EP1652406B1 - System und verfahren zur bestimmung einer repräsentation eines akustischen feldes - Google Patents

System und verfahren zur bestimmung einer repräsentation eines akustischen feldes Download PDF

Info

Publication number
EP1652406B1
EP1652406B1 EP04767818.0A EP04767818A EP1652406B1 EP 1652406 B1 EP1652406 B1 EP 1652406B1 EP 04767818 A EP04767818 A EP 04767818A EP 1652406 B1 EP1652406 B1 EP 1652406B1
Authority
EP
European Patent Office
Prior art keywords
acoustic
signals
acquisition means
filtering
restitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04767818.0A
Other languages
English (en)
French (fr)
Other versions
EP1652406A1 (de
Inventor
Rémy BRUNO
Arnaud Laborie
Sébastien MONTOYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruno Remy
Trinnov Audio
Original Assignee
Bruno Remy
Trinnov Audio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruno Remy, Trinnov Audio filed Critical Bruno Remy
Publication of EP1652406A1 publication Critical patent/EP1652406A1/de
Application granted granted Critical
Publication of EP1652406B1 publication Critical patent/EP1652406B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • the present invention relates to a method, a device and a system for determining a representation of an acoustic field in the form of a plurality of acoustic or audiophonic signals, each associated with a predetermined general direction of reproduction defined with respect to a given point of space.
  • acoustic wave acquisition means comprising a plurality of elementary sensors arranged in space and each delivering a measurement signal.
  • These measurement signals are processed by the application of filtering combinations, representative in particular of structural characteristics of the acquisition means and of the general directions of predetermined restitution, so as to obtain said plurality of acoustic signals.
  • Such a plurality of signals is commonly designated by the expression “multichannel signal” and corresponds to a plurality of signals, called “channels”, transmitted in parallel or multiplexed with each other.
  • Each of the signals is intended for an element or a group of reproduction elements forming an ideal source arranged in a predefined general direction with respect to a given point in space.
  • a classic multichannel standard known under the name of "5.1 ITU-R BF 775-1” comprises five channels intended for restitution elements arranged in five predetermined general directions defined by the angles 0 °, + 30 °, - 30 °, + 110 ° and -110 ° in relation to the listening center.
  • Such an arrangement therefore corresponds to the arrangement: of a loudspeaker or a group of loudspeakers in front of the center, one on each side in front on the left and on the right and one on each side behind on the left and on the right.
  • Certain existing acquisition means are formed from a set of elementary directional sensors where each sensor directly delivers a channel corresponding to one of the predetermined general directions of restitution.
  • each sensor is substantially oriented in the direction corresponding to its associated channel.
  • the quality of the representation obtained with such acquisition means is limited by the intrinsic directivity of the sensors, since no processing is carried out, so that the representation is not a high quality representation.
  • the object of the invention is to solve the foregoing problems by providing a system and a method for determining a high quality representation of an acoustic field in a multi-channel format of increased portability and speed and at reduced cost.
  • the subject of the invention is a system for determining a representation of an acoustic field according to claim 1.
  • the subject of the invention is also a method for determining a representation of an acoustic field according to claim 8.
  • This frame of reference is an orthonormal frame of reference, of origin O and comprising three axes (OX), ( OY ) and (OZ).
  • a position noted x is described by means of its spherical coordinates ( r, ⁇ , ⁇ ) , where r denotes the distance from the origin O , ⁇ the orientation in the vertical plane and ⁇ the orientation in the horizontal plane.
  • an acoustic field is known if we define at any point at each instant t the acoustic pressure noted p ( r, ⁇ , ⁇ , t ) , whose Fourier transform is noted P (r, ⁇ , ⁇ , f ) where f denotes the frequency.
  • the method of the invention is based on the use of spatio-temporal functions making it possible to describe any acoustic field in time and in the three dimensions of space.
  • these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter called Fourier-Bessel functions.
  • the Fourier-Bessel functions correspond to the solutions of the wave equation and constitute a basis which generates all the acoustic fields produced by sources located outside this zone.
  • the Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse temporal Fourier transform of the coefficients P l, m ( f ) .
  • the acoustic field is decomposed on a basis of functions, where each of the functions is expressed by a possibly infinite linear combination of Fourier-Bessel functions.
  • FIG 2 there is schematically shown a system according to the invention.
  • This system comprises acquisition means 1 formed of Q elementary sensors 2 1 to 2 Q delivering measurement signals c 1 ( t ) to c Q ( t ) , also denoted c 1 to c Q , which are introduced into a device 6 for determining a representation of an acoustic field.
  • the device 6 comprises processing means 8 suitable for applying to the measurement signals c 1 to c Q filtering combinations representative of structural characteristics of the acquisition means 1, to deliver at output a plurality of acoustic signals each associated with a direction predetermined general restitution defined with respect to a given point in space.
  • the acoustic signals sc 1 ( t ) to sc N ( t ) are then transmitted to reproduction means 10 comprising N of reproduction elements 12 1 to 12 N arranged in predetermined directions with respect to a given point 14 in space, corresponding to the center of the restitution means 10.
  • the processing means 8 of the device 6 are configured beforehand and are associated in a specific manner with a set of elementary sensors 2 1 to 2 Q forming the acquisition means 1 and with a set of restitution elements forming the means of restitution 10.
  • the processing means 8 however comprise a plurality of filtering combinations corresponding to different acquisition means and / or to different output formats and selectable by a user, for example directly by means of a switch or through a control interface.
  • the device 6 may take the form of electronic equipment dedicated to the implementation of the invention or else of computer software comprising program code instructions intended to be executed by equipment comprising a processing processor and interface means with acquisition means and restitution means.
  • the device 6 is formed by a computer associated with suitable interface cards.
  • the elementary sensors 2 1 to 2 Q are arranged at known points in space around a predetermined point 4, designated as the center of the acquisition means 1.
  • each elementary sensor 2 q is expressed in space in a spherical frame of reference such as the one described with reference to figure 1 , centered on the center 4 of the acquisition means 1.
  • the elementary sensors 2 1 to 2 Q are distributed in space in a substantially non-regular manner.
  • a configuration is non-regular if for all the usual reference frames, for at least one of the three coordinates of the reference frame, the values of the coordinates of the positions of all the sensors are distributed in an interval or domain of non-zero space and with a variable deviation of the coordinates taken successively.
  • configurations in which the sensors are arranged at regular intervals along a line or a circle, at the intersections of a fictitious plane grid or else at the intersections of a fictitious cubic mesh are regular configurations.
  • the coordinates of the sensors must be distributed in an interval greater than a tolerance interval and have deviations varying beyond this tolerance interval.
  • the position of a sensor corresponds to the position of the center of its sensitive part and a tolerance interval in each direction of space is defined around this position.
  • the tolerance interval for a set of elementary sensors forming the acquisition means corresponds to a distance equivalent to a quarter of the distance between the two closest elementary sensors.
  • a distance is of the order of 2cm, so that the tolerance interval corresponds approximately to 0.5cm.
  • a configuration is considered to be regular if, in one of the usual reference frames, for the three coordinates of the reference frame, the coordinate values of the positions of all the sensors are constant or distributed at constant pitch.
  • a configuration is regular if, in one of the usual reference frames, for all the coordinates of the reference frame, the coordinate values of the positions of all the sensors are distributed in a substantially zero interval or with a substantially constant successive deviation.
  • sensors with a substantially non-zero physical footprint contiguous to one another form a point or almost point distribution considered as a regular configuration.
  • the following method makes it possible to determine whether a given configuration of elementary sensors is regular or not.
  • the values of the positions of all the sensors are then checked according to a first coordinate of the reference frame, such as the abscissa. If these values are neither constant nor distributed at regular intervals, considering an interval tolerance, then the configuration is not regular in this reference and we start again with another reference.
  • the values of these first coordinates are either constant or distributed at regular intervals, the values of the positions of the sensors are verified according to a second coordinate of the reference frame, such as the ordinate.
  • the values of the positions of the sensors are checked according to the third and last coordinate of the reference frame, such as that along a vertical axis called the zenith coordinate.
  • Such a substantially non-regular distribution makes it possible to avoid the redundancy of the information taken by the elementary sensors in the acoustic field, so that a reduced number of sensors is necessary.
  • the maximum number Q of elementary sensors is less than or equal to five times the number of acoustic signals forming the representation of the acoustic field at the end of the treatment.
  • the distribution of the elementary sensors 2 q in space can meet certain rules while meeting the criteria of non-regularity as defined previously.
  • the acquisition means 1 reproduce the general geometric characteristics of the reproduction means 10, such as an arrangement planar and a certain symmetry, while respecting the criteria of non-regularity.
  • the acquisition means 1 are arranged in space in a substantially non-regular manner.
  • each sensor 2 q of the acquisition means 1 delivers a measurement signal c q ( t ) which corresponds to the measurement made by this sensor in the acoustic field P.
  • the acquisition means 1 therefore deliver a plurality of signals for measuring the acoustic field c 1 ( t ) to c Q ( t ) , which are directly linked to the acquisition capacities of the elementary sensors 2 1 to 2 Q.
  • the method then comprises a step 30 of processing by applying filtering combinations to the measurement signals c 1 to c Q delivered by the acquisition means 1.
  • these filtering combinations are representative of the structural characteristics of the acquisition means 1 and are adapted to deliver a plurality of acoustic signals sc 1 to sc N each associated with a general direction of predetermined restitution and defined by relative to a given point in space.
  • the N channels sc 1 ( t ) to sc N ( t ) are obtained from the Q measurement signals c 1 ( t ) to c Q ( t ) by means of a single matrix filtering involving N x Q filters varying as a function of the frequency, and denoted T n, q ( f ) .
  • Each output channel sc n ( t ) is obtained by filtering each of the measurement signals c 1 ( t ) to c Q ( t ) and by applying a linear combination to the signals thus filtered.
  • Each filter T n, q ( f ) is therefore representative of the contribution of the measurement signal c q ( t ) in the constitution of the channel sc n ( t ) .
  • SC n ( f ) is the Fourier transform of sc n ( t ) and C q ( f ) is the Fourier transform of c q ( t ) .
  • E is an encoding matrix representative of the characteristics of the acquisition means 1 and in particular of their spatial configuration.
  • the matrix E makes it possible to obtain a representation in Bessel Fourier coefficients of an acoustic field P ⁇ corresponding to an estimate of the acoustic field P in which the elementary sensors 2 1 to 2 Q are immersed, from the measurement signals c 1 ( t ) to c Q ( t ) .
  • the matrix E is of size ( L +1) 2 x Q, the coefficient L corresponding to the order to which the encoding is carried out and to the maximum resolution that the encoding makes it possible to achieve.
  • the coefficient ⁇ specifies a compromise between the fidelity of representation of the acoustic field P ⁇ and the minimization of the background noise provided by the elementary sensors 2 1 to 2 Q and can take all the values between 0 and 1.
  • the parameters L and ⁇ can vary with the frequency.
  • B is a spatial sampling matrix of size Q x ( L +1) 2 whose elements B q , l, m ( f ) are organized as follows: B 1 , 0.0 f B 1.1 , - 1 f B 1 , 1.0 f B 1 , 1.1 f ⁇ B 1 , L , - L f ⁇ B 1 , L , 0 f ⁇ B 1 , L , L f B 2 , 0.0 f B 2.1 , - 1 f B 2 , 1.0 f B 2 , 1.1 f ⁇ B 2 , L , - L f ⁇ B 2 , L , 0 f ⁇ B 2 , L , L f ⁇ ⁇ ⁇ B Q , 0.0 f B Q , 1 , - 1 f B Q , 1.0 f B Q , 1.1 f ⁇ B Q , L , - L f
  • ( r q , ⁇ q , ⁇ q ) is the position of the sensor 2 q in the spherical coordinate system described with reference to figure 1 .
  • each sensor 2 q is placed at the position ( r q , ⁇ q , ⁇ q ), has a directivity composed of a combination of omnidirectional and bidirectional diagrams of proportion d q and is oriented in the direction ⁇ q ⁇ ⁇ q ⁇ , so that the sensor 2 q has a maximum sensitivity in the direction ⁇ q ⁇ ⁇ q ⁇ .
  • the parameter d q takes the value 1 ⁇ 2 for the Q sensors.
  • the matrix denoted E is therefore representative of the position of the elementary sensors 2 1 to 2 Q.
  • the determination of E does not impose any constraint on the position ( r q , ⁇ q , ⁇ q ) of the sensors and makes it possible in particular to take account of non-regular configurations.
  • Such non-regular configurations are more efficient, because they make it possible to take more information on the initial field P , by being free from the redundancies introduced by the regular configurations.
  • the filtering matrix D is a decoding matrix representative of the selected predetermined restitution general directions.
  • the matrix D makes it possible to determine the control signals allowing the high precision restitution of the estimated acoustic field P ⁇ and therefore of the acquired acoustic field P.
  • W is a matrix corresponding to a spatial window defining the volume in which the restitution must be made. It is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is found 2 l +1 times in a row on the diagonal.
  • the values taken by the coefficients W l correspond to the values of a function such as a Hamming window of size 2 L +1 evaluated at l , so that the parameter W l is determined for / ranging from 0 to L.
  • M is a matrix corresponding to the general predetermined restitution directions, ie to the output multichannel format. It is a matrix of size ( L +1) 2 over N, made up of elements M l , m, n , the indices l, m denoting row l 2 + l + m and n denoting column n.
  • the matrix M therefore has the following form: M 0 , 0.1 M 0 , 0.2 ⁇ ⁇ M 0.0 , NOT M 1 , - 1.1 M 1 , - 1.2 ⁇ ⁇ M 1 , - 1 , NOT M 1 , 0.1 M 1 , 0.2 ⁇ ⁇ M 1.0 , NOT M 1 , 1.1 M 1 , 1.2 ⁇ ⁇ M 1.1 , NOT ⁇ ⁇ ⁇ M L , - L , 1 M L , - L , 2 ⁇ ⁇ M L , - L , NOT ⁇ ⁇ ⁇ M L , 0.1 M L , 0.2 ⁇ ⁇ L L , 0 , NOT ⁇ ⁇ ⁇ M L , L , 1 M L , L , 2 ⁇ ⁇ M L , L , NOT
  • Processing step 30 therefore corresponds to the application to all the measurement signals c 1 to c Q of filtering combinations to generate a plurality of processed signals constituting a representation P explicat of the acoustic field P ) substantially independent of the characteristics structural data acquisition means 1, in the form of a finite number of Fourier-Bessel coefficients.
  • Step 30 also corresponds to the application, to said processed signals, of specific linear combinations to generate the corresponding plurality of acoustic signals sc 1 to sc N.
  • FIG 4 there is shown schematically the implementation of the processing step 30 carried out by the means 8 described above.
  • the N output signals sc 1 ( t ) to sc N ( t ) obtained at the end of the processing of the invention are representative of an acoustic field P which is restored by connecting each channel sc n ( t ) to the corresponding restitution element 12 n emitting plane waves of direction ( ⁇ n , ⁇ n ) according to the specifications of the multichannel format.
  • the simultaneous action of the N restitution elements 12 1 to 12 N respectively controlled by the channels sc 1 ( t ) to sc N ( t ) makes it possible to reproduce the acoustic field .
  • the representation of the acoustic field in multichannel format is close to the acoustic field P in which the sensors 2 q are immersed. It appears that the matrix T is obtained by manipulating high order decomposed sound field descriptions and leads to a high quality representation of the sound field.
  • the number of elementary sensors is for example less than 25 and preferably less than 10.
  • the elementary sensors can all or in part be omnidirectional and / or cardioid sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mathematical Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Stereophonic Arrangements (AREA)

Claims (10)

  1. System zum Ermitteln einer Darstellung eines akustischen Feldes (P) des Typs, aufweisend:
    - Mittel (1) zum Erfassen von akustischen Wellen, welche eine Mehrzahl von elementaren Sensoren (21 bis 2Q) aufweisen, welche im Raum verteilt sind, und welche jeweils ein Messsignal (c1 bis cQ) liefern, und
    - eine Vorrichtung zum Ermitteln einer Darstellung des akustischen Feldes (P) des Typs, aufweisend:
    Mittel (8) zum Verarbeiten der Messsignale (c1 bis cQ), welche mittels der Mittel (1) zum Erfassen von akustischen Wellen geliefert werden, mittels des Anwendens von Filterkombinationen, welche repräsentativ sind für strukturelle Eigenschaften der besagten Mittel zum Erfassen (1), um eine Mehrzahl von akustischen Signalen (sc1 bis scN) zu liefern, welche jeweils mit einer vorbestimmten allgemeinen Wiederherstellungsrichtung assoziiert sind, welche bezüglich eines gegebenen Punkts des Raums (14) definiert ist, wobei die besagten akustischen Signale (sc1 bis scN) eine Darstellung des besagten akustischen Feldes (P) bilden, wobei die besagten Mittel (8) zum Verarbeiten angepasst sind, um die Signale zu verarbeiten, welche mittels der Mittel zum Erfassen (1) geliefert werden,
    wobei die Vorrichtung zum Ermitteln eingerichtet ist, um die akustischen Signal zu Mitteln zur Wiederherstellung zu übertragen, welche N Elemente zur Wiederherstellung (121 bis 12N) aufweisen, welche entlang den vorbestimmten allgemeinen Richtungen bezüglich des gegebenen Punkts des Raums (14) angeordnet sind, wobei N eine positive ganze Zahl ist,
    wobei die besagten elementaren Sensoren (21 bis 2Q) im Raum auf eine im Wesentlichen nicht regelmäßige Weise verteilt sind und die besagten Filterkombinationen repräsentativ für diese Verteilung sind,
    wobei das System zum Ermitteln dadurch gekennzeichnet ist, dass die besagten Mittel (8) zum Verarbeiten angepasst sind, um eine einzige Matrixfilterung durchzuführen, welche am Eingang die besagten Messsignale (c1 bis cQ) erhält und am Ausgang die besagte Mehrzahl von akustischen Signalen (sc1 bis scN) liefert,
    wobei die Matrixfilterung eine Matrix T=DE aufweist, wobei E eine Kodiermatrix ist, welche repräsentativ für die Mittel zum Erfassen (1) ist, und D eine Dekodiermatrix ist, welche repräsentativ für die ausgewählten vorbestimmten allgemeinen Wiederherstellungsrichtungen ist.
  2. System gemäß Anspruch 1, wobei die besagten Mittel zum Erfassen (1) derart sind, dass, für alle gewöhnlichen Koordinatensysteme, für zumindest eine der Koordinaten des Koordinatensystems, die Werte der Koordinaten der Positionen aller elementaren Sensoren (21 bis 2Q) auf unterschiedliche Werte und mit nicht konstantem Schritt verteilt sind.
  3. System gemäß Anspruch 1 oder 2, wobei die besagten Mittel zum Erfassen (1) zumindest einen omnidirektionalen elementaren Sensor aufweisen.
  4. System gemäß irgendeinem der Ansprüche 1 bis 3, wobei die besagten Mittel zum Erfassen (1) zumindest einen elementaren Sensor aufweisen, dessen Richtcharakteristik eine Kombination von omnidirektionalen und bidirektionalen Diagrammen ist.
  5. System gemäß irgendeinem der Ansprüche 1 bis 4, wobei die besagten Mittel zum Erfassen (1) eine Anzahl von elementaren Sensoren (21 bis 2Q) aufweisen, welche zwischen ein- und fünfmal der Anzahl an vorbestimmten allgemeinen Wiederherstellungsrichtungen liegt.
  6. System gemäß Anspruch 5, wobei die besagten Mittel (8) zum Verarbeiten gewichtete Linearkombinationen der besagten Messsignale (c1 bis cQ) bilden, um die besagten akustischen Ausgangssignale (sc1 bis scN) zu bilden.
  7. System gemäß irgendeinem der Ansprüche 1 bis 6, wobei die besagten Mittel (8) zum Verarbeiten das Anwenden von Filterkombinationen erlauben, welche mit der Frequenz der besagten verarbeiteten Messsignale (c1 bis cQ) variieren.
  8. Verfahren zum Ermitteln einer Darstellung eines akustischen Feldes (P), welches aufweist:
    - einen Schritt (20) des Erfassens an einer Mehrzahl von Punkten, welche im Raum auf eine im Wesentlichen nicht regelmäßige Weise verteilt sind, des besagten akustischen Feldes (P) mittels Mitteln zum Erfassen (1) von akustischen Wellen, um eine Mehrzahl von Messsignalen (c1 bis cQ) zu liefern, welche in jedem Punkt in Amplitude und in Phase repräsentativ für das besagte akustische Feld (P) sind,
    - einen Schritt (30) des Verarbeitens mittels des Anwendens auf die besagten Messsignale (c1 bis cQ) von Filterkombinationen, welche repräsentativ für strukturelle Eigenschaften der besagten Mittel zum Erfassen (1) sind, um eine Mehrzahl von akustischen Signalen (sc1 bis scN) zu liefern, welche jeweils mit einer vorbestimmten allgemeinen Wiederherstellungsrichtung assoziiert sind, welche bezüglich eines gegebenen Punkts des Raums (14) definiert ist, wobei die Gruppe der besagten akustischen Signale (sc1 bis scN) eine Darstellung des besagten akustischen Feldes (P) bildet,
    wobei das Verfahren aufweist das Übertragen der akustischen Signale zu Mitteln zur Wiederherstellung, welche N Elemente zur Wiederherstellung (121 bis 12N) aufweisen, welche entlang den vorbestimmten allgemeinen Richtungen bezüglich des gegebenen Punkts des Raums (14) angeordnet sind, wobei N eine positive ganze Zahl ist,
    wobei das Verfahren dadurch gekennzeichnet ist, dass es einen Schritt des Durchführens einer einzigen Matrixfilterung aufweist, welche am Eingang die besagten Messsignale (c1 bis cQ) erhält und am Ausgang die besagte Mehrzahl von akustischen Signalen (sc1 bis scN) liefert,
    wobei die Matrixfilterung eine Matrix T=DE aufweist, wobei E eine Kodiermatrix ist, welche repräsentativ für die Mittel zum Erfassen (1) ist, und D eine Dekodiermatrix ist, welche repräsentativ für die ausgewählten vorbestimmten allgemeinen Wiederherstellungsrichtungen ist.
  9. Verfahren gemäß Anspruch 8, wobei der besagte Schritt (30) des Verarbeitens korrespondiert zu:
    - dem Anwenden auf die besagten Messsignale (c1 bis cQ) von Filterkombinationen, um eine Mehrzahl von verarbeiteten Signalen zu erzeugen, welche eine Darstellung des besagten akustischen Feldes (P) bilden, welche im Wesentlichen unabhängig von den strukturellen Eigenschaften der Mittel zum Erfassen (1) ist, in Form einer endlichen Anzahl von Fourier-Bessel-Koeffizienten, und
    - dem Anwenden auf die besagten verarbeiteten Signale von spezifischen Linearkombinationen, um die besagte korrespondierende Mehrzahl von akustischen Signalen (sc1 bis scN) zu erzeugen.
  10. Verfahren gemäß Anspruch 8 oder 9, wobei der besagte Schritt (30) des Verarbeitens korrespondiert zum Anwenden von Filterkombinationen gemäß einer Technik, welche aus der Gruppe ausgewählt ist, welche gebildet ist:
    - aus Filtertechniken im Frequenzbereich,
    - aus Filtertechniken im Zeitbereich mittels Impulsantwort und
    - aus Filtertechniken im Zeitbereich mittels rekursiver Filter mit unendlicher Impulsantwort.
EP04767818.0A 2003-07-31 2004-07-29 System und verfahren zur bestimmung einer repräsentation eines akustischen feldes Active EP1652406B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309471A FR2858403B1 (fr) 2003-07-31 2003-07-31 Systeme et procede de determination d'une representation d'un champ acoustique
PCT/FR2004/002044 WO2005013643A1 (fr) 2003-07-31 2004-07-29 Systeme et procede de determination d'une representation d'un champ acoustique

Publications (2)

Publication Number Publication Date
EP1652406A1 EP1652406A1 (de) 2006-05-03
EP1652406B1 true EP1652406B1 (de) 2021-06-23

Family

ID=34043713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767818.0A Active EP1652406B1 (de) 2003-07-31 2004-07-29 System und verfahren zur bestimmung einer repräsentation eines akustischen feldes

Country Status (7)

Country Link
US (1) US7856106B2 (de)
EP (1) EP1652406B1 (de)
JP (1) JP5000297B2 (de)
KR (1) KR20060121807A (de)
CN (1) CN1849844B (de)
FR (1) FR2858403B1 (de)
WO (1) WO2005013643A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8023660B2 (en) * 2008-09-11 2011-09-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for providing a set of spatial cues on the basis of a microphone signal and apparatus for providing a two-channel audio signal and a set of spatial cues
KR101296757B1 (ko) * 2008-09-11 2013-08-14 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 마이크로폰 신호를 기반으로 공간 큐의 세트를 제공하는 장치, 방법 및 컴퓨터 프로그램과, 2채널 오디오 신호 및 공간 큐의 세트를 제공하는 장치
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
EP2450880A1 (de) 2010-11-05 2012-05-09 Thomson Licensing Datenstruktur für Higher Order Ambisonics-Audiodaten
US8873762B2 (en) * 2011-08-15 2014-10-28 Stmicroelectronics Asia Pacific Pte Ltd System and method for efficient sound production using directional enhancement
KR101282673B1 (ko) 2011-12-09 2013-07-05 현대자동차주식회사 음원 위치 추정 방법
EP2765791A1 (de) 2013-02-08 2014-08-13 Thomson Licensing Verfahren und Vorrichtung zur Bestimmung der Richtungen dominanter Schallquellen bei einer Higher-Order-Ambisonics-Wiedergabe eines Schallfelds
US9956910B2 (en) * 2016-07-18 2018-05-01 Toyota Motor Engineering & Manufacturing North America, Inc. Audible notification systems and methods for autonomous vehicles
EP3313089A1 (de) 2016-10-19 2018-04-25 Holosbase GmbH System und verfahren zur handhabung von digitalem inhalt
WO2019149337A1 (en) * 2018-01-30 2019-08-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatuses for converting an object position of an audio object, audio stream provider, audio content production system, audio playback apparatus, methods and computer programs
FR3077886B1 (fr) 2018-02-13 2020-05-22 Observatoire Regional Du Bruit En Idf Systeme de signalement de depassement d'un seuil d'intensite sonore
US11317233B2 (en) * 2018-05-11 2022-04-26 Clepseadra, Inc. Acoustic program, acoustic device, and acoustic system
CN109709519B (zh) * 2019-01-21 2024-03-22 广西科技大学 一种自由声场批量传声筒幅值灵敏度与相位量测量装置
FR3131640B1 (fr) 2021-12-31 2024-05-10 Observatoire Regional Du Bruit En Idf Systeme de localisation d’une source sonore, notamment de nuisances sonores provenant de vehicules
CN114252148B (zh) * 2021-12-31 2022-12-06 中国人民解放军海军工程大学 一种基于长椭球波叠加的声场重建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594800A (en) * 1991-02-15 1997-01-14 Trifield Productions Limited Sound reproduction system having a matrix converter
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
WO2001082651A1 (en) * 2000-04-19 2001-11-01 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics in three dimensions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158695A (en) * 1960-07-05 1964-11-24 Ht Res Inst Stereophonic system
GB9307986D0 (en) * 1993-04-17 1993-06-02 Adaptive Audio Ltd Method of reproducing sound
DE19645867A1 (de) * 1996-11-07 1998-05-14 Deutsche Telekom Ag Verfahren zur mehrkanaligen Tonübertragung
US6526147B1 (en) * 1998-11-12 2003-02-25 Gn Netcom A/S Microphone array with high directivity
JP3584800B2 (ja) * 1999-08-17 2004-11-04 ヤマハ株式会社 音場再現方法およびその装置
US6845163B1 (en) * 1999-12-21 2005-01-18 At&T Corp Microphone array for preserving soundfield perceptual cues
NZ502603A (en) * 2000-02-02 2002-09-27 Ind Res Ltd Multitransducer microphone arrays with signal processing for high resolution sound field recording
US6826284B1 (en) * 2000-02-04 2004-11-30 Agere Systems Inc. Method and apparatus for passive acoustic source localization for video camera steering applications
JP2001346299A (ja) * 2000-05-31 2001-12-14 Sony Corp 音場補正方法及びオーディオ装置
JP2002081902A (ja) * 2000-09-08 2002-03-22 Toshiba Corp 位置センサ
JP4465870B2 (ja) * 2000-12-11 2010-05-26 ソニー株式会社 音声信号処理装置
EP1544635B1 (de) * 2002-08-30 2012-01-18 Nittobo Acoustic Engineering Co.,Ltd. Schallquellensuchsystem
WO2004032351A1 (en) * 2002-09-30 2004-04-15 Electro Products Inc System and method for integral transference of acoustical events
FI118247B (fi) * 2003-02-26 2007-08-31 Fraunhofer Ges Forschung Menetelmä luonnollisen tai modifioidun tilavaikutelman aikaansaamiseksi monikanavakuuntelussa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594800A (en) * 1991-02-15 1997-01-14 Trifield Productions Limited Sound reproduction system having a matrix converter
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
WO2001082651A1 (en) * 2000-04-19 2001-11-01 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics in three dimensions

Also Published As

Publication number Publication date
FR2858403A1 (fr) 2005-02-04
CN1849844B (zh) 2010-07-21
WO2005013643A1 (fr) 2005-02-10
CN1849844A (zh) 2006-10-18
EP1652406A1 (de) 2006-05-03
US20060239465A1 (en) 2006-10-26
KR20060121807A (ko) 2006-11-29
US7856106B2 (en) 2010-12-21
JP2007500962A (ja) 2007-01-18
FR2858403B1 (fr) 2005-11-18
JP5000297B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
EP1652406B1 (de) System und verfahren zur bestimmung einer repräsentation eines akustischen feldes
EP2898707B1 (de) Optimierte kalibrierung eines klangwiedergabesystems mit mehreren lautsprechern
EP2374124B1 (de) Verwaltete codierung von mehrkanaligen digitalen audiosignalen
EP1586220B1 (de) Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals
EP2374123B1 (de) Verbesserte codierung von mehrkanaligen digitalen audiosignalen
EP1992198B1 (de) Optimierung des binauralen raumklangeffektes durch mehrkanalkodierung
EP2005420B1 (de) Einrichtung und verfahren zur codierung durch hauptkomponentenanalyse eines mehrkanaligen audiosignals
EP1546916B1 (de) Verfahren und vorrichtung zum verarbeiten einer darstellung eines akustischen feldes
EP1479266B1 (de) Verfahren und vorrichtung zur steuerung einer anordnung zur wiedergabe eines schallfeldes
WO2004049299A1 (fr) Procede de traitement de donnees sonores et dispositif d'acquisition sonore mettant en oeuvre ce procede
FR2744871A1 (fr) Systeme de spatialisation sonore, et procede de personnalisation pour sa mise en oeuvre
WO2006075077A2 (fr) Procede et dispositif d’individualisation de hrtfs par modelisation
EP1502475B1 (de) Verfahren und system zum repräsentieren eines schallfeldes
EP3895446B1 (de) Verfahren zur interpolation eines schallfeldes und zugehöriges computerprogrammprodukt und vorrichtung
EP3400599B1 (de) Verbesserter ambisonic-codierer für eine tonquelle mit mehreren reflexionen
WO2018050292A1 (fr) Dispositif et procede de captation et traitement d'un champ acoustique tridimensionnel
FR3065137A1 (fr) Procede de spatialisation sonore
EP3934282A1 (de) Verfahren zur umwandlung eines ersten satzes repräsentativer signale eines schallfelds in einen zweiten satz von signalen und entsprechende elektronische vorrichtung
WO2022184800A1 (fr) Procédé de détermination d'une direction de propagation d'une source sonore par création de signaux sinusoïdaux à partir des signaux sonores reçus par des microphones
FR2866974A1 (fr) Procede de traitement sonores, en particulier en contexte ambiophonique
WO2014102199A1 (fr) Dispositif et procede d'interpolation spatiale de sons

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE DK GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04S 3/02 20060101ALN20201214BHEP

Ipc: H04S 3/00 20060101AFI20201214BHEP

INTG Intention to grant announced

Effective date: 20210115

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUNO, REMY

Inventor name: LABORIE, ARNAUD

Inventor name: MONTOYA, SEBASTIEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004054996

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004054996

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230712

Year of fee payment: 20