JPH01243349A - Plasma extreme ultraviolet light generator - Google Patents

Plasma extreme ultraviolet light generator

Info

Publication number
JPH01243349A
JPH01243349A JP63069386A JP6938688A JPH01243349A JP H01243349 A JPH01243349 A JP H01243349A JP 63069386 A JP63069386 A JP 63069386A JP 6938688 A JP6938688 A JP 6938688A JP H01243349 A JPH01243349 A JP H01243349A
Authority
JP
Japan
Prior art keywords
plasma
ultraviolet light
extreme ultraviolet
discharge
cylindrical electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63069386A
Other languages
Japanese (ja)
Inventor
Yukio Okamoto
幸雄 岡本
Isao Ochiai
落合 勲
Toshihiko Sato
俊彦 佐藤
Yasuo Kato
加藤 靖夫
Seiichi Murayama
村山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63069386A priority Critical patent/JPH01243349A/en
Publication of JPH01243349A publication Critical patent/JPH01243349A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the rising time of a discharge, improve various characteristics of initial plasma, and obtain the extreme ultraviolet light with little dispersion and high intensity by providing a cylindrical insulator made of fine ceramic or the like of a device generating the ultraviolet light on the inside of an outside cylinder electrode. CONSTITUTION:A cylinder insulator 30 is inserted between the inside cylinder electrode 10 made of a conductor and the outside cylinder electrode 20 of a plasma extreme ultraviolet light generator, the high voltage is applied from a capacitor 50 to generate a capacitor pulse discharge. The gas corresponding to the usage objective such as Ne is sealed in a vacuum container 40. Plasma is self-heated by a large current generated by this discharge, plasma is pinched to generate the extreme ultraviolet light, it is guided into a reaction chamber 120 through a beryllium window 9 and reacted with a sample 130 to form a pattern. The rising time of the discharge is reduced, high intensity of the electron density is obtained, various characteristics of initial plasma are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極端紫外光を発生する装置に係り、特にバタ
ン形成(露光)、薄膜形成、酸化、エツチングをはじめ
顕微鏡等に好適な高温高密度プラズマを用いた極端紫外
光発生装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus that generates extreme ultraviolet light, and is particularly suitable for high-temperature and high-temperature applications such as ultraviolet light formation (exposure), thin film formation, oxidation, and etching, as well as microscopy and the like. This invention relates to an extreme ultraviolet light generation device using density plasma.

〔従来の技術〕[Conventional technology]

従来の極端紫外光の一種のX線発生装置は、特開昭62
−206753号に記載のように、第2図のようになっ
ていた。すなわち、内側円筒電極(負極性)1と外側円
筒電極(正極性)2とは前記内側円筒電極1の表面に設
けた円筒状絶縁物3で分離されていた。ここで、4は放
電容器、5はコンデンサ、6はスイッチ、7は放電空間
、8は磁極、9はベリリウム窓、10はコイル、11は
シールド、12は露光室、13はウェハを示す。
A conventional X-ray generating device for extreme ultraviolet light was developed in Japanese Patent Application Laid-open No. 1983
As described in No.-206753, it was as shown in Figure 2. That is, the inner cylindrical electrode (negative polarity) 1 and the outer cylindrical electrode (positive polarity) 2 were separated by the cylindrical insulator 3 provided on the surface of the inner cylindrical electrode 1. Here, 4 is a discharge vessel, 5 is a capacitor, 6 is a switch, 7 is a discharge space, 8 is a magnetic pole, 9 is a beryllium window, 10 is a coil, 11 is a shield, 12 is an exposure chamber, and 13 is a wafer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、初期プラズマの立上り時間、密度、エ
ネルギーなどの物理量については十分配慮されておらず
、各パルス放電のバラツキに起因したX線強度のバラツ
キやその絶対値の不足などの問題があった。
The above conventional technology does not give sufficient consideration to physical quantities such as initial plasma rise time, density, and energy, and has problems such as variations in X-ray intensity due to variations in each pulse discharge and lack of its absolute value. Ta.

本発明の目的は、上記問題点を解決した、優れたプラズ
マ極端紫外光(波長=1〜3000人程度)発生装置を
提供することにある。
An object of the present invention is to provide an excellent plasma extreme ultraviolet light (wavelength: about 1 to 3000) generator that solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、第1図に示すように、ファインセラミック
スなどから成る円筒状絶縁体3oを外側円筒電極20の
内面に設けることにより達成される。
The above object is achieved by providing a cylindrical insulator 3o made of fine ceramics or the like on the inner surface of the outer cylindrical electrode 20, as shown in FIG.

〔作用〕[Effect]

前記円筒状絶縁体30を前記外側円筒電極(正極性)2
0の内面に設けると、前記内側円筒電極(負極性)10
の端面1O−1(仕事関数の小さい材料で形成するとよ
い)と前記外側円筒電極20との間に前記円筒状絶縁体
30を介して形成される沿面放電は順方向(第1図の中
方向、従来技術は逆方向)となり、しかも、前記円筒状
絶縁体30の表面積が大きくなる(半径比が大きくなる
ため)ように動作する。
The cylindrical insulator 30 is connected to the outer cylindrical electrode (positive polarity) 2
When provided on the inner surface of 0, the inner cylindrical electrode (negative polarity) 10
A creeping discharge is formed between the end surface 1O-1 (preferably made of a material with a small work function) and the outer cylindrical electrode 20 via the cylindrical insulator 30 in the forward direction (in the middle direction in Figure 1). , in the prior art, in the opposite direction), and the surface area of the cylindrical insulator 30 increases (because the radius ratio increases).

これによって、放電の立上り時間も速く、シかもそのバ
ラツキを低減され、さらに発生した電子は前記両電極間
の電位により前記円筒状絶縁体30に向は加速され、よ
り多量の2次電子を放出し、前記円筒状絶縁体30表面
上には、非常に高密度の電子層が均一に形成される。こ
のように形成された電子層は加速空間140の開放端に
向け(第2図の中方向)加速され、より高温・高密度の
初期プラズマを発生する。
As a result, the rise time of the discharge is fast and its variation is reduced, and the generated electrons are accelerated toward the cylindrical insulator 30 by the potential between the two electrodes, and a larger amount of secondary electrons are emitted. However, a very high density electron layer is uniformly formed on the surface of the cylindrical insulator 30. The electron layer formed in this manner is accelerated toward the open end of the acceleration space 140 (in the middle direction in FIG. 2), generating a higher temperature and higher density initial plasma.

前記初期プラズマの成長とともに、プラズマ電流は増大
し、この電流により自己磁場も増大するので、前記プラ
ズマは自己圧縮加熱(ピンチ)され、しかも実効的な圧
縮も従来より大きくなることから、より超高温・高密度
のプラズマが放電空間7に生成される。このとき、使用
したガスの種類(質量)に応じた極端紫外光がより多量
に(高輝度)再現性よく放射される。
As the initial plasma grows, the plasma current increases, and this current also increases the self-magnetic field, so the plasma is self-compressively heated (pinched), and the effective compression is also larger than before, so it can be heated to ultra-high temperatures. - High-density plasma is generated in the discharge space 7. At this time, extreme ultraviolet light is emitted in a larger amount (higher brightness) with better reproducibility depending on the type (mass) of the gas used.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図および第3図により説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 3.

第1図は本発明の第1の実施例を示す、10はW−Cu
合金などの導体から成る内側円筒電極(通常負極性)、
10−1は前記内側円筒電極に取付けたLaBe等から
成る低仕事関数導体(なくても可)、20はCuなどの
導体から成る外側円筒電極(通常正極性)、30はアル
ミナやファインセラミックスなどから成る円筒状絶縁体
で、前記両電極間を絶縁するとともに、良好な2次電子
放出源として作用する。40はステンレスなどから成る
真空容器、50はコンデンサ(1〜10μF)で10〜
100KVの耐圧を有するエネルギー源、6は低インダ
クタンスのスイッチ(主放電エアギャップスイッチ)、
6−1はクローバ(短絡)スイッチ、7は放電空間、8
は高速電子がベリリウム窓9を衝撃するのを低減する磁
極である。100は前記磁極8を磁化させるための電磁
コイル11はシールドケース、120は反応室、130
は試料、140は加速空間を示す。
FIG. 1 shows a first embodiment of the present invention, 10 is W-Cu
an inner cylindrical electrode (usually negative polarity) made of a conductor such as an alloy;
10-1 is a low work function conductor (optional) made of LaBe or the like attached to the inner cylindrical electrode, 20 is an outer cylindrical electrode (usually positive polarity) made of a conductor such as Cu, and 30 is alumina, fine ceramics, etc. A cylindrical insulator consisting of a cylindrical insulator that insulates between the two electrodes and acts as a good source of secondary electron emission. 40 is a vacuum container made of stainless steel, etc., and 50 is a capacitor (1 to 10 μF).
Energy source with withstand voltage of 100KV, 6 is a low inductance switch (main discharge air gap switch),
6-1 is a crowbar (short circuit) switch, 7 is a discharge space, 8
is a magnetic pole that reduces the impact of high-speed electrons on the beryllium window 9. 100 is an electromagnetic coil 11 for magnetizing the magnetic pole 8 is a shield case, 120 is a reaction chamber, 130
140 indicates a sample, and 140 indicates an acceleration space.

動作は、前記内側円筒電極10と前記外側円筒電極20
との間に前記円筒状絶縁体30を介して、前記コンデン
サ50から高電圧を印加し、コンデンサパルス放電を発
生させる。(必要に応じて、6−1のクローバスイッチ
を動作させ、回路を短絡してもよい、)なお、このとき
、前記真空容器40の内部はNe(軟X線発生のとき)
など使用目的にに応じた波長の極端紫外光を得るための
希ガスなどを0.1〜100Torr封入しである。
In operation, the inner cylindrical electrode 10 and the outer cylindrical electrode 20
A high voltage is applied from the capacitor 50 between the cylindrical insulator 30 and a capacitor pulse discharge. (If necessary, the crowbar switch 6-1 may be operated to short-circuit the circuit.) At this time, the inside of the vacuum container 40 is filled with Ne (when soft X-rays are generated).
It is filled with a rare gas or the like at 0.1 to 100 Torr to obtain extreme ultraviolet light of a wavelength depending on the purpose of use.

この放電により発生する大電流によって、プラズマは自
己圧縮加熱され、軟X線などの極端紫外光を発生する。
Due to the large current generated by this discharge, the plasma is self-compressively heated and generates extreme ultraviolet light such as soft X-rays.

この光は、例えば前記ベリリウム窓9番通して反応室1
20に導き、試料(ウェハなと)130と反応させ、バ
タンなどを形成させる。
This light is transmitted to the reaction chamber 1 through the beryllium window 9, for example.
20 and react with the sample (wafer) 130 to form a bump or the like.

また、前記反応室120内を排気装置により高真空に排
気した後、エツチングやデポジションなど、目的に応じ
た反応ガスや超微粒子などを導入し、前記極端紫外光と
の光反応作用を用いて試料を加工または表面処理、さら
に新しい材料などを創製することもできる。なお、光の
波長の選定は前記反応室120の入口に、前記ベリリウ
ム窓9に代ってフィルタを設ける。ことのとき、第2図
には示してないが、前記試料130を加熱または冷却す
る手段が設けである。
Further, after the inside of the reaction chamber 120 is evacuated to a high vacuum using an exhaust device, a reaction gas or ultrafine particles are introduced depending on the purpose such as etching or deposition, and a photoreaction effect with the extreme ultraviolet light is used. Samples can be processed or surface treated, and new materials can also be created. In order to select the wavelength of light, a filter is provided at the entrance of the reaction chamber 120 in place of the beryllium window 9. In this case, although not shown in FIG. 2, means for heating or cooling the sample 130 is provided.

第3図は別の実施例を示す1本第2の実施例は、前記真
空容器40の外側(内側でも可)にマルチカスプ磁場を
重畳したことを特徴とする。このマルチカスプ磁場は1
例えば第3図(ロ)に示す様に棒状永久磁石150を極
性が異なるように偶数本交互に配置(定常)し、上記偶
数本の導体に交互に電流の向きが逆になるように電流を
流して形成する。この時パルス電流を流してパルス磁場
を形成するとよい、このようにして、マルチカスプ磁場
を重畳すると、プラズマを安定に生成かつ保持できるの
で、極端紫外光の線量を増すことができる。その他の部
分は第2図と同じである。
FIG. 3 shows another embodiment. The second embodiment is characterized in that a multi-cusp magnetic field is superimposed on the outside (or inside) of the vacuum container 40. This multi-cusp magnetic field is 1
For example, as shown in FIG. 3(b), an even number of rod-shaped permanent magnets 150 with different polarities are alternately arranged (steady state), and a current is alternately applied to the even number of conductors so that the direction of the current is reversed. Flow and form. At this time, it is preferable to flow a pulsed current to form a pulsed magnetic field. By superimposing a multi-cusp magnetic field in this way, plasma can be stably generated and maintained, and the dose of extreme ultraviolet light can be increased. Other parts are the same as in FIG.

なお、前記円筒状絶縁体30は第3図(イ)に示すよう
に、その内面が前記外側円筒電極20の内面と同一面上
にあるように埋め込んでもよく、また、形状は特に限定
するものではない。
The cylindrical insulator 30 may be embedded so that its inner surface is flush with the inner surface of the outer cylindrical electrode 20, as shown in FIG. 3(A), and the shape is not particularly limited. isn't it.

また、これら実施例において、あらかじめCH4などを
放電させて、前記真空容器40の内壁などをカーボン膜
でコーティングしておくと、前記真空容器40などの損
傷による不純物の混入を低減でき、極端紫外光の線量の
増大やそのバラツキを低減できる。
In addition, in these embodiments, by discharging CH4 or the like in advance and coating the inner wall of the vacuum vessel 40 with a carbon film, it is possible to reduce the incorporation of impurities due to damage to the vacuum vessel 40, etc. This can reduce the increase in dose and its variation.

さらに、上記実施例において、内側と外側画電極の極性
を反転させても極端紫外光発生装置として用いることが
できる。
Furthermore, in the above embodiment, even if the polarities of the inner and outer picture electrodes are reversed, the device can be used as an extreme ultraviolet light generating device.

〔発明の効果〕〔Effect of the invention〕

本発明によれば1円筒状絶縁体3oを外側円筒電極20
の内面に設けることにより、放電の立上り時間の低減(
数10%以上)、電子密度の高密度化(30%以上)な
ど、初期プラズマの諸特性を向上させることができ、バ
ラツキの少ない高輝度(従来比50%以上増加)の極端
紫外光を得ることができる。
According to the present invention, one cylindrical insulator 3o is connected to an outer cylindrical electrode 20.
By providing it on the inner surface of the
It is possible to improve various characteristics of the initial plasma, such as increasing the electron density (several 10% or more) and increasing the electron density (30% or more), and obtain extreme ultraviolet light with high brightness (more than 50% increase compared to conventional products) with little variation. be able to.

また、マルチカスプ磁場を重畳することによって一層安
定した高輝度極端紫外光を得ることができる。
Further, by superimposing multi-cusp magnetic fields, even more stable high-intensity extreme ultraviolet light can be obtained.

さらに、高輝度化にともない、フィルタと反応室を設け
、反応ガスなどと前記極端紫外光の光反応作用を用いて
、エツチングやデポジションなどによる微細加工や表面
処理はをはじめ、新しい材料の創製もできる効果がある
Furthermore, as brightness increases, filters and reaction chambers are installed to create new materials, including microfabrication and surface treatment by etching and deposition, using the photoreaction effect of the extreme ultraviolet light with reactive gases. It also has the effect of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のプラズマ極端紫外光発生装置
の縦断面図、第2図は従来のプラズマ軟X線発生装置の
縦断面図、第3図は本発明の別の実施例のプラズマ極端
紫外光発生装置の(イ)部分縦断面図と(ロ)横断面図
である。 1.10・・・内側円筒電極、2.20川外側円筒電極
、3・・・絶縁物、3o・・・円筒状絶縁体、4・・・
放電容器、4o・・・真空容器、5,5o・・・コンデ
ンサ、6・・・スイッチ、6−1・・・クローバスイッ
チ、7・・・放電空間、9・・・ベリリウム窓、120
・・・反応室、130・・・試料、140・・・加速空
間、150・・・マル二111  ノ  C戸(1 第 2 Σ 第 3 図 (イ2
FIG. 1 is a longitudinal sectional view of a plasma extreme ultraviolet light generator according to an embodiment of the present invention, FIG. 2 is a longitudinal sectional view of a conventional plasma soft X-ray generator, and FIG. 3 is a longitudinal sectional view of another embodiment of the present invention. They are (a) a partial longitudinal cross-sectional view and (b) a cross-sectional view of the plasma extreme ultraviolet light generator. 1.10... Inner cylindrical electrode, 2.20 Outer cylindrical electrode, 3... Insulator, 3o... Cylindrical insulator, 4...
Discharge vessel, 4o... Vacuum vessel, 5,5o... Capacitor, 6... Switch, 6-1... Clover switch, 7... Discharge space, 9... Beryllium window, 120
...Reaction chamber, 130...Sample, 140...Acceleration space, 150...Maruji 111 No.

Claims (1)

【特許請求の範囲】 1、少なくとも同軸形内側円筒電極と外側円筒電極とか
ら成るプラズマフォーカス型X線発生装置において、円
筒形絶縁体を前記外側円筒電極の内面の一端の少なくと
も一部に設け、前記内側円筒電極と前記外側円筒電極と
の間にパルス電圧を印加してプラズマを発生させて、前
記プラズマを流れる電流による自己磁場によつて前記プ
ラズマをピンチさせる手段を具え、前記ピンチプラズマ
から極端紫外光を発生させることを特徴とするプラズマ
極端紫外光発生装置。 2、第1項記載のプラズマ極端紫外光発生装置において
、マルチカスプ磁場を重畳することを特徴とする請求項
第1項記載のプラズマ極端紫外光発生装置。
[Claims] 1. In a plasma focus type X-ray generator comprising at least a coaxial inner cylindrical electrode and an outer cylindrical electrode, a cylindrical insulator is provided on at least a part of one end of the inner surface of the outer cylindrical electrode, means for applying a pulse voltage between the inner cylindrical electrode and the outer cylindrical electrode to generate plasma, and pinching the plasma by a self-magnetic field caused by a current flowing through the plasma; A plasma extreme ultraviolet light generator characterized by generating ultraviolet light. 2. The plasma extreme ultraviolet light generating apparatus according to claim 1, wherein a multi-cusp magnetic field is superimposed in the plasma extreme ultraviolet light generating apparatus according to claim 1.
JP63069386A 1988-03-25 1988-03-25 Plasma extreme ultraviolet light generator Pending JPH01243349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63069386A JPH01243349A (en) 1988-03-25 1988-03-25 Plasma extreme ultraviolet light generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63069386A JPH01243349A (en) 1988-03-25 1988-03-25 Plasma extreme ultraviolet light generator

Publications (1)

Publication Number Publication Date
JPH01243349A true JPH01243349A (en) 1989-09-28

Family

ID=13401099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63069386A Pending JPH01243349A (en) 1988-03-25 1988-03-25 Plasma extreme ultraviolet light generator

Country Status (1)

Country Link
JP (1) JPH01243349A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020585A (en) * 2002-08-31 2004-03-09 최대규 extreme ultraviolet generator using plasma reactor
KR100504189B1 (en) * 1997-12-31 2005-10-21 매그나칩 반도체 유한회사 Ultraviolet ray generating device and method
WO2006120942A1 (en) * 2005-05-06 2006-11-16 Tokyo Institute Of Technology Plasma generating apparatus and plasma generating method
JP2007501997A (en) * 2003-08-07 2007-02-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP2007502000A (en) * 2003-08-12 2007-02-01 イェーノプティーク ミクロテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Plasma radiation source and apparatus for forming a gas curtain for a plasma radiation source
WO2011027737A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source
JP2011054730A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
JP2011054729A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
JP2011222184A (en) * 2010-04-06 2011-11-04 Ihi Corp Plasma light source and plasma light generating method
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100504189B1 (en) * 1997-12-31 2005-10-21 매그나칩 반도체 유한회사 Ultraviolet ray generating device and method
KR20040020585A (en) * 2002-08-31 2004-03-09 최대규 extreme ultraviolet generator using plasma reactor
JP4814093B2 (en) * 2003-08-07 2011-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP2007501997A (en) * 2003-08-07 2007-02-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Extreme ultraviolet and soft X-ray generator
JP4766695B2 (en) * 2003-08-12 2011-09-07 イクストリーメ テクノロジース ゲゼルシャフト ミット ベシュレンクテル ハフツング Plasma radiation source, apparatus for generating gas curtain and gas jet vacuum pump
JP2007502000A (en) * 2003-08-12 2007-02-01 イェーノプティーク ミクロテヒニーク ゲゼルシャフト ミット ベシュレンクテル ハフツング Plasma radiation source and apparatus for forming a gas curtain for a plasma radiation source
JPWO2006120942A1 (en) * 2005-05-06 2008-12-18 国立大学法人東京工業大学 Plasma generating apparatus and plasma generating method
WO2006120942A1 (en) * 2005-05-06 2006-11-16 Tokyo Institute Of Technology Plasma generating apparatus and plasma generating method
JP5114711B2 (en) * 2005-05-06 2013-01-09 国立大学法人東京工業大学 Plasma generating apparatus and plasma generating method
WO2011027737A1 (en) * 2009-09-01 2011-03-10 株式会社Ihi Plasma light source
JP2011054730A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
JP2011054729A (en) * 2009-09-01 2011-03-17 Ihi Corp Plasma light source
US8648536B2 (en) 2009-09-01 2014-02-11 Ihi Corporation Plasma light source
US9000402B2 (en) 2009-09-01 2015-04-07 Ihi Corporation LPP EUV light source and method for producing the same
JP2011222184A (en) * 2010-04-06 2011-11-04 Ihi Corp Plasma light source and plasma light generating method

Similar Documents

Publication Publication Date Title
EP0184812B1 (en) High frequency plasma generation apparatus
Mesyats Pulsed power
JP2003218025A (en) Apparatus for generating extreme ultraviolet ray based on gas discharge
JP2007506545A (en) Nanopowder synthesis using pulsed arc discharge and applied magnetic field
JPH0770532B2 (en) Plasma processing device
US4210813A (en) Ionizing radiation generator
JPH01243349A (en) Plasma extreme ultraviolet light generator
US4841556A (en) Plasma X-ray source
CA2011644C (en) Vacuum switch apparatus
Oates et al. A high-current pulsed cathodic vacuum arc plasma source
JPH0746588B2 (en) Microwave ion source
JPH04277500A (en) Source of high speed atomic ray
US4757524A (en) X-ray generator
US3275867A (en) Charged particle generator
KR920004961B1 (en) X-ray generation system for an ultra fine lithography and a method therefor
JPH08102278A (en) Device and method for generating ion beam
JPS6293834A (en) Ion source
JP3454389B2 (en) Plasma heating method for ion beam generator
JPH0762989B2 (en) Electron beam excited ion source
JPH0372183B2 (en)
JPS63211598A (en) Plasma x-ray generation device
JPH03201399A (en) Method of generating x-ray
US5208844A (en) Electronic devices using discrete, contained charged particle bundles and sources of same
JPS61208799A (en) Fast atomic beam source unit
JPH0471332B2 (en)