EP1586220B1 - Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals - Google Patents

Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals Download PDF

Info

Publication number
EP1586220B1
EP1586220B1 EP04703418.6A EP04703418A EP1586220B1 EP 1586220 B1 EP1586220 B1 EP 1586220B1 EP 04703418 A EP04703418 A EP 04703418A EP 1586220 B1 EP1586220 B1 EP 1586220B1
Authority
EP
European Patent Office
Prior art keywords
determining
reproduction unit
reproduction
acoustic
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04703418.6A
Other languages
English (en)
French (fr)
Other versions
EP1586220A2 (de
Inventor
Rémy BRUNO
Arnaud Laborie
Sébastien MONTOYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinnov Audio
Original Assignee
Trinnov Audio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinnov Audio filed Critical Trinnov Audio
Publication of EP1586220A2 publication Critical patent/EP1586220A2/de
Application granted granted Critical
Publication of EP1586220B1 publication Critical patent/EP1586220B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • H04R2205/024Positioning of loudspeaker enclosures for spatial sound reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Definitions

  • the present invention relates to a method and a device for controlling a set of restitution of an acoustic field comprising a plurality of rendering elements, from a plurality of acoustic or audiophonic signals each associated with a general direction of restitution. predetermined, defined with respect to a point of the given space.
  • Such a set of signals is commonly referred to as "multichannel signal” and corresponds to a plurality of signals, called channels, transmitted in parallel or multiplexed with each other, each intended for an element or a group of elements of restitution, arranged in a predefined general direction with respect to a given point.
  • a conventional multichannel system known as "5.1 ITU-R BF 775-1" and comprises five channels for rendition elements placed in five predetermined general directions with respect to a listening center, defined by angles 0 °, + 30 °, -30 °, + 110 ° and -110 °.
  • Such an arrangement therefore corresponds to the arrangement of a loudspeaker or group of speakers in front of the center, one on each side in front of right and left and one on each side behind to the right and left.
  • control signals being each associated with a determined direction, the application of these signals to a restitution assembly whose elements do not respond to the predetermined spatial configuration, causes significant deformations of the acoustic field restored.
  • the object of the present invention is to remedy this problem by defining a method and a system for controlling the reproduction assembly, the spatial configuration of which is arbitrary.
  • the invention also relates to a computer program comprising program code instructions for executing the steps of the method when said program is executed by a computer.
  • the invention also also relates to a removable medium of the type comprising at least one processing processor and a non-volatile memory element, characterized in that said memory comprises a program comprising code instructions for executing the steps of the method when said processor executes said program.
  • This reference is an orthonormal reference, of origin O and having three axes ( OX ), ( OY ) and ( OZ ).
  • a noted position x is described by means of its spherical coordinates ( r , ⁇ , ⁇ ,), where r denotes the distance from the origin O , ⁇ the orientation in the vertical plane and ⁇ the orientation in the horizontal plane.
  • an acoustic field is known if one defines at every point at each instant t the acoustic pressure noted p ( r , ⁇ , ⁇ , t ), whose time Fourier transform is noted P ( r , ⁇ , ⁇ , f ) where f is the frequency.
  • the invention is based on the use of a family of space-time functions for describing the characteristics of any acoustic field.
  • these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter referred to as Fourier-Bessel functions.
  • the Fourier-Bessel functions are solutions of the wave equation and constitute a base that generates all acoustic fields produced by sound sources located outside this zone. .
  • the Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse time Fourier transform of the coefficients P l, m ( f ).
  • the method of the invention uses function bases expressing themselves as linear combinations, possibly infinite, of Fourier-Bessel functions.
  • FIG. 2 schematically shows a restitution system in which the method of the invention is implemented.
  • This system comprises a decoder or adapter 1 driving a reproduction assembly 2 which comprises a plurality of elements 3 1 to 3 N , such that loudspeakers, loudspeakers or any other sound source or group of sound sources, arranged in any manner in a listening place 4.
  • the origin O of the reference mark is placed arbitrarily in listening area 4 called center 5 of the restitution set.
  • the set of spatial, acoustic and electrodynamic characteristics is considered as the intrinsic characteristics of the restitution ensemble 2.
  • the adapter 1 receives as input a signal SI of multichannel type comprising acoustic information to be reproduced and a definition signal SL comprising information representative of at least spatial characteristics of the reproduction unit 2 and in particular enabling the determination of representative parameters for at least one element 3 n of the reproduction unit 2 to its position in three dimensions of space in relation to the given point 5.
  • the adapter 1 transmits to the attention of each of the elements or groups of elements 3 1 to 3 N of the reproduction assembly 2, a signal sc 1 to sc N specific steering.
  • FIG 3 schematically shows the main steps of the method according to the invention implemented with a restitution system such as that described with reference to the figure 2 .
  • This method comprises a step 10 of determining operating parameters, adapted to allow at least the determination of the spatial characteristics of the reproduction assembly 2.
  • Step 10 comprises a step 20 for entering the parameters and / or a calibration step 30 making it possible to determine and / or measure characteristics of the reproduction assembly 2.
  • step 10 also comprises a step 40 of determining description parameters of the predetermined general directions associated with the different channels of the multichannel input signal SI.
  • step 10 information relating to at least the different predetermined general directions associated with each of the input channels as well as to the position in the three dimensions of the space of each of the elements or groups of elements 3 n of the restitution assembly 2, are determined.
  • This information is used during a step 50 of determining the adaptation filters making it possible to take into account the spatial characteristics of the reproduction unit 2 in order to define adaptation filters of the multichannel input signal to the spatial configuration specific of the refund set 2.
  • step 10 also makes it possible to determine acoustic characteristics for all or part of the elements 3 1 to 3 N of the reproduction assembly 2.
  • the method comprises a step 60 for determining acoustic compensation filters for compensating for the influence of the specific acoustic characteristics of the elements 3 1 to 3 N.
  • the filters defined during the steps 50 and advantageously 60 can thus be stored, so that the steps 10, 50 and 60 must be repeated only if the spatial configuration of the reproduction assembly 2 and / or the nature of the multichannel input signal.
  • the method then comprises a step 70 for determining the control signals sc 1 to sc N intended for the elements of the reproduction assembly 2, comprising a sub-step 80 for applying the adaptation filters determined during step 50 to the different channels c 1 ( t ) to c Q ( t ) forming the multichannel input signal SI and advantageously, a sub-step 90 for applying the acoustic compensation filters determined in step 60.
  • the signals sc 1 to sc N thus delivered are applied to the elements 3 1 to 3 N of the reproduction unit 2, in order to restore the acoustic field represented by the multichannel input signal SI with an optimum adaptation to the spatial characteristics and advantageously acoustic, of the restitution assembly 2.
  • the characteristics of the acoustic field restored are substantially independent of the intrinsic characteristics of restitution of the restitution assembly 2 and in particular of its spatial configuration.
  • This step 20 is implemented by means of an interface of conventional type such as a microcomputer or any other appropriate means.
  • calibration means comprise a decomposition module 91, an impulse response determination module 92 and a calibration parameter determination module 93.
  • the calibration means are adapted to be connected to a sound acquisition device 100 such as a microphone or any other suitable device, and to be connected in turn to each element 3 n of the reproduction assembly 2 in order to collect information about this element.
  • the calibration means emit a specific signal u n ( t ) such as a pseudo-random sequence MLS (Maximum Length Sequence) to the attention of an element 3 n .
  • the acquisition device 100 receives, at a sub-step 34, the sound wave emitted by the element 3 n in response to receiving the signal u n (t) and transmits signals I 1 cp (t) cp 1 ( t ) representative of the wave received at the decomposition module 91.
  • the decomposition module 91 decomposes the signals picked up by the acquisition device 100 into a finite number of Fourier-Bessel coefficients q l, m ( t ).
  • the acquisition device 100 consists of 4 pressure sensors located at the 4 vertices of a tetrahedron of radius R as shown with reference to FIG. figure 6 .
  • the signals of the 4 pressure sensors are then noted cp 1 ( t ) to cp 4 ( t ).
  • CP 1 ( f ) to CP 4 ( f ) are the Fourier transforms from cp 1 ( t ) to cp 4 ( t ) and Q 0,0 ( f ) to Q 1,1 ( f ) are the transforms Fourier of q 0.0 ( t ) to q 1.1 ( t ).
  • the response determination module 92 determines the impulse responses hp l, m ( t ) which connect the Fourier-Bessel coefficients q l, m ( t ) and the transmitted signal u n ( t). ).
  • the determination method depends on the specific signal emitted.
  • the described embodiment uses a method adapted to MLS type signals, such as the correlation method.
  • the impulse response delivered by the response determination module 92 is addressed to the parameter determination module 93.
  • the module 93 derives information on elements of the reproduction set.
  • the parameter determination module 93 determines the distance r n between the element 3 n and the center 5 from its response hp 0,0 ( t ) and the measurement of the time put by the it is propagated from the element 3 n to the acquisition device 100, by delay estimation methods on the response hp 0,0 ( t ).
  • the direction ( ⁇ n , ⁇ n ) of the element 3 n is deduced by calculating the maximum of the inverse spherical Fourier transform applied to the responses hp 0,0 ( t ) to hp 1,1 ( t ) taken at the time t where hp 0,0 (t) has a maximum.
  • the coordinates ⁇ n and ⁇ n are estimated over several instants, chosen preferably around the moment when hp 0,0 ( t ) has a maximum.
  • the final determination of the coordinates ⁇ n and ⁇ n is obtained by means of averaging techniques between the different estimations.
  • the acquisition device 100 is able to unambiguously encode the orientation of a source in space.
  • the coordinates ⁇ n and ⁇ n are estimated from other responses among the hp l, m ( t ) available or are estimated in the frequency domain from the responses HP / , m ( f ), corresponding to the transforms Fourier responses hp / , m ( t ).
  • step 30 makes it possible to determine the parameters r n , ⁇ n and ⁇ n .
  • the module 93 also delivers the transfer function H n ( f ) of each element 3 n , from the responses hp / , m ( t ) from the response determination module 92.
  • a first solution consists in constructing the response hp ' 0,0 ( t ) corresponding to the selection of the part of the response hp 0,0 ( t ) which comprises a non-zero signal and devoid of the reflections introduced by the listening site. 4.
  • the frequency response H n ( f ) is derived by Fourier transform from the previously freened response hp ' 0,0 ( t ).
  • the window can be chosen from conventional smoothing windows, such as for example rectangular, Hamming, Hanning, and Blackman.
  • a second more complex solution consists in applying a smoothing on the module and advantageously on the phase of the frequency response HP 0.0 ( f ) obtained by Fourier transform of the response hp 0.0 ( t ).
  • the smoothing is obtained by convolution of the response HP 0.0 ( f ) by a window centered on f .
  • This convolution corresponds to an averaging of the response HP 0.0 ( f ) around the frequency f .
  • the window can be chosen from conventional windows, for example rectangular, triangles and Hamming.
  • the width of the window varies with the frequency.
  • the window width can be proportional to the frequency f which is applied to the smoothing.
  • a variable window with the frequency makes it possible to at least partially eliminate the room effect in the high frequencies while avoiding a truncation effect of the response HP 0.0 ( f ) in the low frequencies .
  • Sub-steps 32 to 39 are repeated for all the elements 3 1 to 3 N of the reproduction assembly 2.
  • the calibration means comprise other means for acquiring information relating to the elements 3 1 to 3 N , such as laser position measuring means, signal processing means using signal processing techniques. lane formation or any other appropriate means.
  • the means implementing the calibration step 30 consist for example of an electronic card or a computer program or any other appropriate means.
  • Step 40 thus makes it possible, as has been said above, to determine parameters describing the format of the multichannel input signal and in particular the general predetermined directions associated with each channel.
  • This step 40 may correspond to an operator selecting a format from a list of formats each associated with stored parameters, and may also correspond to an automatic format detection performed on the input multichannel signal.
  • the method is adapted for a single given multichannel signal format.
  • step 40 allows a user to specify his own format by manually entering the parameters describing the directions associated with each channel.
  • the steps 20, 30 and 40 forming the parameter determination step 10 allow at least the determination of positioning parameters in the space of the elements 3 n of the reproduction assembly 2 and the format of the multichannel signal. SI .
  • step 50 of determining the matching filters is shown.
  • This step comprises a plurality of sub-steps for calculating and determining matrices representative of the previously determined parameters.
  • the step 50 of determining adaptation filters then comprises a substep 52 of determining a matrix W of the acoustic field weighting.
  • This matrix W corresponds to a spatial window W ( r , f ) representative of the distribution in space of the desired precision during the reconstruction of the field.
  • a window makes it possible to specify the size and the shape of the zone where the field must be correctly reconstructed. For example, it may be a ball centered on the center 5 of the rendering assembly.
  • the spatial window and the matrix W are independent of the frequency.
  • W is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is 2 1 + 1 times later on the diagonal.
  • the values taken by the coefficients W 1 are the values of a function such as a Hamming window of size of 2 L +1 evaluated at 1 , so that the parameter W 1 is determined for l ranging from 0 to L.
  • Step 50 then comprises a substep 53 for determining a matrix M representative of the radiation of the reproduction assembly, in particular from the position parameters. x n .
  • the radiation matrix M makes it possible to deduce Fourier-Bessel coefficients representing the acoustic field emitted by each element 3 n from the reproduction unit as a function of the signal it receives.
  • M is a matrix of size ( L +1) 2 on N , consisting of elements M l, m, n , the indices l , m denoting the line l 2 + l + m and n denoting the column n .
  • the matrix M thus has the following form: M 0 , 0 , 1 M 0 , 0 , 2 ⁇ ⁇ M 0 , 0 , NOT M 1 , - 1 , 1 M 1 , - 1 , 2 ⁇ ⁇ M 1 , - 1 , NOT M 1 , 0 , 1 M 1 , 0 , 2 ⁇ ⁇ M 1 , 0 , NOT M 1 , 1 , 1 M 1 , 1 , 2 ⁇ ⁇ M 1 , 1 , NOT ⁇ ⁇ ⁇ M The , - The , 1 M The , - The , 2 ⁇ ⁇ M The , - The , NOT ⁇ ⁇ ⁇ M The , 0 , 1 M The , 0 , 2 ⁇ ⁇ M The , 0 , NOT ⁇ ⁇ ⁇ M The , The 0 , 1 M The , 0 , 2 ⁇ ⁇ M The , 0 , NOT ⁇
  • the matrix M thus defined is representative of the radiation of the reproduction unit.
  • M is representative of the spatial configuration of the restitution set.
  • Sub-steps 51 to 53 may be executed sequentially or simultaneously.
  • the step 50 of determining adaptation filters then comprises a substep 54 of taking into account all the parameters of the rendering system 2 determined previously, in order to deliver a decoding matrix D representative of so-called reconstruction filters. .
  • the elements D n, l, m ( f ) of the matrix D correspond to reconstruction filters which, applied to the Fourrier-Bessel coefficients P l, m ( f ) of a known acoustic field, make it possible to determine the control signals of a reproduction unit for reproducing this acoustic field.
  • the decoding matrix D is therefore the inverse of the radiation matrix M.
  • the matrix D is obtained from the matrix M by means of inversion methods under constraints involving additional optimization parameters.
  • step 50 is adapted to perform an optimization thanks to the weighting matrix of the acoustic field W which In particular, it makes it possible to reduce the spatial distortion in the reproduced acoustic field.
  • the matrices M and W are independent of the frequency, so that the matrix D is also independent of the frequency. It consists of elements denoted D n, l, m organized as follows: D 1 , 0 , 0 D 1 , 1 , - 1 D 1 , 1 , 0 D 1 , 1 , 1 ⁇ D 1 , The , - The ⁇ D 1 , The , 0 ⁇ D 1 , The , The D 2 , 0 , 0 D 2 , 1 , - 1 D 2 , 1 , 0 D 2 , 1 , 1 ⁇ D 2 , The , - The ⁇ D 2 , The , 0 ⁇ D 2 , The , The ⁇ ⁇ ⁇ ⁇ ⁇ D NOT , 0 , 0 D NOT , 1 , 0 D NOT , 1 , 1 ⁇ D NOT , The , - The
  • Step 54 thus makes it possible to deliver the matrix D representative of so-called reconstruction filters and enabling the reconstruction of an acoustic field from any configuration of the reproduction assembly. Thanks to this matrix, the method of the invention makes it possible to take into account the configuration of the reproduction assembly 2 and in particular to compensate the alterations of the acoustic field due to its specific spatial configuration.
  • the parameters relating to the reproduction assembly 2 may be variable depending on the frequency.
  • each element D n, 1, m ( f ) of the matrix D can be determined by associating with each of the N control signals a directivity function D n ( ⁇ , ⁇ , f ) specifying at each frequency f amplitude, and advantageously the desired phase on the n sc drive signal in the case of a plane wave in the direction ( ⁇ , ⁇ ).
  • directivity function D n ( ⁇ , ⁇ , f ) is meant a function that associates a real or complex value, possibly depending on the frequency or a frequency range, with each direction of the space.
  • the directivity functions are independent of the frequency and denoted D n ( ⁇ , ⁇ ).
  • These directivity functions D n ( ⁇ , ⁇ ) can be determined by specifying that certain physical quantities between an ideal field and the same field reproduced by the restitution set comply with predetermined laws. For example, these quantities may be the pressure at the center and the orientation of the velocity vector.
  • the active piloting signals denoted sc n 1 to sc n 3
  • the active rendering elements denoted 3 n 1 to 3 n 3
  • the values of the directivities D n1 ( ⁇ , ⁇ ) to D n 3 ( ⁇ , ⁇ ) associated with the 3 active elements 3 n 1 to 3 n 3 are given by: with
  • corresponds to the vector containing [ D n1 ( ⁇ , ⁇ ) ... D n3 ( ⁇ , ⁇ )] and the directions ( ⁇ n1 , ⁇ n2 ), ( ⁇ n2 , ⁇ n2 ) and ( ⁇ n3 , ⁇ n3 ) correspond respectively to the directions of the elements 3 n 1 , 3 n 2 and 3 n 3 .
  • each of the directivity functions D n ( ⁇ , ⁇ ) is provided in the form of a list of K samples.
  • Each sample is provided in the form of a pair ⁇ (( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ where ( ⁇ k , ⁇ k ) is the direction of the sample k and where D n ( ⁇ k , ⁇ k ) is the value of the directivity function associated with the control signal sc n for the direction (( ⁇ k , ⁇ k ).
  • the coefficients D n , l , m ( f ) of each directivity function are deduced from the samples ⁇ ((( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ . are obtained by inversion of the angular sampling process which makes it possible to deduce the samples from the list ⁇ (( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ from a directivity function provided under This inversion can take different forms to control the interpolation between samples.
  • the directivity functions are directly provided in the form of Fourrier-Bessel type D n, / , m ( f ) coefficients.
  • the coefficients D n , /, m ( f ) thus determined are used to form the matrix D.
  • Step 50 then comprises a step 55 of determining an ideal multichannel radiation matrix S representative of the predetermined general directions associated with each channel of the multichannel input signal SI .
  • the S matrix is representative of the radiation a set of ideal restitution, i.e. full conformity with the predetermined branch of the multichannel format.
  • Each element S l , m , q ( f ) of the matrix S makes it possible to deduce the Fourier-Bessel coefficients P l , m ( f ) from the acoustic field ideally restored by each channel c q ( t ).
  • the matrix S is determined by associating with each input channel c q ( t ) and advantageously for each frequency f , a directivity figure representative of a distribution of sources supposed to emit the signal of the channel c q ( t ).
  • the distribution of sources is given in the form of spherical harmonics coefficients S l , m , q ( f ).
  • the coefficients S /, m , q ( f ) are arranged in the matrix S of size ( L +1) 2 on Q , where Q is the number of channels.
  • the shaping step associates with each channel c q ( t ) a plane wave source oriented in the direction ( ⁇ q , ⁇ q ) corresponding to the direction ⁇ q vs ⁇ q vs associated with the channel c q ( t ) in the multichannel input format.
  • the ideal radiation matrix S combines a discrete distribution of plane wave sources with certain channels to simulate the effect of a speaker belt.
  • the coefficients S l , m , q are obtained by summation of the contributions of each of the elementary sources.
  • the ideal radiation matrix S associates certain channels c q ( t ) with a continuous distribution of plane wave sources described by a directivity function S q ( ⁇ , ⁇ ).
  • the coefficients S l , m , q of the matrix S are obtained directly by Spherical Fourier transform of the directivity function S q ( ⁇ , ⁇ ) .
  • the matrix S is independent of frequency.
  • the matrix S associates with certain channels, a distribution of sources producing a diffuse field.
  • the matrix S varies with the frequency.
  • the matrix S associates sound sources whose response is not flat to certain channels.
  • the coefficients S l , m , q ( f ) of the radiation matrix are obtained by summation of the coefficients associated with each type of distribution of source.
  • step 50 comprises a substep 56 for determining a spatial adaptation matrix A corresponding to the adaptation filters to be applied to the multichannel input signal in order to obtain an optimum restitution taking into account the spatial configuration of the input signal. restitution set 2.
  • the adaptation matrix A makes it possible to generate signals sa 1 ( t ) to its N ( t ) adapted to the spatial configuration of the reproduction set from the channels c 1 ( t ) to c Q ( t ).
  • Each element A n, q ( f ) is a filter specifying the contribution of the channel c q ( t ) to the adapted signal sa n ( t ). Thanks to the adaptation matrix A , the method of the invention allows the optimum restitution of the acoustic field described by the multichannel signal by a restitution set of any spatial configuration.
  • the matrices D and S are independent of the frequency and the matrix A also.
  • the elements of the matrix A are constants denoted A n, q and each of the adapted signals sa 1 ( t ). its N ( t ) is obtained by simple linear combinations of the input channels c 1 ( t ) to c Q ( t ), where appropriate followed by delay as will be described below.
  • the filters represented by the matrix A can be implemented in different forms of filters and / or filtering methods.
  • the coefficients A n, q ( f ) are directly delivered by step 50.
  • the step 50 of determining adaptation filters comprises a sub-step. step 57 conversion to determine the filter parameters for other filtering methods.
  • step 50 the parameters of the adaptation filters A n , q ( f ) are provided.
  • Step 60 thus makes it possible, as has been said above, to determine the filters for compensating the acoustic characteristics of the elements of the reproduction assembly 2 in the case where parameters relating to these acoustic characteristics such as the frequency responses H n ( f ), are determined during step 10 of determining the parameters.
  • the determination of such filters, noted H not I f , from the frequency responses H n ( f ), can be carried out conventionally by applying filter inversion methods, such as direct inversion, deconvolution methods, Wiener or other methods.
  • the compensation relates only to the amplitude of the response or else to the amplitude and the phase.
  • This step 60 makes it possible to determine a compensation filter for each element 3 n of the reproduction assembly 2 as a function of its specific acoustic characteristics.
  • the filters can be implemented in different forms of filters and / or filtering methods.
  • the used filters are parameterized directly with frequency responses, the responses H not I f are directly applied.
  • the step 60 of determining compensation filters comprises a conversion sub-step in order to determine the parameters of the filters for other filtering methods.
  • step 60 the parameters of the compensation filters H not I f are provided.
  • step 70 of determining driving signals We will now describe in more detail step 70 of determining driving signals.
  • This step 70 comprises a sub-step 80 for applying the adaptation filters represented by the matrix A to the multichannel input signal SI corresponding to the acoustic field to be restored.
  • the adaptation filters A n , q ( f ) integrate the characteristic parameters of the reproduction set 2.
  • the adaptation is continued by an adjustment of the gains and the application of delays in order to align the wave fronts of the elements 3 1 to 3 N of the reproduction assembly 2 temporally with respect to the element furthest away.
  • the substep 80 ends with a gain adjustment and the application of delays in order to temporally align the wave fronts of the elements 3 1 to 3 N of the restitution assembly 2 with respect to the element furthest away.
  • step 70 comprises a sub-step 90 for compensating for the acoustic characteristics of the reproduction assembly.
  • compensation filters H not I f acoustic characteristics is described with reference to the figure 9 .
  • the method of the invention does not compensate for the specific acoustic characteristics of the elements of the rendering assembly.
  • step 60 as well as substep 90 are not performed and the appropriate signals sa 1 ( t ) to its N ( t ) correspond directly to the control signals sc 1 to sc N.
  • each element 3 1 to 3 N therefore receives a specific driving signal sc 1 to sc N and emits an acoustic field which contributes to the optimal reconstruction of the acoustic field to be restored.
  • the simultaneous control of the set of elements 3 1 to 3 N allows an optimal reconstruction of the acoustic field corresponding to the multichannel input signal by the restitution set 2 whose spatial configuration is arbitrary, or else does not correspond to to a fixed configuration.
  • the parameters N l , m , n ( f ) and RM ( f ) occur in the sub-step 53 of determining the radiation matrix M
  • the parameters W (r, f), W l (f) R (f) are involved in the substep 52 of determining the matrix W
  • the parameters ⁇ (l k, m k ) ⁇ ( f ) intervene in an additional substep in the determination of a matrix F.
  • the decoding matrix D is then determined during the sub-step 54, for each frequency f , as a function of the matrices M , W and F and the parameters G n ( f ) and ⁇ ( f ).
  • the calculation of the matrix D can be done frequency by frequency by considering only the active elements for each frequency considered.
  • This method of determining the matrix D uses the parameter G n ( f ) and makes it possible to make the most of a restitution set whose elements have different operating frequency bands.
  • FIG. 10 there is shown a diagram of an embodiment of an apparatus implementing the method as described above.
  • This apparatus comprises the adapter 1 which is formed of a unit 110 delivering a multichannel signal such as an audio-video disk reading unit called DVD player 112.
  • the multichannel signal delivered by the unit 110 is intended for the elements of 2.
  • the format of this signal SI is automatically recognized by the adapter 1 which is adapted to match parameters describing the predetermined general direction associated with each channel of the signal SI.
  • this adapter 1 also integrates an additional calculation unit 114 as well as information acquisition means 116.
  • the input means 116 are formed of an infrared interface with a remote control or with a computer and allow a user to determine the parameters defining the positions in the space of the restitution elements 3 1 to 3 N.
  • the computer 114 applies the adaptive filters multichannel signal SI to output the control signals sc sc 1 to N to the reproduction unit 2.
  • the device embodying the invention can take other forms, such as software implemented on a computer or a complete device incorporating calibration means and means for capturing and determining characteristics. of the restitution set more complete.
  • the method can also be implemented in the form of a device dedicated to the optimization of multichannel rendering systems, outside an audio-video decoder and associated therewith.
  • the device is adapted to receive a multichannel signal as input and to output control signals of elements of a reproduction set.
  • the device is adapted to be connected to the acquisition device 100 necessary for the calibration step and / or is provided with an interface for entering parameters, in particular the position of the elements of the reproduction set and possibly the multichannel input format.
  • Such an acquisition device 100 can be connected wired or wireless (radio, infra-red) and can be integrated with an accessory, such as a remote control, or be independent.
  • the method may be implemented by a device integrated into an element of an audio-video system responsible for the processing of multichannel signals, for example a "surround" processor or decoder, an audio-video amplifier integrating decoding functions. multichannel or a fully integrated audio-video system.
  • the method of the invention can also be implemented in an electronic card or in a dedicated chip.
  • it can be integrated as a program in a signal processing processor (DSP).
  • DSP signal processing processor
  • the method may take the form of a computer program to be executed by a computer.
  • the program receives as input a multichannel signal and delivers the control signals of a reproduction set that may be integrated into this computer.
  • the calibration means can be made by implementing a method different from that described above, such as, for example, a method inspired by the techniques described in the French patent application filed May 7, 2002 under the number 02 05 741 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)

Claims (22)

  1. Steuerverfahren einer Wiedergabeeinheit (2) eines Schallfelds mit einer Vielzahl von Wiedergabeelementen (3n) ausgehend von einer Vielzahl von Eingangssignalen akustischer Informationen (SI), die jeweils einer allgemeinen vorbestimmten Wiedergaberichtung zugeordnet sind, die im Verhältnis zu einen gegebenen Punkt (5) des Raums definiert ist, um ein wiedergegebenes Schallfeld mit spezifischen Eigenschaften zu erhalten, die von den immanenten Wiedergabeeigenschaften der Einheit (2) deutlich unabhängig sind, dadurch gekennzeichnet, dass es aufweist:
    - einen Bestimmungsschritt (10) mindestens räumlicher Eigenschaften der Wiedergabeeinheit (2), der die Bestimmung von Parametern erlaubt, die für mindestens ein Element (3n) der Wiedergabeeinheit (2) bezüglich seiner Position in den drei Dimensionen des Raums im Verhältnis zum gegebenen Punkt (5) repräsentativ sind,
    - einen Bestimmungsschritt (50) von Anpassungsfiltern (A) ausgehend von den mindestens räumlichen Eigenschaften der Wiedergabeeinheit (2) und den allgemeinen vorbestimmten Wiedergaberichtungen, die der Vielzahl von Eingangssignalen akustischer Informationen (SI) zugeordnet sind,
    - einen Bestimmungsschritt (70) mindestens eines Steuersignals der Elemente der Wiedergabeeinheit durch Anwendung der Anpassungsfilter auf die Vielzahl der Eingangssignale akustischer Informationen (SI) und
    - einen Bereitstellungsschritt des mindestens einen Steuersignals im Hinblick auf eine Anwendung auf die Wiedergabeelemente (3n).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bestimmungsschritt (10) mindestens räumlicher Eigenschaften der Wiedergabeeinheit (2) einen Eingabe-Unterschritt (20) aufweist, der erlaubt, die Eigenschaften der Wiedergabeeinheit (2) ganz oder teilweise zu bestimmen.
  3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass der Bestimmungsschritt (10) mindestens räumlicher Eigenschaften der Wiedergabeeinheit (2) einen Kalibrierungsschritt (30) aufweist, der erlaubt, die Eigenschaften der Wiedergabeeinheit (2) ganz oder teilweise bereitzustellen.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Kalibrierungs-Unterschritt (30) für mindestens eines der Wiedergabeelemente (3n) aufweist:
    - einen Sende-Unterschritt (32) eines spezifischen Signals (un(t)) in Richtung des mindestens einen Elements (3n) der Wiedergabeeinheit (2),
    - einen Erfassungs-Unterschritt (34) der als Antwort von dem mindestens einen Element (3n) gesendeten Schallwelle,
    - einen Umwandlungs-Unterschritt (36) der in einer endlichen Anzahl erfassten Signale der für die gesendete Schallwelle repräsentativen Koeffizienten und
    - einen Bestimmungs-Unterschritt (39) räumlicher und/oder akustischer Parameter des Elements (3n) ausgehend von den repräsentativen Koeffizienten der gesendeten Schallwelle.
  5. Verfahren nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, dass der Kalibrierungs-Unterschritt (30) ferner einen Bestimmungs-Unterschritt der Position in mindestens einer der drei Dimensionen des Raums des mindestens einen Elements (3n) der Wiedergabeeinheit (2) aufweist.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der Kalibrierungsschritt (30) einen Bestimmungs-Unterschritt der Frequenzantwort (Hn(f)) des mindestens einen Elements (3n) der Wiedergabeeinheit (2) aufweist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Bestimmungsschritt (50) von Anpassungsfiltern umfasst:
    - einen Bestimmungs-Unterschritt (54) einer Dekodierungsmatrix (D), die für Filter repräsentativ ist, die die Kompensierung von Wiedergabestörungen aufgrund der räumlichen Eigenschaften der Wiedergabeeinheit (2) erlauben,
    - einen Bestimmungs-Unterschritt (55) einer idealen Multikanal-Strahlungsmatix (S), die für die allgemeinen vorbestimmten Richtungen repräsentativ ist, die jedem Informationssignal der Vielzahl der Eingangssignalen (SI) zugeordnet sind, und
    - einen Bestimmungs-Unterschritt (56) einer repräsentativen Matrix (A) der Anpassungsfilter ausgehend von der Dekodierungsmatrix (D) und der Multikanal-Strahlungsmatrix (S).
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Bestimmungsschritt (50) von Anpassungsfiltern eine Vielzahl von Berechnungs-Unterschritten (51, 52, 53) aufweist, die es erlauben, einen Grenzbefehl (L) der räumlichen Präzision der Anpassungsfilter, eine Matrix (W), die einem für die Raumverteilung der gewünschten Präzision bei der Rekonstruktion des Schallfelds repräsentativen Raumfenster entspricht und eine für die Strahlung der Wiedergabeeinheit (2) repräsentative Matrix (M) bereitzustellen, wobei der Berechnungs-Unterschritt (54) der Matrix (2) der Dekodierung (D) ausgehend von den Ergebnissen dieser Berechnungs-Unterschritte durchgeführt wird.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass die Matrizes der Dekodierung (D), der idealen Multikanalstrahlung S und der Anpassung A frequenzunabhängig sind, wobei der Bestimmungsschritt (70) mindestens eines Steuersignals der Elemente der Wiedergabeeinheit durch Anwendung der Anpassungsfilter einfachen linearen Kombinationen, gefolgt von Verzögerung, entspricht.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Bestimmungsschritt (10) von Eigenschaften der Wiedergabeeinheit (2) die Bestimmung von akustischen Eigenschaften der Wiedergabeeinheit (2) erlaubt und dass das Verfahren einen Bestimmungsschritt (60) von Kompensationsfiltern dieser akustischen Eigenschaften aufweist, wobei der Bestimmungsschritt (70) mindestens eines Steuersignals dann einen Unterschritt (90) der Anwendung der akustischen Kompensationsfilter umfasst.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Bestimmungsschritt (10) akustischer Eigenschaften geeignet ist, um für mindestens ein Element (3n) repräsentative Parameter seiner Frequenzantwort (Hn(f)) bereitzustellen.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Bestimmungsschritt (70) mindestens eines Steuersignals einen Verstärkungsausgleichs- und Verzögerungsanwendungs-Unterschritt aufweist, um die Wellenfront der Wiedergabeelemente (3n) in Abhängigkeit von ihrem Abstand im Verhältnis zum gegebenen Punkt (5) zeitlich abzugleichen.
  13. Rechnerprogramm, das Programmcodeanweisungen für die Erfüllung der Schritte des Verfahrens nach einem der Ansprüche 1 bis 12 aufweist, wenn das Programm von dem Rechner ausgeführt wird.
  14. Abnehmbarer Halter der Bauart, die mindestens einen Verarbeitungsprozessor und ein nicht volatiles Speicherelement umfasst, dadurch gekennzeichnet, dass der Speicher ein Programm umfasst, das Codeanweisungen für die Erfüllung der Schritte des Verfahrens nach einem der Ansprüche 1 bis 12 umfasst, wenn der Prozessor das Programm ausführt.
  15. Steuervorrichtung einer Wiedergabeeinheit (2) eines Schallfelds mit einer Vielzahl von Wiedergabeelementen (3n), die Eingangsmittel (112) einer Vielzahl von Eingangssignalen akustischer Informationen (SI) aufweist, die jeweils einer allgemeinen vorbestimmte Wiedergaberichtung zugeordnet sind, die im Verhältnis zu einem gegebenen Punkt (5) definiert ist, dadurch gekennzeichnet, sie ferner aufweist:
    - Bestimmungsmittel (116) mindestens räumlicher Eigenschaften der Wiedergabeeinheit (2), die die Bestimmung von Parametern erlauben, die für mindestens ein Element (3n) der Wiedergabeeinheit (2) bezüglich seiner Position in den drei Dimensionen des Raums im Verhältnis zum gegebenen Punkt (5) repräsentativ sind,
    - Bestimmungsmittel (114) von Anpassungsfiltern (A) ausgehend von den mindestens räumlichen Eigenschaften der Wiedergabeeinheit (2) und den allgemeinen vorbestimmten Wiedergaberichtungen, die der Vielzahl von Eingangssignalen akustischer Informationen (SI) zugeordnet sind,
    - Bestimmungsmittel (114) mindestens eines Steuersignals (scn) der Elemente (3n) der Wiedergabeeinheit (2) durch Anwendung der Anpassungsfilter (A) auf die Vielzahl der Eingangssignale akustischer Informationen (SI).
  16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Bestimmungsmittel der mindestens räumlichen Eigenschaften der Wiedergabeeinheit (2) Mittel (116) zur Direkteingabe der Eigenschaften aufweisen.
  17. Vorrichtung nach einem der Ansprüche 15 und 16, dadurch gekennzeichnet, dass sie geeignet ist, Kalibrierungsmitteln (91, 92, 93, 100) zugeordnet zu sein, die die Bestimmung mindestens der räumlichen Eigenschaften der Wiedergabeeinheit (2) erlauben.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Kalibrierungsmittel Erfassungsmittel einer Schallwelle (100) aufweisen, die vier Drucksensoren umfassen, die gemäß einer allgemeinen tetraedischen Form angeordnet sind.
  19. Vorrichtung nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, dass die Bestimmungsmittel von Eigenschaften zur Bestimmung akustischer Eigenschaften mindestens eines der Elemente (3n) der Wiedergabeeinheit (2) geeignet sind, wobei die Vorrichtung Bestimmungsmittel von akustischen Kompensationsfiltern ausgehend von den akustischen Eigenschaften aufweist und wobei die Bestimmungsmittel mindestens eines Steuersignals für die Anwendung der akustischen Kompensationsfilter geeignet sind.
  20. Vorrichtung nach Anspruch 19, dadurch gekennzeichnet, dass die Bestimmungsmittel akustischer Eigenschaften zur Bestimmung der Frequenzantwort (Hn(f)) der Elemente (3n) der Wiedergabeeinheit (2) geeignet sind.
  21. Gerät zur Verarbeitung von Audio- und Videodaten, das Bestimmungsmittel (112) einer Vielzahl von Eingangssignalen akustischer Informationen (SI) aufweist, die jeweils einer allgemeinen vorbestimmten Wiedergaberichtung zugeordnet sind, die von einem gegebenen Punkt definiert ist (5), dadurch gekennzeichnet, dass es ferner eine Steuervorrichtung einer Wiedergabeeinheit (2) nach einem der Ansprüche 1 bis 19 aufweist.
  22. Gerät nach Anspruch 21, dadurch gekennzeichnet, dass die Bestimmungsmittel einer Vielzahl von Eingangssignalen von einer Lese- und Dekodierungseinheit (112) digitaler Audio- und/oder Video-Discs gebildet wird.
EP04703418.6A 2003-01-20 2004-01-20 Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals Expired - Lifetime EP1586220B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0300571A FR2850183B1 (fr) 2003-01-20 2003-01-20 Procede et dispositif de pilotage d'un ensemble de restitution a partir d'un signal multicanal.
FR0300571 2003-01-20
PCT/FR2004/000115 WO2004068463A2 (fr) 2003-01-20 2004-01-20 Procede et dispositif de pilotage d'un ensemble de restitution a partir d'un signal multicanal

Publications (2)

Publication Number Publication Date
EP1586220A2 EP1586220A2 (de) 2005-10-19
EP1586220B1 true EP1586220B1 (de) 2013-10-23

Family

ID=32605871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04703418.6A Expired - Lifetime EP1586220B1 (de) 2003-01-20 2004-01-20 Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals

Country Status (7)

Country Link
US (1) US8213621B2 (de)
EP (1) EP1586220B1 (de)
JP (1) JP2006517072A (de)
KR (1) KR101248505B1 (de)
CN (1) CN1751540B (de)
FR (1) FR2850183B1 (de)
WO (1) WO2004068463A2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8078659B2 (en) * 2005-10-31 2011-12-13 Telefonaktiebolaget L M Ericsson (Publ) Reduction of digital filter delay
GB0523946D0 (en) * 2005-11-24 2006-01-04 King S College London Audio signal processing method and system
US7864968B2 (en) * 2006-09-25 2011-01-04 Advanced Bionics, Llc Auditory front end customization
FR2915041A1 (fr) * 2007-04-13 2008-10-17 Canon Kk Procede d'attribution d'une pluralite de canaux audio a une pluralite de haut-parleurs, produit programme d'ordinateur, moyen de stockage et noeud gestionnaire correspondants.
US20090232316A1 (en) * 2008-03-14 2009-09-17 Chieh-Hung Chen Multi-channel blend system for calibrating separation ratio between channel output signals and method thereof
US20100057472A1 (en) * 2008-08-26 2010-03-04 Hanks Zeng Method and system for frequency compensation in an audio codec
EP2309781A3 (de) 2009-09-23 2013-12-18 Iosono GmbH Vorrichtung und Verfahren zur Berechnung der Filterkoeffizienten für vordefinierte Lautsprecheranordnung
US9025776B2 (en) * 2010-02-01 2015-05-05 Rensselaer Polytechnic Institute Decorrelating audio signals for stereophonic and surround sound using coded and maximum-length-class sequences
JP5387478B2 (ja) * 2010-03-29 2014-01-15 ソニー株式会社 音声再生装置及び音声再生方法
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
US20120148075A1 (en) * 2010-12-08 2012-06-14 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US20130051572A1 (en) * 2010-12-08 2013-02-28 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US9031268B2 (en) 2011-05-09 2015-05-12 Dts, Inc. Room characterization and correction for multi-channel audio
WO2012164444A1 (en) * 2011-06-01 2012-12-06 Koninklijke Philips Electronics N.V. An audio system and method of operating therefor
TWI453451B (zh) * 2011-06-15 2014-09-21 Dolby Lab Licensing Corp 擷取與播放源於多音源的聲音之方法
WO2014032709A1 (en) 2012-08-29 2014-03-06 Huawei Technologies Co., Ltd. Audio rendering system
JP6586885B2 (ja) 2014-01-16 2019-10-09 ソニー株式会社 音声処理装置および方法、並びにプログラム
KR102362121B1 (ko) 2015-07-10 2022-02-11 삼성전자주식회사 전자 장치 및 그 입출력 방법
CN111972928B (zh) * 2020-08-21 2023-01-24 浙江指云信息技术有限公司 一种具有环绕音场的助睡眠枕头及其调控方法
CN112014639B (zh) * 2020-09-02 2022-07-05 安徽一天电能质量技术有限公司 一种交流电力谐波向量测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060850A (en) * 1977-04-25 1977-11-29 The United States Of America As Represented By The Secretary Of The Navy Beam former using bessel sequences
US4893342A (en) * 1987-10-15 1990-01-09 Cooper Duane H Head diffraction compensated stereo system
US5757927A (en) * 1992-03-02 1998-05-26 Trifield Productions Ltd. Surround sound apparatus
US6154549A (en) * 1996-06-18 2000-11-28 Extreme Audio Reality, Inc. Method and apparatus for providing sound in a spatial environment
US5889867A (en) * 1996-09-18 1999-03-30 Bauck; Jerald L. Stereophonic Reformatter
JP3539855B2 (ja) * 1997-12-03 2004-07-07 アルパイン株式会社 音場制御装置
DE19847689B4 (de) * 1998-10-15 2013-07-11 Samsung Electronics Co., Ltd. Vorrichtung und Verfahren zur dreidimensionalen Tonwiedergabe
JP2000261900A (ja) * 1999-03-09 2000-09-22 Sony Corp 音場補正方法および音響装置。
JP2000354300A (ja) * 1999-06-11 2000-12-19 Accuphase Laboratory Inc マルチチャンネルオーディオ再生装置
JP2001157293A (ja) * 1999-12-01 2001-06-08 Matsushita Electric Ind Co Ltd スピーカ装置
AU2001255525A1 (en) * 2000-04-21 2001-11-07 Keyhold Engineering, Inc. Self-calibrating surround sound system
JP2002345097A (ja) * 2001-05-15 2002-11-29 Sony Corp サラウンド音場再生システム
FR2836571B1 (fr) * 2002-02-28 2004-07-09 Remy Henri Denis Bruno Procede et dispositif de pilotage d'un ensemble de restitution d'un champ acoustique

Also Published As

Publication number Publication date
WO2004068463A3 (fr) 2005-08-25
US8213621B2 (en) 2012-07-03
JP2006517072A (ja) 2006-07-13
FR2850183A1 (fr) 2004-07-23
CN1751540B (zh) 2012-08-08
CN1751540A (zh) 2006-03-22
KR20050103280A (ko) 2005-10-28
KR101248505B1 (ko) 2013-04-03
EP1586220A2 (de) 2005-10-19
WO2004068463A2 (fr) 2004-08-12
US20060167963A1 (en) 2006-07-27
FR2850183B1 (fr) 2005-06-24

Similar Documents

Publication Publication Date Title
EP1586220B1 (de) Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals
EP1563485B1 (de) Verfahren zur verarbeitung von audiodateien und erfassungsvorrichtung zur anwendung davon
EP2898707B1 (de) Optimierte kalibrierung eines klangwiedergabesystems mit mehreren lautsprechern
EP1546916B1 (de) Verfahren und vorrichtung zum verarbeiten einer darstellung eines akustischen feldes
EP1836876B1 (de) Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung
EP1992198B1 (de) Optimierung des binauralen raumklangeffektes durch mehrkanalkodierung
EP1479266B1 (de) Verfahren und vorrichtung zur steuerung einer anordnung zur wiedergabe eines schallfeldes
EP1946612A1 (de) Hrtfs-individualisierung durch modellierung mit finiten elementen gekoppelt mit einem revidierungsmodell
EP1652406B1 (de) System und verfahren zur bestimmung einer repräsentation eines akustischen feldes
EP1502475B1 (de) Verfahren und system zum repräsentieren eines schallfeldes
FR3065137A1 (fr) Procede de spatialisation sonore
EP3384688B1 (de) Aufeinanderfolgende dekompositionen von audiofiltern
EP3449643B1 (de) Verfahren und system zum senden eines 360°-audiosignals
FR3069693B1 (fr) Procede et systeme de traitement d'un signal audio incluant un encodage au format ambisonique
FR2866974A1 (fr) Procede de traitement sonores, en particulier en contexte ambiophonique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050714

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004043628

Country of ref document: DE

Effective date: 20131219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 638125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043628

Country of ref document: DE

BERE Be: lapsed

Owner name: TRINNOV AUDIO

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

26N No opposition filed

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043628

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140120

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Effective date: 20171128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20171226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20171226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230123

Year of fee payment: 20

Ref country code: DE

Payment date: 20230112

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004043628

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240119