze und/oder kristallinen schichtförmigen Silikate 0,1 und 10 mm, vorzugsweise 0,2 und 8 mm und insbesondere 0,5 und 5 mm beträgt, wobei bevorzugte partikuläre Compounds zur Vermeidung von Entmischungsvorgängen zusätzlich eine Dichte von 0,1 bis 2,0 g/cm3, vorzugsweise von 0,2 bis 1,6 g/cm3 und insbesondere von 0,4 bis 1,2 g/cm3 aufweisen.
  • Erfindungsgemäß bevorzugte maschinelle Geschirrspülmittel sind insbesondere dadurch gekennzeichnet, daß die Partikel der mit einem oder mehreren Aktiv- und/oder Gerüstsubstanzen konfektionierten Zinksalze und/oder kristallinen schichtförmigen Silikate einen Gewichtsanteil der Zinksalze oder kristallinen schichtförmigen Silikate von 0,1 bis 80 Gew.-%, besonders bevorzugt von 0,2 bis 70 Gew-% und insbesondere bevorzugt von 0,5 bis 60 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Partikel, aufweisen.
  • Die vorgenannten partikulären Compounds werden erfindungsgemäß bevorzugt durch Sprühtrocknung und/oder Granulation und/oder Extrusion und/oder Walzenkompaktierung und/oder Tablettierung und/oder Erstarrung und/oder Kristallisation, insbesondere jedoch durch Sprühtrocknung und/oder Granulation, erhalten.
  • Bei der Sprühtrocknung wird in einem ersten Schritt des Verfahrens eine wässrige Aufschlämmung ("Slurry") hergestellt, die neben den erfindungsgemäßen Zinksalzen weitere thermisch stabile Aktiv- und/oder Gerüstsubstanzen enthalten kann, welche sich unter den Bedingungen der Sprühtrocknung weder verflüchtigen noch zersetzen und diese anschließend über Pumpen in den Sprühturm befördert und über im Kopf des Turms befindliche Düsen versprüht. Aufsteigende Heißluft trocknet den Slurry und verdampft das anhaftende Wasser, so daß die Waschmittel-Bestandteile am Auslaß des Turms als feine Pulver erhalten werden. Diesen können bei Bedarf weitere Tempertur-labile Bestandteile, wie z. B. Bleichmittel oder Duftstoffe, zugemischt werden.
  • Die Konfektionierung erfindungsgemäßer Mittel kann außer durch die zuvor beschriebene Sprühtrocknung auch durch ein Granulationsverfahren erfolgen, wobei ein Wirbelschichtverfahren besonders bevorzugt wird, in welchem auf waagerechten, perforierten Böden lagerndes feinkörniges Schüttgut, welches neben den erfindungsgemäßen Zinksalzen weitere Aktiv- und/oder Gerüstsubstanzen enthalten kann, von unten von Gasen (z.B. Heißluft) durchströmt wird. Unter bestimmten Strömungsbedingungen stellt sich dabei ein Zustand ein, der dem einer kochenden Flüssigkeit ähnelt; die Schicht wirft Blasen auf, und die Teilchen des Schüttgutes befinden sich innerhalb der Schicht in einer ständigen, wirbelnden Auf- und Abbewegung und bleiben so gewissermaßen in der Schwebe. Die große Oberfläche des Wirbelgutes ermöglicht dann beispielsweise die Umsetzung mit weiteren Substanzen wie Lösungsmitteln, Lösungen von Aktiv- und/oder Gerüstsubstanzen, flüssigen Aktivsubstanzen oder aber weiteren Inhaltsstoffen, die bei Raumtemperatur als Feststoff vorliegen, durch Temperaturerhöhung und/oder Zusatz sehr begrenzter Mengen an flüssigen Zusatzstoffen aber wenigstens oberflächlich erweichen und/oder unter Temperatureinwirkung eine Kleb- und Haftfestigkeit ausbilden. Typische Beispiele der vorgenannten Substanzen sind Wasser sowie wässrige Lösungen, wobei beispielsweise auch wässrige Lösungen der erfindungsgemäßen Zinksalze eingesetzt werden können, bei Raumtemperatur flüssige oder feste Tensidverbindungen, insbesondere Niotenside, oder aber Polymerverbindungen synthetischen und/oder natürlichen Ursprungs, beispielsweise (co)-polymere Carboxylate.
  • Eine weitere für die Granulation bevorzugte Vorgehensweise ist der Einsatz von Mischern/Verdichtern, wie sie zu diesem Zwecke neben anderen Anbietern beispielsweise auch durch die Firma Lödige bereitgestellt werden und welche in besonderer Weise für die Herstellung erfindungsgemäß konfektionierter Partikel geeignet sind, da sie dem Anwender durch Variation verschiedener Verfahrensparameter wie der Umdrehungszahl des Mischers, der Verweildauer der Einzelkomponenten, des Dosierzeitpunkts einzelner Komponenten während des Mischvorgangs, der Geometrie der eingesetzten Mischelemente oder des Energieeintrags die Möglichkeit der gezielten Steuerung der Produkteigenschaften der erhaltenen Granulate bieten. Auch die Korngröße und/oder Dichte von Granulaten kann auf diese Weise gezielt beeinflußt werden, und die Konfektionierung von erfindungsgemäßen Zinksalzen mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en) in den vorgenannten Mischern/Verdichtern ist daher im Rahmen der vorliegenden Erfindung besonders bevorzugt.
  • Schließlich besteht die Möglichkeit, die erfindungsgemäßen Zinksalze und/oder Silikate mit weiteren Einzelkomponenten zu vermischen, die sich in ihren Schüttdichten nur geringfügig von denen der genannten Salze unterscheiden. Derartige Mischungen weisen nur geringe Entmischungstendenzen der Komponenten bei Lagerung, Transport und Verarbeitung auf und sind daher ebenfalls in besonderer Weise für die angestrebte sichere und zuverlässige Dosierung der erfindungsgemäßen Silikate und/oder Zinksalze geeignet. Bevorzugt im Rahmen der vorliegenden Erfindung sind daher Mischungen von Silikaten und/oder Zinksalzen mit weiteren Aktiv- und/oder Gerüstsubstanzen, dadurch gekennzeichnet, daß sich die Schüttgewichte der miteinander vermischten Einzelkomponenten um maximal 200 g/l, vorzugsweise um maximal 150 g/l, bevorzugt um maximal 100 g/l und insbesondere um maximal 50 g/l unterscheiden.
  • Die Gerüst- und/oder Aktivsubstanzen, welche bei der zuvor beschriebenen Konfektionierung bevorzugter erfindungsgemäßer maschinelle Geschirrspülmittel eingesetzt werden können, umfassen neben anderen üblichen Bestandteilen von Reinigungsmitteln beispielsweise Gerüststoffe (Builder, Cobuilder), Tenside, Bleichmittel, Bleichaktivatoren, Enzyme, Farbstoffe, Duftstoffe, Korrosionschutzmittel oder Polymere.
  • Während als Aktiv- und/oder Gerüstsubstanzen für die Konfektionierung erfindungsgemäßer Zinksalze generell alle genannten Substanzen geeignet sind, sind im Rahmen der vorliegenden Erfindung jedoch solche maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel besonders bevorzugt, in welchen die mit einem oder mehreren Aktiv- und/oder Gerüstsubstanzen konfektionierten Zinksalzcompounds, Aktiv- und/oder Gerüstsubstanzen aus der Gruppe der Phosphate, Carbonate, Hydrogencarbonate, Sulfate, Silikate, Citrate, Citronensäure, Acetate, vorzugsweise in Mengen von 20 bis 99 Gew.-%, besonders bevorzugt von 30 bis 98 Gew.-% und insbesondere bevorzugt von 40 bis 95 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Partikel, enthalten.
  • Weitere für die Konfektionierung der Zinksalze im Rahmen der vorliegenden Erfindung besonders bevorzugte Aktiv- und/oder Gerüstsubstanzen sind die Tenside, vorzugsweise die Niotenside, und/oder die polymeren Carboxylate, insbesondere die Polysulfocarboxylate.
  • Zur weiteren Beschreibung besonders bevorzugter Tenside oder polymerer Carboxylate sowie der Polysulfocarboxylate sei zur Vermeidung von Wiederholungen auf die nachfolgenden Ausführungen verwiesen.
  • Auch die in den erfindungsgemäßen maschinellen Geschirrspülmitteln oder maschinellen Geschirrspülhilfsmitteln enthaltenen Silikate liegen in diesen Mitteln bevorzugt mit anderen Aktiv-oder Gerüststubstanzen konfektioniert vor, wobei hier insbesondere Aktiv- oder Gerüstsubstanzen aus der Gruppe der organischen Mono- oder Polycarbonsäuren, der Hydroxypolycarbonsäuren und der Phosphonsäuren eingesetzt werden.
  • Ein weiterer bevorzugtzer Gegenstand der vorliegenden Anmeldung sind daher maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, dadurch gekennzeichnet, daß das/die kristalline(n) schichtförmige(n) Silikat(e) der allgemeinen Formel (I) bzw. der allgemeinen Formel (la) mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en), vorzugsweise mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanzen aus der Gruppe der organischen Mono- oder Polycarbonsäuren, der Hydroxypolycarbonsäuren und der Phosphonsäuren konfektioniert, in partikulärer Form, als Compound vorliegt/vorliegen.
  • Die partikulär vorliegenden, mit einem oder mehreren Aktiv- und/oder Gerüstsubstanzen konfektionierten Zinksalze und/oder kristallinen schichtförmigen Silikate können zum Schutz von Umwelteinflüssen und damit zur Verbesserung ihrer Lagerstabilität oder zur Beeinflussung des Auflöseverhaltens mit einer Beschichtung (Coating) versehen sein. Beschichtungsmaterialien sowie Verfahren zur Beschichtung partikulärer Mittel sind in der Literatur breit beschrieben und sollen nachfolgend nur bezüglich besonders bevorzugter Ausführungsformen erläutert werden.
  • Besonders bevorzugt ist die Verwendung von schmelzbaren oder erweichbaren Substanzen als Beschichtungsmaterial. (Die Bezeichnung "Beschichtung" meint im Rahmen der vorliegenden Erfindung neben der Beschichtung einzelner oder mehrerer Seiten oder Oberflächen eines partikulären, erfindungsgemäß konfektionierten Mittels auch die eine vollständige Beschichtung, also die Umhüllung dieses partikulären Gegenstandes.) Erfindungsgemäß bevorzugte schmelzbare Substanzen weisen dabei einen Schmelzpunkt oberhalb 30°C auf. Sollen die konfektionierten Zinksalze und/oder kristallinen schichtförmigen Silikate zu unterschiedlichen Zeiten beispielsweise während der verschiedenen Spülgänge eines Reinigungsprozesses freigesetzt werden, so kann dies beispielsweise durch den Einsatz verschiedener schmelzbarer Beschichtungen erfolgen, die sich bezüglich ihres Schmelzpunktes unterscheiden, wobei die Schmelzpunkte dieser Substanzen vorzugsweise an den Temperaturverlauf dieses Reinigungsprozesses angepaßt sind und die Differenz der Schmelzpunkte ausreicht, um das gesonderte Auflösen der einzelnen Matrizes oder Beschichtungen zu gewährleisten. Ist es beispielsweise vorgesehen, Zinksalze und kristalline schichtförmige Silikate zeitlich getrennt freizusetzten, so sind solche Substanzen für die unterschiedliche Beschichtungen bevorzugt, die sich bezüglich ihres Schmelzpunktes um mindestens 5°C, vorzugsweise um 10°C, besonders bevorzugt um 15°C und insbesondere um mindestens 20°C unterscheiden, wobei es weiterhin bevorzugt ist, daß der Schmelzpunkt mindestens einer der schmelzbaren Substanzen, die eine Beschichtung bilden unterhalb 30°C liegt, während der Schmelzpunkt mindestens einer weiteren Substanz, die eine weitere Matrix oder Beschichtung bilden, oberhalb 30°C liegt.
  • Derartige Beschichtungen können beispielsweise durch Tauchen, Besprühen oder Umwälzen in einem Trommelcoater oder Dragierkessel aufgebracht werden. Besonders bevorzugt werden als schmelz- oder erweichbare Substanzen für die Beschichtungen Wachse, Paraffine, Polyalkylenglycole usw. eingesetzt.
  • Es hat sich als vorteilhaft erwiesen, wenn die schmelz- oder erweichbaren Substanzen keinen scharf definierten Schmelzpunkt zeigt, wie er üblicherweise bei reinen, kristallinen Substanzen auftritt, sondern einen unter Umständen mehrere Grad Celsius umfassenden Schmelzbereich aufweisen. Die schmelz- oder erweichbaren Substanzen weisen vorzugsweise einen Schmelzbereich auf, der zwischen etwa 45°C und etwa 75°C liegt. Das heißt im vorliegenden Fall, daß der Schmelzbereich innerhalb des angegebenen Temperaturintervalls auftritt und bezeichnet nicht die Breite des Schmelzbereichs. Vorzugsweise beträgt die Breite des Schmelzbereichs wenigstens 1°C, vorzugsweise etwa 2 bis etwa 3°C.
  • Die oben genannten Eigenschaften werden in der Regel von sogenannten Wachsen erfüllt. Unter "Wachsen" wird eine Reihe natürlicher oder künstlich gewonnener Stoffe verstanden, die in der Regel über 40°C ohne Zersetzung schmelzen und schon wenig oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und nicht fadenziehend sind. Sie weisen eine stark temperaturabhängige Konsistenz und Löslichkeit auf.
  • Nach ihrer Herkunft teilt man die Wachse in drei Gruppen ein, die natürlichen Wachse, chemisch modifizierte Wachse und die synthetischen Wachse.
  • Zu den natürlichen Wachsen zählen beispielsweise pflanzliche Wachse wie Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, oder Montanwachs, tierische Wachse wie Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), oder Bürzelfett, Mineralwachse wie Ceresin oder Ozokerit (Erdwachs), oder petrochemische Wachse wie Petrolatum, Paraffinwachse oder Mikrowachse.
  • Zu den chemisch modifizierten Wachsen zählen beispielsweise Hartwachse wie Montanesterwachse, Sassolwachse oder hydrierte Jojobawachse.
  • Unter synthetischen Wachsen werden in der Regel Polyalkylenwachse oder Polyalkylenglycolwachse verstanden. Als schmelz- oder erweichbaren Substanzen für die durch Abkühlung aushärtenden Massen einsetzbar sind auch Verbindungen aus anderen Stoffklassen, die die genannten Erfordernisse hinsichtlich des Erweichungspunkts erfüllen. Als geeignete synthetische Verbindungen haben sich beispielsweise höhere Ester der Phthalsäure, insbesondere Dicyclohexylphthalat, das kommerziell unter dem Namen Unimoll® 66 (Bayer AG) erhältlich ist, erwiesen. Geeignet sind auch synthetisch hergestellte Wachse aus niederen Carbonsäuren und Fettalkoholen, beispielsweise Dimyristyl Tartrat, das unter dem Namen Cosmacol® ETLP (Condea) erhältlich ist. Umgekehrt sind auch synthetische oder teilsynthetische Ester aus niederen Alkoholen mit Fettsäuren aus nativen Quellen einsetzbar. In diese Stoffklasse fällt beispielsweise das Tegin® 90 (Goldschmidt), ein Glycerinmonostearat-palmitat. Auch Schellack, beispielsweise Schellack-KPS-Dreiring-SP (Kalkhoff GmbH) ist als schmelz- oder erweichbaren Substanzen einsetzbar.
  • Ebenfalls zu den Wachsen im Rahmen der vorliegenden Erfindung werden beispielsweise die sogenannten Wachsalkohole gerechnet. Wachsalkohole sind höhermolekulare, wasserunlösliche Fettalkohole mit in der Regel etwa 22 bis 40 Kohlenstoffatomen. Die Wachsalkohole kommen beispielsweise in Form von Wachsestern höhermolekularer Fettsäuren (Wachssäuren) als Hauptbestandteil vieler natürlicher Wachse vor. Beispiele für Wachsalkohole sind Lignocerylalkohol (1-Tetracosanol), Cetylalkohol, Myristylalkohol oder Melissylalkohol. Die Umhüllung der konfektionierten Zinksalze oder kristallinen schichtförmigen Silikate kann gegebenenfalls auch Wollwachsalkohole enthalten, worunter man Triterpenoid- und Steroidalkohole, beispielsweise Lanolin, versteht, das beispielsweise unter der Handelsbezeichnung Argowax® (Pamentier & Co) erhältlich ist. Ebenfalls zumindest anteilig als Bestandteil der schmelz- oder erweichbaren Substanzen einsetzbar sind im Rahmen der vorliegenden Erfindung Fettsäureglycerinester oder Fettsäurealkanolamide aber gegebenenfalls auch wasserunlösliche oder nur wenig wasserlösliche Polyalkylenglycolverbindungen.
  • Besonders bevorzugte schmelz- oder erweichbaren Substanzen sind solche aus der Gruppe der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) enthält, wobei Polyethylenglycole mit Molmassen zwischen 1500 und 36.000 bevorzugt, solche mit Molmassen von 2000 bis 6000 besonders bevorzugt und solche mit Molmassen von 3000 bis 5000 insbesondere bevorzugt sind. Auch entsprechende Verfahren, die dadurch gekennzeichnet sind, daß die die plastisch verformbare(n) Masse(n) mindestens einen Stoff aus der Gruppe der Polyethylenglycole (PEG) und/oder Polypropylenglycole (PPG) enthält/enthalten, sind bevorzugt.
  • Hierbei sind Beschichtungsmittel bevorzugt, die als einzige schmelz- oder erweichbaren Substanzen Propylenglycole (PPG) und/oder Polyethylenglycole (PEG) enthalten. Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der nachfolgenden allgemeinen Formel
    Figure imgb0001
    genügen, wobei n Werte zwischen 10 und 2000 annehmen kann. Bevorzugte PPG weisen Molmassen zwischen 1000 und 10.000, entsprechend Werten von n zwischen 17 und ca. 170, auf.
  • Erfindungsgemäß bevorzugt einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind dabei Polymere des Ethylenglycols, die der allgemeinen Formel

             H-(O-CH2-CH2)n-OH

    genügen, wobei n Werte zwischen 20 und ca. 1000 annehmen kann. Die vorstehend genannten bevorzugten Molekulargewichtsbereiche entsprechen dabei bevorzugten Bereichen des Wertes n in Formel IV von ca. 30 bis ca. 820 (genau: von 34 bis 818), besonders bevorzugt von ca. 40 bis ca. 150 (genau: von 45 bis 136) und insbesondere von ca. 70 bis ca. 120 (genau: von 68 bis 113).
  • In einer weiteren bevorzugten Ausführungsform enthalten die Beschichtungsmaterialien Paraffinwachs.
  • Paraffinwachse weisen gegenüber den anderen genannten, natürlichen Wachsen im Rahmen der vorliegenden Erfindung den Vorteil auf, daß in einer alkalischen Reinigungsmittelumgebung keine Hydrolyse der Wachse stattfindet (wie sie beispielsweise bei den Wachsestern zu erwarten ist), da Paraffinwachs keine hydrolisierbaren Gruppen enthält.
  • Paraffinwachse bestehen hauptsächlich aus Alkanen, sowie niedrigen Anteilen an Iso- und Cycloalkanen. Das erfindungsgemäß einzusetzende Paraffin weist bevorzugt im wesentlichen keine Bestandteile mit einem Schmelzpunkt von mehr als 70°C, besonders bevorzugt von mehr als 60°C auf. Anteile hochschmelzender Alkane im Paraffin können bei Unterschreitung dieser Schmelztemperatur in der Reinigungsmittelflotte nicht erwünschte Wachsrückstände auf den zu reinigenden Oberflächen oder dem zu reinigenden Gut hinterlassen. Solche Wachsrückstände führen in der Regel zu einem unschönen Aussehen der gereinigten Oberfläche und sollten daher vermieden werden.
  • Bevorzugt zu verarbeitende schmelz- oder erweichbaren Substanzen enthalten mindestens ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 60°C, wobei bevorzugte Beschichtungsmaterialien dadurch gekennzeichnet sind, daß sie ein Paraffinwachs mit einem Schmelzbereich von 50°C bis 55°C enthalten.
  • Vorzugsweise ist der Gehalt des eingesetzten Paraffinwachses an bei Umgebungstemperatur (in der Regel etwa 10 bis etwa 30°C) festen Alkanen, Isoalkanen und Cycloalkanen möglichst hoch. Je mehr feste Wachsbestandteile in einem Wachs bei Raumtemperatur vorhanden sind, desto brauchbarer ist es im Rahmen der vorliegenden Erfindung. Mit zunehmenden Anteil an festen Wachsbestandteilen steigt die Belastbarkeit der Verfahrensendprodukte gegenüber Stößen oder Reibung an anderen Oberflächen an, was zu einem länger anhaltenden Schutz führt. Hohe Anteile an Ölen oder flüssigen Wachsbestandteilen können zu einer Schwächung der Beschichtung führen, wodurch Poren geöffnet werden und die Aktivstoffe den Umgebungseinflüssen ausgesetzt werden.
  • Die schmelz- oder erweichbaren Substanzen können neben Paraffin als Hauptbestandteil noch eine oder mehrere der oben genannten Wachse oder wachsartigen Substanzen enthalten. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sollte das die schmelz- oder erweichbaren Substanzen bildende Gemisch so beschaffen sein, daß die Masse und die daraus gebildete Beschichtung wenigstens weitgehend wasserunlöslich sind. Die Löslichkeit in Wasser sollte bei einer Temperatur von etwa 30°C etwa 10 mg/l nicht übersteigen und vorzugsweise unterhalb 5 mg/l liegen.
  • In solchen Fällen sollten die schmelz- oder erweichbaren Substanzen jedoch eine möglichst geringe Wasserlöslichkeit, auch in Wasser mit erhöhter Temperatur, aufweisen, um eine temperaturunabhängige Freisetzung der Aktivsubstanzen möglichst weitgehend zu vermeiden.
  • Bevorzugte erfindungsgemäß zu verarbeitende Beschichtungsmaterialien sind dadurch gekennzeichnet, daß sie als schmelz- oder erweichbaren Substanzen ein oder mehrere Stoffe mit einem Schmelzbereich von 40°C bis 75 °C in Mengen von 6 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das Gewicht des Beschichtungsmaterials, enthalten.
  • Außer durch die Wahl einer geeigneten Beschichtung kann das Auflöseverhalten der Zinksalz oder Silikatcompounds auch durch die oben erwähnten Kompaktierungsverfahren beeinflußt werden. Hierbei ist neben der Höhe des eingesetzten Druckes und dem Einsatz von Hilfsmitteln, wie beispielsweise von Bindemitteln, insbesondere die Wahl des/der co-konfektionierten Aktiv- und/oder Gerüstsubstanzen von großer Bedeutung. So eignen sich insbesondere kompaktierte Silikate, insbesondere Disilikate, und/oder Poylcarboxylate und/oder Mischungen verschiedener Polycarboxylate auf Grund ihrer verzögerten Lösung/Dispersion bzw. auf Grund auftretender Vergelung dieser Substanzen oder Substanzgemische in wässriger Flotte als "Depotsubstanzen" für die Zinksalze oder kristallinen schichtförmigen Silikate.
  • Eine weitere im Rahmen der vorliegenden Anmeldung besonders bevorzugte Form der Konfektionierung erfindungsgemäßer maschineller Geschirrspülmittel oder maschineller Geschirrspülhilfsmittel sind Polymermatrizes. Derartige Polymermatrizes sind universell in verschiedenen Programmgängen einsetzbar, zeichnen sich dabei durch eine einfache und kostengünstige Herstellungsweise aus und können variierende Mengen an aktivem Agens enthalten.
  • Bevorzugter Gegenstand der vorliegenden Anmeldung sind daher weiterhin maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, in welchen das/die Zinksalz(e) und/oder das/die kristalline(n) schichtförmige(n) Silikat(e) in einer Polymermatrix konfektioniert vorliegen.
  • Die wirkstoffhaltigen Polymermatrizes lassen sich günstig und in hoher Formvielfalt hergestellen. Durch die Auswahl wasserlöslicher oder wasserunlöslicher Polymere kann die erfindungsgemäße Zusammensetzung sogar als Verpackung von maschinellen Geschirrspülmitteln oder als Körbchen, in das die Mittel eingebracht werden, formuliert werden. Es ist auch möglich, beide Arten der Einbringung miteinander zu kombinieren, indem beispielsweise ein Trägerkörbchen aus wasserunlöslicher, wirkstoffhaltiger Polymermatrix einen Polymerkörper aus wasserlöslicher, wirkstoffhaltiger Polymermatrix enthält. Solche Produkte können aus den verschiedenen Matrizes die aktiven Agentien zu unterschiedlichen Zeitpunkten unterschiedlich stark freisetzen, was zu einer optimalen Konzentration an Aktivsubstanz zu jedem Zeitpunkt des Reinigungsprogramms führt.
  • Liegen in erfindungsgemäß bevorzugten Mitteln sowohl das Zinksalz als auch das Silikate in einer Polymermatrix konfektioniert vor, so kann diese Konfektionierung in bevorzugten Ausgestaltungsformen der vorliegenden Erfindung sowohl in der gleichen Polymermatrix als auch in unterschiedlichen Matrizes erfolgen, das heißt, daß das Zinksalz beispielsweise in Polymer A konfektioniert vorliegt, während das Silikat in einem Polymer B konfektioniert wurde. Schließlich können Zinksalz und Silikat auch mittels des gleichen Polymers, jedoch in voneinander getrennten Matrizes konfektioniert werden.
  • Die erfindungsgemäßen Mittel lassen sich demnach sowohl mit wasserunlöslichen als auch mit wasserlöslichen Polymeren oder Mischungen daraus realisieren. Bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind dadurch gekennzeichnet, daß die Polymermatrix ein oder mehrere wasserlösliche(s) Polymer(e) umfaßt.
  • Die erfindungsgemäßen Polymermatrizes können dabei universell formuliert werden. So ist es beispielsweise möglich, erfindungsgemäße Vorweichmittel, Vorspülmittel, Reinigungsmittel für den Hauptspülgang oder Klarspülmittel bereitzustellen. Daneben können erfindungsgemäße Zusammensetzungen auch Kombinationsprodukte sein, die zwei oder mehrere der vorgenannten Mittel in sich vereinen. Auch die Formulierung erfindungsgemäßer Zusammensetzungen als Additionsprodukt, das beispielsweise in die Geschirrspülmaschine eingehängt wird, ist problemlos möglich. Die wirkstoffhaltige Polymermatrix kann teilchenförmig in die erfindungsgemäßen Zusammensetzungen eingearbeitet werden, sie kann aber auch ein kompakter Formkörper sein, der beispielsweise entweder ein Kern ist, welcher eine Mulde einer Reinigungsmitteltablette füllt, oder ein Formkörper, der als Additionsprodukt gleich einem Deo-Hänger in die Spülmaschine eingebracht wird. Auch Körbchen, welche für die Aufnahme von Reinigungsmitteltabletten geeignet sind, lassen sich aus der wirkstoffhaltigen Polymermatrix herstellen. Nicht zuletzt kann die wirkstoffhaltige Polymermatrix auch als Verpackung für maschinelle Geschirrspülmittel genutzt werden. Dies ist insbesondere bei vollständig wasserlöslichen wirkstoffhaltigen Polymermatrizes attraktiv, da der Verbraucher das Produkt nicht auspacken muß, den direkten Kontakt mit dem Produkt, der als unerwünscht empfunden wird, vermeidet und zudem andere Verpackungsmaterialien eingespart werden.
  • Besonders bevorzugt erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß die Polymermatrix
    • ) 5 bis 99,5 Gew.-% eines oder mehrerer Polymere,
    • ) mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (la)

               NaMSixO2x+1 · y H2O     (Ia),

      worin M Natrium oder Wasserstoff darstellt, x eine Zahl von 1,9 bis 22, vorzugsweise von 1,9 bis 4, ist und y für eine Zahl von 0 bis 33 steht, enthält, wobei die Summe der Gewichtsanteile des/der Zinksalze(s) und des/der kristallinen Silikate(s) 0,5 bis 95 Gew.-% beträgt,
    • ) 0 bis 30 Gew.-% weiterer Wirk- und/oder Hilfsstoffe
      umfaßt, wobei sich die Gewichtsangaben jeweils auf das Gesamtgewicht der wirkstoffhaltigen Polymermatrix beziehen.
  • Die Polymermatrix der erfindungsgemäß bevorzugten Mittel umfaßt 5 bis 99,5 Gew.-% eines oder mehrerer Polymere. Der Begriff "Polymere" kennzeichnet im Rahmen der folgenden Anmeldung in Anlehnung an die IUPAC-Definition Substanzen, die sich aus einem Kollektiv chemisch einheitlich aufgebauter, sich in der Regel aber hinsichtlich Polymerisationsgrad, Molmasse und Ketten-Länge unterscheidender Makromoleküle zusammensetzt. Nach dieser die Entstehungsweise des Begriffs nicht berücksichtigenden IUPAC-Definition ist ein Polymer "eine Substanz, die aus einer Vielzahl von Molekülen aufgebaut ist, in denen eine Art oder mehrere Arten von Atomen oder Atom-Gruppierungen "sogenannte konstitutive Einheiten, Grundbausteine oder Wiederholungseinheiten) wiederholt aneinander gereiht sind". Die unterschiedlich großen Makromoleküle eines Polymers sind aus so vielen gleichen oder ähnlichen niedermolekularen Bausteinen (Monomeren) aufgebaut, daß sich die physikalischen Eigenschaften der Substanz, besonders die Viskoelastizität, bei geringfügiger Erhöhung oder Reduzierung der Anzahl der Bausteine nicht mehr merklich ändern. Die Größe der Makromoleküle bedingt, daß sich die Endgruppen relativ wenig auf die Eigenschaften der Polymere auswirken, so daß auf ihre explizite Angabe in den nachstehend angegebenen Strukturformeln meist verzichtet wird.
  • Die die Matrix bildenden Polymere der erfindungsgemäßen Zusammensetzungen können dabei sowohl natürlichen als auch synthetischen Ursprungs sein. Bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß die Polymermatrix 7,5 bis 95 Gew.-%, vorzugsweise 10 bis 90 Gew.-%, besonders bevorzugt 12,5 bis 85 Gew.-%, weiter bevorzugt 15 bis 82,5 Gew.-% und insbesondere 20 bis 80 Gew.-% eines oder mehrerer Polymere umfaßt, wobei die Gewichtsangaben sich auf die wirkstoffhaltige Polymermatrix beziehen.
  • Die mittlere Molmasse der in den bevorzugten erfindungsgemäßen Mittel enthaltenen Polymere liegt vorzugsweise bei mindestens 5000 g/mol, besonders bevorzugt bei mindestens 10.000 g/mol und insbesondere bei mindestens 12.000 g/mol.
  • Wie bereits erwähnt, können die erfindungsgemäß bevorzugten Mittel sowohl wasserunlösliche als auch wasserlösliche Polymere sowie Mischungen dieser Polymere enthalten. Erfindungsgemäß bevorzugte Zusammensetzungen auf der Basis wasserunlöslicher Polymermatrizes sind dadurch gekennzeichnet, daß die Polymermatrix ein oder mehrere wasserunlösliche Polymere aus der Gruppe Polyethylen, Polypropylen, Polytetrafluorethylen, Polystyrol, Polyethylenterphthalat, Polycarbonat, Polyvinylchlorid, der Polyurethane, der Polyamide sowie deren Mischungen umfaßt.
  • Anstelle von wasserunslöslichen Polymeren oder in Mischung mit ihnen können auch wasserlösliche Polymere natürlichen oder synthetischen Ursprungs die Polymermatrix bilden. Weiter bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß die Polymermatrix ein oder mehrere wasserlösliche Polymere umfaßt, wobei das bzw. die wasserlösliche(n) Polymer(e) vorzugsweise ausgewählt ist/sind aus:
    • i) Polyacrylsäuren und deren Salzen
    • ii) Polymethacrylsäuren und deren Salzen
    • iii) Polyvinylpyrrolidon,
    • iv) Vinylpyrrolidon/Vinylester-Copolymeren,
    • v) Celluloseethern
    • vi) Polyvinylacetaten, Polyvinylalkoholen und ihren Copolymeren
    • vii) Pfropfcopolymeren aus Polyethylenglykolen und Vinylacetat
    • viii) Alkylacrylamid/Acrylsäure-Copolymeren und deren Salzen
    • ix) Alkylacrylamid/Methacrylsäure-Copolymeren und deren Salzen
    • x) Alkylacrylamid/Methylmethacrylsäure-Copolymeren und deren Salzen
    • xi) Alkylacrylamid/Acrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymeren und deren Salzen
    • xii) Alkylacrylamid/Methacrylsäure/Alkylaminoalkyl(meth)acrylsäure -Copolymeren und deren Salzen
    • xiii) Alkylacrylamid/Methylmethacrylsäure/Alkylaminoalkyl(meth)acrylsäure-Copolymeren und deren Salzen
    • ) Alkylacrylamid/Alkymethacrylat/Alkylaminoethylmethacrylat/Alkylmethacrylat-Copolymeren und deren Salzen
    • ) Copolymeren aus
      • xv-i) ungesättigten Carbonsäuren und deren Salzen
      • xv-ii) kationisch derivatisierten ungesättigten Carbonsäuren und deren Salzen
    • ) Acrylamidoalkyltrialkylammoniumchlorid/Acrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    • ) Acrylamidoalkyltrialkylammoniumchlorid/Methacrylsäure-Copolymere sowie deren Alkali- und Ammoniumsalze
    • ) Methacroylethylbetain/Methacrylat-Copolymere
    • ) Vinylacetat/Crotonsäure-Copolymere
    • ) Acrylsäure/Ethylacrylat/N-tert.Butylacrylamid-Terpolymere
    • ) Pfropfpolymere aus Vinylestern, Estern von Acrylsäure oder Methacrylsäure allein oder im Gemisch, copolymerisiert mit Crotonsäure, Acrylsäure oder Methacrylsäure mit Polyalkylenoxiden und/oder Polykalkylenglykolen
    • ) gepropften Copolymere aus der Copolymerisation von
      • xxii-i) mindesten einem Monomeren vom nicht-ionischen Typ,
      • xxii-ii) mindestens einem Monomeren vom ionischen Typ,
    • ) durch Copolymerisation mindestens eines Monomeren jeder der drei folgenden Gruppen erhaltenen Copolymere:
      • xxiii-i) Ester ungesättigter Alkohole und kurzkettiger gesättigter Carbonsäuren und/oder Ester kurzkettiger gesättigter Alkohole und ungesättigter Carbonsäuren,
      • xxiii-i) ungesättigte Carbonsäuren,
      • xxiii-iii) Ester langkettiger Carbonsäuren und ungesättigter Alkohole und/oder Ester aus den Carbonsäuren der Gruppe d6ii) mit gesättigten oder ungesättigten, geradkettigen oder verzweigten C8-18-Alkohols.
  • Die wirkstoffhaltige Polymermatrix weist neben dem oder den Polymer(en) einen Gehalt an mindestens einem Zinksalz und/oder mindestens einem kristallinen schichtförmigen Silikat der allgemeinen Formel (I) bzw. der allgemeinen Formel (la) auf, welche aus der Matrix freigesetzt werden könnnen. Erfindungsgemäß bevorzugte Mittel sind dadurch gekennzeichnet, daß sie mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I) bzw. der allgemeinen Formel (la) enthalten, wobei die Summe der Gewichtsanteile dieser Bestandteile 1 bis 90 Gew.-%, vorzugsweise 1,5 bis 80 Gew.-%, besonders bevorzugt 2 bis 70 Gew.-%, weiter bevorzugt 2,5 bis 60 Gew.-% und insbesondere 3 bis 50 Gew.-%, jeweils bezogen auf das Gesamtgewicht der wirkstoffhaltigen Polymermatrix, beträgt.
  • Die erfindungsgemäßen maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel können die wirkstoffhaltige Polymermatrix in unterschiedlichen Mengen enthalten. Je nachdem, ob die wirkstoffhaltige Polymermatrix in den Zusammensetzungen beispielsweise als feinteiliges Pulver oder Granulat enthalten ist, als Teil eines Formkörpers ausgebildet ist, oder ob sie die Zusammensetzung als Verpackung umschließt, können die Mengenanteile der wirkstoffhaltigen Polymermatrix an der Gesamtzusammensetzung variieren. Hier sind erfindungsgemäße Zusammensetzungen bevorzugt, die, bezogen auf die Gesamtmasse der Zusammensetzung, 1 bis 40 Gew.-%, vorzugsweise 1,5 bis 35 Gew.-%, besonders bevorzugt 2 bis 30 Gew.-% und insbesondere 2,5 bis 20 Gew.-% der wirkstoffhaltigen Polymermatrix enthalten.
  • Besonders bevorzugte Polymermatrizes enthalten mindestens ein Zinksalz in solchen Mengen, daß die Zusammensetzung Zink in oxidierter Form in Gewichtsanteilen von 0,01 bis 1 Gew.-%, vorzugsweise von 0,02 bis 0,5 Gew.-% und insbesondere von 0,04 bis 0,2 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Polymermatrix, enthält.
  • Wie eingangs erwähnt, bedingt die Einarbeitung erfindungsgemäß bevorzugter wirkstoffhaltiger Polymermatrizes in die erfindungsgemäßen Zusammensetzungen keine Einschränkung bezüglich der Anbietungsformen oder der Rezepturen dieser Zusammensetzungen. So können neben üblichen maschinellen Geschirrspülmitteln auch Vorweich- oder Vorspülprodukte, Klarspüler, Maschinenpfleger oder Zusatzprodukte als erfindungsgemäße Zusammensetzung bereitgestellt werden. Eine bevorzugte Ausführungsform der erfindungsgemäßen Zusammensetzung sieht vor, daß die Polymermatrix als separat in die Geschirrspülmaschine einzubringendes Formteil bereitgestellt wird, das über mehrere Spülgänge hinweg die Agentien aus der Polymermatrix freisetzt. Dieses Formteil kann entweder ein Dosierkörbchen für andere Produkte, wie beispielsweise den Reiniger, sein, es kann aber auch als separates und eigenständiges Formteil den Zusatznutzen der Glasschonung verkörpern. Mögliche Formen sind beispielsweise an die bekannten Spülmaschinen-Dodorantien angelehnt. Optisch reizvoll ist die Ausgestaltung des Kunststoffteils in transluzenter, opaleszenter oder vollständig klarer Form, beispielsweise in Form eines stilisierten Diamanten. Durch solche Produktausgestaltungen läßt sich der durch die Glasschonung resultierende Glanz verbrauchernah visualisieren.
  • Der Vielfalt der Formgebung sind aufgrund der Möglichkeiten der Kunststoffverarbeitung keinerlei Grenzen gesetzt. Die wirkstoffhaltigen Polymermatrizes können problemlos mit den gängigen Methoden umgeformt werden.
  • Die formgebende Verarbeitung erfolgt nach den in der kunststoffverarbeitenden Industrie üblichen Verfahren, wobei insbesondere die Folienherstellung und -weiterverarbeitung, das Blasformen und das Spritzgießen bevorzugt sind. Allen Verfahren ist gemeinsam, daß ein Kunststoffgranulat mit Hilfe eines Extruders aufgeschmolzen und formgebenden Werkzeugen zugeführt wird. Dabei kann das Kunststoffgranulat die Agentien zur Glaskorrosionsinhibierung bereits enthalten, diese können aber auch während des Aufschmelzens im Extruder zugegeben werden, was eine besonders kostengünstige Herstellung der erfindungsgemäß bevorzugten wirkstoffhaltigen Polymermatrizes ermöglicht.
  • In einer zusätzlichen bevorzugten Ausführungsform werden die erfindungsgemäßen maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel in einer Art konfektioniert, die es ermöglicht, die in diesen Mitteln enthaltenen Aktivsubstanzen gezielt zu applizieren und zu dosieren. Für dieses Zwecke eignen sich im Rahmen der vorliegenden Anmeldung insbesondere stiftförmige Angebotsform, die, ähnlich einem Klebestift, bei Lagerung und Transport ihre räumlich-geometrische Form nicht verändern, diese jedoch, wird die Angebotsform unter Einwirkung eines Druckes über eine Oberfläche bewegt, in ihrem Kontaktbereich mit der Oberfläche aufgrund der dort auftretenden Scherkräfte verliert. Das Mittel wird als eine Folge der einwirkenden Scherkräfte auf der Oberfläche verschmiert und verbleibt dort nach Beendigung des Einwirkens der Scherkräfte in seiner neuen räumlich-geometrischen Form, ist also wiederum formstabil. Mit Hilfe einer derartigen bevorzugten Konfektionierung lassen sich erfindungsgemäße Mittel gezielt applizieren und dosieren.
  • Derartige formstabile maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die sich aufgrund ihrer Materialbeschaffenheit bei Einwirkung einer Scherkraft auf einer Oberfläche verstreichen lassen, ohne Einwirkung einer Scherkraft jedoch in seiner Raumform verharren, lassen sich vorteilhafterweise durch ihre Penetrationszahlen charakterisieren. Als Penetrationszahl wird im Rahmen der vorliegenden Erfindung der Zahlenwert bezeichnet, der sich bei Bestimmung der Härte der erfindungsgemäßen Mittel mittels eines Texture Analyzers, Modell TA-XT2-I der Firma Stable Micro Systems ergibt. Zur Durchführung dieser Messung werden die folgenden Test-Parameter eingestellt:
    TA Mode: Messe Kraft in Druckrichtung
    TA Option: Einfacher Test
    Trigger Value 0,2 g
    PPS 200
  • Die Penetrationszahl wird bestimmt, indem ein bestimmtes Messwerkzeug (TA-15 45°-Kegel aus Edelstahl) mit einer definierten Vorschubgeschwindigkeit (0,5 mm/s) bis zu einer definierten Eindringtiefe (5,0 mm) in das Testmaterial gepresst und anschließend mit einer definierten Geschwindigkeit (0,2 mm/s) aus diesem Material herausgezogen wird. Die untersuchten Testmaterialien hatten eine Temperatur von 23°C, die Messungen wurden bei 20°C Raumtemperatur durchgeführt. Das Meßgerät ermittelte ausgehend von dem beschriebenen Versuchsaufbau einen Zahlenwert in der Einheit Gramm [g]. Dieser Zahlenwert wird im Rahmen der vorliegenden Anmeldung als Penetrationszahl bezeichnet. Die Messungen nach der beschriebenen Methode ergaben nun, daß die bevorzugten formstabilen maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel Penetrationszahlen von 200 bis 1000 g, vorzugsweise von 250 bis 900 g, besonders bevorzugt von 300 bis 800 g und insbesondere von 350 bis 700 g aufweisen.
  • Ein weiterer bevorzugter Gegenstand der vorliegenden Erfindung sind daher erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die formstabil sind und eine Penetrationszahl von 200 bis 1000 g vorzugsweise von 250 bis 900 g, besonders bevorzugt von 300 bis 800 g und insbesondere von 350 bis 700 g aufweisen.
  • Der Begriff "formstabil" bezeichnet im Rahmen der vorliegenden Erfindung maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die eine Eigen-Formstabilität aufweisen, die sie befähigt, unter üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher eine gegen Bruch stabile, nicht desintegrierende Raumform zu haben, die sich auch unter den genannten Bedingungen über längere Zeit nicht verändert, das heißt unter den üblichen Bedingungen der Herstellung, der Lagerung, des Transports und der Handhabung durch den Verbraucher in der durch die Herstellung bedingten räumlich-geometrischen Form verharrt, das heißt, beispielsweise nicht zerfließt.
  • Die für bevorzugte erfindungsgemäße Mittel kennzeichnende Penetrationszahl von 200 bis 1000 g läßt sich nicht durch Aktivsubstanzen wie Zinksalze oder schichtförmige Silikate in ihrer Reinform realisieren. Es ist daher notwendig ein Trägermaterial oder Matrixmaterial für diese Aktivsubstanzen bereitzustellen, das den genannten physikalischen Anforderungen an ein erfindungsgemäßes Mittel entspricht. Ein solche Matrix sollte zudem mit in ihr enthaltenen aktiven Agentien kompatibel sein, das heißt insbesondere nicht mit diesen reagieren, sondern diese stabilisieren. Weiterhin sollen die Trägermaterialien auch den angestrebten Reinigungsvorgang nicht in Frage stellen, also auch mit allen weiteren während des Reinigungs- und/oder Pflegevorgangs eingesetzten Substanzen verträglich sein. Schließlich sollte das Matrixmaterial vorzugsweise wasserlöslich bzw. wasserdispergierbar sein, um das Auftreten von Rückständen nach der Anwendung des erfindungsgemäßen Mittels zu vermeiden. Besonders bevorzugt sind Trägermaterialien, die neben der Funktion als Matrix für die Aktivsubstanz gleichzeitig eine reinigende oder pflegende Funktion aufweisen. Aus der großen Zahl möglicher Trägermaterialien haben sich im Rahmen der vorliegenden Erfindung eine Reihe von Stoffgruppen als besonders vorteilhaft erwiesen. Auf diese Substanzen soll in der Folge näher eingegangen werden.
  • Bevorzugt formstabile, erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, sind im Rahmen der vorliegenden Anmeldung daher dadurch gekennzeichnet, daß sie Polyvinylpyrrolidon(e) und/oder Polyvinylalkohol(e) und/oder Polyvinylacetat(e) und/oder Polyacrylat(e) und/oder Polyalkylenglycol(e) und/oder Fett(e) und/oder Fettsäure(n) und/oder Fettsäureester und/oder Fettsäureamid(e) und/oder Fettalkohole und/oder Wachs(e) und/oder Parrafin(e) und/oder Wachsalkohole und/oder Tensid(e), vorzugsweise nichtionische(s) Tensid(e), und/oder Dextrin(e) und/oder Stärkeether enthalten, wobei der Gewichtsanteil dieses Bestandteils/dieser Bestandteile am Gesamtgewicht des formstabilen maschinellen Geschirrspül- und/oder Geschirrspülhilfsmittels vorzugsweise zwischen 30 und 99 Gew.%, besonders bevorzugt zwischen 40 und 95 Gew.-% und insbesondere zwischen 50 und 95 Gew.-% beträgt.
  • Erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel können außer in den beschriebenen festen bzw. formstabilen Formen auch in Form flüssiger bzw. fließfähiger Mittel konfektioniert werden. In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weisen die maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel daher eine Viskosität von 500 bis 500.000 mPas, vorzugsweise von 900 bis 200.000 mPas und insbesondere von 1300 bis 100.000 mPas auf. Die Viskosität der erfindungsgemäßen Mittel wird mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter LVT-II bei 20 U/min und 20°C, Spindel 3) gemessen. Der Ausdruck "flüssige oder fließfähige Mittel" wird in der Folge für Mittel verwandt, welche eine Viskosität von 500 bis 500.000 mPas, vorzugsweise von 900 bis 200.000 mPas und insbesondere von 1300 bis 100.000 mPas aufweisen.
  • Als einen bevorzugten Inhaltsstoff enthalten derartige bevorzugte erfindungsgemäße flüssige oder fließfähige Mittel ein oder mehrere nichtwässrige Lösungsmittel. Diese stammen beispielsweise aus den Gruppen der Mono-Alkohole, Diole, Triole bzw. Polyole, der Ether, Ester und/oder Amide. Besonders bevorzugt sind dabei nichtwässrige Lösungsmittel, die wasserlöslich sind, wobei "wasserlösliche" Lösungsmittel im Sinne der vorliegenden Anmeldung Lösungsmittel sind, die bei Raumtemperatur mit Wasser vollständig, d.h. ohne Mischungslücke, mischbar sind.
  • Geeignete nichtwässrige Lösungsmittel stammen vorzugsweise aus der Gruppe ein- oder mehrwertigen Alkohole, Alkanolamine oder Glycolether, sofern sie im angegebenen Konzentrationsbereich mit Wasser mischbar sind. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Etheylenglykolmono-n-butylether, Diethylenglykol-methylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder - propyl-ether, Dipropylenglykolmethyl-, oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t-butylether sowie Mischungen dieser Lösungsmittel.
  • Auch bei Raumtemperatur flüssige nichtionische Tenside sind im Rahmen der Anmeldung bevorzugte nichtwässrige Lösungsmittel.
  • Ein im Rahmen der vorliegenden Erfindung besonders bevorzugtes flüssiges oder fließfähiges maschinelles Geschirrspülmittel oder maschinelles Geschirrspülhilfsmittel ist dadurch gekennzeichnet, daß es nichtwässrige(s) Lösungsmittel enthält, wobei das/die Lösungsmittel vorzugsweise ausgewählt ist/sind aus der Gruppe der Polyethylenglycole und Polypropylenglycole, Glycerin, Glycerincarbonat, Triacetin, Ethylenglycol, Propylengylcol, Propylencarbonat, Hexylenglycol, Ethanol sowie n-Propanol und/oder iso-Propanol.
  • Erfindungsgemäß bevorzugt einsetzbare Polyethylenglycole (Kurzzeichen PEG) sind bei Raumtemperatur flüssig. PEG sind Polymere des Ethylenglycols, die der allgemeinen Formel (II)

             H-(O-CH2-CH2)n-OH     (II)

    genügen, wobei n Werte zwischen 1 (Ethylenglycol, siehe unten) und ca. 16 annehmen kann. Für Polyethylenglycole existieren verschiedene Nomenklaturen, die zu Verwirrungen führen können. Technisch gebräuchlich ist die Angabe des mittleren relativen Molgewichts im Anschluß an die Angabe "PEG", so daß "PEG 200" ein Polyethylenglycol mit einer relativen Molmasse von ca. 190 bis ca. 210 charakterisiert. Nach dieser Nomenklatur sind im Rahmen der vorliegenden Erfindung die technisch gebräuchlichen Polyethylenglycole PEG 200, PEG 300, PEG 400 und PEG 600 einsetzbar.
  • Für kosmetische Inhaltsstoffe wird eine andere Nomenklatur verwendet, in der das Kurzzeichen PEG mit einem Bindestrich versehen wird und direkt an den Bindestrich eine Zahl folgt, die der Zahl n in der oben genannten Formel entspricht. Nach dieser Nomenklatur (sogenannte INCI-Nomenklatur, CTFA International Cosmetic Ingredient Dictionary and Handbook, 5th Edition, The Cosmetic, Toiletry and Fragrance Association, Washington, 1997) sind erfindungsgemäß beispielsweise PEG-4, PEG-6, PEG-8, PEG-9, PEG-10, PEG-12, PEG-14 und PEG-16 erfindungsgemäß einsetzbar.
  • Kommerziell erhältlich sind Polyethylenglycole beispielsweise unter den Handelnamen Carbowax® PEG 200 (Union Carbide), Emkapol® 200 (ICI Americas), Lipoxol® 200 MED (HÜLS America), Polyglycol® E-200 (Dow Chemical), Alkapol® PEG 300 (Rhone-Poulenc), Lutrol® E300 (BASF) sowie den entsprechenden Handelnamen mit höheren Zahlen.
  • Erfindungsgemäß einsetzbare Polypropylenglycole (Kurzzeichen PPG) sind Polymere des Propylenglycols, die der allgemeinen Formel (III)
    Figure imgb0002
    genügen, wobei n Werte zwischen 1 (Propylenglycol, siehe unten) und ca. 12 annehmen kann. Technisch bedeutsam sind hier insbesondere Di-, Tri- und Tetrapropylenglycol, d.h. die Vertreter mit n=2, 3 und 4 in der vorstehenden Formel.
  • Glycerin ist eine farblose, klare, schwerbewegliche, geruchlose süß schmeckende hygroskopische Flüssigkeit der Dichte 1,261, die bei 18,2°C erstarrt. Glycerin war ursprünglich nur ein Nebenprodukt der Fettverseifung, wird heute aber in großen Mengen technisch synthetisiert. Die meisten technischen Verfahren gehen von Propen aus, das über die Zwischenstufen Allylchlorid, Epichlorhydrin zu Glycerin verarbeitet wird. Ein weiteres technisches Verfahren ist die Hydroxylierung von Allylalkohol mit Wasserstoffperoxid am WO3-Kontakt über die Stufe des Glycids.
  • Glycerincarbonat ist durch Umesterung von Ethylencarbonat oder Dimethylcarbonat mit Glycerin zugänglich, wobei als Nebenprodukte Ethylenglycol bzw. Methanol anfallen. Ein weiterer Syntheseweg geht von Glycidol (2,3-Epoxy-1-propanol) aus, das unter Druck in Gegenwart von Katalysatoren mit CO2 zu Glycerincarbonat umgesetzt wird. Glycerincarbonat ist eine klare, leichtbewegliche Flüssigkeit mit einer Dichte von 1,398 gcm-3, die bei 125-130°C (0,15 mbar) siedet.
  • Ethylenglycol (1,2-Ethandiol, "Glykol") ist eine farblose, viskose, süß schmeckende, stark hygroskopische Flüssigkeit, die mit Wasser, Alkoholen und Aceton mischbar ist und eine Dichte von 1,113 aufweist. Der Erstarrungspunkt von Ethylenglycol liegt bei -11,5°C, die Flüssigkeit siedet bei 198°C. Technisch wird Ethylenglycol aus Ethylenoxid durch Erhitzen mit Wasser unter Druck gewonnen. Aussichtsreiche Herstellungsverfahren lassen sich auch auf der Acetoxylierung von Ethylen und nachfolgender Hydrolyse oder auf Synthesegas-Reaktionen aufbauen.
  • Vom Propylengylcol existieren zwei Isomere, das 1,3-Propandiol und das 1,2-Propandiol. 1,3-Propandiol (Trimethylenglykol) ist eine neutrale, farb- und geruchlose, süß schmeckende Flüssigkeit der Dichte 1,0597, die bei -32°C erstarrt und bei 214°C siedet. Die Herstellung von 1,3-Propandiol gelingt aus Acrolein und Wasser unter anschließender katalytischer Hydrierung.
  • Technisch weitaus bedeutender ist 1,2-Propandiol (Propylenglykol), das eine ölige, farblose, fast geruchlose Flüssigkeit, der Dichte 1,0381 darstellt, die bei -60°C erstarrt und bei 188°C siedet. 1,2-Propandiol wird aus Propylenoxid durch Wasseranlagerung hergestellt.
  • Propylencarbonat ist eine wasserhelle, leichtbewegliche Flüssigkeit, mit einer Dichte von 1,21 gcm-3, der Schmelzpunkt liegt bei -49°C, der Siedepunkt bei 242°C. Auch Propylencarbonat ist großtechnisch durch Reaktion von Propylenoxid und CO2 bei 200°C und 80 bar zugänglich.
  • In bevorzugten erfindungsgemäßen flüssigen oder fließfähigen maschinellen Geschirrspülmitteln oder maschinellen Geschirrspülhilfsmitteln ist/sind das/die nichtwässrige(n) Lösungsmittel in Mengen von 0,1 bis 70 Gew.-%, vorzugsweise von 0,5 bis 60 Gew.-%, besonders bevorzugt von 1 bis 50 Gew.-%, ganz besonders bevorzugt von 2 bis 40 Gew.-% und insbesondere von 2,5 bis 30 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Dabei ist im Rahmen dieser Erfindung unter "nichtwässrig" ein Zustand zu verstehen, bei dem der Gehalt an freiem Wasser in den Mitteln deutlich unter 5 Gew.-%, bezogen auf das Mittel, liegt. Es ist bevorzugt, daß der Gehalt der erfindungsgemäßen maschinellen Geschirrspülmittel oder maschinellen Geschirrspülhilfsmittel an freiem, d.h. nicht in Form von Hydratwasser und/oder Konstitutionswasser vorliegendem Wasser unter 10 Gew.-%, vorzugsweise unter 8 Gew.-% und insbesondere sogar unter 6 Gew.-%, jeweils bezogen auf das Mittel, liegt. Wasser kann dementsprechend im wesentlichen nur in chemisch und/oder physikalisch gebundener Form bzw. als Bestandteil der als Feststoff vorliegenden Rohstoffe bzw. Compounds, aber nicht als Flüssigkeit, Lösung oder Dispersion in das Mittel eingebracht werden.
  • Als weiteren bevorzugten Inhaltsstoff enthalten bevorzugte erfindungsgemäße flüssige oder fließfähige maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel ein oder mehrere nichtionische Tenside, kurz Niotenside. Die Mengen, in denen die nichtionischen Tenside eingesetzt werden, liegen erfindungsgemäß bevorzugt zwischen 5 und 30 Gew.-%, wobei erfindungsgemäß solche Mittel besonders bevorzugte sind, die 1 bis 25 Gew.-%, vorzugsweise 2 bis 22,5 Gew.-%, besonders bevorzugt 3 bis 20 Gew.-% und insbesondere 4 bis 17,5 Gew.-% nichtionische(s) Tensid(e) enthalten.
  • Für eine ausführliche Beschreibung dieser Niotenside sei zur Vermeidung von Wiederholungen an dieser Stellen auf die nachfolgenden Ausführungen zu den bevorzugten wasch- oder reinigungsaktiven Inhaltsstoffen bevorzugter erfindungsgemäßer Mittel verwiesen.
  • Zur Viskositätsregelung können die erfindungsgemäßen Mittel weitere Inhaltsstoffe enthalten, mit deren Einsatz beispielsweise das Absetzverhalten oder die Gieß- bzw. Fließfähigkeit gezielt gesteuert werden kann. In nichtwässrigen Systemen haben sich dabei insbesondere Kombinationen aus Strukturgebern und Verdickern bewährt.
  • Im Rahmen der vorliegenden Erfindung bevorzugte maschinelle Geschirspülmittel enthalten weiterhin
    • ) 0,1 bis 1,0 Gew.-% eines oder mehrerer Strukturgeber aus der Gruppe der Bentonite und/oder mindestens teilweise veretherten Sorbitole sowie
    • ) 5,0 bis 30 Gew.-% eines oder mehrerer Verdicker aus der Gruppe der Carbonate, Sulfate und amorphen oder kristallinen Disilikate.
  • Der Strukturgeber a) stammt aus der Gruppe der Bentonite und/oder mindestens teilweise veretherten Sorbitole. Diese Stoffe werden eingesetzt, um die physikalische Stabilität der Mittel zu gewährleisten und die Viskosität einzustellen. Obwohl herkömmliche Verdickungsmittel wie Polyacrylate oder Polyurethane in nichtwässrigen Medien versagen, gelingt die Viskositätsregelung mit den genannten Substanzen im nichtwässrigen System.
  • Bentonite sind verunreinigte Tone, die durch Verwitterung vulkanischer Tuffe entstanden sind. Aufgrund ihres hohen Gehalts an Montmorillonit besitzen Bentonite wertvolle Eigenschaften wie Quellfähigkeit, lonenaustauschvermögen und Thixotropie. Es ist dabei möglich, die Eigenschaften der Bentonite dem Verwendungszweck entsprechend zu modifizieren. Bentonite sind als Tonbestandteil in tropischen Böden häufig und werden als Natrium-Bentonit z.B. in Wyoming/USA abgebaut. Natrium-Bentonit weist die günstigsten anwendungstechnischen Eiegenschaften (Quellfähigkeit) auf, so daß seine Verwendung im Rahmen der vorliegenden Erfindung bevorzugt ist. Natürlich vorkommende Calcium-Bentonite stammen beispielsweise aus Mississippi/USA oder Texas/USA bzw. aus Landshut/D. Die natürlich gewonnenen Ca-Bentonite werden künstlich durch Austausch von Ca gegen Na in die quellfähigeren Na-Bentonite umgewandelt.
  • Den Hauptbestandteile der Bentonite bilden sogenannte Montmorillonite, die im Rahmen der vorliegenden Erfindung auch in reiner Form eingesetzt werden können. Montmorillonite sind zu den Phyllosilicaten und hier zu den dioktaedrischen Smektiten gehörende Tonminerale, die monoklin-pseudohexagonal kristallisieren. Montmorillonite bilden überwiegend weiße, grauweiße bis gelbliche, völlig amorph erscheinende, leicht zerreibliche, im Wasser quellende, aber nicht plastisch werdende Massen, die durch die allgemeinen Formeln

             Al2[(OH)2/Si4O10]·nH2O

    bzw.

             Al2O3·4SiO2·H2O·nH2O

    bzw.

             Al2[(OH)2/Si4O10]

    (bei 150° getrocknet)
    beschrieben werden können.
  • Bevorzugte maschinelle Geschirspülmittel oder maschinelle Geschirrspülhilfsmittel sind dadurch gekennzeichnet, daß als Strukturgeber Montmorillonite eingesetzt werden. Montmorillonite besitzen eine Dreischicht-Struktur, die aus zwei Tetraeder-Schichten besteht, die über die Kationen einer Oktaeder-Zwischenschicht elektrostatisch vernetzt sind. Die Schichten sind nicht starr verbunden, sondern können durch reversible Einlagerung von Wasser (in der 2-7fachen Menge) und anderen Substanzen wie z.B. Alkoholen, Glykolen, Pyridin, □-Picolin, AmmoniumVerbindungen, Hydroxy-Aluminosilicat-lonen usw. aufquellen. Die oben angegebenen. Formeln stellen nur angenäherte Formeln dar, da Montmorillonite ein großes lonenaustausch-Vermögen besitzen. So kann Al gegen Mg, Fe2+, Fe3+, Zn, Cr, Cu und andere Ionen ausgetauscht werden. Als Folge einer solchen Substitution resultiert eine negative Ladung der Schichten, die durch andere Kationen, bes. Na+ und Ca2+ ausgeglichen wird.
  • In Kombination mit den Bentoniten oder als Ersatz für sie, wenn ihre Verwendung nicht gewünscht wird, können mindestens teilweise veretherte Sorbitole als Strukturgeber eingesetzt werden.
  • Sorbitol ist ein zu den Hexiten gehörender 6-wertiger Alkohol (Zuckeralkohol), der intramolekular relativ leicht ein oder zwei Mol Wasser abspaltet und cyclische Ether bildet (beispielsweise Sorbitan und Sorbid). Die Abspaltung von Wasser ist auch intermolekular möglich, wobei sich nichtcyclische Ether aus Sorbitol und den betreffenden Alkoholen bilden. Auch hier ist die Ausbildung von Mono-Ethern und Bis-Ethern möglich, wobei auch höhere Veretherungsgrade wie 3 und 4 auftreten können. Im Rahmen der vorliegenden Erfindung bevorzugt einzusetzende mindestens teilweise veretherte Sorbitole sind zweifach veretherte Sorbitole, von denen das Dibenzylidensorbitol besonders bevorzugt ist. Hier sind maschinelle Geschirspülmittel bevorzugt, die als Strukturgeber zweifach veretherte Sorbitole, insbesondere Dibenzylidensorbitol, enthalten.
  • Die bevorzugten erfindungsgemäßen flüssigen oder fließfähigen Mittel können die Strukturgeber in Mengen von 0,1 bis 1,0 Gew.-%, bezogen auf das gesamte Mittel und auf die Aktivsubstanz der Strukturgeber enthalten. Bevorzugte Mittel enthalten den Strukturgeber in Mengen von 0,2 bis 0,9 Gew.-%, vorzugsweise in Mengen von 0,25 bis 0,75 Gew.-% und insbesondere in Mengen von 0,3 bis 0,5 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Als Verdicker können die bevorzugten erfindungsgemäßen flüssigen oder fließfähigen Mittel anorganische Salze aus der Gruppe der Carbonate, Sulfate und amorphen oder kristallinen Disilikate enthalten. Prinzipiell können hierbei die genannten Salze aller Metalle eingesetzt werden, wobei die Alkalimetallsalze bevorzugt sind. Besonders bevorzugt werden im Rahmen der vorliegenden Erfindung als Verdicker Alkalicarbonat(e), Alkalisulfat(e) und/oder amorphe(s) und/oder kristalline(s) Alkalidisilikat(e), vorzugsweise Natriumcarbonat, Natriumsulfat und/oder amorphes oder kristallines Natriumdisilikat eingesetzt.
  • Die bevorzugten erfindungsgemäßen flüssigen oder fließfähigen Mittel enthalten die Verdicker in Mengen von 5 bis 30 Gew.-%, bezogen auf das gesamte Mittel. Besonders bevorzugte Mittel enthalten den oder die Verdicker in Mengen von 7,5 bis 28 Gew.-%, vorzugsweise in Mengen von 10 bis 26 Gew.-% und insbesondere in Mengen von 12,5 bis 25 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Im Hinblick auf eine erhöhte Absetzstabilität ist es bevorzugt, daß die in den erfindungsgemäßen Mitteln enthaltenen Feststoffe möglichst feinteilig eingesetzt werden. Dies ist insbesondere bei den anorganischen Verdickern und bei den Bleichmitteln von Vorteil. Hier sind erfindungsgemäße maschinelle Geschirspülmittel bevorzugt, bei denen die mittlere Teilchengröße der Bleichmittel und Verdicker sowie der optional einzusetzenden Builder weniger als 75 µm, vorzugsweise weniger als 50 µm und insbesondere weniger als 25 µm beträgt.
  • Die erfindungsgemäßen flüssigen maschinellen Geschirrspülmittel können zur Einstellung einer eventuell gewünschten höheren Viskosität auch andere Viskositätsregler bzw. Verdickungsmittel enthalten. Hierbei sind sämtliche bekannten Verdickungsmittel einsetzbar, also solche auf der Basis natürlicher oder synthetischer Polymere.
  • Aus der Natur stammende Polymere, die als Verdickungsmittel Verwendung finden, sind beispielsweise Agar-Agar, Carrageen, Tragant, Gummi arabicum, Alginate, Pektine, Polyosen, Guar-Mehl, Johannisbrotbaumkernmehl, Stärke, Dextrine, Gelatine und Casein. Abgewandelte Naturstoffe stammen vor allem aus der Gruppe der modifizierten Stärken und Cellulosen, beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt.
  • Im Rahmen der vorliegenden Erfindung bevorzugte flüssige oder fließfähige maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel enthalten als Verdickungsmittel Hydroxyethylcellulose und/oder Hydroxypropylcellulose, vorzugsweise in Mengen von 0,01 bis 4,0 Gew.-%, besonders bevorzugt in Mengen von 0,01 bis 3,0 Gew.-% und insbesondere in Mengen von 0,01 bis 2,0 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Eine große Gruppe von Verdickungsmitteln, die breite Verwendung in den unterschiedlichsten Anwendungsgebieten finden, sind die vollsynthetischen Polymere wie Polyacryl- und Polymethacryl-Verbindungen, Vinylpolymere, Polycarbonsäuren, Polyether, Polyimine, Polyamide und Polyurethane.
  • Verdickungsmittel aus den genannten Substanzklassen sind kommerziell breit erhältlich und werden beispielsweise unter den Handelsnamen Acusol®-820 (Methacrylsäure(stearylalkohol-20-EO)ester-Acrylsäure-Copolymer, 30%ig in Wasser, Rohm & Haas), Dapral®-GT-282-S (Alkylpolyglykolether, Akzo), Deuterol®-Polymer-11 (Dicarbonsäure-Copolymer, Schöner GmbH), Deuteron®-XG (anionisches Heteropolysaccharid auf Basis von β-D-Glucose, D-Manose, D-Glucuronsäure, Schöner GmbH), Deuteron®-XN (nichtionogenes Polysaccharid, Schöner GmbH), Dicrylan®-Verdicker-O (Ethylenoxid-Addukt, 50%ig in Wasser/Isopropanol, Pfersse Chemie), EMA®-81 und EMA®-91 (Ethylen-Maleinsäureanhydrid-Copolymer, Monsanto), Verdicker-QR-1001 (Polyurethan Emulsion, 19-21%ig in Wasser/Diglykolether, Rohm & Haas), Mirox®-AM (anionische Acrylsäure-Acrylsäureester-Copolymer-Dispersion, 25%ig in Wasser, Stockhausen), SER-AD-FX-1100 (hydrophobes Urethanpolymer, Servo Delden), Shellflo®-S (hochmolekulares Polysaccharid, mit Formaldehyd stabilisiert, Shell) sowie Shellflo®-XA (Xanthan-Biopolymer, mit Formaldehyd stabilisiert, Shell) erhältlich.
  • Ein bevorzugt einzusetzendes polymeres Verdickungsmittel ist Xanthan, ein mikrobielles anionisches Heteropolysaccharid, das von Xanthomonas campestris und einigen anderen Species unter aeroben Bedingungen produziert wird und eine Molmasse von 2 bis 15 Millionen Dalton aufweist. Xanthan wird aus einer Kette mit β-1,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat, wobei die Anzahl der Pyruvat-Einheiten die Viskosität des Xanthan bestimmt.
  • Im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einzusetzende Verdickungsmittel sind Polyurethane oder modifizierte Polyacrylate, die, bezogen auf das gesamte Mittel, beispielsweise in Mengen von 0,1 bis 5 Gew.-% eingesetzt werden können.
  • Polyurethane (PUR) werden durch Polyaddition aus zwei- und höherwertigen Alkoholen und Isocyanaten hergestellt und lassen sich durch die allgemeine Formel IV beschreiben
    Figure imgb0003
    in der R1 für einen niedermolekularen oder polymeren Diol-Rest, R2 für eine aliphatische oder aromatische Gruppe und n für eine natürliche Zahl steht. R1 ist dabei vorzugsweise eine lineare oder verzweigte C2-12-Alk(en)ylgruppe, kann aber auch ein Rest eines höherwertigen Alkohols sein, wodurch quervernetzte Polyurethane gebildet werden, die sich von der oben angegebenen Formel VIII dadurch unterscheiden, daß an den Rest R1 weitere -O-CO-NH-Gruppen gebunden sind.
  • Technisch wichtige PUR werden aus Polyester- und/oder Polyetherdiolen und beispielsweise z.B. aus 2,4- bzw. 2,6-Toluoldiisocyanat (TDI, R2 = C6H3-CH3), 4,4'-Methylendi(phenylisocyanat) (MDI, R2 = C6H4-CH2-C6H4) oder Hexamethylendiisocyanat [HMDI, R2 =(CH2)6] hergestellt.
  • Handelsübliche Verdickungsmittel auf Polyurethan-Basis sind beispielsweise unter den Namen Acrysol®PM 12 V (Gemisch aus 3-5% modifizierter Stärke und 14-16% PUR-Harz in Wasser, Rohm&Haas), Borchigel® L75-N (nichtionogene PUR-Dispersion, 50%ig in Wasser, Borchers), Coatex® BR-100-P (PUR-Dispersion, 50%ig in Wasser /Butylglycol, Dimed), Nopco® DSX-1514 (PUR-Dispersion, 40%ig in Wasser/Butyltrigylcol,Henkel-Nopco), Verdicker QR 1001 (20%ige PUR-Emulsion in Wasser/Digylcolether, Rohm&Haas) und Rilanit® VPW-3116 (PUR-Dispersion, 43%ig in Wasser, Henkel) erhältlich. Für die Zwecke der vorliegenden Erfindung ist bei der Verwendung wässriger Dispersionen darauf zu achten, daß der Wassergehalt der erfindungsgemäßen Mittel innerhalb der vorstehend genannten Grenzen bleibt. Falls der Einsatz der wässrigen Dispersionen aus diesen Gründen nicht möglich ist, können Dispersionen in anderen Lösungsmitteln, oder auch die Feststoffe eingesetzt werden.
  • Modifizierte Polyacrylate, die im Rahmen der vorliegenden Erfindung eingesetzt werden können, leiten sich beispielsweise von der Acrylsäure bzw. der Methacrylsäure ab und lassen sich durch die allgemeine Formel V beschreiben
    Figure imgb0004
    in der R3 für H oder einen verzweigten oder unverzweigten C1-4-Alk(en)ylrest, X für N-R5 oder O, R4 für einen gegebenenfalls alkoxylierten verzweigten oder unverzweigten, evtl. substituierten C8-22-Alk(en)ylrest, R5 für H oder R4 und n für eine natürliche Zahl steht. Allgemein sind solche modifizierten Polyacrylate Ester oder Amide von Acrylsäure bzw. einer α-substituierten Acrylsäure. Unter diesen Polymeren bevorzugt sind solche, bei denen R3 für H oder eine Methylgruppe steht. Bei den Polyacrylamiden (X = N-R5) sind sowohl einfach (R5 = H) als auch zweifach (R5 = R4) N-substituierte Amidstrukturen möglich, wobei die beiden Kohlenwasserstoffreste, die an das N-Atom gebunden sind, unabhängig voneinander aus gegebenenfalls alkoxylierten verzweigten oder unverzweigten C8-22-Alk(en)ylresten ausgewählt werden können. Unter den Polyacrylestern (X = O) sind solche bevorzugt, in denen der Alkohol aus natürlichen oder synthetischen Fetten bzw. Ölen gewonnen wurde und zusätzlich alkoxyliert, vorzugsweise ethoxyliert ist. Bevorzugte Alkoxlierungsgrade liegen zwischen 2 und 30, wobei Alkoxylierungsgrade zwischen 10 und 15 besonders bevorzugt sind.
  • Da es sich bei den einsetzbaren Polymeren um technische Verbindungen handelt, stellt die Bezeichnung der an X gebundenen Reste einen statistischen Mittelwert dar, der im Einzelfall hinsichtlich Kettenlänge bzw. Alkoxylierungsgrad variieren kann. Die Formel V gibt dabei lediglich Formeln für idealisierte Homopolymere an. Einsetzbar sind im Rahmen der vorliegenden Erfindung aber auch Copolymere, in denen der Anteil von Monomereinheiten, die der Formel V genügen, mindestens 30 Gew.-% beträgt. So sind beispielsweise auch Copolymere aus modifizierten Polyacrylaten und Acrylsäure bzw. deren Salzen einsetzbar, die noch acide H-Atome oder basische -COO--Gruppen besitzen.
  • Im Rahmen der vorliegenden Erfindung bevorzugt einzusetzende modifizierte Polyacrylate sind Polyacrylat-Polymethacrylat-Copolymerisate, die der Formel Va genügen
    Figure imgb0005
    in der R4 für einen vorzugsweise unverzweigten, gesättigten oder ungesättigten C8-22-Alk(en)ylrest, R6 und R7 unabhängig voneinander für H oder CH3 stehen, der Polymerisationsgrad n eine natürliche Zahl und der Alkoxylierungsgrad a eine natürliche Zahl zwischen 2 und 30, vorzugsweise zwischen 10 und 20 ist. R4 ist dabei vorzugsweise ein Fettalkoholrest, der aus natürlichen oder synthetischen Quellen gewonnen wurde, wobei der Fettalkohol wiederum bevorzugt ethoxyliert (R6=H)ist.
  • Produkte der Formel Va sind kommerziell beispielsweise unter dem Namen Acusol® 820 (Rohm&Haas) in Form 30 Gew.-%iger Dispersionen in Wasser erhältlich. Bei dem genannten Handelsprodukt steht R4 für einen Stearylrest, R6 ist ein Wasserstoffatom, R7 ist H oder CH3 und der Ethoxylierungsgrad a ist 20. Auch bei dieser Dispersion gilt das zum Wassergehalt der Mitttel vorstehend Gesagte.
  • Im Rahmen der vorliegenden Erfindung bevorzugte flüssige oder fließfähige maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind dadurch gekennzeichnet, daß sie zusätzlich 0,01 bis 5 Gew.-%, vorzugsweise 0,02 bis 4 Gew.-%, besonders bevorzugt 0,05 bis 3 Gew.-% und insbesondere 0,1 bis 1,5 Gew.-%, eines polymeren Verdickungsmittels, vorzugsweise aus der Gruppe der Polyurethane oder der modifizierten Polyacrylate unter besonderer Bevorzugung von Verdickungsmitteln der Formel VI
    Figure imgb0006
    in der R3 für H oder einen verzweigten oder unverzweigten C1-4-Alk(en)ylrest, X für N-R5 oder O, R4 für einen gegebenenfalls alkoxylierten verzweigten oder unverzweigten, evtl. substituierten C8-22-Alk(en)ylrest, R5 für H oder R4 und n für eine natürliche Zahl steht, enthalten.
  • Die erfindungsgemäßen festen bzw. formstabilen und flüssigen bzw. fließfähigen maschinellen Geschirrspülmittel oder Geschirrspülhilfsmittel können dem Verbraucher in herkömmlichen Behältern, beispielsweise Flaschen, Schraubgläsern, Kanistern, Ballons, Bechern oder Spritzgefäßen angeboten werden, aus denen er diese zur Anwendung dosiert. Höherviskose Produkte können auch in Tuben oder Dosierspendern wie sie von Zahnpasta oder Dichtungsmassen bekannt sind, angeboten werden. Solche Behälter werden heute üblicherweise aus nicht wasserlöslichen Polymeren gefertigt und können beispielsweise aus allen üblichen wasserunlöslichen Verpackungsmaterialien bestehen, die dem Fachmann auf diesem Gebiet wohlbekannt sind. Als bevorzugte Polymere sind dabei insbesondere Kunststoffe auf Kohlenwasserstoff-Basis zu nennen. Zu den besonders bevorzugten Polymeren gehören Polyethylen, Polypropylen (weiter bevorzugt orientiertes Polypropylen) und Polymer-Mischungen wie beispielsweise Mischungen der genannten Polymere mit Polyethylenterephthalat. Weiter kommen auch eines oder mehrere Polymere aus der Gruppe Polyvinylchlorid, Polysulfone, Polyacetale, wasserunlösliche Cellulosederivate, Celluloseacetat, Cellulosepropionat, Celluloseacetobutyrat sowie Mischungen der genannten Polymere oder die genannten Polymere umfassende Copolymere in frage.
  • Eine besonders bevorzugte Ausführungsform der vorliegenden Erfindung bezweckt jedoch, dem Verbraucher vorportionierte erfindungsgemäße Mittel an die Hand zu geben, damit er die ihm von der Angebotsform "Tablette" her bekannten Dosiervorteile nutzen und mit der schnellen Löse- und Freisetzungsgeschwindigkeit sowie den Leistungsvorteilen der erfindungsgemäßen Mittel kombinieren kann. Solche vorportionierten erfindungsgemäßen Mittel können ebenfalls in wasserunlöslichen Verpackungen vorliegen, so daß der Verbraucher diese vor der Benutzung in geeigneter Weise öffnen muß. Es ist aber auch möglich und bevorzugt, portionierte erfindungsgemäße Mittel so zu verpacken, daß der Verbraucher sie ohne weitere Handhabungsschritte direkt, d.h. mitsamt der Verpackung, in die Geschirrspülmaschine geben kann. Solche Verpackungen umfassen wasserlösliche oder -zersetzbare Verpackungen wie Beutel aus wasserlöslicher Folie (sogenannte Pouches), Beutel oder andere Verpackungen aus wasserlöslichen oder -zersetzbaren Vliesen oder auch flexible oder starre Körper aus wasserlöslichen Polymeren, vorzugsweise in Form befüllter Hohlkörper, welche beispielsweise durch Tiefziehen, Spritzgießen, Blasformen, Kalandrieren usw. hergestellt werden können.
  • Ein bevorzugter Gegenstand der vorliegenden Erfindung sind daher erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die portioniert in einer wasserlöslichen Umhüllung verpackt sind.
  • Bevorzugt umfassen erfindungsgemäße maschinelle Geschirrspülmittel oder Geschirrspülhilfsmittel eine ganz oder teilweise in Wasser lösliche Umhüllung. Die Form der Umhüllung ist nicht auf bestimmte Formen beschränkt. Grundsätzlich kommen alle archimedischen und platonischen Körper, also dreidimensionale Formkörper, als Formen der Umhüllung infrage. Beispiele für die Form der Umhüllung sind Kapseln, Würfel, Kugeln, eiförmige Formkörper, Quader, Kegel, Stäbe oder Beutel. Auch Hohlkörper mit einem oder mehreren Kompartimenten sind als Umhüllung für die Geschirreinigungsmittel geeignet. In bevorzugten Ausführungsformen der Erfindung haben die Umhüllungen die Form von Kapseln, wie sie beispielsweise auch in der Pharmazie zur Verabreichung von Arzneimitteln verwendet werden, von Kugeln oder von Beuteln. Letztere sind vorzugsweise an zumindest einer Seite verschweißt oder verklebt, wobei als Kleber in besonders bevorzugten Ausführungsformen der Erfindung ein Kleber verwendet wird, der wasserlöslich ist.
  • Nach einer bevorzugten Ausführungsform der Erfindung ist das das maschinelle Geschirrspülmittel oder Geschirrspülhilfsmittel teilweise oder vollständig umgebende wasserlösliche Polymer-Material eine wasserlösliche Verpackung. Darunter wird ein flächig ausgebildetes Teil verstanden, das das Geschirreinigungsmittel teilweise oder vollständig umgibt. Die exakte Form einer derartigen Verpackung ist nicht kritisch und kann den Gebrauchsgegebenheiten weitgehend angepaßt werden. Es kommen beispielsweise zu verschiedenen Formen (wie Schläuchen, Kissen, Zylindern, Flaschen, Scheiben o.ä.) gearbeitete verarbeitete Kunststoff-Folien oder -Platten, Kapseln und andere denkbare Formen in Frage. Erfindungsgemäß besonders bevorzugt sind Folien, die beispielsweise zu Verpackungen wie Schläuchen, Kissen o. ä. verklebt und/oder versiegelt werden können, nachdem sie mit Teilportionen der erfindungsgemäßen Reinigungsmittel oder mit den erfindungsgemäßen Reinigungsmitteln selbst befüllt wurden.
  • Weiter bevorzugt sind erfindungsgemäß aufgrund der ausgezeichnet den gewünschten physikalischen Bedingungen anpaßbaren Eigenschaften Kunststoff-Folienverpackungen aus wasserlöslichen Polymer-Materialien. Derartige Folien sind grundsätzlich aus dem Stand der Technik bekannt.
  • Zusammenfassend sind sowohl Hohlkörper beliebiger Gestalt, die durch Spritzgießen, Flaschenblasen, Tiefziehen usw. hergestellt werden können, als auch Hohlkörper aus Folien, insbesondere Beutel (sogenannte Pouches) als Verpackungen für portionierte erfindungsgemäße Mittel bevorzugt. Bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind somit dadurch gekennzeichnet, daß die wasserlösliche Umhüllung einen Beutel aus wasserlöslicher Folie und/oder ein Spritzgußteil und/oder ein Blasformteil und/oder ein Tiefziehteil umfaßt.
  • Erfindungsgemäß ist es bevorzugt, daß die eine oder mehreren Umfassung(en) abgeschlossen ist/sind. Dies bringt den Vorteil mit sich, daß die Geschirreinigungsmittel optimal gegen Einflüsse der Umwelt, insbesondere gegen Feuchtigkeit geschützt sind. Außerdem läßt sich mit diesen abgeschlossenen Umfassungen die Erfindung dahingehend weiterentwickeln, daß die Reinigungsmittel zum Schutz des Inhalts der Umfassung(en) vor Feuchtigkeit wenigstens ein Gas enthalten, siehe unten.
  • Als Materialien für die ganz oder teilweise wasserlösliche Umhüllung kommen grundsätzlich alle Materialien infrage, die sich unter den gegebenen Bedingungen eines Waschvorgangs, Spülvorgangs oder Reinigungsvorgangs (Temperatur, pH-Wert, Konzentration an waschaktiven Komponenten) in wässriger Phase vollständig oder teilweise lösen können. Die Polymer-Materialien können besonders bevorzugt den Gruppen (gegebenenfalls teilweise acetalisierter) Polyvinylalkohol, Polyvinylpyrrolidon, Poly-ethylenoxid, Gelatine, Cellulose und deren Derivate, Stärke und deren Derivate, insbesondere modifizierte Stärken, und Mischungen (Polymerblends, Verbünde, Koextrudate etc.) der genannten Materialien zugehören. Besonders bevorzugt sind Gelatine und Polyvinylalkohole sowie die genannten beiden Materialien jeweils im Verbund mit Stärke oder modifizierter Stärke. Es kommen auch anorganische Salze und Mischungen daraus als Materialien für die zumindest teilweise wasserlösliche Umhüllung infrage.
  • Bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind dadurch gekennzeichnet, daß die Umhüllung ein oder mehrere Materialien aus der Gruppe Acrylsäure-haltige Polymere, Polyacrylamide, Oxazolin-Polymere, Polystyrolsulfonate, Polyurethane, Polyester und Polyether und deren Mischungen umfaßt.
  • Besonders bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind dadurch gekennzeichnet, daß die Umhüllung ein oder mehrere wasserlösliche(s) Polymer(e), vorzugsweise ein Material aus der Gruppe (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), Polyvinylpyrrolidon, Polyethylenoxid, Gelatine, Cellulose, und deren Derivate und deren Mischungen, weiter bevorzugt (gegebenenfalls acetalisierter) Polyvinylalkohol (PVAL), umfaßt.
  • "Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur
    Figure imgb0007
    die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs
    Figure imgb0008
    enthalten.
  • Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 Mol-%, enthalten also noch einen Restgehalt an Acetyl-Gruppen. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.
  • Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Die Beschichtungen aus Polyvinylalkohol sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß die Umhüllung einen Polyvinylalkohol umfaßt, dessen Hydrolysegrad 70 bis 100 Mol-%, vorzugsweise 80 bis 90 Mol-%, besonders bevorzugt 81 bis 89 Mol-% und insbesondere 82 bis 88 Mol-% beträgt.
  • Vorzugsweise werden als Materialien für die Umhüllung Polyvinylalkohole eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß die Umhüllung einen Polyvinylalkohol umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol-1, vorzugsweise von 11.000 bis 90.000 gmol-1, besonders bevorzugt von 12.000 bis 80.000 gmol-1 und insbesondere von 13.000 bis 70.000 gmol-1 liegt.
  • Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.
  • Die vorstehend beschriebenen Polyvinylalkohole sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol® 3-83, Mowiol® 4-88, Mowiol® 5-88 sowie Mowiol® 8-88.
  • Weitere als Material für die Hohlkörper besonders geeignete Polyvinylalkohole sind der nachstehenden Tabelle zu entnehmen:
    Bezeichnung Hydrolysegrad [%] Molmasse [kDa] Schmelzpunkt [°C]
    Airvol® 205 88 15 - 27 230
    Vinex® 2019 88 15 - 27 170
    Vinex® 2144 88 44 - 65 205
    Vinex® 1025 99 15 - 27 170
    Vinex® 2025 88 25 - 45 192
    Gohsefimer® 5407 30 - 28 23.600 100
    Gohsefimer® LL02 41 - 51 17.700 100
  • Weitere als Material für die Hohlform geeignete Polyvinylalkohole sind ELVANOL® 51-05, 52-22, 50-42, 85-82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH-20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.).
  • Die Wasserlöslichkeit von PVAL kann durch Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasserlöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.
  • Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen. Folien aus PVAL sind weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, lassen jedoch Wasserdampf hindurchtreten.
  • Beispiele geeigneter wasserlöslicher PVAL-Folien sind die unter Bezeichnung "SOLUBLON®" von der Firma Syntana Handelsgesellschaft E. Harke GmbH & Co. erhältlichen PVAL-Folien. Deren Löslichkeit in Wasser läßt sich Grad-genau einstellen, und es sind Folien dieser Produktreihe erhältlich, die in allen für die Anwendung relevanten Temperaturbereichen in wässriger Phase löslich sind.
  • Polyvinylpyrrolidone, kurz als PVP bezeichnet, lassen sich durch die folgende allgemeine Formel beschreiben:
    Figure imgb0009
  • PVP werden durch radikalische Polymerisation von 1-Vinylpyrrolidon hergestellt. Handelsübliche PVP haben Molmassen im Bereich von ca. 2.500 bis 750.000 g/mol und werden als weiße, hygroskopische Pulver oder als wässrige Lösungen angeboten.
  • Polyethylenoxide, kurz PEOX, sind Polyalkylenglykole der allgemeinen Formel

             H-[O-CH2-CH2]n-OH

    die technisch durch basisch katalysierte Polyaddition von Ethylenoxid (Oxiran) in meist geringe Mengen Wasser enthaltenden Systemen mit Ethylenglykol als Startmolekül hergestellt werden. Sie haben Molmassen im Bereich von ca. 200 bis 5.000.000 g/mol, entsprechend Polymerisationsgraden n von ca. 5 bis >100.000. Polyethylenoxide besitzen eine äußerst niedrige Konzentration an reaktiven Hydroxy-Endgruppen und zeigen nur noch schwache Glykol-Eigenschaften.
  • Gelatine ist ein Polypeptid (Molmasse: ca. 15.000 bis >250.000 g/mol), das vornehmlich durch Hydrolyse des in Haut und Knochen von Tieren enthaltenen Kollagens unter sauren oder alkalischen Bedingungen gewonnen wird. Die Aminosäuren-Zusammensetzung der Gelatine entspricht weitgehend der des Kollagens, aus dem sie gewonnen wurde, und variiert in Abhängigkeit von dessen Provenienz. Die Verwendung von Gelatine als wasserlösliches Hüllmaterial ist insbesondere in der Pharmazie in Form von Hart- oder Weichgelatinekapsein äußerst weit verbreitet. In Form von Folien findet Gelatine wegen ihres im Vergleich zu den vorstehend genannten Polymeren hohen Preises nur geringe Verwendung.
  • Bevorzugt sind im Rahmen der vorliegenden Erfindung auch Geschirreinigungsmittel, deren Verpackung aus zumindest zum Teil wasserlöslicher Folie aus mindestens einem Polymer aus der Gruppe Stärke und Stärkederivate, Cellulose und Cellulosederivate, insbesondere Methylcellulose und Mischungen hieraus besteht.
  • Stärke ist ein Homoglykan, wobei die Glucose-Einheiten α-glykosidisch verknüpft sind. Stärke ist aus zwei Komponenten unterschiedlichen Molekulargewichts aufgebaut: aus ca. 20 bis 30% geradkettiger Amylose (MG. ca. 50.000 bis 150.000) und 70 bis 80% verzweigtkettigem Amylopektin (MG. ca. 300.000 bis 2.000.000). Daneben sind noch geringe Mengen Lipide, Phosphorsäure und Kationen enthalten. Während die Amylose infolge der Bindung in 1,4-Stellung lange, schraubenförmige, verschlungene Ketten mit etwa 300 bis 1.200 Glucose-Molekülen bildet, verzweigt sich die Kette beim Amylopektin nach durchschnittlich 25 Glucose-Bausteinen durch 1,6-Bindung zu einem astähnlichen Gebilde mit etwa 1.500 bis 12.000 Molekülen Glucose. Neben reiner Stärke sind zur Herstellung wasserlöslicher Umhüllungen der Waschmittel-, Spülmittel- und Reinigungsmittel-Portionen im Rahmen der vorliegenden Erfindung auch Stärke-Derivate geeignet, die durch polymeranaloge Reaktionen aus Stärke erhältlich sind. Solche chemisch modifizierten Stärken umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Stärken, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Stärke-Derivate einsetzen. In die Gruppe der Stärke-Derivate fallen beispielsweise Alkalistärken, Carboxymethylstärke (CMS), Stärkeester und -ether sowie Aminostärken.
  • Reine Cellulose weist die formale Bruttozusammensetzung (C6H10O5)n auf und stellt formal betrachtet ein β-1,4-Polyacetal von Cellobiose dar, die ihrerseits aus zwei Molekülen Glucose aufgebaut ist. Geeignete Cellulosen bestehen dabei aus ca. 500 bis 5.000 Glucose-Einheiten und haben demzufolge durchschnittliche Molmassen von 50.000 bis 500.000. Als Desintegrationsmittel auf Cellulosebasis verwendbar sind im Rahmen der vorliegenden Erfindung auch Cellulose-Derivate, die durch polymeranaloge Reaktionen aus Cellulose erhältlich sind. Solche chemisch modifizierten Cellulosen umfassen dabei beispielsweise Produkte aus Veresterungen bzw. Veretherungen, in denen Hydroxy-Wasserstoffatome substituiert wurden. Aber auch Cellulosen, in denen die Hydroxy-Gruppen gegen funktionelle Gruppen, die nicht über ein Sauerstoffatom gebunden sind, ersetzt wurden, lassen sich als Cellulose-Derivate einsetzen.
  • In die Gruppe der Cellulose-Derivate fallen beispielsweise Alkalicellulosen, Carboxymethylcellulose (CMC), Celluloseester und -ether sowie Aminocellulosen.
  • Bevorzugte Umhüllungen aus zumindest partiell wasserlöslicher Folie enthalten mindestens ein Polymer mit einer Molmasse zwischen 5.000 und 500.000 g/Mol, vorzugsweise zwischen 7.500 und 250.000 g/Mol und insbesondere zwischen 10.000 und 100.000 g/Mol. Die Umhüllung weist je nach Herstellungsverfahren unterschiedliche Materialstärken auf, wobei erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel bevorzugt sind, bei denen die Wandstärke der Umhüllung 10 bis 5000 µm, vorzugsweise 20 bis 3000 µm, besonders bevorzugt 25 bis 2000 µm und insbesondere 100 bis 1500 µm beträgt.
  • Werden Folienbeutel (sogenannte Pouches) als Verpackung gewählt, so weist die wasserlösliche Folie, die die Umhüllung bildet, vorzugsweise eine Dicke von 1 bis 300 µm, vorzugsweise von 2 bis 200 µm, besonders bevorzugt von 5 bis 150 µm und insbesondere von 10 bis 100 µm, auf.
  • Diese wasserlöslichen Folien können nach verschiedenen Herstellverfahren hergestellt werden. Hier sind prinzipiell Blas-, Kalandrier- und Gießverfahren zu nennen. Bei einem bevorzugten Verfahren werden die Folien dabei ausgehend von einer Schmelze mit Luft über einen Blasdorn zu einem Schlauch geblasen. Bei dem Kalandrierverfahren, das ebenfalls zu den bevorzugt eingesetzten Herstellverfahren gehört, werden die durch geeignete Zusätze plastifizierten Rohstoffe zur Ausformung der Folien verdüst. Hier kann es insbesondere erforderlich sein, an die Verdüsungen eine Trocknung anzuschließen. Bei dem Gießverfahren, das ebenfalls zu den bevorzugten Herstellverfahren gehört, wird eine wässrige Polymerzubereitung auf eine beheizbare Trockenwalze gegeben, nach dem Verdampfen des Wassers wird optional gekühlt und die Folie als Film abgezogen. Gegebenenfalls wird dieser Film vor oder während des Abziehens zusätzlich abgepudert.
  • Erfindungsgemäß bevorzugt ist eine Ausführungsform, gemäß der die Umhüllung als ganzes wasserlöslich ist, d. h. sich bei bestimmungsgemäßem Gebrauch beim maschinellen Reinigen, vollständig auflöst, wenn die für das Lösen vorgesehenen Bedingungen erreicht sind. Besonders bevorzugt als ganz wasserlösliche Umhüllungen sind z. B. Kapseln aus Gelatine, mit Vorteil aus Weichgelatine, oder Beutel aus (gegebenenfalls teilweise acetalisiertem) PVAL oder Kugeln aus Gelatine oder (gegebenenfalls teilweise acetalisiertem) PVAL oder aus einem oder mehreren organischen und/oder anorganischen Salzen, vorzugsweise Kugeln aus Weichgelatine. Wesentlicher Vorteil dieser Ausführungsform ist, daß sich die Umhüllung innerhalb einer praktisch relevant kurzen Zeit - als nicht begrenzendes Beispiel lassen sich wenige Sekunden bis 5 min - unter genau definierten Bedingungen in der Reinigungsflotte zumindest partiell löst und damit entsprechend den Anforderungen den umhüllten Inhalt, d. h. das reinigungsaktive Material oder mehrere Materialien, in die Flotte einbringt.
  • In einer anderen, ebenfalls aufgrund vorteilhafter Eigenschaften bevorzugten Ausführungsform der Erfindung umfaßt die wasserlösliche Umhüllung weniger gut oder gar nicht wasserlösliche oder erst bei höherer Temperatur wasserlösliche Bereiche und gut wasserlösliche oder bei niedriger Temperatur wasserlösliche Bereiche. Mit anderen Worten: Die Umhüllung besteht nicht aus einem einheitlichen, in allen Bereichen die gleiche Wasserlöslichkeit aufweisenden Material, sondern aus Materialien unterschiedlicher Wasserlöslichkeit. Dabei sind Bereiche guter Wasserlöslichkeit einerseits zu unterscheiden von Bereichen mit weniger guter Wasserlöslichkeit, mit schlechter oder gar fehlender Wasserlöslichkeit oder von Bereichen, in denen die Wasserlöslichkeit erst bei höherer Temperatur oder erst bei einem anderen pH-Wert oder erst bei einer geänderten Elektrolytkonzentration den gewünschten Wert erreicht, andererseits. Dies kann dazu führen, daß sich bei bestimmungsgemäßem Gebrauch unter einstellbaren Bedingungen bestimmte Bereiche der Umhüllung lösen, während andere Bereiche intakt bleiben. So bildet sich eine mit Poren oder Löchern versehene Umhüllung, in die Wasser und/oder Flotte eindringen, waschaktive, spülaktive oder reinigungsaktive Inhaltsstoffe lösen und aus der Umhüllung ausschleusen kann. In gleicher Weise können auch Umhüllungssysteme in Form von Mehrkammer-Beuteln oder in Form von ineinander angeordneten Hohlkörpern (z. B. Kugeln: "Zwiebelsystem") vorgesehen werden. So lassen sich Systeme mit kontrollierter Freisetzung der waschaktiven, spülaktiven oder reinigungsaktiven Inhaltsstoffe herstellen.
  • Zur Ausbildung derartiger Systeme unterliegt die Erfindung keinen Beschränkungen. So können Umhüllungen vorgesehen werden, in denen ein einheitliches Polymer-Material kleine Bereiche eingearbeiteter Verbindungen (beispielsweise von Salzen) umfaßt, die schneller wasserlöslich sind als das Polymer-Material. Andererseits können auch mehrere Polymer-Materialien mit unterschiedlicher Wasserlöslichkeit gemischt werden (Polymer-Blend), so daß das schneller lösliche Polymer-Material unter definierten Bedingungen durch Wasser oder die Flotte schneller desintegriert wird als das langsamer lösliche.
  • Es entspricht einer besonders bevorzugten Ausführungsform der Erfindung, daß die weniger gut wasserlöslichen Bereiche oder gar nicht wasserlöslichen Bereiche oder erst bei höherer Temperatur wasserlöslichen Bereiche der Umhüllung Bereiche aus einem Material sind, das chemisch im wesentlichen demjenigen der gut wasserlöslichen Bereiche oder bei niedrigerer Temperatur wasserlöslichen Bereiche entspricht, jedoch eine höhere Schichtdicke aufweist und/oder einen geänderten Polymerisationsgrad desselben Polymers aufweist und/oder einen höheren Vernetzungsgrad derselben Polymerstruktur aufweist und/oder einen höheren Acetalisierungsgrad (bei PVAL, beispielsweise mit Sacchariden, Polysacchariden, wie Stärke) aufweist und/oder einen Gehalt an wasserunlöslichen Salzkomponenten aufweist und/oder einen Gehalt an einem wasserunlöslichen Polymeren aufweist. Selbst unter Berücksichtigung der Tatsache, daß sich die Umhüllung nicht vollständig löst, können so Reinigungsmittel-Portionen gemäß der Erfindung bereitgestellt werden, die vorteilhafte Eigenschaften bei der Freisetzung der Geschirreinigungsmittel in die jeweilige Flotte aufweisen.
  • Das wasserlösliche Hüllmaterial ist vorzugsweise transparent. Unter Transparenz ist im Sinne dieser Erfindung zu verstehen, daß die Durchlässigkeit innerhalb des sichtbaren Spektrums des Lichts (410 bis 800 nm) größer als 20%, vorzugsweise größer als 30%, äußerst bevorzugt größer als 40% und insbesondere größer als 50% ist. Sobald somit eine Wellenlänge des sichtbaren Spektrums des Lichtes eine Durchlässigkeit größer als 20% aufweist, ist es im Sinne der Erfindung als transparent zu betrachten.
  • Erfindungsgemäße Geschirreinigungsmittel, die in transparenten Umhüllungen bzw. Behältnissen verpackt sind, können als wesentlichen Bestandteil ein Stabilisierungsmittel enthalten. Stabilisierungsmittel im Sinne der Erfindung sind Materialien, welche die Reinigungsmittelbestandteile in ihren wasserlöslichen, transparenten Umhüllungen vor Zersetzung oder Desaktivierung durch Lichteinstrahlung schützen. Als besonders geeignet haben sich hier Antioxidantien, UV-Absorber und Fluoreszensfarbstoffe erwiesen.
  • Besonders geeignete Stabilisierungsmittel im Sinne der Erfindung sind die Antioxidantien. Um unerwünschte, durch Lichteinstrahlung und damit radikalischer Zersetzung verursachte Veränderungen an den Formulierungen zu verhindern, können die Formulierungen Antioxidantien enthalten. Als Antioxidantien können dabei beispielsweise durch sterisch gehinderte Gruppen substituierte Phenole, Bisphenole und Thiobisphenole verwendet werden. Weitere Beispiele sind Propylgallat, Butylhydroxytoluol (BHT), Butylhydroxyanisol (BHA), t-Butylhydrochinon (TBHQ), Tocopherol und die langkettigen (C8-C22) Ester der Gallussäure, wie Dodecylgallat. Andere Substanzklassen sind aromatische Amine, bevorzugt sekundäre aromatische Amine und substituierte p-Phenylendiamine, Phosphorverbindungen mit dreiwertigem Phosphor wie Phosphine, Phosphite und Phosphonite, Zitronensäuren und Zitronensäurederivate, wie Isopropylcitrat, Endiol-Gruppen enthaltende Verbindungen, sogenannte Reduktone, wie die Ascorbinsäure und ihre Derivate, wie Ascorbinsäurepalmitat, Organoschwefelverbindungen, wie die Ester der 3,3'-Thiodipropionsäure mit C1-18-Alkanolen, insbesondere C10-18-Alkanolen, Metallionen-Desaktivatoren, die in der Lage sind, die Autooxidation katalysierende Me-tallionen, wie z.B. Kupfer, zu komplexieren, wie Nitrilotriessigsäure und deren Abkömmlinge und ihre Mischungen. Antioxidantien können in den Formulierungen in Mengen bis 35 Gew.-%, vorzugsweise bis 25 Gew.-%, besonders bevorzugt von 0,01 bis 20 und insbesondere von 0,03 bis 20 Gew.-% enthalten sein.
  • Eine weitere Klasse bevorzugt einsetzbarer Stabilisierungsmittel sind die UV-Absorber. UV-Absorber können die Lichtbeständigkeit der Rezepturbestandteile verbessern. Darunter sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, wie beispielsweise das wasserlösliche Benzolsulfonsäure-3-(2H-benzotriazol-2-yl)-4-hydroxy-5-(methylpropyl)-mononatriumsalz (Cibafast® H), in 3-Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Besondere Bedeutung haben Biphenyl- und vor allem Stilbenderivate, die kommerziell als Tinosorb® FD oder Tinosorb® FR ex Ciba erhältlich sind. Als UV-B-Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher; 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester, 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene); Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthylester; Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester; Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon oder Dioctyl Butamido Triazone (Uvasorb® HEB); Propan-1,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion; Ketotricyclo(5.2.1.0)decan-Derivate. Weiterhin geeignet sind 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze; Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenmethyl)benzol-sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
  • Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. Vorzugsweise wird mikronisiertes Zinkoxid verwendet.
  • UV-Absorber können in den Geschirreinigungsmitteln in Mengen bis 5 Gew.-%, vorzugsweise bis 3 Gew.-%, besonders bevorzugt von 0,01 bis 2,0 und insbesondere von 0,03 bis 1 Gew.-% enthalten sein.
  • Eine weitere bevorzugt einzusetzende Klasse von Stabilisierungsmitteln sind die Fluoreszenzfarbstoffe. Zu ihnen zählen die 4,4'-Diamino-2,2'-stilbendisulfonsäuren (Flavonsäuren), 4,4'-Distyrylbiphenylen, Methyl-umbelliferone, Cumarine, Dihydrochinolinone, 1,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Hetero-cyclen substituierten Pyrenderivate. Von besonderer Bedeutung sind dabei die Sulfonsäuresalze der Diaminostilben-Derivate, sowie polymere Fluoreszenzstoffe, wie sie in der US 5,082,578 offenbart werden.
  • Fluoreszenzstoffe können in den Formulierungen in Mengen bis 5 Gew.-%, vorzugsweise bis 1 Gew.-%, besonders bevorzugt von 0,01 bis 0,5 und insbesondere von 0,03 bis 0,1 Gew.-% enthalten sein.
  • In einer bevorzugten Ausführungsform werden die vorgenannten Stabilisierungsmittel in beliebigen Mischungen eingesetzt. Die Stabilisierungsmittel werden in Mengen bis 40 Gew.-%, vorzugsweise bis 30 Gew.-%, besonders bevorzugt von 0,01 bis 20 Gew.-%, insbesondere von 0,02 bis 5 Gew.-% eingesetzt.
  • Bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel enthalten unabhängig von der Art ihrer Konfektionierung mindestens eine wasch- oder reinigungsaktive Substanz aus der Gruppe der Bleichmittel, Bleichaktivatoren, Polymere, Gerüststoffe, Tenside, Enzyme, Elektrolyte, pH-Stellmittel, Duftstoffe, Parfümträger, Farbstoffe, Hydrotrope, Schauminhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Korrosionsinhibitoren, nichtwässrigen Lösungsmittel. Diese Substanzen sollen in der Folgen näher beschrieben werden.
  • Builder
  • Gemäß der vorliegenden Erfindung können in die maschinellen Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel alle üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Gerüststoffe eingearbeitet sein, insbesondere Silikate, Carbonate, organische Cobuilder und auch die Phosphate.
  • Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSixO2x+1 H2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilikate Na2Si2O5 yH2O bevorzugt.
  • Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/ Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.
  • Als Carbonate können sowohl die Monoalkalimetallsalze als auch die Dialkalimetallsalze der Kohlensäure als auch Sesquicarbonate in den Mitteln enthalten sein. Bevorzugte Alkalimetallionen stellen Natrium- und/oder Kaliumionen dar. In einer Ausführungsform kann es bevorzugt sein, das Carbonat und/oder Bicarbonat zumindest teilweise als weitere Komponente separat bzw. nachträglich zuzumischen. Auch Compounds aus beispielsweise Carbonat, Silikat und gegebenenfalls weiteren Hilfsstoffen wie beispielsweise Aniontensiden oder anderen, insbesondere organischen Buildersubstanzen, können als separate Komponente in den fertigen Mitteln vorliegen.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Unter der Vielzahl der kommerziell erhältlichen Phosphate haben die Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat) in der Wasch- und Reinigungsmittel-Industrie die größte Bedeutung.
  • Alkalimetallphosphate ist dabei die summarische Bezeichnung für die Alkalimetall- (insbesondere Natrium- und Kalium-) -Salze der verschiedenen Phosphorsäuren, bei denen man Metaphosphorsäuren (HPO3)n und Orthophosphorsäure H3PO4 neben höhermolekularen Vertretern unterscheiden kann. Die Phosphate vereinen dabei mehrere Vorteile in sich: Sie wirken als Alkaliträger, verhindern Kalkbeläge auf Maschinenteilen bzw. Kalkablagerungen auf dem Spülgut und tragen überdies zur Reinigungsleistung bei.
  • Geeignete Phosphate sind das Natriumdihydrogenphosphat, NaH2PO4, das Dinatriumhydrogenphosphat (sekundäres Natriumphosphat), Na2HPO4, das Trinatriumphosphat, tertiäres Natriumphosphat, Na3PO4, das Tetranatriumdiphosphat (Natriumpyrophosphat), Na4P2O7, die durch Kondensation des NaH2PO4 bzw. des KH2PO4 entstehen höhermolekularen Natrium- und Kaliumphosphate, bei denen man cyclische Vertreter, die Natrium- bzw. Kaliummetaphosphate und kettenförmige Typen, die Natrium- bzw. Kaliumpolyphosphate, unterscheiden kann, sowie das Pentanatriumtriphosphat, Na5P3O10 (Natriumtripolyphosphat).
  • Außer den geannten Natriumphosphaten können auch die entsprechenden Kaliumsalze oder Mischungen aus diesen beiden eingesetzt werde; auch Mischungen aus Natriumtripolyphosphat und Natriumkaliumtripolyphosphat oder Mischungen aus Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat oder Gemische aus Natriumtripolyphosphat und Kaliumtripolyphosphat und Natriumkaliumtripolyphosphat sind erfindungsgemäß einsetzbar.
  • Im Rahmen der vorliegenden Erfindungen bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel enthalten kein Natrium- und/oder Kaliumhydroxid.
  • Weitere bevorzugte wasserlösliche Gerüststoffe sind beispielsweise Trikaliumcitrat und die Kaliwassergläser.
  • Bevorzugte maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel enthalten 20 bis 60 Gew.-% eines oder mehrerer wasserlöslicher Gerüststoffe, vorzugsweise Citrate und/oder Phosphate, bevorzugt Alkalimetallphosphate unter besonderer Bevorzugung von Pentanatrium- bzw. Pentakaliumtriphosphat (Natrium- bzw. Kaliumtripolyphosphat).
  • In bevorzugten Ausführungsformen der vorliegenden Erfindung liegt der Gehalt der Mittel an wasserlöslichen Gerüststoffen innerhalb engerer Grenzen. Hier sind maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel bevorzugt, die den oder die wasserlöslichen Gerüststoff(e) in Mengen von 22,5 bis 55 Gew.-%, vorzugsweise von 25 bis 50 Gew.-% und insbesondere von 27,5 bis 45 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Mit besonderem Vorzug können die erfindungsgemäßen Mittel als wasserenthärtende Substanzen kondensierte Phosphate enthalten. Diese Stoffe bilden eine Gruppe von - aufgrund ihrer Herstellung auch Schmelz- oder Glühphosphate genannten - Phosphaten, die sich von sauren Salzen der Orthophosphorsäure (Phosphorsäuren) durch Kondensation ableiten lassen. Die kondensierten Phosphate lassen sich in die Metaphosphate [Mln(PO3)n] und Polyphosphate (MI n+2PnO3n+1 bzw. MI nH2PnO3n+1) einteilen.
  • Der Begriff "Metaphosphate" war ursprünglich die allgemeine Bezeichnung für kondensierte Phosphate der Zusammensetzung Mn[PnO3n] (M = einwertiges Metall), ist heute aber meist eingegrenzt auf Salze mit ringförmigen Cyclo(poly)phosphat-Anionen. Bei n = 3, 4, 5, 6 usw. spricht man von Tri-, Tetra-, Penta-, Hexa-Metaphosphaten. usw. Nach der systematischen Nomenklatur der Isopolyanionen wird z. B. das Anion mit n = 3 als cyclo-Triphosphat bezeichnet.
  • Metaphoaphate erhält man als Begleitstoffe des - fälschlicherweise als Natriumhexametaphosphat bezeichneten - Grahamschen Salzes durch Schmelzen von NaH2PO4 auf Temperaturen über 620 °C, wobei intermediär auch sogenanntes Maddrellsches Salz entsteht. Dieses und Kurrolsches Salz sind lineare Polyphosphate, die man heute meist nicht zu den Metaphosphaten zählt, die aber im Rahmen der vorliegenden Erfindung ebenfalls mit Vorzug als wasserenthärtende Substanzen einsetzbar sind.
  • Das kristalline, wasserunlösliche Maddrellsche Salz, (NaPO3)x mit x >1000, das bei 200-300 °C aus NaH2PO4 erhalten werden kann, geht bei ca. 600 °C in das cyclische Metaphosphat [Na3(PO3)3] über, das bei 620 °C schmilzt. Die abgeschreckte, glasige Schmelze ist je nach Reaktionsbedingungen das wasserlösliche Grahamsche Salz, (NaPO3)40-50, oder ein glasiges kondensiertes Phosphat der Zusammensetzung (NaPO3)15-20, das als Calgon bekannt ist. Für beide Produkte ist noch immer die irreführende Bezeichnung Hexametaphosphate in Gebrauch. Das sogenannte Kurrolsche Salz, (NaPO3)n mit n » 5000, entsteht ebenfalls aus der 600 °C heißen Schmelze des Maddrellschen Salzes, wenn diese für kurze Zeit bei ca. 500 °C belassen wird. Es bildet hochpolymere wasserlösliche Fasern.
  • Als besonders bevorzugte wasserenthärtende Substanzen aus den vorstehend genannten Klassen der kondensierten Phosphate haben sich die "Hexametaphosphate" Budit® H6 bzw. H8 der Fa. Budenheim erwiesen.
  • Besonders bevorzugt werden im Rahmen der vorliegenden Anmeldung maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die zusätzlich einen oder mehrere Stoffe aus der Gruppe der Acidifizierungsmittel, Chelatkomplexbildner oder der belagsinhibierenden Polymere enthalten.
  • Als Acidifizierungsmittel bieten sich sowohl anorganische Säuren als auch organische Säuren an, sofern diese mit den übrigen Inhaltsstoffen verträglich sind. Aus Gründen des Verbraucherschutzes und der Handhabungssicherheit sind insbesondere die festen Mono-, Oligo- und Polycarbonsäuren einsetzbar. Aus dieser Gruppe wiederum bevorzugt sind Citronensäure, Weinsäure, Bernsteinsäure, Malonsäure, Adipinsäure, Maleinsäure, Fumarsäure, Oxalsäure sowie Polyacrylsäure. Auch die Anhydride dieser Säuren können als Acidifizierungsmittel eingesetzt werden, wobei insbesondere Maleinsäureanhydrid und Bernsteinsäureanhydrid kommerziell verfügbar sind. Organische Sulfonsäuren wie Amidosulfonsäure sind ebenfalls einsetzbar. Kommerziell erhältlich und als Acidifizierungsmittel im Rahmen der vorliegenden Erfindung ebenfalls bevorzugt einsetzbar ist Sokalan® DCS (Warenzeichen der BASF), ein Gemisch aus Bernsteinsäure (max. 31 Gew.-%), Glutarsäure (max. 50 Gew.-%) und Adipinsäure (max. 33 Gew.-%).
  • Eine weitere mögliche Gruppe von Inhaltsstoffen stellen die Chelatkomplexbildner dar. Chelatkomplexbildner sind Stoffe, die mit Metallionen cyclische Verbindungen bilden, wobei ein einzelner Ligand mehr als eine Koordinationsstelle an einem Zentralatom besetzt, d. h. mind. "zweizähnig" ist. In diesem Falle werden also normalerweise gestreckte Verbindungen durch Komplexbildung über ein lon zu Ringen geschlossen. Die Zahl der gebundenen Liganden hängt von der Koordinationszahl des zentralen lons ab.
  • Gebräuchliche und im Rahmen der vorliegenden Erfindung bevorzugte Chelatkomplexbilder sind beispielsweise Polyoxycarbonsäuren, Polyamine, Ethylendiamintetraessigsäure (EDTA) und Nitrilotriessigsäure (NTA). Auch komplexbildende Polymere, also Polymere, die entweder in der Hauptkette selbst oder seitenständig zu dieser funktionelle Gruppen tragen, die als Liganden wirken können und mit geeigneten Metall-Atomen in der Regel unter Bildung von ChelatKomplexen reagieren, sind erfindungsgemäß einsetzbar. Die Polymer-gebundenen Liganden der entstehenden Metall-Komplexe können dabei aus nur einem Makromolekül stammen oder aber zu verschiedenen Polymerketten gehören. Letzteres führt zur Vernetzung des Materials, sofern die komplexbildenden Polymere nicht bereits zuvor über kovalente Bindungen vernetzt waren.
  • Komplexierende Gruppen (Liganden) üblicher komplexbildender Polymere sind Iminodiessigsäure-, Hydroxychinolin-, Thioharnstoff-, Guanidin-, Dithiocarbamat-, Hydroxamsäure-, Amidoxim-, Aminophosphorsäure-, (cycl.) Polyamino-, Mercapto-, 1,3-Dicarbonyl- und Kronenether-Reste mit z. T. sehr spezif. Aktivitäten gegenüber lonen unterschiedlicher Metalle. Basispolymere vieler auch kommerziell bedeutender komplexbildender Polymere sind Polystyrol, Polyacrylate, Polyacrylnitrile, Polyvinylalkohole, Polyvinylpyridine und Polyethylenimine. Auch natürliche Polymere wie Cellulose, Stärke od. Chitin sind komplexbildende Polymere. Darüber hinaus können diese durch polymeranaloge Umwandlungen mit weiteren Ligand-Funktionalitäten versehen werden.
  • Besonders bevorzugt sind im Rahmen der vorliegenden Erfindung maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel, die ein oder mehrere Chelatkomplexbildner aus den Gruppen der
    • (i) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt,
    • (ii) stickstoffhaltigen Mono- oder Polycarbonsäuren,
    • (iii) geminalen Diphosphonsäuren,
    • (iv) Aminophosphonsäuren,
    • (v) Phosphonopolycarbonsäuren,
    • (vi) Cyclodextrine
    in Mengen oberhalb von 0,1 Gew.-%, vorzugsweise oberhalb von 0,5 Gew.-%, besonders bevorzugt oberhalb von 1 Gew.-% und insbesondere oberhalb von 2,5 Gew.-%, jeweils bezogen auf das Gewicht des Geschirrspülmittels, enthalten.
  • Im Rahmen der vorliegenden Erfindung können alle Komplexbildner des Standes der Technik eingesetzt werden. Diese können unterschiedlichen chemischen Gruppen angehören. Vorzugsweise werden einzeln oder im Gemisch miteinander eingesetzt:
    • a) Polycarbonsäuren, bei denen die Summe der Carboxyl- und gegebenenfalls Hydroxylgruppen mindestens 5 beträgt wie Gluconsäure,
    • b) stickstoffhaltige Mono- oder Polycarbonsäuren wie Ethylendiamintetraessigsäure (EDTA), N-Hydroxyethylethylendiamintriessigsäure, Diethylentriaminpentaessigsäure, Hydroxyethyliminodiessigsäure, Nitridodiessigsäure-3-propionsäure, Isoserindiessigsäure, N,N-Di-(β-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-glycin, N-(1,2-Dicarboxy-2-hydroxyethyl)-asparaginsäure oder Nitrilotriessigsäure (NTA),
    • c) geminale Diphosphonsäuren wie 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon und 1-Aminoethan-1,1-diphosphonsäure, deren höhere Homologe mit bis zu 8 Kohlenstoffatomen sowie Hydroxy- oder Aminogruppen-haltige Derivate hiervon,
    • d) Aminophosphonsäuren wie Ethylendiamintetra(methylenphosphonsäure), Diethylentriaminpenta(methylenphosphonsäure) oder Nitrilotri(methylenphosphonsäure),
    • e) Phosphonopolycarbonsäuren wie 2-Phosphonobutan-1,2,4-tricarbonsäure sowie
    • f) Cyclodextrine.
  • Als Polycarbonsäuren a) werden im Rahmen dieser Patentanmeldung Carbonsäuren -auch Monocarbonsäuren- verstanden, bei denen die Summe aus Carboxyl- und den im Molekül enthaltenen Hydroxylgruppen mindestens 5 beträgt. Komplexbildner aus der Gruppe der stickstoffhaltigen Polycarbonsäuren, insbesondere EDTA, sind bevorzugt. Bei den erfindungsgemäß erforderlichen alkalischen pH-Werten der Behandlungslösungen liegen diese Komplexbilner zumindest teilweise als Anionen vor. Es ist unwesentlich, ob sie in Form der Säuren oder in Form von Salzen eingebracht werden. Im Falle des Einsatzes als Salze sind Alkali-, Ammonium- oder Alkylammoniumsalze, insbesondere Natriumsalze, bevorzugt.
  • Belagsinhibierende Polymere können ebenfalls in den erfindungsgemäßen Mitteln enthalten sein. Diese Stoffe, die chemisch verschieden aufgebaut sein könne, stammen beispielsweise aus den Gruppen der niedermolekularen Polyacrylate mit Molmassen zwischen 1000 und 20.000 Dalton, wobei Polymere mit Molmassen unter 15.000 Dalton bevorzugt sind.
  • Belagsinhibierende Polymere können auch Cobuildereigenschaften aufweisen. Als organische Cobuilder können in den erfindungsgemäßen maschinellen Geschirrspülmitteln insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Apfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder bzw. Belagsinhibitor sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Als organische Cobuilder können in den Reinigungsmitteln im Rahmen der vorliegenden Erfindung insbesondere Polycarboxylate / Polycarbonsäuren, polymere Polycarboxylate, Asparaginsäure, Polyacetale, Dextrine, weitere organische Cobuilder (siehe unten) sowie Phosphonate eingesetzt werden. Diese Stoffklassen werden nachfolgend beschrieben.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Methylglycindiessigsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 1000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 1000 bis 10000 g/mol, und besonders bevorzugt von 1200 bis 4000 g/mol, aufweisen, bevorzugt sein.
  • Besonders bevorzugt werden in den erfindungsgemäßen Mitteln sowohl Polyacrylate als auch Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Sulfonsäuregruppen-haltigen Copolymere werden in der Folge ausführlich beschrieben.
  • Es lassen sich aber auch erfindungsgemäße Produkte, welche als sogenannte "3in1"-Produkte die herkömmlichen Reiniger, Klarspüler und eine Salzersatzfunktion in sich vereinen, bereitstellen. Hierzu sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die zusätzlich 0,1 bis 70 Gew.-% an Copolymeren aus
    • i) ungesättigten Carbonsäuren
    • ii) Sulfonsäuregruppen-haltigen Monomeren
    • ii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    enthalten.
  • Diese Copolymere bewirken, daß die mit solchen Mitteln behandelten Geschirrteile bei nachfolgenden Reinigungsvorgängen deutlich sauberer werden, als Geschirrteile, die mit herkömmlichen Mitteln gespült wurden.
  • Als zusätzlicher positiver Effekt tritt eine Verkürzung der Trocknungszeit der mit dem Reinigungsmittel behandelten Geschirrteile auf, d.h. der Verbraucher kann nach dem Ablauf des Reinigungsprogramms das Geschirr früher aus der Maschine nehmen und wiederbenutzen.
  • Im Rahmen der vorliegenden Erfindung sind ungesättigte Carbonsäuren der Formel VII als Monomer bevorzugt,

             R1(R2)C=C(R3)COOH     (VII),

    in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist.
  • Unter den ungesättigten Carbonsäuren, die sich durch die Formel VII beschreiben lassen, sind insbesondere Acrylsäure (R1 = R2 = R3 = H), Methacrylsäure (R1 = R2 = H; R3 = CH3) und/oder Maleinsäure (R1 = COOH; R2 = R3 = H) bevorzugt.
  • Bei den Sulfonsäuregruppen-haltigen Monomeren sind solche der Formel VIII bevorzugt,

             R5(R6)C=C(R7)-X-SO3H     (VIII),

    in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Unter diesen Monomeren bevorzugt sind solche der Formeln VIIIa, VIIIb und/oder Vlllc,

             H2C=CH-X-SO3H     (VIIIa),

             H2C=C(CH3)-X-SO3H     (VIIIb),

             HO3S-X-(R6)C=C(R7)-X-SO3H     (VIIIc),

    in denen R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-.
  • Besonders bevorzugte Sulfonsäuregruppen-haltige Monomere sind dabei 1-Acrylamido-1-propansulfonsäure (X = -C(O)NH-CH(CH2CH3) in Formel IIa), 2-Acrylamido-2-propansulfonsäure (X = -C(O)NH-C(CH3)2 in Formel VIIIa), 2-Acrylamido-2-methyl-1-propansulfonsäure (X = - C(O)NH-CH(CH3)CH2- in Formel VIIIa), 2-Methacrylamido-2-methyl-1-propansulfonsäure (X = - C(O)NH-CH(CH3)CH2- in Formel VIIIb), 3-Methacrylamido-2-hydroxy-propansulfonsäure (X = - C(O)NH-CH2CH(OH)CH2- in Formel VIIIb), Allylsulfonsäure (X = CH2 in Formel VIIIa), Methallylsulfonsäure (X = CH2 in Formel IIb), Allyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel VIIIa), Methallyloxybenzolsulfonsäure (X = -CH2-O-C6H4- in Formel VIIIb), 2-Hydroxy-3-(2-propenyloxy)propansulfonsäure, 2-Methyl-2-propen1-sulfonsäure (X = CH2 in Formel VIIIb), Styrolsulfonsäure (X = C6H4 in Formel VIIIa), Vinylsulfonsäure (X nicht vorhanden in Formel VIIIa), 3-Sulfopropylacrylat (X = -C(O)NH-CH2CH2CH2- in Formel VIIIa), 3-Sulfopropylmethacrylat (X = -C(O)NH-CH2CH2CH2- in Formel VIIIb), Sulfomethacrylamid (X = -C(O)NH- in Formel VIIIb), Sulfomethylmethacrylamid (X = -C(O)NH-CH2- in Formel Vlllb) sowie wasserlösliche Salze der genannten Säuren.
  • Als weitere ionische oder nichtionogene Monomere kommen insbesondere ethylenisch ungesättigte Verbindungen in Betracht. Vorzugsweise beträgt der Gehalt der erfindungsgemäß eingesetzten Polymere an Monomeren der Grupp iii) weniger als 20 Gew.-%, bezogen auf das Polymer. Besonders bevorzugt zu verwendende Polymere bestehen lediglich aus Monomeren der Gruppen i) und ii).
  • Zusammenfassend sind Copolymere aus
    • i) ungesättigten Carbonsäuren der Formel VII.

               R1(R2)C=C(R3)COOH     (VII),

      in der R1 bis R3 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder - COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder - COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist,
    • i) Sulfonsäuregruppen-haltigen Monomeren der Formel VIII

               R5(R6)C=C(R7)-X-SO3H     (VIII),

      in der R5 bis R7 unabhängig voneinander für -H -CH3, einen geradkettigen oder verzweigten gesättigten Alkylrest mit 2 bis 12 Kohlenstoffatomen, einen geradkettigen oder verzweigten, ein- oder mehrfach ungesättigten Alkenylrest mit 2 bis 12 Kohlenstoffatomen, mit -NH2, -OH oder -COOH substituierte Alkyl- oder Alkenylreste wie vorstehend definiert oder für -COOH oder -COOR4 steht, wobei R4 ein gesättigter oder ungesättigter, geradkettigter oder verzweigter Kohlenwasserstoffrest mit 1 bis 12 Kohlenstoffatomen ist, und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren
    besonders bevorzugt.
  • Besonders bevorzugte Copolymere bestehen aus
    • i) einer oder mehrerer ungesättigter Carbonsäuren aus der Gruppe Acrylsäure, Methacrylsäure und/oder Maleinsäure
    • ii) einem oder mehreren Sulfonsäuregruppen-haltigen Monomeren der Formeln VIIIa, VIIIb und/oder VIIIc:

               H2C=CH-X-SO3H     (VIIIa),

               H2C=C(CH3)-X-SO3H     (VIIIb),

               HO3S-X-(R6)C=C(R7)-X-SO3H     (VIIIc),

      in der R6 und R7 unabhängig voneinander ausgewählt sind aus -H, -CH3, -CH2CH3, -CH2CH2CH3, -CH(CH3)2 und X für eine optional vorhandene Spacergruppe steht, die ausgewählt ist aus -(CH2)n- mit n = 0 bis 4, -COO-(CH2)k- mit k = 1 bis 6, -C(O)-NH-C(CH3)2- und -C(O)-NH-CH(CH2CH3)-
    • iii) gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren.
  • Die in den Mitteln anthaltenen Copolymere können die Monomere aus den Gruppen i) und ii) sowie gegebenenfalls iii) in variierenden Mengen enthalten, wobei sämtliche Vertreter aus der gruppe i) mit sämtlichen Vertretern aus der Gruppe ii) und sämtlichen Vertretern aus der Gruppe iii) kombiniert werden können. Besonders bevorzugte Polymere weisen bestimmte Struktureinheiten auf, die nachfolgend beschrieben werden.
  • So sind beispielsweise erfindungsgemäße Mittel bevorzugt, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel IX

             -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (IX),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Diese Polymere werden durch Copolymerisation von Acrylsäure mit einem Sulfonsäuregruppen-haltigen Acrylsäurederivat hergestellt. Copolymerisiert man das Sulfonsäuregruppen-haltige Acrylsäurederivat mit Methacrylsäure, gelangt man zu einem anderen Polymer, dessen Einsatz in den erfindungsgemäßen Mitteln ebenfalls bevorzugt und dadurch gekennzeichnet ist, daß die Mittel ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel X

             -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-     (X),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Völlig analog lassen sich Acrylsäure und/oder Methacrylsäure auch mit Sulfonsäuregruppen-haltigen Methacrylsäurederivaten copolymerisieren, wodurch die Struktureinheiten im Molekül verändert werden. So sind erfindungsgemäße Mittel, die ein oder mehrere Copolymere enthalten, welche Struktureinheiten der Formel XI

             -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XI),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind, ebenfalls eine bevorzugte Ausführungsform der vorliegenden Erfindung, genau wie auch Mittel bevorzugt sind, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XII

             -[CH2-C(CH3)COOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Anstelle von Acrylsäure und/oder Methacrylsäure bzw. in Ergänzung hierzu kann auch Maleinsäure als besonders bevorzugtes Monomer aus der Gruppe i) eingesetzt werden. Man gelangt auf diese Weise zu erfindungsgemäß bevorzugten Mitteln, die dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIII

             -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XIII),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind und zu Mitteln, welche dadurch gekennzeichnet sind, daß sie ein oder mehrere Copolymere enthalten, die Struktureinheiten der Formel XIV

             -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-     (XIV),

    enthalten, in der m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • Zusammenfassend sind erfindungsgemäße maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel bevorzugt, die als Inhaltsstoff b) ein oder mehrere Copolymere enthält, die Struktureinheiten der Formeln IX und/oder X und/oder XI und/oder XII und/oder XIII und/oder XIV

             -[CH2-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (IX),

             -[CH2-C(CH3)COOH]m-[CH2-CHC(O)-Y-SO3H]p-     (X),

             -[CH2-CHCOOH]m-[CH2-C(CH3)C(O)-Y-SO3H]p-     (XI),

             -[CH2-C(CH3)COOH]m-(CH2-C(CH3)C(O)-Y-SO3H]p-     (XII),

             -[HOOCCH-CHCOOH]m-[CH2-CHC(O)-Y-SO3H]p-     (XIII),

             -[HOOCCH-CHCOOH]m-[CH2-C(CH3)C(O)O-Y-SO3H]p-     (XIV),

    enthalten, in denen m und p jeweils für eine ganze natürliche Zahl zwischen 1 und 2000 sowie Y für eine Spacergruppe steht, die ausgewählt ist aus substituierten oder unsubstituierten aliphatischen, aromatischen oder araliphatischen Kohlenwasserstoffresten mit 1 bis 24 Kohlenstoffatomen, wobei Spacergruppen, in denen Y für -O-(CH2)n- mit n = 0 bis 4, für -O-(C6H4)-, für -NH-C(CH3)2- oder -NH-CH(CH2CH3)- steht, bevorzugt sind.
  • In den Polymeren können die Sulfonsäuregruppen ganz oder teilweise in neutralisierter Form vorliegen, d.h. daß das acide Wasserstoffatom der Sulfonsäuregruppe in einigen oder allen Sulfonsäuregruppen gegen Metallionen, vorzugsweise Alkalimetallionen und insbesondere gegen Natriumionen, ausgetauscht sein kann. Entsprechende Mittel, die dadurch gekennzeichnet sind, daß die Sulfonsäuregruppen im Copolymer teil- oder vollneutralisiert vorliegen, sind erfindungsgemäß bevorzugt.
  • Die Monomerenverteilung der in den erfindungsgemäßen Mitteln eingesetzten Copolymeren beträgt bei Copolymeren, die nur Monomere aus den Gruppen i) und ii) enthalten, vorzugsweise jeweils 5 bis 95 Gew.-% i) bzw. ii), besonders bevorzugt 50 bis 90 Gew.-% Monomer aus der Gruppe i) und 10 bis 50 Gew.-% Monomer aus der Gruppe ii), jeweils bezogen auf das Polymer.
  • Bei Terpolymeren sind solche besonders bevorzugt, die 20 bis 85 Gew.-% Monomer aus der Gruppe i), 10 bis 60 Gew.-% Monomer aus der Gruppe ii) sowie 5 bis 30 Gew.-% Monomer aus der Gruppe iii) enthalten.
  • Die Molmasse der in den erfindungsgemäßen Mitteln eingesetzten Polymere kann variiert werden, um die Eigenschaften der Polymere dem gewünschten Verwendungszweck anzupassen. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß die Copolymere Molmassen von 2000 bis 200.000 gmol-1, vorzugsweise von 4000 bis 25.000 gmol-1 und insbesondere von 5000 bis 15.000 gmol-1 aufweisen.
  • Der Gehalt an einem oder mehreren Copolymeren in den erfindungsgemäßen Mitteln kann je nach Anwendungszweck und gewünschter Produktleistung varieren, wobei bevorzugte erfindungsgemäße maschinelle Geschirrspülmittel dadurch gekennzeichnet sind, daß sie das bzw. die Copolymer(e) in Mengen von 0,25 bis 50 Gew.-%, vorzugsweise von 0,5 bis 35 Gew.-%, besonders bevorzugt von 0,75 bis 20 Gew.-% und insbesondere von 1 bis 15 Gew.-% enthalten.
  • Wie bereits weiter oben erwähnt, werden in den erfindungsgemäßen Mitteln besonders bevorzugt sowohl Polyacrylate als auch die vorstehend beschriebenen Copolymere aus ungesättigten Carbonsäuren, Sulfonsäuregruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren eingesetzt. Die Polyacrylate wurden dabei weiter oben ausführlich beschrieben. Besonders bevorzugt sind Kombinationen aus den vorstehend beschriebenen Sulfonsäuregruppen-haltigen Copolymeren mit Polyacrylaten niedriger Molmasse, beispielsweise im Bereich zwischen 1000 und 4000 Dalton. Solche Polyacrylate sind kommerziell unter dem Handelsnamen Sokalan® PA15 bzw. Sokalan® PA25 (BASF) erhältlich.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 100000 g/mol, vorzugsweise 20000 bis 90000 g/mol und insbesondere 30000 bis 80000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere weisen als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat auf.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Erfindungsgemäße Mittel sind im Rahmen der vorliegenden Anmeldung dadurch gekennzeichnet, daß sie Gerüststoffe, vorzugsweise aus der Gruppe der Silikate, Carbonate, organische Cobuilder und/oder Phosphate in Mengen von 0,1 bis 99,5 Gew.-%, vorzugsweise von 1 bis 95 Gew.-%, besonders bevorzugt von 5 bis 90 Gew.-% und insbesondere von 10 bis 80 Gew.-%, jeweils bezogen auf das Mittel, enthalten.
  • Tenside
  • Bevorzugte Reinigungsmittel enthalten im Rahmen der vorliegenden Anmeldung ein oder mehrere Tensid(e) aus den Gruppen der anionischen, nichtionischen, kationischen und/oder amphoteren Tenside.
  • Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C9-13-Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z.B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren geeignet.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-21-Alkohole, wie 2-Methyl-verzweigte C9-11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeignet sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z.B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Eine weitere Gruppe der waschaktiven Substanzen sind die nichtionischen Tenside. Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-14-Alkohole mit 3 EO oder 4 EO, C9-11-Alkohol mit 7 EO, C13-15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-14-Alkohol mit 3 EO und C12-18-Alkohol mit 5 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.
  • Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO(G)z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4. Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, die aus einem Glucoserest und einer n-Alkylkette bestehen.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (XV),
    Figure imgb0010
    in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.
  • Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (XVI),
    Figure imgb0011
    in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-4-Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder Propxylierte Derivate dieses Restes.
  • [Z] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Bei Wasch- und Reinigungsmitteln für das maschinelle Geschirrspülen kommen als Tenside im allgemeinen alle Tenside in Frage. Bevorzugt sind für diesen Anwendungszweck aber die vorstehend beschriebenen nichtionischen Tenside und hier vor allem die schwachschäumenden nichtionischen Tenside. Besonders bevorzugt sind die alkoxylierten Alkohole, besonders die ethoxylierten und/oder propoxylierten Alkohole. Dabei versteht der Fachmann allgemein unter alkoxylierten Alkoholen die Reaktionsprodukte von Alkylenoxid, bevorzugt Ethylenoxid, mit Alkoholen, bevorzugt im Sinne der vorliegenden Erfindung die längerkettigen Alkohole (C10 bis C18, bevorzugt zwischen C12 und C16, wie z. B. C11-, C12-, C13-, C14-, C15-, C16- ,C17- und C18-Alkohole). In der Regel entstehen aus n Molen Ethylenoxid und einem Mol Alkohol, abhängig von den Reaktionsbedingungen ein komplexes Gemisch von Additionsprodukten unterschiedlichen Ethoxylierungsgrades. Eine weitere Ausführungsform besteht im Einsatz von Gemischen der Alkylenoxide bevorzugt des Gemisches von Ethylenoxid und Propylenoxid. Auch kann man gewünschtenfalls durch eine abschließende Veretherung mit kurzkettigen Alkylgruppen, wie bevorzugt der Butylgruppe, zur Substanzklasse der "verschlossenen" Alkoholethoxylaten gelangen, die ebenfalls im Sinne der Erfindung eingesetzt werden kann. Ganz besonders bevorzugt im Sinne der vorliegenden Erfindung sind dabei hochethoxylierte Fettalkohole oder deren Gemische mit endgruppenverschlossenen Fettalkoholethoxylaten.
  • Als besonders bevorzugte Niotenside haben sich im Rahmen der vorliegenden Erfindung schwachschäumende Niotenside erwiesen, welche alternierende Ethylenoxid- und Alkylenoxideinheiten aufweisen. Unter diesen sind wiederum Tenside mit EO-AO-EO-AO-Blöcken bevorzugt, wobei jeweils eine bis zehn EO- bzw. AO-Gruppen aneinander gebunden sind, bevor ein Block aus den jeweils anderen Gruppen folgt. Hier sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, die als nichionische(s) Tensid(e) Tenside der allgemeinen Formel XVII enthalten
    Figure imgb0012
    in der R1 für einen geradkettigen oder verzweigten, gesättigten oder ein- bzw. mehrfach ungesättigten C6-24-Alkyl- oder -Alkenylrest steht; jede Gruppe R2 bzw. R3 unabhängig voneinander ausgewählt ist aus -CH3; -CH2CH3, -CH2CH2-CH3, -CH(CH3)2 und die Indizes w, x, y, z unabhängig voneinander für ganze Zahlen von 1 bis 6 stehen.
  • Die bevorzugten Niotenside der Formel XVII lassen sich durch bekannte Methoden aus den entsprechenden Alkoholen R1-OH und Ethylen- bzw. Alkylenoxid herstellen. Der Rest R1 in der vorstehenden Formel XVII kann je nach Herkunft des Alkohols variieren. Werden native Quellen genutzt, weist der Rest R1 eine gerade Anzahl von Kohlenstoffatomen auf und ist in der Regel unverzeigt, wobei die linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, bevorzugt sind. Aus sysnthetischen Quellen zugängliche Alkohole sind beispielsweise die Guerbetalkohole oder in 2-Stellung methylverzweigte bzw. lineare und methylverzweigte Reste im Gemisch, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Unanbhängig von der Art des zur Herstellung der erfindungsgemäß in den Mitteln enthaltenen Niotenside eingesetzten Alkohols sind erfindungsgemäße maschinelle Geschirrspülmittel bevorzugt, bei denen R1 in Formel XVII für einen Alkylrest mit 6 bis 24, vorzugsweise 8 bis 20, besonders bevorzugt 9 bis 15 und insbesondere 9 bis 11 Kohlenstoffatomen steht.
  • Als Alkylenoxideinheit, die alternierend zur Ethylenoxideinheit in den bevorzugten Niotensiden enthalten ist, kommt neben Propylenoxid insbesondere Butylenoxid in Betracht. Aber auch weitere Alkylenoxide, bei denen R2 bzw. R3 unabhängig voneinander ausgewählt sind aus - CH2CH2-CH3 bzw. -CH(CH3)2 sind geeignet. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß R2 bzw. R3 für einen Rest -CH3, w und x unabhängig voneinander für Werte von 3 oder 4 und y und z unabhängig voneinander für Werte von 1 oder 2 stehen.
  • Zusammenfassend sind zum Einsatz in den erfindungsgemäßen Mitteln insbesondere nichtionische Tenside bevorzugt, die einen C9-15-Alkylrest mit 1 bis 4 Ethylenoxideinheiten, gefolgt von 1 bis 4 Propylenoxideinheiten, gefolgt von1 bis 4 Ethylenoxideinheiten, gefolgt von1 bis 4 Propylenoxideinheiten aufweisen.
  • Als bevorzugte zusätzliche Tenside werden schwachschäumende nichtionische Tenside eingesetzt. Mit besonderem Vorzug enthalten die erfindungsgemäßen maschinellen Geschirrspülmittel ein nichtionisches Tensid, das einen Schmelzpunkt oberhalb Raumtemperatur aufweist. Demzufolge sind bevorzugte Mittel dadurch gekennzeichnet, daß sie nichtionische(s) Tensid(e) mit einem Schmelzpunkt oberhalb von 20°C, vorzugsweise oberhalb von 25°C, besonders bevorzugt zwischen 25 und 60°C und insbesondere zwischen 26,6 und 43,3°C, enthalten.
  • Geeignete zusätzlich zu den erfindungsgemäß in den Mitteln enthaltenen Niotenside nichtionische Tenside, die Schmelz- bzw. Erweichungspunkte im genannten Temperaturbereich aufweisen, sind beispielsweise schwachschäumende nichtionische Tenside, die bei Raumtemperatur fest oder hochviskos sein können. Werden bei Raumtemperatur hochviskose Niotenside eingesetzt, so ist bevorzugt, daß diese eine Viskosität oberhalb von 20 Pas, vorzugsweise oberhalb von 35 Pas und insbesondere oberhalb 40 Pas aufweisen. Auch Niotenside, die bei Raumtemperatur wachsartige Konsistenz besitzen, sind bevorzugt.
  • Bevorzugt als bei Raumtemperatur feste einzusetzende Niotenside stammen aus den Gruppen der alkoxylierten Niotenside, insbesondere der ethoxylierten primären Alkohole und Mischungen dieser Tenside mit strukturell komplizierter aufgebauten Tensiden wie Polyoxypropylen/Polyoxyethylen/Polyoxypropylen (PO/EO/PO)-Tenside. Solche (PO/EO/PO)-Niotenside zeichnen sich darüber hinaus durch gute Schaumkontrolle aus.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das nichtionische Tensid mit einem Schmelzpunkt oberhalb Raumtemperatur ein ethoxyliertes Niotensid, das aus der Reaktion von einem Monohydroxyalkanol oder Alkylphenol mit 6 bis 20 C-Atomen mit vorzugsweise mindestens 12 Mol, besonders bevorzugt mindestens 15 Mol, insbesondere mindestens 20 Mol Ethylenoxid pro Mol Alkohol bzw. Alkylphenol hervorgegangen ist.
  • Ein besonders bevorzugtes bei Raumtemperatur festes, einzusetzendes Niotensid wird aus einem geradkettigen Fettalkohol mit 16 bis 20 Kohlenstoffatomen (C16-20-Alkohol), vorzugsweise einem C18-Alkohol und mindestens 12 Mol, vorzugsweise mindestens 15 Mol und insbesondere mindestens 20 Mol Ethylenoxid gewonnen. Hierunter sind die sogenannten "narrow range ethoxylates" (siehe oben) besonders bevorzugt.
  • Demnach enthalten besonders bevorzugte erfindungsgemäße Mittel ethoxylierte(s) Niotensid(e), das/die aus C6-20-Monohydroxyalkanolen oder C6-20-Alkylphenolen oder C16-20-Fettalkoholen und mehr als 12 Mol, vorzugsweise mehr als 15 Mol und insbesondere mehr als 20 Mol Ethylenoxid pro Mol Alkohol gewonnen wurde(n).
  • Das Niotensid besitzt vorzugsweise zusätzlich Propylenoxideinheiten im Molekül. Vorzugsweise machen solche PO-Einheiten bis zu 25 Gew.-%, besonders bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids aus. Besonders bevorzugte nichtionische Tenside sind ethoxylierte Monohydroxyalkanole oder Alkylphenole, die zusätzlich Polyoxyethylen-Polyoxypropylen Blockcopolymereinheiten aufweisen. Der Alkohol- bzw. Alkylphenolteil solcher Niotensidmoleküle macht dabei vorzugsweise mehr als 30 Gew.-%, besonders bevorzugt mehr als 50 Gew.-% und insbesondere mehr als 70 Gew.-% der gesamten Molmasse solcher Niotenside aus. Bevorzugte maschinelle Geschirrspülmittel sind dadurch gekennzeichnet, daß sie ethoxylierte und propoxylierte Niotenside enthalten, bei denen die Propylenoxideinheiten im Molekül bis zu 25 Gew.-%, bevorzugt bis zu 20 Gew.-% und insbesondere bis zu 15 Gew.-% der gesamten Molmasse des nichtionischen Tensids ausmachen, enthalten.
  • Weitere besonders bevorzugt einzusetzende Niotenside mit Schmelzpunkten oberhalb Raumtemperatur enthalten 40 bis 70% eines Polyoxypropylen/Polyoxyethylen/Polyoxypropylen-Blockpolymerblends, der 75 Gew.-% eines umgekehrten Block-Copolymers von Polyoxyethylen und Polyoxypropylen mit 17 Mol Ethylenoxid und 44 Mol Propylenoxid und 25 Gew.-% eines Block-Copolymers von Polyoxyethylen und Polyoxypropylen, initiiert mit Trimethylolpropan und enthaltend 24 Mol Ethylenoxid und 99 Mol Propylenoxid pro Mol Trimethylolpropan.
  • Nichtionische Tenside, die mit besonderem Vorzug eingesetzt werden können, sind beispielsweise unter dem Namen Poly Tergent® SLF-18 von der Firma Olin Chemicals erhältlich.
  • Ein weiter bevorzugtes erfindungsgemäßes maschinelles Geschirrspülmittel enthält nichtionische Tenside der Formel

             R1O[CH2CH(CH3)O]x[CH2CH2O]y[CH2CH(OH)R2].

    in der R1 für einen linearen oder verzweigten aliphatischen Kohlenwasserstoffrest mit 4 bis 18 Kohlenstoffatomen oder Mischungen hieraus steht, R2 einen linearen oder verzweigten Kohlenwasserstoffrest mit 2 bis 26 Kohlenstoffatomen oder Mischungen hieraus bezeichnet und x für Werte zwischen 0,5 und 1,5 und y für einen Wert von mindestens 15 steht.
  • Weitere bevorzugt einsetzbare Niotenside sind die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

             R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2

    in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen. Wenn der Wert x ≥ 2 ist, kann jedes R3 in der obenstehenden Formel unterschiedlich sein. R1 und R2 sind vorzugsweise lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 6 bis 22 Kohlenstoffatomen, wobei Reste mit 8 bis 18 C-Atomen besonders bevorzugt sind. Für den Rest R3 sind H, -CH3 oder - CH2CH3 besonders bevorzugt. Besonders bevorzugte Werte für x liegen im Bereich von 1 bis 20, insbesondere von 6 bis 15.
  • Wie vorstehend beschrieben, kann jedes R3 in der obenstehenden Formel unterschiedlich sein, falls x ≥ 2 ist. Hierdurch kann die Alkylenoxideinheit in der eckigen Klammer variiert werden. Steht x beispielsweise für 3, kann der Rest R3 ausgewählt werden, um Ethylenoxid- (R3 = H) oder Propylenoxid- (R3 = CH3) Einheiten zu bilden, die in jedweder Reihenfolge aneinandergefügt sein können, beispielsweise (EO)(PO)(EO), (EO)(EO)(PO), (EO)(EO)(EO), (PO)(EO)(PO), (PO)(PO)(EO) und (PO)(PO)(PO). Der Wert 3 für x ist hierbei beispielhaft gewählt worden und kann durchaus größer sein, wobei die Variationsbreite mit steigenden x-Werten zunimmt und beispielsweise eine große Anzahl (EO)-Gruppen, kombiniert mit einer geringen Anzahl (PO)-Gruppen einschließt, oder umgekehrt.
  • Insbesondere bevorzugte endgruppenverschlossenen Poly(oxyalkylierte) Alkohole der obenstehenden Formel weisen Werte von k = 1 und j = 1 auf, so daß sich die vorstehende Formel zu

             R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2

    vereinfacht. In der letztgenannten Formel sind R1, R2 und R3 wie oben definiert und x steht für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesonders von 6 bis 18. Besonders bevorzugt sind Tenside, bei denen die Reste R1 und R2 9 bis 14 C-Atome aufweisen, R3 für H steht und x Werte von 6 bis 15 annimmt.
  • Faßt man die letztgenannten Aussagen zusammen, sind erfindungsgemäße Geschirrspülmittel bevorzugt, die endgruppenverschlossenen Poly(oxyalkylierten) Niotenside der Formel

             R1O[CH2CH(R3)O]x[CH2]kCH(OH)[CH2]jOR2

    enthalten, in der R1 und R2 für lineare oder verzweigte, gesättigte oder ungesättigte, aliphatische oder aromatische Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen stehen, R3 für H oder einen Methyl-, Ethyl-, n-Propyl-, iso-Propyl, n-Butyl-, 2-Butyl- oder 2-Methyl-2-Butylrest steht, x für Werte zwischen 1 und 30, k und j für Werte zwischen 1 und 12, vorzugsweise zwischen 1 und 5 stehen, wobei Tenside des Typs

             R1O[CH2CH(R3)O]xCH2CH(OH)CH2OR2

    in denen x für Zahlen von 1 bis 30, vorzugsweise von 1 bis 20 und insbesondere von 6 bis 18 steht, besonders bevorzugt sind.
  • In Verbindung mit den genannten Tensiden können auch anionische, kationische und/oder amphotere Tenside eingesetzt werden, wobei diese wegen ihres Schaumverhaltens in maschinellen Geschirrspülmitteln nur untergeordnete Bedeutung besitzen und zumeist nur in Mengen unterhalb von 10 Gew.-%, meistens sogar unterhalb von 5 Gew.-%, beispielsweise von 0,01 bis 2,5 Gew.-%, jeweils bezogen auf das Mittel, eingesetzt werden. Die erfindungsgemäßen Mittel können somit als Tensidkomponente auch anionische, kationische und/oder amphotere Tenside enthalten.
  • Im Rahmen der vorliegenden Erfindung ist es bevorzugt, daß die aschinellen Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel Tensid(e), vorzugsweise nichtionische(s) Tensid(e), in Mengen von 0,5 bis 10 Gew.-%, vorzugsweise von 0,75 bis 7,5 Gew.-% und insbesondere von 1,0 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Bleichmittel
  • Bleichmittel und Bleichkaktivatoren sind wichtige Bestandteile von Wasch- und Reinigungsmitteln und ein bevorzugtes maschinelles Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel kann im Rahmen der vorliegenden Erfindung ein oder mehrere Substanzen aus den genannten Gruppen enthalten. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen hat das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumperborattetrahydrat und das Natriumperboratmonohydrat, Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
  • "Natriumpercarbonat" ist eine in unspezifischer Weise verwendete Bezeichnung für Natriumcarbonat-Peroxohydrate, welche streng genommen keine "Percarbonate" (also Salze der Perkohlensäure) sondern Wasserstoffperoxid-Addukte an Natriumcarbonat sind. Die Handelsware hat die durchschnittliche Zusammensetzung 2 Na2CO3·3 H2O2 und ist damit kein Peroxycarbonat. Natriumpercarbonat bildet ein weißes, wasserlösliches Pulver der Dichte 2,14 gcm-3, das leicht in Natriumcarbonat und bleichend bzw. oxidierend wirkenden Sauerstoff zerfällt.
  • Reinigungsmittel für das maschinelle Geschirrspülen können auch Bleichmittel aus der Gruppe der organischen Bleichmittel enthalten. Typische organische Bleichmittel, die als Inhaltsstoffe im Rahmen der vorliegenden Erfindung eingesetzt werden können, sind die Diacylperoxide, wie z.B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-α-Naphtoesäure und Magnesium-monoperphthalat, (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, ε-Phthalimidoperoxycapronsäure [Phthaloiminoperoxyhexansäure (PAP)], o-Carboxybenzamidoperoxycapronsäure, N-nonenylamidoperadipinsäure und N-nonenylamidopersuccinate, und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1,9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1,4-disäure, N,N-Terephthaloyl-di(6-aminopercapronsäue) können eingesetzt werden.
  • Als Bleichmittel für das maschinelle Geschirrspülen können gemäß der vorliegenden Erfindung auch Chlor oder Brom freisetzende Substanzen eingesetzt werden. Unter den geeigneten Chlor oder Brom freisetzenden Materialien kommen beispielsweise heterocyclische N-Brom- und N-Chloramide, beispielsweise Trichlorisocyanursäure, Tribromisocyanursäure, Dibromisocyanursäure und/oder Dichlorisocyanursäure (DICA) und/oder deren Salze mit Kationen wie Kalium und Natrium in Betracht. Hydantoinverbindungen, wie 1,3-Dichlor-5,5-dimethylhydanthoin sind ebenfalls geeignet.
  • Vorteilhafte Mittel im Rahmen der vorliegenden Erfindung enthalten ein oder mehrere Bleichmittel, vorzugsweise aus der Gruppe der Sauerstoff- oder Halogen-Bleichmittel, insbesondere der Chlorbleichmittel, unter besonderer Bevorzugung von Natriumpercarbonat und/oder Natriumperborat-Monohydrat, in Mengen von 0,5 bis 40 Gew.-%, vorzugsweise von 1 bis 30 Gew.-%, besonders bevorzugt von 2,5 bis 25 Gew.-% und insbesondere von 5 bis 20 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Bleichaktivatoren
  • Um beim Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Reinigungsmittel im Rahmen der vorliegenden Erfindung Bleichaktivatoren enthalten. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können gemäß der vorliegenden Erfindung auch sogenannte Bleichkatalysatoren in die Reinigungsmittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Erfindungsgemäß werden Mittel bevorzugt, einen oder mehrerer Stoffe aus der Gruppe der Bleichaktivatoren, insbesondere aus den Gruppen der mehrfach acylierten Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), der N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), der acylierten Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS) und n-Methyl-Morpholinium-Acetonitril-Methylsulfat (MMA), in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise von 0,5 bis 15 Gew.-% und insbesondere von 1 bis 10 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Zu den im Rahmen der vorliegenden Erfindung bevorzugten Bleichaktivatoren gehören weiterhin die "Nitrilquats", kationische Nitrile der Formel (XVIII),
    Figure imgb0013
    in denen R1 für -H, -CH3, einen C2-24-Alkyl- oder -Alkenylrest, einen substituierten C2-24-Alkyl- oder -Alkenylrest mit mindestens einem Substituenten aus der Gruppe -Cl, -Br, -OH, -NH2, -CN, einen Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe, oder für einen substituierten Alkyl- oder Alkenylarylrest mit einer C1-24-Alkylgruppe und mindestens einem weiteren Substituenten am aromatischen Ring steht, R2 und R3 unabhängig voneinander ausgewählt sind aus -CH2-CN, - CH3, -CH2-CH3, -CH2-CH2-CH3, -CH(CH3)-CH3, -CH2-OH, -CH2-CH2-OH, -CH(OH)-CH3, -CH2-CH2-CH2-OH, -CH2-CH(OH)-CH3, -CH(OH)-CH2-CH3, -(CH2CH2-O)nH mit n = 1, 2, 3, 4, 5 oder 6 und X ein Anion ist.
  • Unter die allgemeine Formel (XVIII) fällt eine Vielzahl von kationischen Nitrilen, die im Rahmen der vorliegenden Erfindung einsetzbar sind. Mit besonderem Vorteil enthalten die erfindungsgemäßen Wasch- und Reinigungsmittelformkörper dabei kationische Nitrile, in denen R1 für Methyl, Ethyl, Propyl, Isopropyl oder einen n-Butyl, n-Hexyl, n-Octyl, n-Decyl, n-Dodecyl, n-Tetradecyl, n-Hexadecyl oder n-Octadecylrest steht. R2 und R3 sind vorzugsweise ausgewählt aus Methyl, Ethyl, Propyl, Isopropyl und Hydroxyethyl, wobei einer oder beide Reste vorteilhaft auch noch ein Cyanomethylenrest sein kann.
  • Aus Gründen der leichteren Synthese sind Verbindungen bevorzugt, in denen die Reste R1 bis R3 identisch sind, beispielsweise (CH3)3N(+)CH2-CN X-, (CH3CH2)3N(+)CH2-CN X-, (CH3CH2CH2)3N(+)CH2-CN X-, (CH3CH(CH3))3N(+)CH2-CN X-, oder (HO-CH2-CH2)3N(+)CH2-CN X-, wobei X- vorzugswiese für ein Anion steht, das aus der Gruppe Chlorid, Bromid, lodid, Hydrogensulfat, Methosulfat, p-Toluolsulfonat (Tosylat) oder Xylolsulfonat ausgewählt ist.
  • Im Rahmen der vorliegenden Erfindung bevorzugte maschinelle Geschirrspülmittel oder Geschirrspülmhilfsmittel sind dadurch gekennzeichnet, daß sie das kationische Nitril der Formel (XVIII) in Mengen von 0,1 bis 20 Gew.-%, vorzugsweise von 0,25 bis 15 Gew.-% und insbesondere von 0,5 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Mittels, enthalten.
  • Enzyme
  • Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxidoreduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus, Coprinus Cinereus und Humicola insolens sowie aus deren gentechnisch modifizierten Varianten gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen.
  • Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und - Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
  • Die Enzyme können an Trägerstoffe adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Bevorzugte erfindungsgemäße Mittel enthalten Enzyme, vorzugsweise in Form flüssiger und/oder fester Enzymzubereitungen, in Mengen von 0,1 bis 10 Gew.-%, vorzugsweise von 0,5 bis 8 Gew.-% und insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel.
  • Farbstoffe
  • Um den ästhetischen Eindruck der maschinellen Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Im Rahmen der vorliegenden Erfindung bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber dem Spülgut, um dieses nicht anzufärben.
  • Bevorzugt für den Einsatz in den erfindungsgemäßen maschinellen Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel sind alle Färbemittel, die im Reinigungsprozeß oxidativ zerstört werden können sowie Mischungen derselben mit geeigneten blauen Farbstoffen, sog. Blautönern. Es hat sich als vorteilhaft erwiesen Färbemittel einzusetzen, die in Wasser oder bei Raumtemperatur in flüssigen organischen Substanzen löslich sind. Geeignet sind beispielsweise anionische Färbemittel, z.B. anionische Nitrosofarbstoffe. Ein mögliches Färbemittel ist beispielsweise Naphtholgrün (Colour Index (Cl) Teil 1: Acid Green 1; Teil 2: 10020), das als Handelsprodukt beispielsweise als Basacid® Grün 970 von der Fa. BASF, Ludwigshafen, erhältlich ist, sowie Mischungen dieser mit geeigneten blauen Farbstoffen. Als weitere Färbemittel kommen Pigmosol® Blau 6900 (CI 74160), Pigmosol® Grün 8730 (CI 74260), Basonyl® Rot 545 FL (CI 45170), Sandolan® Rhodamin EB400 (CI 45100), Basacid® Gelb 094 (CI 47005), Sicovit® Patentblau 85 E 131 (CI 42051), Acid Blue 183 (CAS 12217-22-0, CI Acidblue 183), Pigment Blue 15 (CI 74160), Supranol® Blau GLW (CAS 12219-32-8, CI Acidblue 221)), Nylosan® Gelb N-7GL SGR (CAS 61814-57-1, CI Acidyellow 218) und/oder Sandolan® Blau (CI Acid Blue 182, CAS 12219-26-0) zum Einsatz.
  • Duftstoffe
  • Duftstoffe werden den Mitteln im Rahmen der vorliegenden Erfindung zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Leistung des Produkts ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen.
  • Als Parfümöle bzw. Duftstoffe können im Rahmen der vorliegenden Erfindung einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl-carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl-glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen.
  • Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-Öl. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl.
  • Korrosionsschutzmittel
  • Reinigungsmittel, für das maschinelle Geschirrspülen, können zum Schutze des Spülgutes oder der Maschine Korrosionsinhibitoren enthalten, wobei besonders Silberschutzmittel im Bereich des maschinellen Geschirrspülens eine besondere Bedeutung haben. Einsetzbar sind die bekannten Substanzen des Standes der Technik. Allgemein können vor allem Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole und der Übergangsmetallsalze oder -komplexe eingesetzt werden. Besonders bevorzugt zu verwenden sind Benzotriazol und/oder Alkylaminotriazol. Man findet in Reinigerformulierungen darüber hinaus häufig aktivchlorhaltige Mittel, die das Korrodieren der Silberoberfläche deutlich vermindern können. In chlorfreien Reinigern werden besonders Sauerstoff- und stickstoffhaltige organische redoxaktive Verbindungen, wie zwei- und dreiwertige Phenole, z. B. Hydrochinon, Brenzkatechin, Hydroxyhydrochinon, Gallussäure, Phloroglucin, Pyrogallol bzw. Derivate dieser Verbindungsklassen. Auch salz- und komplexartige anorganische Verbindungen, wie Salze der Metalle Mn, Ti, Zr, Hf, V, Co und Ce finden häufig Verwendung. Bevorzugt sind hierbei die Übergangsmetallsalze, die ausgewählt sind aus der Gruppe der Mangan und/oder Cobaltsalze und/oder -komplexe, besonders bevorzugt der Cobalt(ammin)-Komplexe, der Cobalt(acetat)-Komplexe, der Cobalt-(Carbonyl)-Komplexe, der Chloride des Cobalts oder Mangans und des Mangansulfats sowie den Mangankomplexen [Me-TACN)MnIV(m-0)3MnIV(Me-TACN)]2+(PF6 -)2,
    [Me-MeTACN)MnIV(m-0)3MnIV(Me-MeTACN)]2+(PF6 -)2,
    [Me-TACN)MnIII(m-0)(m-OAc)2MnIII(Me-TACN)]2+(PF6 -)2 und
    [Me-MeTACN)MnIII(m-0)(m-OAc)2MnIII(Me-MeTACN)]2+(PF6 -)2, wobei Me-TACN für 1,4,7-trimethyl-1,4,7-triazacyclononan und Me-MeTACN für 1,2,4,7-tetramethyl-1,4,7-triazacyclononan steht. Ebenfalls können Zinkverbindungen zur Verhinderung der Korrosion am Spülgut eingesetzt werden.
  • Im Rahmen der vorliegenden Erfindung werden maschinelle Geschirrspülmittel oder maschinelle Geschirrspülhilfsmittel bevorzugt, die zusätzlich mindestens ein Silberschutzmittel ausgewählt aus der Gruppe der Triazole, der Benzotriazole, der Bisbenzotriazole, der Aminotriazole, der Alkylaminotriazole, vorzugsweise Benzotriazol und/oder Alkylaminotriazol, in Mengen von 0,001 bis 1 Gew.-%, vorzugsweise von 0,01 bis 0,5 Gew.-% und insbesondere von 0,05 bis 0,25 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.
  • Ein weiterer Gegenstand der vorliegenden Anmeldung ist die Verwendung eines erfindungsgemäßen maschinellen Geschirrspülmittels oder maschinellen Geschirrspülhilfsmittel zur Verringerung der Glaskorrosion beim maschinellen Geschirrspülen.

Claims (9)

1. Compound, enthaltend mindestens ein Zinksalz sowie mindestens ein kristallines schichtförmiges Silikat der allgemeinen Formel (I)

         a A2O • b BO • c C2O3 • d D2O5 • x SiO2 • f H2O     (I),

in der A ein Alkalimetall und/oder Wasserstoff, B ein Erdalkalimetall und/oder ein Nebengruppenelement, vorzugsweise ein Element aus der Gruppe Zink, Eisen Mangan, C ein Element der Dritten Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement, vorzugsweise Eisen, und D ein Element der Fünften Hauptgruppe des Periodensystems und/oder ein Nebengruppenelement bedeuten und weiterhin gilt, daß 0 ≤ a ≤ 1; 0 ≤ b ≤ 0,5; 0 ≤ c/x ≤ 0,05; 0 ≤ d/x ≤ 0,25; 1,9 ≤ x ≤ 22; 0 ≤ f ≤ 40, dadurch gekennzeichnet, daß das/die enthaltene(n) Zinksalz(e) und das/die enthaltene(n) kristalline(n) schichtförmige(n) Silikat(e) mit einer oder mehreren weiteren Aktiv- und/oder Gerüstsubstanz(en) konfektioniert, in partikulärer Form, als Compound vorliegt/vorliegen.
1. Compound nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei der /den weiteren Aktiv- und/oder Gerüstsubstanz(en) um einen Gerüstoff, ein Tensid, ein Bleichmittel, einen Bleichaktivatoren, Enzym, Farbstoff, Duftstoff, Korrosionsschutzmittel oder Polymer handelt.
2. Compound nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der /den weiteren Aktiv- und/oder Gerüstsubstanz(en) um ein polymeres Polycarboxylat, vorzugsweise um Alkalimetallsalz der Polyacrylsäure oder der Polymethacrylsäure handelt.
3. Compound nach Anspruch 3, dadurch gekennzeichnet, dass das polymere Polycarboxylat eine relative Molekülmasse von 500 bis 70000 g/mol aufweist.
4. Compound nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der/den weiteren Aktiv- und/oder Gerüstsubstanz(en) um ein Polyacrylat, vorzugsweise um ein Polyacrylat mit einer Molekülmassen von 1000 bis 20000 g/mol handelt.
5. Compound nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der/den weiteren Aktiv- und/oder Gerüstsubstanz(en) um ein Copolymer aus ungesättigten Carbonsäuren, Sulfonsäruegruppen-haltigen Monomeren sowie gegebenenfalls weiteren ionischen oder nichtionogenen Monomeren handelt.
6. Compound nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der/den weiteren Aktiv- und/oder Gerüstsubstanz(en) um ein copolymeres Polycarboxlat der Acrylsäure mit Methacrylsäure, der Acrylsäure mit Maleinsäure oder der Methacrylsäure mit Maleinsäure handelt.
7. Compound nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der/den weiteren Aktiv- und/oder Gerüstsubstanz(en) um ein Copolymer der Acrylsäure mit Methacrylsäure handelt, wobei das Copolymer 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthält.
8. Verfahren zur Herstellung eines Compounds nach einem der vorhergehenden Ansprüche, durch Sprühtrocknung, Granulation, Extrusion, Walzenkompaktierung, Tablettierung, Erstarrung oder Kristallisation.
EP05027033A 2002-06-06 2003-05-28 Compound enthaltend ein Zinksalz und ein kristallines, schichtförmiges Silikat Expired - Lifetime EP1657295B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225116A DE10225116A1 (de) 2002-06-06 2002-06-06 Maschinelles Geschirrspülmittel mit verbessertem Glaskorrosionsschutz II
EP03735481.8A EP1509589B1 (de) 2002-06-06 2003-05-28 Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP03735481.8A Division EP1509589B1 (de) 2002-06-06 2003-05-28 Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz
EP03735481.8A Division-Into EP1509589B1 (de) 2002-06-06 2003-05-28 Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Publications (2)

Publication Number Publication Date
EP1657295A1 true EP1657295A1 (de) 2006-05-17
EP1657295B1 EP1657295B1 (de) 2007-12-19

Family

ID=29594300

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05027033A Expired - Lifetime EP1657295B1 (de) 2002-06-06 2003-05-28 Compound enthaltend ein Zinksalz und ein kristallines, schichtförmiges Silikat
EP03735481.8A Expired - Lifetime EP1509589B1 (de) 2002-06-06 2003-05-28 Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03735481.8A Expired - Lifetime EP1509589B1 (de) 2002-06-06 2003-05-28 Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Country Status (7)

Country Link
EP (2) EP1657295B1 (de)
JP (1) JP2005534728A (de)
AT (1) ATE381608T1 (de)
AU (1) AU2003237704A1 (de)
DE (2) DE10225116A1 (de)
ES (2) ES2298919T3 (de)
WO (1) WO2003104370A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124706A2 (de) * 2008-04-08 2009-10-15 Süd-Chemie AG Schichtsilicathaltige geruchsadsorber auf der basis von zinkricinoleaten und verwandten verbindungen

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334047A1 (de) * 2003-07-25 2005-02-24 Clariant Gmbh Adsorbat aus Schichtsilicat und seine Verwendung
US7241726B2 (en) 2003-10-16 2007-07-10 The Procter & Gamble Company Complete-cycle methods for protecting glassware from surface corrosion in automatic dishwashing appliances
US20050119154A1 (en) * 2003-10-16 2005-06-02 The Procter & Gamble Company Methods for protecting glassware from surface corrosion in automatic dishwashing appliances
US7094740B2 (en) 2003-10-16 2006-08-22 The Procter & Gamble Company Zinc corrosion protection agents for treating glassware surfaces
US7271138B2 (en) * 2003-10-16 2007-09-18 The Procter & Gamble Company Compositions for protecting glassware from surface corrosion in automatic dishwashing appliances
US7101833B2 (en) 2004-10-12 2006-09-05 The Procter & Gamble Company Methods for treating glassware surfaces using zinc corrosion protection agents
DE102005025332A1 (de) * 2005-05-31 2006-12-07 Henkel Kgaa Tensidcompound
DE102008020275A1 (de) 2008-04-22 2009-10-29 Henkel Ag & Co. Kgaa Zinkhaltiger Wasch- oder Reinigungsmittelformkörper
DE102008020274A1 (de) 2008-04-22 2009-10-29 Henkel Ag & Co. Kgaa Verfahren zur Herstellung zinkhaltiger Wasch-oder Reinigungsmittelformkörper
EP3998328A1 (de) * 2009-02-09 2022-05-18 The Procter & Gamble Company Reinigungsmittelzusammensetzung
DE102011077865A1 (de) * 2011-06-21 2012-12-27 Henkel Ag & Co. Kgaa Geschirrspülmittel mit verbessertem Dekor-Schutz
PL2768937T3 (pl) 2011-10-19 2016-07-29 Basf Se Preparaty, ich zastosowanie jako środków do mycia naczyń lub do wytwarzania środków do mycia naczyń i ich wytwarzanie
TR201808395T4 (tr) * 2013-04-02 2018-07-23 Basf Se Formülasyonlar, bunların bulaşık yıkama bileşimleri olarak kullanımları ve üretimi.
JP5801941B1 (ja) * 2014-11-21 2015-10-28 株式会社ニイタカ 洗浄剤組成物、食器洗浄方法、液体洗浄剤組成物用キット及びカートリッジ洗浄剤

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2539531A1 (de) * 1975-09-05 1977-03-17 Henkel & Cie Gmbh Mittel zum maschinellen spuelen von geschirr
US4670617A (en) * 1985-12-30 1987-06-02 Amoco Corporation Propylation of toluene with a high surface area, zinc-modified, crystalline silica molecular sieve
DE4437486A1 (de) * 1994-10-20 1996-04-25 Henkel Kgaa Kristalline Schichtsilikate in maschinellen Geschirrspülmitteln
EP0744125A2 (de) * 1995-05-25 1996-11-27 Mizusawa Industrial Chemicals, Ltd. Jodkomplex und dessen Verwendung
WO1999057237A1 (de) * 1998-04-30 1999-11-11 Henkel Kommanditgesellschaft Auf Aktien Festes maschinelles geschirrspülmittel mit phosphat und kristallinen schichtförmigen silikaten
US6391839B1 (en) * 1992-08-01 2002-05-21 The Procter & Gamble Company Detergent bleach compositions containing layered silicate builder and percarbonate stabilized by EDDS
WO2003016444A2 (de) * 2001-08-17 2003-02-27 Henkel Kommanditgesellschaft Auf Aktien Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3255117A (en) * 1963-10-08 1966-06-07 Fmc Corp Low-foaming dishwashing composition
US4933101A (en) * 1989-02-13 1990-06-12 The Procter & Gamble Company Liquid automatic dishwashing compositions compounds providing glassware protection
US4917812A (en) * 1989-02-13 1990-04-17 The Procter & Gamble Company Granular automatic dishwasher detergent composition providing glassware protection containing insoluble zinc compound
DE19943470A1 (de) * 1999-09-11 2001-03-15 Clariant Gmbh Kristallines Alkalischichtsilikat
DE10039100A1 (de) * 2000-08-07 2002-02-28 Henkel Kgaa Desodorierendes Textilbehandlungsmittel
DE10140535B4 (de) * 2001-08-17 2006-05-04 Henkel Kgaa Maschinelles Geschirrspülmittel mit verbessertem Glaskorrosionsschutz

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2539531A1 (de) * 1975-09-05 1977-03-17 Henkel & Cie Gmbh Mittel zum maschinellen spuelen von geschirr
US4670617A (en) * 1985-12-30 1987-06-02 Amoco Corporation Propylation of toluene with a high surface area, zinc-modified, crystalline silica molecular sieve
US6391839B1 (en) * 1992-08-01 2002-05-21 The Procter & Gamble Company Detergent bleach compositions containing layered silicate builder and percarbonate stabilized by EDDS
DE4437486A1 (de) * 1994-10-20 1996-04-25 Henkel Kgaa Kristalline Schichtsilikate in maschinellen Geschirrspülmitteln
EP0744125A2 (de) * 1995-05-25 1996-11-27 Mizusawa Industrial Chemicals, Ltd. Jodkomplex und dessen Verwendung
WO1999057237A1 (de) * 1998-04-30 1999-11-11 Henkel Kommanditgesellschaft Auf Aktien Festes maschinelles geschirrspülmittel mit phosphat und kristallinen schichtförmigen silikaten
WO2003016444A2 (de) * 2001-08-17 2003-02-27 Henkel Kommanditgesellschaft Auf Aktien Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124706A2 (de) * 2008-04-08 2009-10-15 Süd-Chemie AG Schichtsilicathaltige geruchsadsorber auf der basis von zinkricinoleaten und verwandten verbindungen
WO2009124706A3 (de) * 2008-04-08 2010-01-21 Süd-Chemie AG Schichtsilicathaltige geruchsadsorber auf der basis von zinkricinoleaten und verwandten verbindungen

Also Published As

Publication number Publication date
EP1657295B1 (de) 2007-12-19
AU2003237704A1 (en) 2003-12-22
DE50308871D1 (de) 2008-01-31
ES2527542T3 (es) 2015-01-26
EP1509589B1 (de) 2014-10-22
EP1509589A1 (de) 2005-03-02
ES2298919T3 (es) 2008-05-16
JP2005534728A (ja) 2005-11-17
DE10225116A1 (de) 2003-12-24
ATE381608T1 (de) 2008-01-15
WO2003104370A1 (de) 2003-12-18

Similar Documents

Publication Publication Date Title
EP1404791B1 (de) Nichtwässrige "3 in 1"-geschirrspülmittel
EP1529101B1 (de) Portionierte wasch- und reinigungsmittelzusammensetzung
EP1298195B1 (de) Semiautomatische Dosierung
EP1404790B1 (de) Wässrige "3 in 1"-geschirrspülmittel
WO2003016444A2 (de) Maschinelles geschirrspülmittel mit verbessertem glaskorrosionsschutz
WO2005105974A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
EP1758979A1 (de) Mehrkammer-pouch
EP1657295B1 (de) Compound enthaltend ein Zinksalz und ein kristallines, schichtförmiges Silikat
EP1586631A2 (de) Kompartiment-Hohlkörper enthaltend Wasch-, Reinigungs- oder Spülmittelportion
DE10313457A1 (de) Wasch- oder Reinigungsmittel
DE10159780A1 (de) Portionierte Wasch- und Reinigungsmittelzusammensetzung
EP1520004B1 (de) Portionierte wasch- und reinigungsmittelzusammensetzung
US20050113271A1 (en) Automatic dishwashing detergent with improved glass anti-corrosion properties II
DE102005045440A1 (de) Portionierte Wasch- oder Reinigungsmittelzusammensetzung
EP1888736B1 (de) Wasch- oder reinigungsmittel dosiereinheit
WO2003031264A1 (de) Kompartiment-hohlkorper und verfahren zu dessen herstellung
DE10313453A1 (de) Portionierte Wasch- oder Reinigungsmittelzusammensetzung
DE10305799B4 (de) Verfahren zur Herstellung eines blasgeformten Waschmittelkörpers
WO2003054121A2 (de) Detergenz-haltige portion
DE10149719A1 (de) Kompartiment-Hohlkörper
DE10133136B4 (de) Nichtwäßrige"3in1"-Geschirrspülmittel
WO2005019401A1 (de) Wasch- oder reinigungsmittel
DE10313456A1 (de) Formstabile Reinigungsmittelportion
WO2005019402A1 (de) Verfahren zur herstellung von wasch- oder reinigungsmitteln
DE10338067A1 (de) Wasch- oder Reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051212

AC Divisional application: reference to earlier application

Ref document number: 1509589

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060710

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1509589

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50308871

Country of ref document: DE

Date of ref document: 20080131

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2298919

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HENKEL AG & CO. KGAA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080519

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

26N No opposition filed

Effective date: 20080922

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140602

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190605

Year of fee payment: 15

Ref country code: IT

Payment date: 20190527

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190523

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20211006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220519

Year of fee payment: 20

Ref country code: DE

Payment date: 20220519

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50308871

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230527

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230527