EP1654406A4 - IMPROVED CATALYST AND PROCESS FOR PRODUCING NANOCARBON MATERIALS AT HIGH YIELD AND SELECTIVITY AT REDUCED REACTION TEMPERATURES - Google Patents
IMPROVED CATALYST AND PROCESS FOR PRODUCING NANOCARBON MATERIALS AT HIGH YIELD AND SELECTIVITY AT REDUCED REACTION TEMPERATURESInfo
- Publication number
- EP1654406A4 EP1654406A4 EP04750358A EP04750358A EP1654406A4 EP 1654406 A4 EP1654406 A4 EP 1654406A4 EP 04750358 A EP04750358 A EP 04750358A EP 04750358 A EP04750358 A EP 04750358A EP 1654406 A4 EP1654406 A4 EP 1654406A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- carbon
- iron
- nickel
- morphology
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 89
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 11
- 239000000463 material Substances 0.000 title claims description 14
- 229910021392 nanocarbon Inorganic materials 0.000 title claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 78
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 64
- 239000002134 carbon nanofiber Substances 0.000 claims abstract description 28
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000000877 morphologic effect Effects 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 11
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 10
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 9
- 230000009257 reactivity Effects 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 36
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 229910052742 iron Inorganic materials 0.000 claims description 18
- 229910044991 metal oxide Inorganic materials 0.000 claims description 11
- 150000004706 metal oxides Chemical group 0.000 claims description 11
- 239000002086 nanomaterial Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 239000010931 gold Substances 0.000 claims description 8
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052746 lanthanum Inorganic materials 0.000 claims description 7
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 16
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 4
- 239000002121 nanofiber Substances 0.000 description 4
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 239000002717 carbon nanostructure Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910001960 metal nitrate Inorganic materials 0.000 description 2
- NQNBVCBUOCNRFZ-UHFFFAOYSA-N nickel ferrite Chemical compound [Ni]=O.O=[Fe]O[Fe]=O NQNBVCBUOCNRFZ-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003421 catalytic decomposition reaction Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0072—Preparation of particles, e.g. dispersion of droplets in an oil bath
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to the production of Nanocarbon materials. , More particularly, the present invention relates to an improved catalyst and process to produce
- Nanocarbon materials in high yield and high selectivity and at reduced reaction temperatures are gaining importance for various commercial applications. Such applications include their use to store molecular hydrogen, to serve as catalyst supports, as reinforcing components of polymeric composites, for use in electromagnetic shielding and for use in various types of batteries and other energy storage devices.
- Carbon nano-structure materials are generally prepared from the decomposition of carbon containing gases over selected catalytic metal surfaces at temperatures ranging from about 500°C to about 1200°C.
- carbon nanofibers can be used in lithium ion batteries, wherein the anode would be comprised of graphitic nanofibers.
- the graphite sheets are substantially perpendicular or parallel to the longitudinal axis of the carbon nanofiber.
- the exposed surfaces of the nanofibers are comprised of at least 95% edge regions in contrast to conventional graphites that are comprised almost entirely of basal plane regions and very little edge sites.
- Other references include “Catalytic Growth of Carbon Filaments,” which is an article from the Chemical Engineering Department of Auburn University dated 1989, wherein it discusses the formation of filamentous carbon.
- Another source of information is an article entitled “A Review of Catalytic Grown Carbon Nanofibers,” published by the Material Research Society, in 1993. In that article, carbon nanofibers are discussed as being produced in a relatively large scale through a catalytic decomposition of certain hydrocarbons on small metal particles. In all cases, as was discussed above, synthesizing a pure carbon nanomaterial is challenging.
- a carbon nanofiber system is synthesized with very high purity (above 95 percent), high crystallinity. selectivity of the carbon morphology, and exceptionally high yield.
- a custom made catalyst with an average single crystal-particle size of ⁇ 10 nm and a high surface area (>50 m 2 /g), provides a higher morphological selectivity and higher reactivity than heretofore attainable. The reactivity of these catalyst particles is maintained even after 24 hours reaction such that yield exceeds 200g carbon per gram of catalyst.
- the catalysts which are key to the products and yield achieved are prepared to specific parameters (size distribution, composition and crystallinity)specified and via a flame synthesis process as taught in US Patent No.
- Figure 1 is a graph of the Effect of Time on Growth of the carbon nanofiber in the presence of the Iron oxide catalyst over a 24 hour period
- Figure 2 is a graph of the Effect of Time on Growth of the carbon nanofiber in the presence of an Iron.Nickel catalyst over a 24 hour period
- Figure 3 illustrates the specific morphology of the carbon microstructure of the carbon nanofiber produced in the presence of the Iron oxide catalyst as described in relation to Figure 1
- Figure 4 is a high resolution view of the specific morphology of the carbon microstructure of the carbon nanofiber produced in the presence of the Iron oxide catalyst as described in relation to Figure 1.
- Figure 5 illustrates the specific morphology of the carbon microstructure of the carbon nanofiber produced in the presence of the Iron:Nickel catalyst as described in relation to Figure 2
- Figure 6 is a high resolution view of the specific morphology of the carbon microstructure of the carbon nanofiber produced in the presence of the Iron:Nickel catalyst as described in relation to Figure 2
- Figure 7 is a graph of the production of nanocarbon fibers having platelet morphology prepared with Iron oxide catalyst compared with a conventional catalyst
- Figure 8 is a graph of the production of nanocarbon fibers having tubular morphology prepared with Iron:Nickel catalyst compared with a conventional catalyst.
- reaction gas CO/H or C 2 H 4 /H 2
- reaction gas CO/H or C 2 H 4 /H 2
- the reaction gas (CO/H 2 or C 2 H 4 /H 2 ) was introduced into the reactor for different periods of time (1, 2, 4, 6, 8 and 24 hours).
- the Iron oxide catalyst utilized with CO:H 2 ::4::l at 550°C produces a specific morphology of the carbon micro structure where the graphite planes are perpendicular to the carbon growth axis as seen in Figures 3 and 4.
- this trial shows a better carbon yield (2 to 3 times higher) and at 50°C lower synthesis temperature (550°C versus 600°C).
- Morphological selectivity is 100 percent.
- an Iron:Nickel catalyst was used, with C 2 H 2 :H 2 ::1:4 at 550°C to produce a specific morphology of the carbon microstructure, that is where the graphite planes are parallel and/or at an angle to the carbon growth axis, as seen in Figures 5 and 6.
- this trial shows a better carbon yield(2 to 3 times higher) and at 100°C lower synthesis temperature (550°C versus 650°C). A greater than 99.2 percent purity of the carbon product can be reached in this system. Morphological selectivity is greater than 95 percent.
- the catalyst can be a metal oxide catalyst selected from the metals including iron, nickel, cobalt, lanthanum, gold, silver, molybdenum, iron-nickel, iron-copper and their alloys, c.
- Fluid Bed Process Option A known amount of oxide catalyst (0.1-1.2g) was placed in a ebullated fluid-bed reactor with A1 2 0 3 (14.9-13.8 g). The reactor was flushed for 30 minutes with nitrogen gas with a flow rate of 1 OOOsccm. The reactor was heated up to 450°C with a heating rate of 5°C per minute under 10-20% H 2 (balanced withN 2 ).
- FIG. 1 shows the graph of the effect of time on growth of carbon nanofibers utilizing an iron oxide catalyst with CO:H 2 : :4: 1 at 550°C.
- the carbon nanofibers produced comprise the carbon platelet morphology as seen in Figures 3 and 4.
- Plot 10 tracks g carbon g catalyst.
- Plot 20 tracks metal content (weight percent).
- both the Iron catalyst and the Iron:Nickel catalyst respectively produced a carbon nanomaterial platelet or tubular morphology at lower temperature greater than 95 percent morphological selectivity, higher yield and lower impurity of metal than the commercial or conventional catalysts.
- Plot 50 tracks g carbon/g MCT catalyst at 550°C.
- Plot 60 tracks metal content (weight percent).
- Plot 70 tracks g carbon/g JT Baker catalyst at 600°C.
- Plot 80 tracks metal content (weight percent).
- Plot 90 tracks g carbon/g MCT catalyst at 550°C.
- Plot 100 tracks metal content (weight percent).
- Plot 110 tracks g carbon/g CCC catalyst at 600°C.
- Plot 120 tracks metal content (weight percent).
- the "CCC Produced Conventional" catalyst was prepared utilizing a liquid precipitation process. Iron, nickel, and copper metal nitrates were utilized. The metal nitrates were stoichimetrically mixed in H2O and rapidly stirred at room temperature. Ammonium bicarbonate is added to a pH of approximately 9, and stirred approximately 5 minutes. A precipitate forms overnight; the precipitate is washed and dried. Metal carbonate is dried at 110°C for 24 hours and then calcinated in air for 4 hours at 400°C. Metal oxides are ball milled for 6 hours and reduced in 10% H 2 in N 2 at 500°C for 20 hours in 200 seem flow. Metal powder is passivated in 2% O 2 in N 2 at room temperature for 1 hour. This technique and the reaction taking place, as shown below, are referenced in R. J. Best and W.W. Russel, J. Am. Chem. Soc. 76, 8383 (1954).
- Powder catalyst Synthesis by Flame/Plasma process A mixture of nitrate/sulfate salt of metal (Fe, Ni and Cu) ethanolic solution were prepared and vaporized/atomized into either flame or plasma torch and powder of pure oxide or mixed metal oxide were obtained by this process using the method described in US patent 6,123,653.
- the process for producing nanocarbon materials is undertaken by providing a catalyst with an average particle size of ⁇ 10 nm and a surface area greater than 50 m 2 /g, although this may vary.
- carbonaceous reactants are reacted in the presence of the catalyst over a given period of time to produce carbon nanofibers with over 99 percent purity and a morphological selectivity approaching 100 percent with higher reactivity.
- the catalyst produced by the method described in US Patent No. 6,123,653, is a metal oxide catalyst selected from the metals including iron, nickel, cobalt, lanthanum, gold, silver, molybdenum, iron-nickel, iron-copper and their alloys. There may be other suitable metal oxides which may be found as experimentation continues.
- the catalyst itself, is prepared to specific parameters (size distribution, composition and crystallinity)specified and via a flame synthesis process; and it possesses a single crystal morphology.
- the resulting yield of carbon nanomaterial is ⁇ 140g carbon per g catalyst, but it may be more, while the morphology of the carbon micro structure comprises graphite planes of controllable orientation (depending on catalyst composition and carbonaceous feedstock) perpendicular or parallel to the carbon growth axis resulting in the 99.6 percent purity of the carbon product.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/628,842 US20050025695A1 (en) | 2003-07-28 | 2003-07-28 | Catalyst and process to produce nanocarbon materials in high yield and at high selectivity at reduced reaction temperatures |
PCT/US2004/012136 WO2005016853A2 (en) | 2003-07-28 | 2004-04-20 | Improved catalyst and process to produce nanocarbon materials in high yield and at high selectivity at reduced reaction temperatures |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1654406A2 EP1654406A2 (en) | 2006-05-10 |
EP1654406A4 true EP1654406A4 (en) | 2007-08-22 |
Family
ID=34103461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04750358A Withdrawn EP1654406A4 (en) | 2003-07-28 | 2004-04-20 | IMPROVED CATALYST AND PROCESS FOR PRODUCING NANOCARBON MATERIALS AT HIGH YIELD AND SELECTIVITY AT REDUCED REACTION TEMPERATURES |
Country Status (9)
Country | Link |
---|---|
US (1) | US20050025695A1 (ja) |
EP (1) | EP1654406A4 (ja) |
JP (1) | JP2007500121A (ja) |
KR (1) | KR20060052923A (ja) |
CN (1) | CN1833055A (ja) |
AR (1) | AR044387A1 (ja) |
BR (1) | BRPI0413069A (ja) |
TW (1) | TW200505788A (ja) |
WO (1) | WO2005016853A2 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5620059B2 (ja) * | 2005-06-08 | 2014-11-05 | トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド | 金属酸化物ナノ粒子及びその製造方法 |
KR101443222B1 (ko) | 2007-09-18 | 2014-09-19 | 삼성전자주식회사 | 그라펜 패턴 및 그의 형성방법 |
EP2419553A4 (en) | 2009-04-17 | 2014-03-12 | Seerstone Llc | PROCESS FOR PRODUCING SOLID CARBON BY REDUCING CARBON OXIDES |
KR101900758B1 (ko) * | 2011-11-29 | 2018-09-20 | 한화에어로스페이스 주식회사 | 그래핀 합성용 금속 박막 및 이를 이용한 그래핀 제조 방법 |
WO2013158160A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Method for producing solid carbon by reducing carbon dioxide |
JP6242858B2 (ja) | 2012-04-16 | 2017-12-06 | シーアストーン リミテッド ライアビリティ カンパニー | 炭素を捕捉および隔離するため、ならびに廃ガスストリーム中の酸化炭素の質量を低減するための方法およびシステム |
NO2749379T3 (ja) | 2012-04-16 | 2018-07-28 | ||
WO2013158156A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods and structures for reducing carbon oxides with non-ferrous catalysts |
WO2013158158A1 (en) | 2012-04-16 | 2013-10-24 | Seerstone Llc | Methods for treating an offgas containing carbon oxides |
US9896341B2 (en) | 2012-04-23 | 2018-02-20 | Seerstone Llc | Methods of forming carbon nanotubes having a bimodal size distribution |
US10815124B2 (en) | 2012-07-12 | 2020-10-27 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
US9604848B2 (en) | 2012-07-12 | 2017-03-28 | Seerstone Llc | Solid carbon products comprising carbon nanotubes and methods of forming same |
CN104619640B (zh) | 2012-07-13 | 2017-05-31 | 赛尔斯通股份有限公司 | 用于形成氨和固体碳产物的方法和系统 |
US9779845B2 (en) | 2012-07-18 | 2017-10-03 | Seerstone Llc | Primary voltaic sources including nanofiber Schottky barrier arrays and methods of forming same |
CN104718170A (zh) | 2012-09-04 | 2015-06-17 | Ocv智识资本有限责任公司 | 碳强化的增强纤维在含水或非水介质内的分散 |
JP6389824B2 (ja) | 2012-11-29 | 2018-09-12 | シーアストーン リミテッド ライアビリティ カンパニー | 固体炭素材料を製造するための反応器および方法 |
EP3113880A4 (en) | 2013-03-15 | 2018-05-16 | Seerstone LLC | Carbon oxide reduction with intermetallic and carbide catalysts |
US10086349B2 (en) | 2013-03-15 | 2018-10-02 | Seerstone Llc | Reactors, systems, and methods for forming solid products |
WO2014150944A1 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Methods of producing hydrogen and solid carbon |
WO2014151119A2 (en) | 2013-03-15 | 2014-09-25 | Seerstone Llc | Electrodes comprising nanostructured carbon |
US9586823B2 (en) | 2013-03-15 | 2017-03-07 | Seerstone Llc | Systems for producing solid carbon by reducing carbon oxides |
US20160130519A1 (en) * | 2014-11-06 | 2016-05-12 | Baker Hughes Incorporated | Methods for preparing anti-friction coatings |
WO2018022999A1 (en) | 2016-07-28 | 2018-02-01 | Seerstone Llc. | Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US54849A (en) * | 1866-05-22 | Improvement in trunk-locks | ||
US4881994A (en) * | 1987-04-30 | 1989-11-21 | United Technologies Corporation | Iron oxide catalyst propellant, and method for making same |
US5458784A (en) * | 1990-10-23 | 1995-10-17 | Catalytic Materials Limited | Removal of contaminants from aqueous and gaseous streams using graphic filaments |
US5618875A (en) * | 1990-10-23 | 1997-04-08 | Catalytic Materials Limited | High performance carbon filament structures |
EP0848658B1 (en) * | 1995-08-04 | 2006-10-11 | nGimat Co. | Chemical vapor deposition and powder formation using thermal spray with near supercritical and supercritical fluid solutions |
US6221330B1 (en) * | 1997-08-04 | 2001-04-24 | Hyperion Catalysis International Inc. | Process for producing single wall nanotubes using unsupported metal catalysts |
CA2350099C (en) * | 1998-11-03 | 2008-05-20 | William Marsh Rice University | Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co |
US6159538A (en) * | 1999-06-15 | 2000-12-12 | Rodriguez; Nelly M. | Method for introducing hydrogen into layered nanostructures |
US6485858B1 (en) * | 1999-08-23 | 2002-11-26 | Catalytic Materials | Graphite nanofiber catalyst systems for use in fuel cell electrodes |
US6537515B1 (en) * | 2000-09-08 | 2003-03-25 | Catalytic Materials Llc | Crystalline graphite nanofibers and a process for producing same |
US20020054849A1 (en) * | 2000-09-08 | 2002-05-09 | Baker R. Terry K. | Crystalline graphite nanofibers and a process for producing same |
AU2001294876A1 (en) * | 2000-09-29 | 2002-04-08 | President And Fellows Of Harvard College | Direct growth of nanotubes, and their use in nanotweezers |
US6503660B2 (en) * | 2000-12-06 | 2003-01-07 | R. Terry K. Baker | Lithium ion battery containing an anode comprised of graphitic carbon nanofibers |
US6752977B2 (en) * | 2001-02-12 | 2004-06-22 | William Marsh Rice University | Process for purifying single-wall carbon nanotubes and compositions thereof |
US7157068B2 (en) * | 2001-05-21 | 2007-01-02 | The Trustees Of Boston College | Varied morphology carbon nanotubes and method for their manufacture |
US6596187B2 (en) * | 2001-08-29 | 2003-07-22 | Motorola, Inc. | Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth |
US6849245B2 (en) * | 2001-12-11 | 2005-02-01 | Catalytic Materials Llc | Catalysts for producing narrow carbon nanostructures |
US7378075B2 (en) * | 2002-03-25 | 2008-05-27 | Mitsubishi Gas Chemical Company, Inc. | Aligned carbon nanotube films and a process for producing them |
US20040005269A1 (en) * | 2002-06-06 | 2004-01-08 | Houjin Huang | Method for selectively producing carbon nanostructures |
AU2003287801A1 (en) * | 2002-11-15 | 2004-06-15 | Mgill University | Method for producing carbon nanotubes using a dc non-transferred thermal plasma torch |
-
2003
- 2003-07-28 US US10/628,842 patent/US20050025695A1/en not_active Abandoned
-
2004
- 2004-04-20 JP JP2006521812A patent/JP2007500121A/ja active Pending
- 2004-04-20 KR KR1020067001924A patent/KR20060052923A/ko not_active Application Discontinuation
- 2004-04-20 WO PCT/US2004/012136 patent/WO2005016853A2/en active Application Filing
- 2004-04-20 BR BRPI0413069-3A patent/BRPI0413069A/pt not_active IP Right Cessation
- 2004-04-20 EP EP04750358A patent/EP1654406A4/en not_active Withdrawn
- 2004-04-20 CN CNA2004800219719A patent/CN1833055A/zh active Pending
- 2004-05-03 TW TW093112404A patent/TW200505788A/zh unknown
- 2004-05-18 AR ARP040101720A patent/AR044387A1/es unknown
Non-Patent Citations (1)
Title |
---|
No further relevant documents disclosed * |
Also Published As
Publication number | Publication date |
---|---|
TW200505788A (en) | 2005-02-16 |
AR044387A1 (es) | 2005-09-07 |
CN1833055A (zh) | 2006-09-13 |
BRPI0413069A (pt) | 2006-10-17 |
EP1654406A2 (en) | 2006-05-10 |
WO2005016853A3 (en) | 2005-09-29 |
US20050025695A1 (en) | 2005-02-03 |
JP2007500121A (ja) | 2007-01-11 |
WO2005016853A2 (en) | 2005-02-24 |
KR20060052923A (ko) | 2006-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005016853A2 (en) | Improved catalyst and process to produce nanocarbon materials in high yield and at high selectivity at reduced reaction temperatures | |
US9409779B2 (en) | Catalyst for producing carbon nanotubes by means of the decomposition of gaseous carbon compounds on a heterogeneous catalyst | |
KR101241034B1 (ko) | 분무 열분해 방법을 이용한 고수율 탄소나노튜브 합성용 촉매조성물의 제조 방법 | |
JP5250535B2 (ja) | 薄型多層カーボンナノチューブ製造用触媒組成物 | |
EP1940547B1 (en) | Synthesis of a catalyst system for a multi -walled carbon nanotube production process | |
KR100969861B1 (ko) | 비정질 실리콘 입자 함유 복합담지체를 포함하는 탄소나노튜브 제조용 촉매 및 이를 이용한 탄소나노튜브 대량 합성 방법 | |
EP1456439B1 (en) | Method for producing multifaceted graphitic nanotubes | |
US20080019901A1 (en) | Method of making NiO and Ni nanostructures | |
CN101189371A (zh) | 单壁碳纳米管催化剂 | |
Bauman et al. | Synthesis of nanostructured carbon fibers from chlorohydrocarbons over Bulk Ni-Cr Alloys | |
KR101018660B1 (ko) | 다중벽 탄소나노튜브 제조용 촉매조성물 | |
KR20180041878A (ko) | 다중벽 탄소나노튜브 대량 생산을 위한 연속적 제조 공정 및 탄소나노튜브 제조용 촉매 | |
JP4020410B2 (ja) | 炭素物質製造用触媒 | |
JP2006231247A (ja) | ナノカーボン材料製造用触媒、触媒微粒子、ナノカーボン材料製造用触媒の製造方法及びカーボン材料製造システム | |
KR101231761B1 (ko) | 수직 배향된 번들 구조를 지닌 고전도성 탄소나노튜브 및 이를 이용한 고전도성 고분자 나노복합재 조성물 | |
KR100251294B1 (ko) | 염기성 금속 산화물 담지 철족 전이 금속 촉매를 이용한 미세 탄소 섬유의 제조 방법 | |
KR20120092204A (ko) | 높은 겉보기밀도를 지닌 탄소나노튜브 합성용 촉매조성물의 제조 방법 | |
KR100407805B1 (ko) | 탄소나노섬유 또는 탄소나노튜브 제조용 금속촉매 및 그의제조 방법 | |
JP2002105765A (ja) | カーボンナノファイバー複合体およびカーボンナノファイバーの製造方法 | |
Alcázar et al. | Production and characterization of carbon nanotubes by methane decomposition over Ni–Fe/Al2O3 catalyst and its application as nanofillers in polypropylene matrix | |
EP4157518A1 (en) | Improved catalyst for mwcnt production | |
CN113101981B (zh) | 碳纳米管制备用催化剂的制备方法 | |
JP2004277925A (ja) | コイン積層型ナノグラファイト、その製造方法及びその製造用触媒 | |
Buhari et al. | Synthesis of carbon nanotubes using catalytic chemical vapour decomposition of acetylene over Co-Mo bimetallic catalyst supported on magnesia | |
Pan et al. | Synthesis of carbon nanocoils using electroplated iron catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060222 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20070724 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20081013 |