JPS61218056A - X-ray generator - Google Patents

X-ray generator

Info

Publication number
JPS61218056A
JPS61218056A JP5861785A JP5861785A JPS61218056A JP S61218056 A JPS61218056 A JP S61218056A JP 5861785 A JP5861785 A JP 5861785A JP 5861785 A JP5861785 A JP 5861785A JP S61218056 A JPS61218056 A JP S61218056A
Authority
JP
Japan
Prior art keywords
gas
valve
plasma
chamber
movable valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5861785A
Other languages
Japanese (ja)
Inventor
Ikuo Okada
岡田 育夫
Yasunao Saito
斉藤 保直
Hideo Yoshihara
秀雄 吉原
Norihiko Ninomiya
二宮 紀彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP5861785A priority Critical patent/JPS61218056A/en
Publication of JPS61218056A publication Critical patent/JPS61218056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To stably and reliably control switching of the movable valve of a high-speed switching gas valve with simple structure and minimize the variation in switching operation by using electromagnetic force to switch the movable valve. CONSTITUTION:A plasma production chamber 10 is usually maintained at a proper vacuum by means of a vacuum pump 12. When gas 26 is fed into an X-ray generator by the operation of a high-speed switching gas valve 16, plasma is produced in a plasma production regions 13 located between a high voltage electrode 3 and a low voltage electrode 5. As the result, X-rays 15 are produced which are then led outside the generator through an X-ray discharge window 6. Electromagnetic force is used to move the movable valve 22 of the high-speed switching gas valve 16 upward during gas feeding thereby making the plasma production chamber 10 continuous with a gas chamber 25. Then, the valve 22 is moved back to its original position by its own weight thereby breaking the connection between the two chambers. Due to the above simple structure, the weight of the valve 22 can be reduced and the valve 22 can be driven by reduced force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ生成室内に対向して配設された電極
間にガスを高速で流入し、その電極間に大電流を流して
生成するプラズマにより、光やX線を発生させる装置に
関し、特に構造簡易にして安定したX線出力が得られる
ように改良したものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention generates plasma by flowing gas at high speed between electrodes arranged facing each other in a plasma generation chamber, and by passing a large current between the electrodes. This device relates to a device that generates light and X-rays using plasma, and has been improved to have a particularly simple structure and to obtain stable X-ray output.

〔従来の技術〕[Conventional technology]

従来、放電プラズマによるX線発生法としては、主とし
て2つの手法が提案されている。その一つはプラズマフ
ォーカス法(例えば核融合研究、第35巻第6号P、4
28 、1976 、6月名古屋大学プラズマ研究所参
照)で、他は2ピンチ法で、本発明によるX線発生装置
はこの2ピンチ法に属するものである。これらのプラズ
マから発生するX1IiIで集積回路のパターン転写を
行うには、ウェハに塗布された高分子膜(レジスト)の
材質に適応した波長(5〜15A)のX線を必要とし、
この波長は供給されるガスの特性によって決まる。
Conventionally, two main methods have been proposed for X-ray generation using discharge plasma. One of them is the plasma focus method (for example, Nuclear Fusion Research, Vol. 35, No. 6, P. 4).
28, June 1976, Nagoya University Plasma Research Institute), and the others are two-pinch methods, and the X-ray generator according to the present invention belongs to this two-pinch method. In order to transfer the integrated circuit pattern using X1IiI generated from these plasmas, X-rays with a wavelength (5 to 15 A) suitable for the material of the polymer film (resist) coated on the wafer are required.
This wavelength is determined by the characteristics of the supplied gas.

従来よシ、このガスの供給方法には、前記2つの手法と
も真空容器内に設けた一組の電極間へ常時連続して流し
続ける方法と、電磁力やバネの力を利用してガスバルブ
を動作させ、必要時のみパルス的にガスを流入させる方
法とがある。
Conventionally, the two methods used to supply this gas include a method in which the gas is continuously supplied between a set of electrodes installed in a vacuum container, and a method in which the gas is supplied continuously at all times, and a method in which the gas is supplied using electromagnetic force or the force of a spring. There is a method in which the gas is flown in pulses only when necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、X線を発生させるに必要なプラズマは、温度
約100万〜1000万℃以上、プラズマ密度約10 
/c1n 以上で、きわめて短時間(例えばμmオーダ
)に生成式せる必要がある。そのためにガスの供給速度
やその初期ガス密度が安定していることが必要で、l)
、かつ実用機にあっては繰シ返し運転速度はたかだか数
十Hz と考えられる。
By the way, the plasma necessary to generate X-rays has a temperature of about 1 million to 10 million degrees Celsius or more and a plasma density of about 10
/c1n or more, it is necessary to create a generation formula in an extremely short time (for example, on the order of μm). For this purpose, it is necessary that the gas supply rate and initial gas density be stable, and l)
In a practical machine, the repetitive operation speed is thought to be several tens of Hz at most.

これらを考慮すると真空容器へ連続してガスを流入し続
けることは、ガスを無駄に消費するばかりでなく、排気
系の能力を必要以上に大きくする欠点がろる。他方従来
のパルス的にガスを流入させるガスバルブ方式は横方向
に配置される等のために、常時バネの力でガスバルブを
閉じて、必要時に電磁石を動作させ、その吸引力でガス
バルブを開く等、構造が複雑で、かつガスバルブの開く
時間が数十msに達するため動作が遅く、その上動作の
バラツキが大きいことから、高温、高密度プラズマの生
成に安定性を欠く欠点があった。
Taking these into consideration, continuously flowing gas into the vacuum container not only wastes gas, but also has the drawback of making the capacity of the exhaust system larger than necessary. On the other hand, the conventional gas valve system that allows gas to flow in pulses is placed laterally, so the gas valve is always closed using the force of a spring, and when necessary, an electromagnet is operated and the gas valve is opened using the suction force. The structure is complicated, the gas valve opens for several tens of milliseconds, so the operation is slow, and the operation is highly variable, so it has the disadvantage of lacking stability in generating high-temperature, high-density plasma.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るX@発生装置は上述したような点に鑑みて
な嘔れたもので、プラズマ生成室内に対向して配設され
放電スイッチを介してコンデン丈に接続てれた一対の電
極を有するプラズマX線源に、前記プラズマ生成室と連
通し所定のガスが供給されるガス室を有する容器と、こ
の容器内に上下動自在に配設され通常は前記プラズマ生
成室とガス室の連通を遮断し、ガス供給時に電磁力によ
って上方へ移動されることによシ前記ガス室をプラズマ
生成室と連通嘔せ復帰時に自重で落下する可動弁とを備
えた高速開閉ガスバルブを配設したものである。
The X@ generator according to the present invention has been developed in view of the above-mentioned points, and includes a pair of electrodes that are arranged facing each other in a plasma generation chamber and connected to the length of a condenser via a discharge switch. a plasma A high-speed opening/closing gas valve equipped with a movable valve that shuts off the gas and connects the gas chamber with the plasma generation chamber by being moved upward by electromagnetic force when gas is supplied, and falls under its own weight when returning from vomiting. It is.

〔作 用〕[For production]

本発明においては可動弁を電磁力できわめて短時間に上
昇移動場せて電極間にガス室内のガスを流入させ、電磁
力の消滅とともに可動弁がその自重で落下し、高速開閉
ガスバルブを閉じるため、構造簡易にして安定かつ確実
に開閉制御でき、動作のバラツキを少なくすることがで
きる。
In the present invention, the movable valve is moved upward in a very short time using electromagnetic force to cause gas in the gas chamber to flow between the electrodes, and when the electromagnetic force disappears, the movable valve falls under its own weight, closing the high-speed opening/closing gas valve. With a simple structure, opening and closing can be controlled stably and reliably, and variations in operation can be reduced.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

fa1図は本発明に係るX線発生装置の一実施例を示す
断面図である。1はプラズマX線源で、このプラズマX
線源1は高圧電極3を有する電極部材2と、低圧電極5
とX線取シ出し窓6を有する電極部材4とを備えている
。これらの電極部材2゜4はシール兼絶縁板7を介して
上下に対向配置され、高電圧大電流を発生式せるプラズ
マ生成用電源8に放電スイッチ9を介して接続されるこ
とにより、プラズマ生成室10を形成する真空容器11
を構成している。プラズマ生成室10は通常真空ポンプ
12によシ適正な真空状態に保持式れておシ、高速開閉
ガスバルブ16の作動によりガス26が供給されると、
前記高圧電極3と低圧電極5間のプラズマ生成部13で
プラズマが生成式れ、このプラズマが電流工の増加と共
に自己磁場によってピンチすることによシピンテプラズ
マPが形成され、これによってX線15が発生し、この
X線15を前記X線取り出し窓6よシ外部に取り出すよ
うにしている。
Figure fa1 is a sectional view showing an embodiment of the X-ray generator according to the present invention. 1 is a plasma X-ray source, and this plasma
The radiation source 1 includes an electrode member 2 having a high voltage electrode 3 and a low voltage electrode 5.
and an electrode member 4 having an X-ray extraction window 6. These electrode members 2゜4 are arranged vertically facing each other via a seal/insulating plate 7, and are connected via a discharge switch 9 to a plasma generation power source 8 that generates high voltage and large current, thereby generating plasma. Vacuum vessel 11 forming chamber 10
It consists of The plasma generation chamber 10 is normally maintained in an appropriate vacuum state by a vacuum pump 12, and when a gas 26 is supplied by the operation of a high-speed opening/closing gas valve 16,
Plasma is generated in the plasma generation section 13 between the high-voltage electrode 3 and the low-voltage electrode 5, and this plasma is pinched by the self-magnetic field as the electric current increases, thereby forming a plasma P, which generates X-rays 15 is generated, and the X-rays 15 are taken out to the outside through the X-ray extraction window 6.

前記高速開閉ガスバルブ16は、前記電極部材2の上面
に0リング17を介して載置され、かつ複数個のボルト
18によって前記電極部材2に強固定された容器20を
備えている。この容器20の内部は、駆動用励磁コイル
21によって作動される金属製の可動弁22によって開
閉制御され、通常は前記可動弁22がOリング23を介
して前記電極部材2上に位置することにより前記プラズ
マ生成室10との連通を断たれ、ガス供給時に可動弁2
2の上昇移動によシ開かれることにより該プラズマ生成
室10と連通するガス室25を形成し、このガス室25
に前記ガス26がガス注入孔27より供給されている。
The high-speed opening/closing gas valve 16 includes a container 20 placed on the upper surface of the electrode member 2 via an O-ring 17 and firmly fixed to the electrode member 2 with a plurality of bolts 18 . The inside of this container 20 is controlled to open and close by a metal movable valve 22 operated by a driving excitation coil 21, and normally the movable valve 22 is positioned on the electrode member 2 via an O-ring 23. The movable valve 2 is disconnected from the plasma generation chamber 10 when gas is supplied.
2 to form a gas chamber 25 that communicates with the plasma generation chamber 10.
The gas 26 is supplied from a gas injection hole 27.

前記駆動用励磁コイル21の両端部は前記容器20と、
例えば樹脂で固定てれた端子28m、28bに接続てれ
ており、これらの端子28m、 28bはガスバルブ用
パルス電源29に放電スイッチ30を介して接続されて
いる。前記可動弁22は前記ガス室25内に上下動自在
に配設され、その下面が前記プラズマ生成室10の真空
力によって通常前記Oリング23に密接され、これによ
って生成室10とガス室25とが互いに気密に保たれて
―る。
Both ends of the driving excitation coil 21 are connected to the container 20,
For example, it is connected to terminals 28m and 28b fixed with resin, and these terminals 28m and 28b are connected to a gas valve pulse power source 29 via a discharge switch 30. The movable valve 22 is disposed within the gas chamber 25 so as to be able to move up and down, and its lower surface is normally brought into close contact with the O-ring 23 by the vacuum force of the plasma generation chamber 10, thereby separating the generation chamber 10 and the gas chamber 25. are kept airtight from each other.

次に、このような構成からなるX線発生装置1の動作を
説明する。
Next, the operation of the X-ray generator 1 having such a configuration will be explained.

ガス26はガス注入孔27よυガス室25に供給され、
該室25を満たす。このような状態で放電スイッチ30
を閉じて、ガスバルブ用パルス電源29よシコンデンブ
放電等により極めて急峻な大電流を駆動用励磁コイル2
1に流すと、蚊コイル21には大きな磁束33が生じて
可動弁22との空間が強い磁気圧となる。すると、可動
弁22はその磁気反撥力によって上方へはね上げられ、
容器20の天井面20aに衝突して前記ガス注入孔27
を塞ぐ。一方、可動弁22が上昇移動すると、皺伸22
と0リング23との間に隙間が生じてガス室25とプラ
ズマ生成室10とを連通させるため、ガス室25に満て
れていたガスは、音速に近い速度で真空状態に保たれて
いたプラズマ生成室10のプラズマ生成部13に流入す
る。この流入したガスが所定のガス密度に達すると、放
電スイッチ9を閉じてプラズマ生成用パルス電源8よシ
コンデンサ放電等による極めて急峻な高電圧を高圧電極
3と低圧電極5間に印加する。この結果、プラズマ生成
部13の両電極3,5間の電界強度は極めて強くなシ、
絶縁破壊を生じてガスはプラズマ化される。すると、回
路は低インピーダンス化されて大電流Iが前記パルス電
源8よシ供給されて、プラズマは自己磁場でピンチ作用
が生じて徐々に収束して直径1〜2tm程度のピンチプ
ラズマPを生じ、これによシX線15が発生する。その
後、大電流が減衰することにより、プラズマは徐々に崩
壊して電流切断と共に消滅する。
The gas 26 is supplied to the υ gas chamber 25 through the gas injection hole 27,
The chamber 25 is filled. In this state, the discharge switch 30
is closed, and the pulse power supply 29 for the gas valve sends an extremely steep large current to the excitation coil 2 for driving by means of electric discharge, etc.
1, a large magnetic flux 33 is generated in the mosquito coil 21, and the space between it and the movable valve 22 becomes subject to strong magnetic pressure. Then, the movable valve 22 is flipped upward by the magnetic repulsion force,
The gas injection hole 27 collides with the ceiling surface 20a of the container 20.
block. On the other hand, when the movable valve 22 moves upward, the wrinkle stretch 22
Since a gap was created between the gas chamber 25 and the O-ring 23 to allow communication between the gas chamber 25 and the plasma generation chamber 10, the gas filling the gas chamber 25 was kept in a vacuum state at a speed close to the speed of sound. It flows into the plasma generation section 13 of the plasma generation chamber 10. When the gas that has flowed in reaches a predetermined gas density, the discharge switch 9 is closed, and the plasma generation pulse power source 8 applies an extremely steep high voltage such as capacitor discharge between the high voltage electrode 3 and the low voltage electrode 5. As a result, the electric field strength between the electrodes 3 and 5 of the plasma generation section 13 is extremely strong.
Dielectric breakdown occurs and the gas becomes plasma. Then, the impedance of the circuit is reduced, and a large current I is supplied from the pulse power source 8, and the plasma undergoes a pinching action due to its own magnetic field and gradually converges to form a pinched plasma P with a diameter of about 1 to 2 tm. This generates X-rays 15. Thereafter, as the large current attenuates, the plasma gradually collapses and disappears when the current is cut off.

一方、前記可動弁22が動作して上方へはね上がると、
前記した通シガス注入孔27を塞ぐため、可動弁22が
開いている間はガス26がガス室25に流入することは
ない。パルス電源29から駆動用励磁コイル21に通電
される電流を減少させることにより、該コイル21によ
る電磁力は減少して行く。したがって、可動弁22はそ
の自重と、皺伸22の鍔部22A附近とガス室25間に
生ずる圧力差によって加わる力によシ落下し、0リング
23に接触、その後プラズマ生成室10の真空力によシ
吸引されることによシ、0りング23に密接され、プラ
ズマ生成室10とガス室250連通を断つ。以上が本X
線発生装置の動作原理である。
On the other hand, when the movable valve 22 operates and springs upward,
Since the above-mentioned inlet gas injection hole 27 is closed, the gas 26 does not flow into the gas chamber 25 while the movable valve 22 is open. By reducing the current flowing from the pulse power source 29 to the driving excitation coil 21, the electromagnetic force caused by the coil 21 decreases. Therefore, the movable valve 22 falls due to its own weight and the force applied by the pressure difference generated between the vicinity of the flange 22A of the wrinkle extension 22 and the gas chamber 25, contacts the O-ring 23, and then the vacuum force of the plasma generation chamber 10 As a result of being attracted by the gas, it is brought into close contact with the O-ring 23, and the communication between the plasma generation chamber 10 and the gas chamber 250 is cut off. That's book X
This is the operating principle of the line generator.

ここで、プラズマ研究に使用された従来の高速開閉ガス
バルブは、横方向に設置されて、可動弁をバネの力によ
って常に一方向に押圧しておき、その強いバネ力にさか
らって大電流による電磁力で開放するものであった。し
たがって、バネを必要とするため構造は複雑で、かつ可
動弁の重さも本発明装置による可動弁22に比べて1桁
以上も重いため、大容量コンデンサ放電による強力な電
磁力を必要とする欠点が有り、また電磁力が強力になれ
ばなるほど駆動機構部の故障や、ジュール熱による駆動
用励磁コイルの破損等が生じ、寿命の点で問題がおった
Conventional high-speed opening/closing gas valves used in plasma research are installed horizontally, and the movable valve is always pushed in one direction by the force of a spring. It was released using electromagnetic force. Therefore, the structure is complicated because it requires a spring, and the weight of the movable valve is more than an order of magnitude heavier than the movable valve 22 made by the device of the present invention, which has the disadvantage of requiring strong electromagnetic force due to large-capacity capacitor discharge. Furthermore, as the electromagnetic force becomes stronger, the drive mechanism may fail and the drive excitation coil may be damaged due to Joule heat, leading to problems in terms of service life.

これに対して、本発明は高速開閉ガスバルブ16を縦設
し、可動弁22を鉛直方向に移動自在に配置し、駆動用
励磁コイル21による電磁力で上昇移動させた後、復旧
動作を該弁22自体の自重によって行わせるようにして
いるため、バネを必要とせず、構造が簡単である。また
、可動弁22は金属、例えばアルミニウムで製作したと
しても502以下にすることも可能で、いたって軽量な
丸めに駆動用励磁コイル21の電磁力は小さなものでよ
く、シたがってガスバルブ用パルス電源29も小さな容
量でよいことから、回路の温度上昇も小さく、かつ高速
開閉ガスバルブ1Bを前述した通シ簡単な構造にするこ
とができるため、従来装置に比べて耐久性に優れ、長寿
命化への問題を解決することができる。
In contrast, in the present invention, the high-speed opening/closing gas valve 16 is installed vertically, the movable valve 22 is arranged to be movable in the vertical direction, and after the movable valve 22 is moved upward by the electromagnetic force of the driving excitation coil 21, the recovery operation is performed on the valve. Since the movement is performed by the weight of the 22 itself, no spring is required and the structure is simple. Further, even if the movable valve 22 is made of metal, for example aluminum, it can be made of 502 mm or less, and the electromagnetic force of the excitation coil 21 for driving can be small since it is extremely lightweight and can be made of a metal such as aluminum. Since the power supply 29 also requires a small capacity, the temperature rise in the circuit is small, and the high-speed opening/closing gas valve 1B can be made into the above-mentioned easy-to-operate structure, so it has excellent durability and a long service life compared to conventional devices. can solve the problem.

この場合、可動弁22はすべて金属で作る必要はなく、
可動弁22の鍔部22Aが金属で、駆動用励磁コイル2
1の磁束33の浸透を防ぎ電磁力による反撥力を生じさ
せればよいことから、柱状の本体部22Bについてはプ
ラスチックで製作してもよく、したがってこのような組
み合わせの可動弁を製作、使用することによシ、更に軽
量化するととも可能である。
In this case, the movable valve 22 does not need to be made entirely of metal;
The flange 22A of the movable valve 22 is made of metal, and the driving excitation coil 2
Since it is sufficient to prevent the penetration of the magnetic flux 33 of No. 1 and generate a repulsive force due to electromagnetic force, the columnar main body 22B may be made of plastic. Therefore, a movable valve with such a combination is manufactured and used. In particular, it is possible to further reduce the weight.

このように本発明によるXIi!発生装置は、可動弁2
2の軽量化により高速駆動を可能とし、ガス注入孔27
の閉塞によりガス26の流入を一時停止させるようにし
ているので、10〜201is程度の短時間でプラズマ
生成部13のガスの密度を最大とすることができ、また
100μm程度で前記プラズマ生成部13のガス密度を
急激に減少させることができ、その再現性もいたって良
好である。
In this way, XIi! according to the present invention! The generator is a movable valve 2
The lighter weight of 2 enables high-speed driving, and the gas injection hole 27
Since the inflow of gas 26 is temporarily stopped by the blockage of The gas density can be rapidly reduced, and the reproducibility is also very good.

仮に、可動弁22の動作がゆっくシであると、Oリング
23との接合面の剥離がゆっくすなため、ガス流入時の
初期抵抗が大きくなり、だらだらとしたガス流入となる
。したがって、プラズマ生成部13がただちに所定のガ
ス密度にならず、プラズマ生成室1G全体へガスは拡散
してしまうため、プラズマ生成部13で放電が生じなく
なり、極端な場合絶縁板70表面で放電することになる
。また、仮にガス注入孔2Tが閉じないと、プラズマ生
成部13が所定の圧力になってもガス26は流入し続け
ることとなシ、必要以上のガスが流入し、真空ポンプ1
2で排気するのに時間を要することとなる。
If the operation of the movable valve 22 is slow, the joint surface with the O-ring 23 will not peel off slowly, resulting in a large initial resistance when gas flows in, resulting in a sloppy gas flow. Therefore, the plasma generation section 13 does not reach a predetermined gas density immediately, and the gas diffuses throughout the plasma generation chamber 1G, so that no discharge occurs in the plasma generation section 13, and in extreme cases, discharge occurs on the surface of the insulating plate 70. It turns out. Moreover, if the gas injection hole 2T is not closed, the gas 26 will continue to flow in even if the plasma generation part 13 reaches a predetermined pressure, and more gas than necessary will flow in, causing the vacuum pump 1
2, it will take time to exhaust the air.

第1図実施例は電極部材4がプラズマ生成室1゜を形成
するための真空容器11を兼ね、Xfs取シ出し窓6等
を具備するものとしたが、低圧電極5を電極部材と別個
独立に設け、プラズマ生成用パルス電源8に接続するこ
とも可能である。
In the embodiment shown in FIG. 1, the electrode member 4 also serves as a vacuum vessel 11 for forming the plasma generation chamber 1°, and is equipped with an Xfs extraction window 6, etc., but the low-voltage electrode 5 is separate and independent from the electrode member. It is also possible to connect it to the pulse power source 8 for plasma generation.

その例を第2図に示す。また第2図は高速開閉ガスバル
ブの他の実施例も併せて示している。すなわち、この実
施例は、X線取り出し窓6を備えた真空容器40を低圧
電極5とは別に製作してその上面開口部に該低圧電極5
を配設し、さらにその上に電極部材2を絶縁板7を介し
て配設してプラズマX線源1とし、可動弁22を金属板
で形成してその下面を0リング41にプラズマ生成室1
゜の真空圧によって密接させることにょυ、その上部に
設は九ガス室25と前記プラズマ生成室1゜との連通を
通常断つ高速開閉ガスバルブ16としたものである。 
    □ なお、他の構成は第1図に示した実施例と同一であるた
め、同一符号を以って示し、その説明を省略する。また
、高速開閉ガスバルブ16の動作およびX線9の発生過
穆も上記実施例と同一であるため説明を省略する。
An example is shown in FIG. FIG. 2 also shows another embodiment of the high-speed opening/closing gas valve. That is, in this embodiment, a vacuum container 40 equipped with an X-ray extraction window 6 is manufactured separately from the low-voltage electrode 5, and the low-voltage electrode 5 is inserted into the upper opening of the vacuum container 40.
is disposed thereon, and an electrode member 2 is further disposed thereon via an insulating plate 7 to form a plasma X-ray source 1. A movable valve 22 is formed of a metal plate, and its lower surface is connected to an O-ring 41 to form a plasma generation chamber. 1
A high-speed opening/closing gas valve 16 which normally cuts off the communication between the nine gas chambers 25 and the plasma generation chamber 1 degree is installed above the gas chambers 25 and 1 degree.
□ Since the other configurations are the same as those of the embodiment shown in FIG. 1, they are designated by the same reference numerals and their explanations will be omitted. Further, the operation of the high-speed opening/closing gas valve 16 and the generation and generation of X-rays 9 are also the same as in the above embodiment, so their explanation will be omitted.

ここで、第1図実施例装置との相違は、可動弁22の形
状がより簡素化され軽量化されたことで、動作はいたっ
て良好である。
Here, the difference from the apparatus of the embodiment shown in FIG. 1 is that the shape of the movable valve 22 is simpler and lighter, and the operation is very good.

また、本発明において、プラズマ生成部13の形状はい
たって単純な例を示したが、ピンチプラズマPを生成す
るには電極形状、ガスの種類と密度、電流の大きさ等で
定まる条件がととのえばよく、種々の組合せが生じるが
、いずれの方法にしテモハルス的にガス26を供給して
プラズマ?tE成し、光やX線を得る方法を用いる限り
、本発明はすべて有効に適用できるものである。
In addition, in the present invention, although the shape of the plasma generation section 13 is shown as a very simple example, in order to generate the pinch plasma P, conditions determined by the electrode shape, the type and density of gas, the magnitude of the current, etc. Various combinations often occur, but which method can be used to supply the gas 26 in a temohalus manner and generate plasma? The present invention can be effectively applied to any method as long as a method for obtaining light or X-rays is used.

このほか本発明のX線発生装置は、X線分析装置、X線
顕微鏡、X線励起による化学反応装置。
In addition, the X-ray generator of the present invention includes an X-ray analyzer, an X-ray microscope, and a chemical reaction device using X-ray excitation.

X線励起を利用する膜形成装置並びにX線励起を利用す
るエツチング装置に適用することが可能である。
It can be applied to a film forming apparatus that uses X-ray excitation and an etching apparatus that uses X-ray excitation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明に係るX線発生装置は、プラ
ズマX線源に高速開閉ガスバルブを配設し、その可動弁
をガス供給時に電磁力によって上方に移動式せることに
よシ、プラズマ生成室とガス室とを連通ぢせ、自重によ
って復帰させることにより両室の連通を断つように構成
したので、構造が簡単で、可動弁を軽量化でき、したが
って可動弁の駆動力を小ざくすることができる。その結
果、電磁力は小嘔くてよく、パルス電源の小容量化を可
能にし、またガスバルブ駆動用励磁コイルの電磁力設計
や熱設計が非常に容易となり、装置自体の小型化を可能
にする。また、可動弁を高速にかつ安定に動作嘔せるこ
とかできるため、プラズマ生成部のガス密度も再現性が
よく、したがって再現性のよいX線を得ることができる
As explained above, the X-ray generator according to the present invention has a high-speed opening/closing gas valve disposed in the plasma X-ray source, and the movable valve is moved upward by electromagnetic force when gas is supplied, thereby generating plasma. Since the chamber and the gas chamber are communicated with each other, and the communication between the two chambers is cut off by returning the chamber by its own weight, the structure is simple, the weight of the movable valve can be reduced, and the driving force of the movable valve can be reduced. be able to. As a result, the electromagnetic force is small, making it possible to reduce the capacity of the pulse power supply, and also making it extremely easy to design the electromagnetic force and thermal design of the excitation coil for driving the gas valve, making it possible to miniaturize the device itself. . Furthermore, since the movable valve can be operated quickly and stably, the gas density in the plasma generation section can be reproducibly obtained, and therefore X-rays can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の他の実施例を示す断面図である。 2.4・・・・電極部材、3・・・・高圧電極、5・・
・・低圧電極、8・・・・プラズマ生成用パルスを源、
9・・・・放電スイッチ、10・・・・プラズマ生成室
、11・・・・真空容器、12・・・・真空ポンプ、1
3・・・・プラズマ生成部、15・・・・X線、16・
・・・高速開閉ガスバルブ、20・・・・容器、21・
・・・駆動用励磁コイル、22・・・・可動弁、25・
・・・ガス室、26・・・・ガス、29・・・・ガスバ
ルブ用パルス電源、30・・・・放電スイッチ。
FIG. 1 is a sectional view showing one embodiment of the invention, and FIG. 2 is a sectional view showing another embodiment of the invention. 2.4... Electrode member, 3... High voltage electrode, 5...
...Low voltage electrode, 8...Plasma generation pulse source,
9...discharge switch, 10...plasma generation chamber, 11...vacuum container, 12...vacuum pump, 1
3...Plasma generation section, 15...X-ray, 16...
...High-speed opening/closing gas valve, 20... Container, 21.
... Drive excitation coil, 22... Movable valve, 25.
... Gas chamber, 26 ... Gas, 29 ... Pulse power supply for gas valve, 30 ... Discharge switch.

Claims (1)

【特許請求の範囲】[Claims] プラズマ生成室を形成する真空容器内に対向して配設さ
れ放電スイツチを介してコンデンサに接続された一対の
電極を有するプラズマX線源に、前記プラズマ生成室と
連通し所定のガスが供給されるガス室を有する容器と、
この容器内に上下動自在に配設され通常は前記プラズマ
生成室とガス室の連通を遮断し、ガス供給時に電磁力に
よつて上方に移動されることにより前記ガス室を前記プ
ラズマ生成室と連通させ復帰時に自重で落下する可動弁
とを備えた高速開閉ガスバルブを配設したことを特徴と
するX線発生装置。
A plasma X-ray source having a pair of electrodes disposed facing each other in a vacuum container forming a plasma generation chamber and connected to a capacitor via a discharge switch is in communication with the plasma generation chamber and supplied with a predetermined gas. a container having a gas chamber;
It is arranged in this container so as to be able to move up and down, and normally blocks communication between the plasma generation chamber and the gas chamber, and is moved upward by electromagnetic force when gas is supplied, thereby connecting the gas chamber to the plasma generation chamber. An X-ray generator characterized by having a high-speed opening/closing gas valve equipped with a movable valve that communicates and falls under its own weight when returning.
JP5861785A 1985-03-25 1985-03-25 X-ray generator Pending JPS61218056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5861785A JPS61218056A (en) 1985-03-25 1985-03-25 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5861785A JPS61218056A (en) 1985-03-25 1985-03-25 X-ray generator

Publications (1)

Publication Number Publication Date
JPS61218056A true JPS61218056A (en) 1986-09-27

Family

ID=13089515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5861785A Pending JPS61218056A (en) 1985-03-25 1985-03-25 X-ray generator

Country Status (1)

Country Link
JP (1) JPS61218056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501997A (en) * 2003-08-07 2007-02-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP2007188831A (en) * 2006-01-16 2007-07-26 Univ Nihon Plasma generating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124342A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Plasma x-ray generator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124342A (en) * 1983-12-09 1985-07-03 Fujitsu Ltd Plasma x-ray generator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501997A (en) * 2003-08-07 2007-02-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP4814093B2 (en) * 2003-08-07 2011-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP2007188831A (en) * 2006-01-16 2007-07-26 Univ Nihon Plasma generating device

Similar Documents

Publication Publication Date Title
CN103968103B (en) Singulation of valves
JPS5812692B2 (en) switch
US20020044403A1 (en) Switching apparatus
EP1583128A1 (en) Liquid electrical microswitch
US4272661A (en) High speed vacuum interrupter
CN100442423C (en) Method and device for limiting the current in a liquid metal current limiter
US4553008A (en) Load interrupter
Byer et al. A 100 μsec, reliable, 10 Hz pulsed supersonic molecular beam source
JPS61218056A (en) X-ray generator
US7724111B2 (en) Microsystem with electromagnetic control
US6900578B2 (en) High frequency latching relay with bending switch bar
JPS6329435A (en) X-ray generator
TW200421383A (en) High-frequency, liquid metal, latching relay array
JP7043647B2 (en) Current limiting device
US6831532B2 (en) Push-mode latching relay
US6876133B2 (en) Latching relay with switch bar
JPS61173496A (en) Plasma x-ray generating device
JPS61250948A (en) X-ray generator, x-ray exposing method and charged particle/neutral particle eliminator
JPS6348733A (en) X-ray generator
US1941567A (en) Circuit breaker
JPS5936377B2 (en) Conductive liquid wetted linear relay switch
JP2004319483A (en) Electromagnetic relay
GB2400741A (en) Latching relay
JPH0569250B2 (en)
JPH01117253A (en) Plasma x-ray generation device