EP1654914B1 - Extreme uv and soft x ray generator - Google Patents

Extreme uv and soft x ray generator Download PDF

Info

Publication number
EP1654914B1
EP1654914B1 EP04744676A EP04744676A EP1654914B1 EP 1654914 B1 EP1654914 B1 EP 1654914B1 EP 04744676 A EP04744676 A EP 04744676A EP 04744676 A EP04744676 A EP 04744676A EP 1654914 B1 EP1654914 B1 EP 1654914B1
Authority
EP
European Patent Office
Prior art keywords
gas
radiation
electrode
diaphragm
discharge source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04744676A
Other languages
German (de)
French (fr)
Other versions
EP1654914A2 (en
EP1654914B8 (en
Inventor
Klaus Philips Intellectual Property & BERGMANN
Willi c/o Philips Intellectual Property & NEFF
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of EP1654914A2 publication Critical patent/EP1654914A2/en
Application granted granted Critical
Publication of EP1654914B1 publication Critical patent/EP1654914B1/en
Publication of EP1654914B8 publication Critical patent/EP1654914B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps

Definitions

  • the invention relates to a gas discharge source according to the preamble of claim 1.
  • Preferred fields of application are those which require extreme ultraviolet and / or soft X-radiation in the wavelength range of about 1 nm to 20 nm, in particular semiconductor lithography.
  • FIG. 1 shows an electrode assembly in which there is a gas-filled electrode gap between two electrodes.
  • the two electrodes each have an opening through which an axis of symmetry is defined.
  • the device operates in a constant gas pressure environment.
  • When high voltage is applied to the electrodes there is a gas breakdown that depends on the pressure and electrode gap.
  • the pressure of the gas and the electrode gap are chosen so that the system operates on the left branch of the Paschen curve and as a result no electrical breakdown occurs between the electrodes.
  • the gas discharge can not propagate between the electrodes, because in this case the mean free path of the charge carriers is greater than the electrode gap.
  • the gas discharge seeks a longer path, since only with sufficiently large discharge path enough ionizing shocks to trigger the discharge are possible.
  • This longer path can be predetermined by the electrode openings, over which the axis of symmetry is defined.
  • a current-carrying plasma channel of axially symmetrical shape corresponding to the electrode openings is formed.
  • the very high discharge current builds up a magnetic field around the current path.
  • the resulting Lorentz force constricts the plasma, during which the plasma is heated to very high temperatures, emitting radiation of very short wavelength, in particular in the EUV and soft X-ray wavelength range.
  • the decoupling of Radiation takes place in the axial direction along the symmetry axis through the opening of one of the electrodes.
  • the plasmas should have an axial extent of between 1 to 2 mm and a diameter of also 1 to 2 mm and be optically accessible at an observation angle of 45 to 60 degrees. It is generally known that such plasmas are optimally produced for this application in electrical discharges with pulse energies in the range of a few Joules, a current pulse duration of 100 ns and current amplitudes between 10 and 30 kA.
  • the optimum neutral gas pressure is typically in the range of a few Pa to a few 10 Pa.
  • the starting radius for the compression of the plasma which is determined essentially by the openings in the electrode system, is in the range of a few mm.
  • the distance between the electrodes is between 3 and 10 mm.
  • the WO 01 / 0173.6 A1 discloses a generic device in which as a means for increasing the conversion efficiency in addition an auxiliary electrode between the main electrodes is present, which has an opening on the axis of symmetry.
  • the DE 101 34 033 A1 discloses a generic device in which the gas pressure of the gas filling near a cathode formed as electrode is higher than in a remote therefrom region of the discharge vessel.
  • the devices described in the prior art are not able to provide the high power required for many applications, especially for semiconductor lithography. Thus, improvements are needed to achieve the highest possible radiation intensity.
  • the current transport through the cathode is inevitably associated with vaporization of cathode material for the necessary high current amplitudes and current densities.
  • Such electrode erosion leads to a geometric change of the cathode, which ultimately has a negative effect on the emission properties of the plasma. This is the faster the closer the pinch plasma is oriented to the cathode surface. For the usability of such devices, however, a sufficiently long service life is indispensable.
  • the US 6576917B1 and the US 6031241A describe gas discharge sources in which a capillary discharge is used for generating radiation.
  • a capillary discharge the hollow channel of a capillary made of an electrically insulating material represents the gas discharge space.
  • the two ends of the capillary are usually connected to the electrodes.
  • a certain opening diameter must be maintained in order to achieve the capillary effect, ie the spatial limitation of the capillary discharge to a small diameter.
  • an embodiment is selected in which the generated radiation emerges laterally from the gas discharge source.
  • one of the electrodes is arranged at a distance from the capillary in order to allow the lateral exit.
  • a gas discharge source in particular for producing extreme ultraviolet and / or soft X-radiation, in which there is a gas-filled electrode gap 3 between two electrodes 1, 2 in which devices for admitting and pumping out of gas are present, in which an electrode 1 has an axis of symmetry 4 defining and provided for the exit of radiation opening 5 and in which between the two electrodes 1,2 having at least one opening 7 on the axis of symmetry 4 and as a differential Pump stage acting aperture 6 is present.
  • the invention is based on the finding that by introducing a diaphragm 6 having an opening 7 on the axis of symmetry 4 and by using this diaphragm as a diffential pumping stage, it is possible to set certain desired pressure ratios in the electrode gap 3 in a simple manner.
  • the electrode gap 3 is intended to denote the entire space between the two electrodes 1, 2. It is subdivided by the diaphragm 6 into two subregions which are delimited by one of the electrodes (including its opening) and the diaphragm (including its opening).
  • the electrode 2 which faces away from the diaphragm 6 and from the exit side of the radiation, to be limited Part of the gas-filled gap between the electrodes 3 to provide a greater gas pressure than in the limited by the aperture 6 and the exit side of the radiation electrode 2 portion of the gas-filled electrode gap 3.
  • This measure causes the compression or the coupling of energy into the current-carrying plasma and thus connected to the localization of the high impedance region at the desired location near the exit side of the radiation-facing electrode 1 takes place.
  • This has the advantage that optimal usability of the radiation is given in terms of accessibility at large observation angles.
  • the current transport from the cathode to this point takes place in a diffuse low-impedance plasma. This leads to losses compared to the prior art, in which an overall shorter plasma channel arises. Also, therefore, an increase in the radiant power can be achieved.
  • the gas pressure in the electrode gap 3 and the distance between the two electrodes are chosen so that the ignition of the plasma takes place on the left branch of the Paschen curve, i.
  • the ionization processes start along the long electric field lines, which preferably occur in the region of the openings of the anode and cathode. The ignition thus takes place in the gas volume and thus particularly low in wear.
  • when operating on the left branch of the Paschen curve without switching element between radiation generator and power supply can be used, which makes a low-inductive and thus very effective energy coupling possible.
  • the first alternative has the advantage that the compressed plasma, which can arise in this case near the anode 1 by the device according to the invention, is thus relatively far removed from the cathode 2. This leads to a lower erosion of the cathode. Above all, however, the generation of the pinch plasma also depends less on geometric changes of the cathode. Thus, higher erosion can be tolerated. Overall, this leads to a significantly longer life of the electrode system and offers the possibility to couple a higher electrical power and thus a to achieve higher radiant power.
  • the thermal load on the exit side of the radiation-facing electrode 1, thus e.g. The anode is limited because the shutter 6 is capable of dissipating a significant portion of the energy. Therefore, due to the presence of the aperture 6, only the portion of the energy which is coupled into the region of the pinch plasma which emits short-wave radiation must be considered. Since this proportion is only one-fifth to one-quarter of the total energy, the input power and also the pulse energy can be correspondingly increased by a factor of 4 to 5.
  • the electrode 2 remote from the exit side of the radiation is particularly advantageous to design the electrode 2 remote from the exit side of the radiation as a hollow electrode having a cavity 8, in particular as a hollow cathode.
  • a preionization of the gas takes place followed by the formation of a dense hollow cathode plasma.
  • the hollow electrode 2 may have one or more openings 9 to the electrode gap 3. Since the latter alternative, the total current is distributed to a plurality of electrode openings 9, the local load of the electrode 2 can be reduced in this way, and thus the life of the electrode system or the einkoppelbare electrical power can be increased.
  • triggering devices may additionally be present. In this way, the ignition of the discharge can be triggered precisely as needed. This is particularly advantageous in a hollow cathode with multiple openings.
  • the triggering device can be designed, for example, as an auxiliary electrode in the hollow cathode, with which the discharge can be triggered by switching the auxiliary electrode from a positive potential with respect to the cathode to a lower potential, for example cathode potential.
  • Further possibilities for triggering consist in the injection or generation of charge carriers in the hollow cathode via a glow discharge trigger, a high-dielectric trigger or the triggering of photoelectrons or metal vapor via light or laser pulses.
  • the panel 6 It is advantageous to design the panel 6 so that it contributes to the transport of electricity at most to a small extent.
  • the entire or at least the substantial portion of the current transport is instead transmitted largely only via the plasma channel from the cathode to the anode.
  • the current can be used as completely and effectively as possible for the generation of the pinch plasma.
  • the generation of cathode spots on the diaphragm and the erosion occurring there can thus largely be avoided.
  • the diaphragm 6 or at least part of the diaphragm 6 consists of a material which is readily machinable. Moreover, it is advantageous if the material of at least part of the diaphragm 6 has a high thermal conductivity. This allows effective cooling or heat dissipation.
  • a material for at least part of the diaphragm 6 can be, for example, ceramic, in particular alumina or Lanthanhexaborid use.
  • this part of a particularly discharge-resistant material, in particular for example of molybdenum, tungsten, Titanium nitride or lanthanum hexaboride.
  • a particularly discharge-resistant material in particular for example of molybdenum, tungsten, Titanium nitride or lanthanum hexaboride.
  • these diaphragms are designed as metal diaphragms 6, 6 ', 6 "spaced from one another by isolators 11. In this way, the incorporation of metal allows a desired low-induction structure of the electrode system in comparison to a pure ceramic plate, as well as deposits of metal vapor The aperture, which could lead to problems such as a ceramic shutter, almost no role.
  • the thickness of the diaphragm 6 may be in a range between about 1 to 20 mm. From the aspect of cooling, it is necessary to provide as thick a diaphragm as possible. Of the Diameter of the aperture 6 should be approximately between 4 and 20 mm.
  • gas inlets 12 in such a way that their openings face the partial region of the gas-filled electrode gap 3 delimited by the diaphragm 6 and by the electrode 2 facing away from the exit side of the radiation. This allows the gas pressure in this subarea to be adjusted specifically.
  • a higher gas pressure can be provided there than in the partial region of the electrode gap 3 delimited by the diaphragm 6 and the electrode 1 facing the outlet side of the radiation or a specific desired pressure difference can be set.
  • gas inlets 12 ' may be present which have openings for the partial area of the gas-filled electrode gap 3 bounded by the diaphragm 6 and by the electrode 2 facing the outlet side of the radiation.
  • the working gas provided for the generation of the pinch plasma and the resulting emission of EUV radiation, such as xenon or Neon taken in.
  • the pumping of the gas can be particularly easily by a located outside the electrode gap pumping device through the opening of the the exit side of the radiation-facing electrode 1 therethrough.
  • a pumping device directly in the electrode gap 3, in particular in the portion of the electrode gap 3 bounded by the diaphragm 6 and by the electrode 1 facing the outlet side of the radiation. This is particularly advantageous if different gas compositions are present in the two subregions of the interelectrode space 3 as described above, because then a comparatively low mixing of the two gas mixtures can be realized during the pumping.
  • Fig.2 shows an embodiment of the electrode system of the device according to the invention.
  • an electrode 2 as a cavity 8 having hollow electrode configured and is used as a cathode.
  • the other electrode 1 acts as an anode.
  • the decoupling of the radiation generated by the pinch plasma 13 generated inside the gap between the electrodes 3 takes place through the opening 5 of the anode 1.
  • the anode opening 5 widened in Auskoppelcardi.
  • a diaphragm 6 is arranged, which has a continuous opening 7 on the axis of symmetry 4 defined by the anode opening 5.
  • the hollow cathode has in this embodiment an opening 9 to the electrode gap 3, this is just as on the symmetry axis 4.
  • gas inlets 12 are provided with openings to the diaphragm 6 and the cathode 2 limited portion of the gas-filled gap 3.
  • the leads of this Gas inlets run through the body of the hollow cathode in this embodiment. Further gas inlets 12 'are present with openings to the portion of the gas-filled electrode gap 3 delimited by the diaphragm 6 and by the anode 2.
  • Figure 3 shows an embodiment of the device according to the invention, in which the aperture 6 in a region 10 near its opening 7 made of a discharge-resistant material, for example of molybdenum, tungsten, titanium nitride or lanthanum hexaboride.
  • a discharge-resistant material for example of molybdenum, tungsten, titanium nitride or lanthanum hexaboride.
  • the remaining part of the diaphragm 6 consists of a readily machineable material and / or a material with high thermal conductivity.
  • FIG 4 an embodiment of the inventive device is shown, in which a plurality of metal panels 6,6 ', 6 "are arranged between the electrodes 1,2, each spaced by insulators 11th
  • Fig. 5 shows a further embodiment, in which the cathode 2 has three openings 9, 9 ', 9 ".
  • the central opening 9, which lies on the axis of symmetry, is designed as a blind hole, and the two other openings 9', 9" are through openings between the cavity 8 of the cathode 2 and the electrode gap 3.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Reciprocating Pumps (AREA)

Abstract

A gas discharge source, in particular, for generating extreme ultraviolet and/or soft X-radiation, has a gas-filled intermediate electrode space located between two electrodes, devices for the admission and evacuation of gas, and one electrode that has an opening that defines an axis of symmetry and is provided for the discharge of radiation. A diaphragm exhibits at least one opening on the axis of symmetry and operates as a differential pump stage, between the two electrodes.

Description

Die Erfindung betrifft eine Gasentladungsquelle nach dem Oberbegriff des Anspruchs 1. Bevorzugte Anwendungsgebiete sind solche, die Extrem-Ultraviolett-und/oder weiche Röntgenstrahlung im Wellenlängenbereich von ca. 1 nm bis 20 nm benötigen, wie insbesondere die Halbleiter-Lithographie.The invention relates to a gas discharge source according to the preamble of claim 1. Preferred fields of application are those which require extreme ultraviolet and / or soft X-radiation in the wavelength range of about 1 nm to 20 nm, in particular semiconductor lithography.

Eine gattungsgemäße Vorrichtung offenbart die WO 99/29145 . Die daraus entnommene Fig. 1 zeigt eine Elektrodenanordnung, bei der sich zwischen zwei Elektroden ein gasgefüllter Elektrodenzwischenraum befindet. Die beiden Elektroden weisen je eine Öffnung auf, durch welche eine Symmetrieachse definiert wird. Die Vorrichtung arbeitet in einer Umgebung konstanten Gasdrucks. Wenn Hochspannung an die Elektroden angelegt wird, gibt es einen Gasdurchbruch, der vom Druck und dem Elektrodenabstand abhängt. Der Druck des Gases und der Elektrodenabstand sind so gewählt, dass das System auf dem linken Zweig der Paschen-Kurve arbeitet und infolgedessen kein elektrischer Durchbruch zwischen den Elektroden auftritt. Die Gasentladung kann sich nicht zwischen den Elektroden ausbreiten, weil in diesem Fall die mittlere freie Weglänge der Ladungsträger größer ist als der Elektrodenabstand. Die Gasentladung sucht sich stattdessen einen längeren Weg, da nur bei ausreichend großer Entladungsstrecke genügend viele ionisierende Stöße zur Auslösung der Entladung möglich sind. Dieser längere Weg ist durch die Elektrodenöffnungen vorgebbar, über welche die Symmetrieachse definiert ist. Es bildet sich ein stromführender Plasmakanal axialsymmetrischer Form entsprechend der Elektrodenöffnungen aus. Der sehr hohe Entladungsstrom baut um den Strompfad ein magnetisches Feld auf. Die resultierende Lorentz-Kraft schnürt das Plasma ein, dabei wird das Plasma auf sehr hohe Temperaturen erhitzt, wobei es Strahlung sehr kurzer Wellenlänge, insbesondere im EUV- und weichen Röntgenwellenlängenbereich, abgibt. Die Auskopplung der Strahlung erfolgt in axialer Richtung entlang der Symmetrieachse durch die Öffnung einer der Elektroden.A generic device discloses the WO 99/29145 , The extracted from it Fig. 1 shows an electrode assembly in which there is a gas-filled electrode gap between two electrodes. The two electrodes each have an opening through which an axis of symmetry is defined. The device operates in a constant gas pressure environment. When high voltage is applied to the electrodes, there is a gas breakdown that depends on the pressure and electrode gap. The pressure of the gas and the electrode gap are chosen so that the system operates on the left branch of the Paschen curve and as a result no electrical breakdown occurs between the electrodes. The gas discharge can not propagate between the electrodes, because in this case the mean free path of the charge carriers is greater than the electrode gap. Instead, the gas discharge seeks a longer path, since only with sufficiently large discharge path enough ionizing shocks to trigger the discharge are possible. This longer path can be predetermined by the electrode openings, over which the axis of symmetry is defined. A current-carrying plasma channel of axially symmetrical shape corresponding to the electrode openings is formed. The very high discharge current builds up a magnetic field around the current path. The resulting Lorentz force constricts the plasma, during which the plasma is heated to very high temperatures, emitting radiation of very short wavelength, in particular in the EUV and soft X-ray wavelength range. The decoupling of Radiation takes place in the axial direction along the symmetry axis through the opening of one of the electrodes.

Für die Anwendung in der EUV-Lithographie sollten die Plasmen eine axiale Ausdehnung zwischen 1 bis 2 mm und einen Durchmesser von ebenfalls 1 bis 2 mm aufweisen und unter einem Beobachtungswinkel von 45 bis 60 Grad optisch zugänglich sein. Allgemein bekannt ist, dass solche Plasmen für diese Anwendung optimal erzeugt werden in elektrischen Entladungen mit Pulsenergien im Bereich einiger Joule , einer Strompulsdauer um 100 ns und Stromamplituden zwischen 10 und 30 kA. Der optimale Neutralgasdruck liegt typischerweise im Bereich einiger Pa bis einigen 10 Pa. Der Startradius für die Kompression des Plasmas, welcher im wesentlichen durch die Öffnungen im Elektrodensystem bestimmt wird, liegt im Bereich einiger mm. Der Abstand zwischen den Elektroden liegt zwischen 3 und 10 mm.For use in EUV lithography, the plasmas should have an axial extent of between 1 to 2 mm and a diameter of also 1 to 2 mm and be optically accessible at an observation angle of 45 to 60 degrees. It is generally known that such plasmas are optimally produced for this application in electrical discharges with pulse energies in the range of a few Joules, a current pulse duration of 100 ns and current amplitudes between 10 and 30 kA. The optimum neutral gas pressure is typically in the range of a few Pa to a few 10 Pa. The starting radius for the compression of the plasma, which is determined essentially by the openings in the electrode system, is in the range of a few mm. The distance between the electrodes is between 3 and 10 mm.

Die WO 01/0173.6 A1 offenbart eine gattungsgemäße Vorrichtung, bei der als Mittel zur Erhöhung der Konversionseffizienz zusätzlich eine Hilfselektrode zwischen den Hauptelektroden vorhanden ist, welche eine Öffnung auf der Symmetrieachse aufweist.The WO 01 / 0173.6 A1 discloses a generic device in which as a means for increasing the conversion efficiency in addition an auxiliary electrode between the main electrodes is present, which has an opening on the axis of symmetry.

Die DE 101 34 033 A1 offenbart eine gattungsgemäße Vorrichtung, bei der der Gasdruck der Gasfüllung nahe einer als Kathode ausgebildeten Elektrode höher ist als in einem davon entfernten Bereich des Entladungsgefäßes.The DE 101 34 033 A1 discloses a generic device in which the gas pressure of the gas filling near a cathode formed as electrode is higher than in a remote therefrom region of the discharge vessel.

Die im Stand der Technik beschriebenen Vorrichtungen sind jedoch nicht in der Lage, die für viele Anwendungen, insbesondere für die Halbleiterlithographie, notwendigen hohen Leistungen bereitzustellen. Es sind somit Verbesserungen nötig, um eine möglichst hohe Strahlungsintensität zu erzielen. Zu beachten ist allerdings auch, dass der Stromtransport über die Kathode für die notwendigen hohen Stromamplituden und Strorndichten zwangsläufig mit Verdampfung von Kathodenmaterial verbunden ist. Eine derartige Elektrodenerosion führt zu einer geometrischen Veränderung der Kathode, welche sich letztlich negativ auf die Emissionseigenschaften des Plasmas auswirkt. Dies ist um so schneller der Fall, je näher das Pinchplasma zur Kathodenfläche orientiert ist. Für die Nutzbarkeit derartiger Vorrichtungen ist aber eine hinreichend hohe Lebensdauer unabdingbar.However, the devices described in the prior art are not able to provide the high power required for many applications, especially for semiconductor lithography. Thus, improvements are needed to achieve the highest possible radiation intensity. It should also be noted, however, that the current transport through the cathode is inevitably associated with vaporization of cathode material for the necessary high current amplitudes and current densities. Such electrode erosion leads to a geometric change of the cathode, which ultimately has a negative effect on the emission properties of the plasma. This is the faster the closer the pinch plasma is oriented to the cathode surface. For the usability of such devices, however, a sufficiently long service life is indispensable.

Die US 6576917B1 und die US 6031241A beschreiben Gasentladungsquellen, bei denen eine Kapillarentladung zur Strahlungserzeugung genutzt wird. Bei einer Kapillarentladung stellt der Hohlkanal einer Kapillare aus einem elektrisch isolierenden Material den Gasentladungsraum dar. Die beiden Enden der Kapillare sind dabei in der Regel mit den Elektroden verbunden. Weiterhin muss ein bestimmter Öffnungsdurchmesser eingehalten werden, um den Kapillareffekt, d.h. die räumliche Begrenzung der Kapillarentladung auf einen geringen Durchmesser, zu erreichen. In einem Beispiel der US 6576917B1 wird eine Ausgestaltung gewählt, bei der die erzeugte Strahlung seitlich aus der Gasentladungsquelle austritt. Hierzu wird eine der Elektroden von der Kapillare beabstandet angeordnet, um den seitlichen Austritt zu ermöglichen.The US 6576917B1 and the US 6031241A describe gas discharge sources in which a capillary discharge is used for generating radiation. In the case of a capillary discharge, the hollow channel of a capillary made of an electrically insulating material represents the gas discharge space. The two ends of the capillary are usually connected to the electrodes. Furthermore, a certain opening diameter must be maintained in order to achieve the capillary effect, ie the spatial limitation of the capillary discharge to a small diameter. In an example of the US 6576917B1 an embodiment is selected in which the generated radiation emerges laterally from the gas discharge source. For this purpose, one of the electrodes is arranged at a distance from the capillary in order to allow the lateral exit.

Der Erfindung liegt also die Aufgabe zugrunde, eine Vorrichtung zur Erzeugung eines strahlungsemittierenden Plasmas bereitzustellen, mit der eine hohe Strahlungsintensität im Wellenlängenbereich zwischen λ = 1 bis 20 nm, also im EUV-Bereich und im weichen Röntgenwellenlängenbereich, erzielt und möglichst effektiv ausgekoppelt werden kann und welche eine möglichst hohe Lebensdauer aufweist.The invention is therefore based on the object, a device for Produce a radiation-emitting plasma to provide a high radiation intensity in the wavelength range between λ = 1 to 20 nm, ie in the EUV range and in the soft X-ray wavelength range, achieved and coupled as effectively as possible and which has the highest possible life.

Die Lösung dieses technischen Problems erfolgt durch die Merkmale des unabhängigen Anspruchs 1. Vorteilhafte Ausgestaltungen und Weiterbildungen werden durch die abhängigen Ansprüche angegeben.The solution of this technical problem is achieved by the features of independent claim 1. Advantageous embodiments and further developments are indicated by the dependent claims.

Erfindungsgemäß wurde erkannt, dass das oben genannte technische Problem gelöst wird durch eine Gasentladungsquelle, insbesondere zur Erzeugung von Extrem-Ultraviolett- und/oder weicher Röntgenstrahlung, bei der sich zwischen zwei Elektroden 1,2 ein gasgefüllter Elektrodenzwischenraum 3 befindet, bei der Vorrichtungen zum Einlassen und Abpumpen von Gas vorhanden sind, bei der eine Elektrode 1 eine eine Symmetrieachse 4 definierende und für den Austritt von Strahlung vorgesehene Öffnung 5 aufweist und bei der zwischen den beiden Elektroden 1,2 eine zumindest eine Öffnung 7 auf der Symmetrieachse 4 aufweisende und als differentielle Pumpstufe wirkende Blende 6 vorhanden ist.According to the invention, it has been recognized that the abovementioned technical problem is solved by a gas discharge source, in particular for producing extreme ultraviolet and / or soft X-radiation, in which there is a gas-filled electrode gap 3 between two electrodes 1, 2 in which devices for admitting and pumping out of gas are present, in which an electrode 1 has an axis of symmetry 4 defining and provided for the exit of radiation opening 5 and in which between the two electrodes 1,2 having at least one opening 7 on the axis of symmetry 4 and as a differential Pump stage acting aperture 6 is present.

Der Erfindung liegt die Erkenntnis zu Grunde, dass man durch das Einbringen einer eine Öffnung 7 auf der Symmetrieachse 4 aufweisende Blende 6 und durch die Benutzung dieser Blende als diffentielle Pumpstufe auf einfache Weise bestimmte gewünschte Druckverhältnisse im Elektrodenzwischenraum 3 einstellen kann. Neben den daraus resultierenden Vorteilen ist durch den Einbau einer derartigen Blende 6 im Elektrodenzwischenraum 3 eine größere Fläche vorhanden, über die Wärme abgeführt werden kann. Auf diese Weise lässt sich die thermische Belastung der Elektroden 1,2 verringern, ihre Lebensdauer damit erhöhen und die in das System einkoppelbare mittlere Leistung bzw. Pulsenergie und damit auch die erzielbare Strahlungsleistung steigern.The invention is based on the finding that by introducing a diaphragm 6 having an opening 7 on the axis of symmetry 4 and by using this diaphragm as a diffential pumping stage, it is possible to set certain desired pressure ratios in the electrode gap 3 in a simple manner. In addition to the resulting advantages, the installation of such a diaphragm 6 in the electrode gap 3, a larger area available over which heat can be dissipated. In this way, the thermal load of the electrodes can reduce 1.2, thus increasing their life and increase the coupled into the system average power or pulse energy and thus the achievable radiant power.

Der Elektrodenzwischenraum 3 soll den gesamten Raum zwischen den beiden Elektroden 1,2 bezeichnen. Er wird durch die Blende 6 in zwei Teilbereiche unterteilt, die jeweils begrenzt werden durch eine der Elektroden (inklusive ihrer Öffnung) und die Blende (inklusive ihrer Öffnung).The electrode gap 3 is intended to denote the entire space between the two electrodes 1, 2. It is subdivided by the diaphragm 6 into two subregions which are delimited by one of the electrodes (including its opening) and the diaphragm (including its opening).

Es besteht insbesondere die Möglichkeit, für den im von der Blende 6 und der von der Austrittsseite der Strahlung abgewandten Elektrode 2 begrenzten Teilbereich des gasgefüllten Elektrodenzwischenraums 3 einen größeren Gasdruck vorzusehen als im von der Blende 6 und der der Austrittsseite der Strahlung zugewandten Elektrode 2 begrenzten Teilbereich des gasgefüllten Elekrodenzwischenraums 3. Diese Maßnahme bewirkt, dass die Kompression bzw. die Einkopplung der Energie in das stromdurchflossene Plasma und damit verbunden die Lokalisierung des Bereichs hoher Impedanz an der gewünschten Stelle nahe der der Austrittsseite der Strahlung zugewandten Elektrode 1 erfolgt. Dies hat den Vorteil, dass eine optimale Nutzbarkeit der Strahlung unter dem Aspekt der Zugänglichkeit unter großen Beobachtungswinkeln gegeben ist. Der Stromtransport von der Kathode zu dieser Stelle erfolgt dabei in einem diffusen niederimpedanten Plasma. Dies führt im Vergleich zum Stand der Technik, bei dem ein insgesamt kürzerer Plasmakanal entsteht, kaum zu Verlusten. Auch deswegen ist eine Steigerung der Strahlungsleistung erzielbar.In particular, it is possible for the electrode 2, which faces away from the diaphragm 6 and from the exit side of the radiation, to be limited Part of the gas-filled gap between the electrodes 3 to provide a greater gas pressure than in the limited by the aperture 6 and the exit side of the radiation electrode 2 portion of the gas-filled electrode gap 3. This measure causes the compression or the coupling of energy into the current-carrying plasma and thus connected to the localization of the high impedance region at the desired location near the exit side of the radiation-facing electrode 1 takes place. This has the advantage that optimal usability of the radiation is given in terms of accessibility at large observation angles. The current transport from the cathode to this point takes place in a diffuse low-impedance plasma. This leads to losses compared to the prior art, in which an overall shorter plasma channel arises. Also, therefore, an increase in the radiant power can be achieved.

Der Gasdruck im Elektrodenzwischenraum 3 und der Abstand zwischen den beiden Elektroden werden so gewählt, dass die Zündung des Plasmas auf dem linken Ast der Paschenkurve erfolgt, d.h. die Ionisationsprozesse starten entlang der langen elektrischen Feldlinien, welche bevorzugt im Bereich der Öffnungen von Anode und Kathode auftreten. Die Zündung erfolgt somit im Gasvolumen und damit besonders verschleißarm. Außerdem kann bei einem Betrieb auf dem linken Ast der Paschenkurve ohne Schaltelement zwischen Strahlungsgenerator und Spannungsversorgung gearbeitet werden, was eine niederinduktive und damit sehr effektive Energieeinkopplung möglich macht.The gas pressure in the electrode gap 3 and the distance between the two electrodes are chosen so that the ignition of the plasma takes place on the left branch of the Paschen curve, i. The ionization processes start along the long electric field lines, which preferably occur in the region of the openings of the anode and cathode. The ignition thus takes place in the gas volume and thus particularly low in wear. In addition, when operating on the left branch of the Paschen curve without switching element between radiation generator and power supply can be used, which makes a low-inductive and thus very effective energy coupling possible.

Es ist möglich, entweder die von der Austrittsseite der Strahlung abgewandte Elektrode 2 oder die der Austrittsseite der Strahlung zugewandte Elektrode 1 als Kathode zu verwenden. Die erste Alternative hat den Vorteil, dass das komprimierte Plasma, welches durch die erfindungsgemäße Vorrichtung in diesem Fall nahe der Anode 1 entstehen kann, somit vergleichsweise weit von der Kathode 2 entfernt ist. Dadurch kommt es zu einer geringeren Erosion der Kathode. Vor allem aber hängt die Erzeugung des Pinchplasmas auch weniger stark von geometrischen Veränderungen der Kathode ab. Somit kann eine höhere Erosion toleriert werden. Insgesamt führt dies zu einer deutlich längeren Lebensdauer des Elektrodensystems und bietet die Möglichkeit, eine höhere elektrische Leistung einzukoppeln und somit eine höhere Strahlungsleistung zu erzielen.It is possible to use either the electrode 2 facing away from the exit side of the radiation or the electrode 1 facing the exit side of the radiation as the cathode. The first alternative has the advantage that the compressed plasma, which can arise in this case near the anode 1 by the device according to the invention, is thus relatively far removed from the cathode 2. This leads to a lower erosion of the cathode. Above all, however, the generation of the pinch plasma also depends less on geometric changes of the cathode. Thus, higher erosion can be tolerated. Overall, this leads to a significantly longer life of the electrode system and offers the possibility to couple a higher electrical power and thus a to achieve higher radiant power.

Auch die thermische Belastung der der Austrittsseite der Strahlung zugewandten Elektrode 1, also z.B. der Anode, hält sich in Grenzen, da die Blende 6 in der Lage ist, einen beträchtlichen Teil der Energie abzuführen. Deswegen muss aufgrund des Vorhandenseins der Blende 6 nur der Anteil der Energie betrachtet werden, der in den Bereich des Pinchplasmas, der kurzwellige Strahlung emittiert, eingekoppelt wird. Da dieser Anteil nur ein Fünftel bis ein Viertel der Gesamtenergie beträgt, lässt sich damit die einkoppelbare Leistung und auch die Pulsenergie entsprechend um einen Faktor 4 bis 5 steigern.Also, the thermal load on the exit side of the radiation-facing electrode 1, thus e.g. The anode is limited because the shutter 6 is capable of dissipating a significant portion of the energy. Therefore, due to the presence of the aperture 6, only the portion of the energy which is coupled into the region of the pinch plasma which emits short-wave radiation must be considered. Since this proportion is only one-fifth to one-quarter of the total energy, the input power and also the pulse energy can be correspondingly increased by a factor of 4 to 5.

Besonders vorteilhaft ist es, die von der Austrittsseite der Strahlung abgewandte Elektrode 2 als einen Hohlraum 8 aufweisende Hohlelektrode, insbesondere als Hohlkathode, auszugestalten. Darin findet in einer ersten Phase der Entladung eine Vorionisation des Gases statt gefolgt von der Ausbildung eines dichten Hohlkathodenplasmas. Ein solches eignet sich besonders gut, die notwendigen Ladungsträger (Elektronen) zum Aufbau eines niederohmigen Kanals im Elektrodenzwischenraum 3 bereitzustellen. Die Hohlelektrode 2 kann eine oder mehrere Öffnungen 9 zum Elektrodenzwischenraum 3 aufweisen. Da durch letztere Alternative der Gesamtstrom auf mehrere Elektrodenöffnungen 9 verteilt wird, kann die lokale Belastung der Elektrode 2 auf diese Weise verringert und damit die Lebensdauer des Elektrodensystems bzw. die einkoppelbare elektrische Leistung erhöht werden. Im Hohlraum 8 der als Hohlkathode ausgebildeten Elektrode 2 können zusätzlich Triggervorrichtungen vorhanden sein. Auf diese Weise lässt sich die Zündung der Entladung präzise nach Bedarf auslösen. Dies ist besonders bei einer Hohlkathode mit mehreren Öffnungen vorteilhaft. Die Triggervorrichtung kann z.B. als Hilfselektrode in der Hohlkathode ausgestaltet sein, mit der die Entladung dadurch ausgelöst werden kann, dass die Hilfselektrode von einem gegenüber der Kathode positiven Potential auf ein niedrigeres Potential, z.B. Kathodenpotential geschaltet wird. Weitere Möglichkeiten zur Triggerung bestehen in der Injektion oder Erzeugung von Ladungsträgern in der Hohlkathode über einen Glimmentladungstrigger, einen hochdielektrischen Trigger oder dem Auslösen von Photoelektronen oder Metalldampf über Licht- oder Laserpulse.It is particularly advantageous to design the electrode 2 remote from the exit side of the radiation as a hollow electrode having a cavity 8, in particular as a hollow cathode. Therein, in a first phase of the discharge, a preionization of the gas takes place followed by the formation of a dense hollow cathode plasma. Such is particularly well suited to provide the necessary charge carriers (electrons) to build a low-resistance channel in the electrode gap 3. The hollow electrode 2 may have one or more openings 9 to the electrode gap 3. Since the latter alternative, the total current is distributed to a plurality of electrode openings 9, the local load of the electrode 2 can be reduced in this way, and thus the life of the electrode system or the einkoppelbare electrical power can be increased. In the cavity 8 of the formed as a hollow cathode electrode 2 triggering devices may additionally be present. In this way, the ignition of the discharge can be triggered precisely as needed. This is particularly advantageous in a hollow cathode with multiple openings. The triggering device can be designed, for example, as an auxiliary electrode in the hollow cathode, with which the discharge can be triggered by switching the auxiliary electrode from a positive potential with respect to the cathode to a lower potential, for example cathode potential. Further possibilities for triggering consist in the injection or generation of charge carriers in the hollow cathode via a glow discharge trigger, a high-dielectric trigger or the triggering of photoelectrons or metal vapor via light or laser pulses.

Es ist günstig, die Blende 6 so auszugestalten, dass sie zum Stromtransport höchstens in geringem Maße beiträgt. Der gesamte oder zumindest der wesentliche Anteil des Stromtransportes wird stattdessen weitgehend nur über den Plasmakanal von der Kathode zur Anode übertragen. Auf diese Weise kann der Strom möglichst vollständig und effektive für die Erzeugung des Pinchplasmas genutzt werden. Außerdem lässt sich die Erzeugung von Kathodenflecken an der Blende und die dabei dort auftretende Erosion somit weitgehend vermeiden.It is advantageous to design the panel 6 so that it contributes to the transport of electricity at most to a small extent. The entire or at least the substantial portion of the current transport is instead transmitted largely only via the plasma channel from the cathode to the anode. In this way the current can be used as completely and effectively as possible for the generation of the pinch plasma. In addition, the generation of cathode spots on the diaphragm and the erosion occurring there can thus largely be avoided.

Für die Herstellung der Blende 6 ist es von Vorteil, wenn die Blende 6 oder zumindest ein Teil der Blende 6 aus einem gut mechanisch bearbeitbaren Material besteht. Außerdem ist es vorteilhaft, wenn das Material mindestens eines Teils der Blende 6 eine hohe Wärmeleitfähigkeit besitzt. Dadurch wird eine effektive Kühlung bzw. Wärmeabführung ermöglicht.For the production of the diaphragm 6, it is advantageous if the diaphragm 6 or at least part of the diaphragm 6 consists of a material which is readily machinable. Moreover, it is advantageous if the material of at least part of the diaphragm 6 has a high thermal conductivity. This allows effective cooling or heat dissipation.

Als Material für mindestens einen Teil der Blende 6 lässt sich zum Beispiel Keramik, insbesondere Aluminiumoxid oder Lanthanhexaborid, verwenden.As a material for at least part of the diaphragm 6 can be, for example, ceramic, in particular alumina or Lanthanhexaborid use.

Für den nahe der Öffnung 7 liegende Teil der Blende 6, für den aufgrund der Nähe zum Plasmakanal die Gefahr der Erosion der Blende 6 am größten ist, ist es günstig, diesen Teil aus einem besonders entladungsfesten Material, insbesondere zum Beispiel aus Molybdän, Wolfram, Titannitrid oder Lanthanhexaborid, auszubilden. Dadurch wird das Auftreten von Erosion an der Blende 6 stark eingeschränkt und damit die Lebensdauer der Vorrichtung erhöht.For the part of the diaphragm 6 located near the opening 7, for which the danger of erosion of the diaphragm 6 is greatest due to the proximity to the plasma channel, it is favorable to use this part of a particularly discharge-resistant material, in particular for example of molybdenum, tungsten, Titanium nitride or lanthanum hexaboride. As a result, the occurrence of erosion on the panel 6 is severely limited and thus increases the life of the device.

Möglich ist auch die Einbringung mehrerer, jeweils eine Öffnung 7 auf der Symmetrieachse 4 aufweisender Blenden in den Elektrodenzwischenraum 3. In einer besonders vorteilhaften Ausführungsform sind diese als voneinander durch Isolatoren 11 beabstandete metallene Blenden 6,6',6" ausgestaltet. Auf diese Weise wird das mehrstufige Zünden von Kathodenflecken und damit der Stromtransport effektiv unterdrückt. Dies liefert den Vorteil wie bei Verwendung eines reinen Isolators. Zusätzlich wird durch den Einbau von Metall ein gewünscht niederinduktiver Aufbau des Elektrodensystems im Vergleich zu einer reinen Keramikplatte möglich. Ferner spielen Ablagerungen von Metalldampf auf der Blende, die z.B. bei einer Keramikblende zu Problemen führen könnten, nahezu keine Rolle.It is also possible to introduce a plurality of diaphragms each having an opening 7 on the axis of symmetry 4 into the electrode gap 3. In a particularly advantageous embodiment, these diaphragms are designed as metal diaphragms 6, 6 ', 6 "spaced from one another by isolators 11. In this way In addition, the incorporation of metal allows a desired low-induction structure of the electrode system in comparison to a pure ceramic plate, as well as deposits of metal vapor The aperture, which could lead to problems such as a ceramic shutter, almost no role.

Die Dicke der Blende 6 kann in einem Bereich zwischen ca. 1 bis 20 mm liegen. Unter dem Aspekt der Kühlung sind möglichst dicke Blenden vorzusehen. Der Durchmesser der Blende 6 sollte ungefähr zwischen 4 und 20 mm liegen.The thickness of the diaphragm 6 may be in a range between about 1 to 20 mm. From the aspect of cooling, it is necessary to provide as thick a diaphragm as possible. Of the Diameter of the aperture 6 should be approximately between 4 and 20 mm.

Es ist möglich, Gaseinlässe 12 derart anzuordnen, dass ihre Öffnungen zum von der Blende 6 und von der von der Austrittsseite der Strahlung abgewandten Elektrode 2 begrenzten Teilbereich des gasgefüllten Elektrodenzwischenraums 3 weisen. Damit lässt sich der Gasdruck in diesem Teilbereich gezielt einstellen. In Zusammenwirken mit der Blende 6 kann dort insbesondere ein höherer Gasdruck vorgesehen werden als im von der Blende 6 und der der Austrittsseite der Strahlung zugewandten Elektrode 1 begrenzten Teilbereich des Elektrodenzwischenraums 3 bzw. es kann ein bestimmter gewünschter Druckunterschied eingestellt werden.It is possible to arrange gas inlets 12 in such a way that their openings face the partial region of the gas-filled electrode gap 3 delimited by the diaphragm 6 and by the electrode 2 facing away from the exit side of the radiation. This allows the gas pressure in this subarea to be adjusted specifically. In cooperation with the diaphragm 6, in particular a higher gas pressure can be provided there than in the partial region of the electrode gap 3 delimited by the diaphragm 6 and the electrode 1 facing the outlet side of the radiation or a specific desired pressure difference can be set.

Außerdem können Gaseinlässe 12' vorhanden sein, die Öffnungen zum von der Blende 6 und von der der Austrittsseite der Strahlung zugewandten Elektrode 2 begrenzten Teilbereich des gasgefüllten Elektrodenzwischenraums 3 haben.In addition, gas inlets 12 'may be present which have openings for the partial area of the gas-filled electrode gap 3 bounded by the diaphragm 6 and by the electrode 2 facing the outlet side of the radiation.

Mit dem Einbau von Gaseinlässen 12,12' in beiden Teilbereichen des Elektrodenzwischenraums 3 hat man einen besonders großen Spielraum bei der Regelung der Gasdruckverteilung im Elektrodenzwischenraum 3. Außerdem ist dadurch in Verbindung mit dem Vorhandensein der Blende 6 die Möglichkeit gegeben, eine inhomogene Verteilung der Gaszusammensetzung innerhalb des Elektrodenzwischenraums 3 zu generieren. Insbesondere wird in einer vorteilhaften Ausführungsform der Erfindung in den von der Blende 6 und von der von der Austrittsseite der Strahlung abgewandten Elektrode 2 begrenzten Teilbereich des Elektrodenzwischenraums 3 mittels der dort vorhandenen Gaseinlässe 12 zusätzlich ein Füllgas eingebracht, welches im Vergleich zum Arbeitsgas bei den verwendeten gepulsten Strömen sehr geringe Strahlungsverluste aufweist, wie z.B. Helium oder Wasserstoff. Auf diese Weise wird die Impedanz des Plasmas dort im Vergleich zu dem EUV emittierenden Bereich gering gehalten und die Energieeinkopplung effektiver. In den von der Blende 6 und von der der Austrittsseite der Strahlung zugewandten Elektrode 1 begrenzten Teilbereich des Elektrodenzwischenraums 3 wird mittels der dort vorhandenen Gaseinlässe 12' das für die Erzeugung des Pinchplasma und die resultierende Aussendung von EUV-Strahlung vorgesehene Arbeitsgas, wie etwa Xenon oder Neon eingelassen.With the installation of gas inlets 12,12 'in both partial areas of the electrode gap 3 one has a particularly large margin in the regulation of the gas pressure distribution in the electrode gap 3. In addition, in conjunction with the presence of the diaphragm 6 is given the possibility of an inhomogeneous distribution of the gas composition to generate within the electrode gap 3. In particular, in an advantageous embodiment of the invention in the of the aperture 6 and the side facing away from the radiation away from the electrode 2 limited portion of the electrode gap 3 by means of the gas inlets 12 there additionally introduced a filling gas, which compared to the working gas in the pulsed used Flows have very low radiation losses, such as Helium or hydrogen. In this way, the impedance of the plasma is kept small there compared to the EUV emitting region and the energy coupling more effective. In the area of the electrode interspace 3 bounded by the diaphragm 6 and by the side of the radiation facing the radiation 1, the working gas provided for the generation of the pinch plasma and the resulting emission of EUV radiation, such as xenon or Neon taken in.

Das Abpumpen des Gases kann besonders einfach von einer außerhalb des Elektrodenzwischenraums gelegenen Abpumpvorrichtung durch die Öffnung der der Austrittsseite der Strahlung zugewandten Elektrode 1 hindurch erfolgen. Möglich ist es aber auch, eine Abpumpvorrichtung direkt im Elektrodenzwischenraum 3, insbesondere im von der Blende 6 und von der der Austrittsseite der Strahlung zugewandten Elektrode 1 begrenzten Teilbereich des Elektrodenzwischenraums 3, vorzusehen. Dies ist besonders dann vorteilhaft, wenn in den beiden Teilbereichen des Elektrodenzwischenraums 3 wie oben beschrieben unterschiedliche Gaszusammensetzungen vorliegen, weil dann beim Abpumpen eine vergleichsweise niedrige Vermischung der beiden Gasgemische realisiert werden kann.The pumping of the gas can be particularly easily by a located outside the electrode gap pumping device through the opening of the the exit side of the radiation-facing electrode 1 therethrough. However, it is also possible to provide a pumping device directly in the electrode gap 3, in particular in the portion of the electrode gap 3 bounded by the diaphragm 6 and by the electrode 1 facing the outlet side of the radiation. This is particularly advantageous if different gas compositions are present in the two subregions of the interelectrode space 3 as described above, because then a comparatively low mixing of the two gas mixtures can be realized during the pumping.

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1
Eine aus der WO 99/29145 entnommene Zeichnung, die den Stand der Technik wiedergibt.
Fig.2
Schematische Darstellung der erfindungsgemäßen Vorrichtung
Fig.3 3
Schematische Darstellung einer Ausführungsform, bei der ein Teil der Blende aus einem entladungsfesten Material besteht.
Fig.4
Schematische Darstellung einer Ausführungsform, bei der mehrere metallene Blenden vorhanden sind.
Fig.5
Schematische Darstellung einer Ausführungsform, bei der die Hohlelektrode mehrere Öffnungen aufweist.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1
One from the WO 99/29145 taken drawing, which represents the prior art.
Fig.2
Schematic representation of the device according to the invention
3
Schematic representation of an embodiment in which a part of the diaphragm consists of a discharge-resistant material.
Figure 4
Schematic representation of an embodiment in which a plurality of metal panels are present.
Figure 5
Schematic representation of an embodiment in which the hollow electrode has a plurality of openings.

Fig.2 zeigt eine Ausführungsform des Elektrodensystems der erfindungsgemäßen Vorrichtung. Dabei ist eine Elektrode 2 als einen Hohlraum 8 aufweisende Hohlelektrode ausgestaltet und wird als Kathode verwendet. Die andere Elektrode 1 fungiert als Anode. Die Auskopplung der vom innerhalb des gasgefüllten Elektrodenzwischenraums 3 erzeugten Pinchplasmas 13 ausgehenden Strahlung erfolgt durch die Öffnung 5 der Anode 1. Um einen möglichst hohen Anteil der ausgesendeten Strahlung nutzbar machen zu können, verbreitert sich die Anodenöffnung 5 in Auskoppelrichtung. Zwischen den Elektroden 1,2 ist eine Blende 6 angeordnet, welche auf der durch die Anodenöffnung 5 definierte Symmetrieachse 4 eine durchgehende Öffnung 7 aufweist. Die Hohlkathode weist in dieser Ausführung eine Öffnung 9 zum Elektrodenzwischenraum 3 auf, diese befindet sich genauso auf der Symmetrieachse 4. Es sind Gaseinlässe 12 vorhanden mit Öffnungen zum von der Blende 6 und von der Kathode 2 begrenzten Teilbereich des gasgefüllten Zwischenraums 3. Die Zuleitungen dieser Gaseinlässe verlaufen in dieser Ausführung durch den Körper der Hohlkathode hindurch. Weitere Gaseinlässe 12' sind vorhanden sind mit Öffnungen zum von der Blende 6 und von der Anode 2 begrenzten Teilbereich des gasgefüllten Elektrodenzwischenraums 3. Fig.2 shows an embodiment of the electrode system of the device according to the invention. In this case, an electrode 2 as a cavity 8 having hollow electrode configured and is used as a cathode. The other electrode 1 acts as an anode. The decoupling of the radiation generated by the pinch plasma 13 generated inside the gap between the electrodes 3 takes place through the opening 5 of the anode 1. In order to make it possible to utilize the highest possible proportion of the emitted radiation, the anode opening 5 widened in Auskoppelrichtung. Between the electrodes 1, 2 a diaphragm 6 is arranged, which has a continuous opening 7 on the axis of symmetry 4 defined by the anode opening 5. The hollow cathode has in this embodiment an opening 9 to the electrode gap 3, this is just as on the symmetry axis 4. There are gas inlets 12 are provided with openings to the diaphragm 6 and the cathode 2 limited portion of the gas-filled gap 3. The leads of this Gas inlets run through the body of the hollow cathode in this embodiment. Further gas inlets 12 'are present with openings to the portion of the gas-filled electrode gap 3 delimited by the diaphragm 6 and by the anode 2.

Fig.3 zeigt eine Ausführungsform der erfindungsgemäßen Vorrichtung, bei der die Blende 6 in einem Bereich 10 nahe ihrer Öffnung 7 aus einem entladungsfesten Material, zum Beispiel aus Molybdän, Wolfram, Titannitrid oder Lanthanhexaborid besteht. Der übrige Teil der Blende 6 besteht aus einem gut mechanisch bearbeitbaren Material und/oder einem Material mit hoher Wärmeleitfähigkeit. Figure 3 shows an embodiment of the device according to the invention, in which the aperture 6 in a region 10 near its opening 7 made of a discharge-resistant material, for example of molybdenum, tungsten, titanium nitride or lanthanum hexaboride. The remaining part of the diaphragm 6 consists of a readily machineable material and / or a material with high thermal conductivity.

In Fig.4 ist eine Ausführungsform der erfmdungsgemäßen Vorrichtung dargestellt, bei der mehrere metallene Blenden 6,6',6" zwischen den Elektroden 1,2 angeordnet sind, jeweils beabstandet durch Isolatoren 11.In Figure 4 an embodiment of the inventive device is shown, in which a plurality of metal panels 6,6 ', 6 "are arranged between the electrodes 1,2, each spaced by insulators 11th

Fig. 5 zeigt eine weitere Ausführungsform, bei der die Kathode 2 drei Öffnungen 9,9',9" aufweist. Die zentrale auf der Symmetrieachse liegende Öffnung 9 ist dabei als Sackloch ausgebildet. Die beiden anderen Öffnungen 9',9" sind durchgehende Öffnungen zwischen dem Hohlraum 8 der Kathode 2 und dem Elektrodenzwischenraum 3. Fig. 5 shows a further embodiment, in which the cathode 2 has three openings 9, 9 ', 9 ".The central opening 9, which lies on the axis of symmetry, is designed as a blind hole, and the two other openings 9', 9" are through openings between the cavity 8 of the cathode 2 and the electrode gap 3.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
der Austrittsseite der Strahlung zugewandte Elektrodethe exit side of the radiation-facing electrode
22
von der Austrittsseite der Strahlung abgewandte Elektrodefrom the exit side of the radiation remote electrode
33
(Gasgefüllter) Elektrodenzwischenraum(Gas-filled) electrode gap
44
Symmetrieachseaxis of symmetry
55
Öffnung der der Austrittsseite der Strahlung zugewandten Elektrode (1)Opening of the outlet side of the radiation-facing electrode (1)
66
Blendecover
77
Öffnung der BlendeOpening the aperture
88th
Hohlraum der Hohlelektrode (2)Cavity of the hollow electrode (2)
9,9',9''9,9 ', 9' '
Öffnung der von der Austrittsseite der Strahlung abgewandten ElektrodeOpening of the electrode facing away from the exit side of the radiation
1010
Aus entladungsfestem Material bestehender Teilbereich der BlendeFrom discharge-resistant material existing portion of the aperture
1111
Isolatorinsulator
12,12'12.12 '
Gaseinlässegas inlets
1313
Pinchplasmapinch plasma

Claims (19)

  1. A gas discharge source in which a gas-filled intermediate electrode space (3) is located between two electrodes (1, 2) designed for generating extreme ultraviolet and/or soft X-radiation, in which devices for the admission and evacuation of gas are present, and in which one electrode (1) has an opening (5) that defines an axis of symmetry (4) and that is provided for the discharge of radiation,
    characterized in that
    a diaphragm (6), which has at least one opening (7) on the axis of symmetry (4) and which operates as a differential pump stage, is present between the two electrodes (1, 2) so as to divide the gas-filled intermediate electrode space (3) into two partial areas.
  2. A gas discharge source as claimed in claim 1,
    characterized in that
    the gas pressure in that partial area of the gas-filled intermediate electrode space (3) that is defined by the diaphragm (6) and the electrode (2) that faces away from the discharge side of the radiation is higher than in the partial area of the gas-filled intermediate electrode space (3) that is defined by the diaphragm (6) and the electrode (1) that faces towards the discharge side of the radiation.
  3. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the diaphragm (6) is designed in such a way that it contributes to the current transfer to only a small extent at the most.
  4. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    at least a portion of the diaphragm (6) comprises a material that is amenable to machining and/or a material that has a high thermal conductivity.
  5. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    at least a portion of the diaphragm (6) comprises a ceramic material.
  6. A gas discharge source as claimed in any one of the preceding claims, characterized in that the diaphragm (6) comprises a discharge-resistant material at least in an area (10) close to its opening (7).
  7. A gas discharge source as claimed in any one of claims 1 to 4,
    characterized in that
    multiple metal diaphragms (6, 6', 6") are present, separated from one another by isolators (11).
  8. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the diaphragm (6) has a dimension of between 1 mm and 20 mm in the direction of the axis of symmetry (4).
  9. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the opening (7) of the diaphragm (6) has a diameter of between 4 mm and 20 mm.
  10. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    gas inlets are present with openings facing towards that partial area of the gas-filled intermediate electrode space (3) that is defined by the diaphragm (6) and the electrode (2) that faces away from the discharge side of the radiation.
  11. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that gas inlets are present with openings facing towards that partial area of the gas-filled intermediate electrode space (3) that is defined by the diaphragm (6) and the electrode (1) that faces towards the discharge side of the radiation.
  12. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the electrode (2) facing away from the discharge side of the radiation comprises a cavity (8) that has at least one opening (9) into the gas-filled intermediate electrode space (3).
  13. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    a gas inlet is present with an opening into the cavity (8) of the electrode (2) that faces away from the discharge side of the radiation.
  14. A gas discharge source as claimed in either one of claims 12 or 13,
    characterized in that
    a triggering device is present in the cavity (8) of the electrode (2) that faces away from the discharge side of the radiation.
  15. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the gas mixture in the intermediate electrode space (3) comprises a working gas used for the gas discharge and, in addition, at least one further filler gas which causes lower radiation losses than the working gas,.
  16. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    it is mainly the working gas that is contained in the gas mixture in the partial area of the gas-filled intermediate electrode space (3) defined by the diaphragm (6) and by the electrode (1) facing towards the discharge side of the radiation, and in that it is mainly the filler gas that is contained in the gas mixture in the partial area of the gas-filled intermediate electrode space (3) defined by the diaphragm (6) and by the electrode (2) facing away from the discharge side of the radiation.
  17. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the evacuation of the intermediate electrode space (3) takes place through the opening (5) of the electrode (1) facing towards the discharge side of the radiation.
  18. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the electrode (2) facing away from the discharge side of the radiation is used as the cathode.
  19. A gas discharge source as claimed in any one of the preceding claims,
    characterized in that
    the electrode spacing and the gas pressure between the electrodes are selected such that the gas discharge takes place on the left-hand branch of the Paschen curve.
EP04744676A 2003-08-07 2004-07-29 Extreme uv and soft x ray generator Not-in-force EP1654914B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336273A DE10336273A1 (en) 2003-08-07 2003-08-07 Device for generating EUV and soft X-radiation
PCT/IB2004/051323 WO2005015602A2 (en) 2003-08-07 2004-07-29 Extreme uv and soft x ray generator

Publications (3)

Publication Number Publication Date
EP1654914A2 EP1654914A2 (en) 2006-05-10
EP1654914B1 true EP1654914B1 (en) 2009-03-25
EP1654914B8 EP1654914B8 (en) 2009-08-12

Family

ID=34129504

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04744676A Not-in-force EP1654914B8 (en) 2003-08-07 2004-07-29 Extreme uv and soft x ray generator

Country Status (9)

Country Link
US (1) US7734014B2 (en)
EP (1) EP1654914B8 (en)
JP (1) JP4814093B2 (en)
KR (1) KR101058068B1 (en)
CN (1) CN100482030C (en)
AT (1) ATE427026T1 (en)
DE (2) DE10336273A1 (en)
TW (1) TW200515458A (en)
WO (1) WO2005015602A2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007020742B8 (en) * 2007-04-28 2009-06-18 Xtreme Technologies Gmbh Arrangement for switching large electrical currents via a gas discharge
US8951384B2 (en) 2011-10-20 2015-02-10 Applied Materials, Inc. Electron beam plasma source with segmented beam dump for uniform plasma generation
US9129777B2 (en) 2011-10-20 2015-09-08 Applied Materials, Inc. Electron beam plasma source with arrayed plasma sources for uniform plasma generation
US20130098555A1 (en) * 2011-10-20 2013-04-25 Applied Materials, Inc. Electron beam plasma source with profiled conductive fins for uniform plasma generation
US9443700B2 (en) 2013-03-12 2016-09-13 Applied Materials, Inc. Electron beam plasma source with segmented suppression electrode for uniform plasma generation

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3005931A (en) * 1960-03-29 1961-10-24 Raphael A Dandl Ion gun
NL298175A (en) * 1962-11-20
JPS5763755A (en) * 1980-10-03 1982-04-17 Fujitsu Ltd X-ray generating appratus
JPS61218056A (en) * 1985-03-25 1986-09-27 Nippon Telegr & Teleph Corp <Ntt> X-ray generator
JPH0687408B2 (en) * 1986-03-07 1994-11-02 株式会社日立製作所 Plasma X-ray generator
KR900003310B1 (en) * 1986-05-27 1990-05-14 리가가구 겡큐소 Ion producing apparatus
US4841197A (en) * 1986-05-28 1989-06-20 Nihon Shinku Gijutsu Kabushiki Kaisha Double-chamber ion source
US4894546A (en) * 1987-03-11 1990-01-16 Nihon Shinku Gijutsu Kabushiki Kaisha Hollow cathode ion sources
JPH01117253A (en) * 1987-10-30 1989-05-10 Hamamatsu Photonics Kk Plasma x-ray generation device
JP2572787B2 (en) * 1987-11-18 1997-01-16 株式会社日立製作所 X-ray generator
JPH01243349A (en) * 1988-03-25 1989-09-28 Hitachi Ltd Plasma extreme ultraviolet light generator
DE3927089C1 (en) * 1989-08-17 1991-04-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
JP2819420B2 (en) * 1989-11-20 1998-10-30 東京エレクトロン株式会社 Ion source
IT1246682B (en) * 1991-03-04 1994-11-24 Proel Tecnologie Spa CABLE CATHOD DEVICE NOT HEATED FOR THE DYNAMIC GENERATION OF PLASMA
US5397956A (en) * 1992-01-13 1995-03-14 Tokyo Electron Limited Electron beam excited plasma system
KR100271244B1 (en) * 1993-09-07 2000-11-01 히가시 데쓰로 Eletron beam excited plasma system
US5467362A (en) * 1994-08-03 1995-11-14 Murray; Gordon A. Pulsed gas discharge Xray laser
US6576917B1 (en) * 1997-03-11 2003-06-10 University Of Central Florida Adjustable bore capillary discharge
US6031241A (en) * 1997-03-11 2000-02-29 University Of Central Florida Capillary discharge extreme ultraviolet lamp source for EUV microlithography and other related applications
US6815700B2 (en) * 1997-05-12 2004-11-09 Cymer, Inc. Plasma focus light source with improved pulse power system
DE19753696A1 (en) * 1997-12-03 1999-06-17 Fraunhofer Ges Forschung Device and method for generating extreme ultraviolet radiation and soft X-rays from a gas discharge
DE19962160C2 (en) * 1999-06-29 2003-11-13 Fraunhofer Ges Forschung Devices for generating extreme ultraviolet and soft X-rays from a gas discharge
DE10051986A1 (en) * 2000-10-20 2002-05-16 Schwerionenforsch Gmbh Hollow cathode for use in a gas discharge process for ion stripping
DE10139677A1 (en) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Method and device for generating extremely ultraviolet radiation and soft X-rays
DE10134033A1 (en) * 2001-04-06 2002-10-17 Fraunhofer Ges Forschung Method and device for generating extreme ultraviolet radiation / soft X-rays
DE10151080C1 (en) * 2001-10-10 2002-12-05 Xtreme Tech Gmbh Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure
US7342236B2 (en) * 2004-02-23 2008-03-11 Veeco Instruments, Inc. Fluid-cooled ion source

Also Published As

Publication number Publication date
EP1654914A2 (en) 2006-05-10
EP1654914B8 (en) 2009-08-12
ATE427026T1 (en) 2009-04-15
US7734014B2 (en) 2010-06-08
WO2005015602A3 (en) 2005-06-02
CN1833472A (en) 2006-09-13
DE10336273A1 (en) 2005-03-10
DE502004009224D1 (en) 2009-05-07
TW200515458A (en) 2005-05-01
JP4814093B2 (en) 2011-11-09
JP2007501997A (en) 2007-02-01
CN100482030C (en) 2009-04-22
WO2005015602A2 (en) 2005-02-17
KR101058068B1 (en) 2011-08-22
KR20060054422A (en) 2006-05-22
US20080143228A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
DE10151080C1 (en) Device for producing extreme ultraviolet radiation used in the semiconductor industry comprises a discharge chamber surrounded by electrode housings through which an operating gas flows under a predetermined pressure
EP0140005B1 (en) Apparatus for producing a plasma source having a higher radiation insensity in the x-ray range
DE2628076C2 (en) Electron gun for irradiating an area arranged outside the electron gun with an electron beam
DE69024434T2 (en) Plasma switch with hollow, thermionic cathode
DE102005025624B4 (en) Arrangement for generating intense short-wave radiation based on a gas discharge plasma
EP1248499B1 (en) Method and apparatus for production of extreme ultraviolet radiation
DE10260458B3 (en) Radiation source for production of extreme ultraviolet radiation, useful in research into smaller transistors from the micrometer to the nanometer range, is based on dense hot plasma obtained by gas discharge
EP1197127B1 (en) Device for producing an extreme ultraviolet and soft x radiation from a gaseous discharge
DE69113332T2 (en) Vacuum ultraviolet light source.
EP1036488B1 (en) Method and device for producing extreme ultraviolet and soft x-rays from a gaseous discharge
DE3689428T2 (en) Electron beam source.
DE2716578A1 (en) PLASMA ELECTRONS / ION SOURCE
DE3429591A1 (en) ION SOURCE WITH AT LEAST TWO IONIZATION CHAMBERS, IN PARTICULAR FOR THE FORMATION OF CHEMICALLY ACTIVE ION RAYS
DE2046260A1 (en) Process for generating electn see discharges in a gaseous working medium in cavities
DE2633778A1 (en) ION ENGINE
DE10256663B3 (en) Gas discharge lamp for EUV radiation
DE3782789T2 (en) ELECTRONIC CANNON WITH PLASMA ANODE.
DE1208420B (en) Device for generating a beam of ions or electrons in which at least two similar ion or electron sources are arranged one behind the other
EP1654914B1 (en) Extreme uv and soft x ray generator
DE10238096B3 (en) Gas discharge lamp for extreme UV lithography or X-ray microscopy has tapered electrode opening for transport of charge carriers from external region to discharge space
DE112008000610T5 (en) Gas discharge laser
DE3642749C2 (en)
DE1240199B (en) Discharge device for generating a high-energy arc discharge
DE2362723C3 (en) Ion source for generating singly and / or multiply charged ions
DE3908480C1 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060307

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070306

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004009224

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: FRAUNHOFER-G.- ZUR FOERDERUNG DER ANGEWANDTEN FORS

Effective date: 20090731

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20091229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110729

Year of fee payment: 8

Ref country code: FR

Payment date: 20110810

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110801

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120729

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009224

Country of ref document: DE

Effective date: 20130201