EP1836876B1 - Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung - Google Patents

Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung Download PDF

Info

Publication number
EP1836876B1
EP1836876B1 EP06709051.4A EP06709051A EP1836876B1 EP 1836876 B1 EP1836876 B1 EP 1836876B1 EP 06709051 A EP06709051 A EP 06709051A EP 1836876 B1 EP1836876 B1 EP 1836876B1
Authority
EP
European Patent Office
Prior art keywords
directions
hrtfs
individual
model
measurements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06709051.4A
Other languages
English (en)
French (fr)
Other versions
EP1836876A2 (de
Inventor
Rozenn Nicol
Sylvain Busson
Vincent Lemaire
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
Orange SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange SA filed Critical Orange SA
Publication of EP1836876A2 publication Critical patent/EP1836876A2/de
Application granted granted Critical
Publication of EP1836876B1 publication Critical patent/EP1836876B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S1/00Two-channel systems
    • H04S1/007Two-channel systems in which the audio signals are in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2420/00Techniques used stereophonic systems covered by H04S but not provided for in its groups
    • H04S2420/01Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]

Definitions

  • the present invention relates to the modeling of individual transfer functions called HRTFs (for "Head Related Transfer Functions” ), relating to the hearing of an individual in the three-dimensional space.
  • HRTFs for "Head Related Transfer Functions”
  • the invention is particularly in the context of telecommunication services offering spatialized sound broadcasting (for example an audio conference between several speakers, a movie trailer).
  • spatialized sound broadcasting for example an audio conference between several speakers, a movie trailer.
  • the most effective technique for positioning sound sources in space is then binaural synthesis.
  • Binaural synthesis is based on the use of so-called " binaural " filters, which reproduce the acoustic transfer functions between the sound source and the listener's ears. These filters are used to simulate auditory location indices, indices that allow a listener to locate sound sources in real listening situations. These filters take into account all the acoustic phenomena (in particular the diffraction by the head, the reflections on the roof of the ear and the top of the torso) which modify the acoustic wave in its path between the source and the ears of the listener. These phenomena vary greatly with the position of the sound source (mainly with its direction) and these variations allow the listener to locate the source in the space.
  • Binaural techniques using binaural filters define the field of binaural synthesis in an advantageous context of the present invention.
  • Binaural synthesis is based on binaural filters that model the propagation of the acoustic wave between the source and the two ears of the listener. These filters represent acoustic transfer functions called HRTFs that model the transformations generated by the torso, head and horn of the listener on the signal coming from a sound source. At each sound source position is associated a pair of HRTFs (one HRTF for the right ear, one HRTF for the left ear). In addition, HRTFs carry the acoustic fingerprint of the morphology of the individual on which they were measured.
  • HRTFs therefore depend not only on the direction of the sound, but also on the individual. They are thus a function of the frequency f, the position ( ⁇ , ⁇ ) of the sound source (where the angle ⁇ represents the azimuth and the angle ⁇ the elevation), of the ear (left or right) and the individual.
  • HRTFs are obtained by measurement.
  • left and right HRTFs are measured by means of microphones inserted at the entrance of a subject's ear canal. The measurement must be performed in an anechoic chamber (or " deaf room ").
  • M directions we obtain, for a given subject, a database of 2M acoustic transfer functions representing each position of the space for each ear.
  • the spatialization effect is based on the use of HRTFs which, for optimal performance, must take into account acoustic propagation phenomena between the source and the ears, but also the individual specificities of the morphology of the listener.
  • the experimental measurement of HRTFs directly on an individual is, at the moment, the most reliable solution to obtain binaural filters of quality and really individualized (taking into account the individual specificities of the morphology of the individual). It is recalled that it is a matter of measuring the transfer function between a source located at a given position ( ⁇ 1, ⁇ 1) and the two ears of the subject by means of microphones placed at the entrance of the auditory ducts of this person.
  • An embodiment of this document provides in particular to enrich the morphological data of an individual, at the input of the model, by some HRTFs measured on this individual and in respective specific directions. Thus, only a small number of measurement directions are useful for obtaining the HRTFs of the individual in all directions of space.
  • the conditions and directions in which the representative functions of the HRTFs are to be measured can be arbitrarily set in the learning step.
  • arbitrarily refers to the fact that these measures are not necessarily privileged directions for the model to give better results. It will therefore be understood that these conditions and / or these measurement directions can be chosen for reasons independent of the proper functioning of the model. In addition, the measurement conditions are not necessarily optimal. This is why we are talking here about " representative measures of HRTFs " instead of " HRTFs measurements ".
  • step c1) on any individual, must preferentially be reproducible with those which made it possible to constitute the model in step b).
  • these measurement conditions can be chosen according to criteria that are completely independent of the operation of the model, the essential point being that they are reproducible between the moment when the model is constituted, in step b), and the moment when the measurements are taken on any individual in step c).
  • obtaining complete HRTFs from any individual can be achieved by roughly measuring its HRTFs in only a few directions, with a lean measurement procedure (ie that is, involving only a reduced number of measuring directions and / or a simplified measuring device).
  • the output vector Y of the model consists of coefficients associated with a given representation of an HRTF.
  • the vector Y may correspond to the frequency coefficients describing the spectrum modulus of an HRTF, but other representations may be considered (principal component analysis, IIR filter, or others).
  • the method of the invention is preferably based on statistical learning algorithms and, in a preferred embodiment, on network type algorithms. artificial neurons. These algorithms are briefly presented below.
  • Statistical learning algorithms are tools for predicting statistical processes. They have been used successfully for the prediction of processes for which several explanatory variables can be identified. Artificial neural networks define a particular category of these algorithms. The interest of neural networks lies in their ability to capturing high-level dependencies, that is, dependencies that involve multiple variables at once. The process prediction takes advantage of the knowledge and exploitation of high-level dependencies. There is a wide variety of application domains of neural networks, especially in financial techniques to predict market fluctuations, in pharmaceuticals, in the banking field for the detection of credit card fraud, in marketing to predict behavior. consumers, or others. Neural networks are often considered as universal predictors, in the sense that they are capable of predicting arbitrary data from any explanatory variables, provided that the number of hidden units is sufficient. In other words, they make it possible to model any mathematical function of in if the number of hidden units m is sufficient.
  • a neural network consists of three layers: an input layer 10, a hidden layer 11 and an output layer 12.
  • the input layer 11 corresponds to the explanatory variables, that is to say the variables of input (the aforementioned vector X), from which the prediction is made, and which will be described in detail later.
  • the output layer 12 defines the predicted values (the above-mentioned vector Y).
  • a first step 111 consists in calculating linear combinations of the explanatory variables so as to combine the information coming potentially from several variables.
  • a second step 112 consists in applying a non-linear transformation (for example a function of the " hyperbolic tangent " type) to each of the linear combinations in order to obtain the values of the hidden units or neurons that constitute the hidden layer. This nonlinear transformation defines the activation function of the neurons.
  • the hidden units are recombined linearly, at step 113, to calculate the value predicted by the neural network.
  • neural networks There are different categories of neural networks distinguished by their architecture (type of interconnection between neurons, choice of activation functions, or other) and the learning mode used.
  • Neural networks are not used for prediction purposes only. They are also used for classification and / or grouping of Clustering in a perspective of information reduction. Indeed, a network of neurons is able, in a set of data, to identify common characteristics between the elements of this set, to group them according to their resemblance. Each group thus formed is then associated with an element representative of the information contained in the group, called " representative ". This representative can then be substituted for the entire group. The set of data can thus be described by means of a reduced number of elements, which constitutes a reduction of data. Kohonen maps or self-organizing maps (SOM in English for "Self Organizing Map”) are neural networks dedicated to this clustering task.
  • SOM self-organizing maps
  • the method that seemed the most immediate was a uniform selection in which a subset of directions was chosen by trying to cover the entire 3D sphere as homogeneously and evenly as possible. This method was based on a regular sampling of the 3D sphere. However, it turned out that the HRTFs did not vary in a uniform way depending on the direction. From this point of view, a uniform selection of HRTFs was not really effective.
  • the clustering procedure also provides additional information as to the directions associated with the representative HRTFs, this information making it possible to define a selection of HRTFs intended to feed the input of the HRTFs calculation model. This selection is a priori non-uniform, but more efficient, and guarantees a better " representativeness " of the entire 3D sphere.
  • the present invention proposes the use, as input parameters of the model, of a selection of HRTFs corresponding to directions in the sense that these directions are not necessarily " representative " (in the sense of the clustering technique described above). However, these directions remain exploitable in that the model is able to extract specific information relating to each individual.
  • the invention uses " artificial neural network " type statistical learning algorithms, as a modeling tool for calculating HRTFs (for example with a " Multi Layer Perceptron " or MLP type neuron network). ).
  • the input parameters of the neural network are at least the azimuth angle ( ⁇ 1) and the elevation angle ( ⁇ 1) specifying the direction of an HRTF to be calculated. These parameters are possibly supplemented by " individual " parameters associated with the individual whose HRTFs are to be calculated. These individual parameters include a selection of HRTFs from the individual that have been previously measured. Nevertheless, it is not excluded to add morphological parameters of the individual to the input of the model to enrich the information to be provided to the model.
  • the output parameters of the model are then the coefficients of the vector describing the HRTF for the direction ( ⁇ 1, ⁇ 1) and for the individual specified in input.
  • a risk of the learning phase is the over-learning which is expressed as follows: the neural network learns " by heart " the learning set and tries to reproduce variations specific to the learning set, then they do not exist at the global level.
  • the validation phase 22 is conducted in conjunction with the learning phase 21. Referring to the figure 3 it consists in evaluating the prediction error of the neural network on a validation set (distinct from the training set), which defines the validation error. During learning, the Err_valid validation error begins to decrease and then starts to grow again when over-learning occurs. The minimum MIN of the validation error therefore determines the end of the learning.
  • test phase is conducted once the training is complete and consists in evaluating the prediction error on the test set. This error, called “test error” , finally describes the final performance of the neural network.
  • an operational neural network is available, to which it suffices to submit input parameters to obtain the HRTFs of an individual in one direction.
  • the method in the general sense of the invention therefore comprises a step a) during which a database is formed by measuring a plurality of HRTFs in a multiplicity of directions of the space and for a plurality of individuals.
  • This measurement step referenced 40 on the figure 4a consists in collecting the HRTFs measurements in N directions of space, for several individuals preferentially of different morphology (or " morphotype "), to obtain a complete data base according to the specificities of the individuals. More generally, the number of individuals taken into account during learning is high and better are the performance of the neural network, especially in terms of " universality ".
  • step b) consists in learning the model using the database 20.
  • steps 41 arbitrary steps i of measurements representative of HRTFs in a restricted number n (with n ⁇ N) are arbitrarily selected. This step 41 will be described in detail later, with reference to the figure 4c .
  • the three learning phases 21, validation 22 and test 23 are then conducted to build the model in step 44. It will be noted that it is possible to adjust the limited number of measurements n to avoid the phenomenon of over-learning described above. Thus, it is possible to determine an optimum number Nopt of measurements necessary for the proper functioning of the model (step 42) and to adopt this optimum number (step 43) for the definition of the model.
  • the neural network 44 for calculating the HRTFs.
  • the neural network 44 is then able to calculate the HRTFs of any individual, in any direction, provided that there are a few HRTFs of the individual in the predetermined directions ⁇ i mes , ⁇ i mes .
  • step c1) the measurement conditions of step c1) must be substantially reproducible with the measurement conditions for HRTFs in the directions i (step 41 of FIG. figure 4a ).
  • the database 20 must be constituted under the most conventional and standard conditions to offer, at the output of the model, quality HRTFs that can be applied to rendering devices by providing satisfactory listening comfort.
  • These measures " degraded " are denoted HRTF ( ⁇ i mes , ⁇ i mes ) and carried out at a step 48 of the figure 4c .
  • the model compares these calculated HRTFs with the HRTFs of the database 20 in the same directions ( ⁇ j cal , ⁇ j Cal ). If the deviation is considered too large (arrow n), the learning model 44b is perfected until this difference is reduced to an acceptable error (arrow o): the model then becomes definitive (end step 44).
  • IND is placed in a CAB that is not necessarily anechoic. He has a CAS helmet with at least one MIC microphone attached to one of his ears. Preferably, the CAS helmet is carried by a telescopic rigid rod in height (along the y axis). This rod is also attached to a REP1 mark of the cab CAB.
  • This embodiment makes it possible to maintain the individual IND (with respect to the other axes x and z) and to position it correctly with respect to the reference mark REP1 and, consequently, with respect to the sound sources S1, S2,. CAB cabin.
  • REP2 mark such as a visual cue on a mirror
  • another REP2 mark allows the individual to be positioned in height (along the y axis).
  • the individual can sit on a height adjustable seat and adjust the height until his ears coincide with the mark REP2 on the mirror.
  • one of the advantages of the implementation of the invention is to avoid the clustering technique and to leave a free choice at the location of the sound sources S1-Sn.
  • these sources may be available elsewhere than at the mirror bearing the mark REP2, or else at the level of the base of the rod REP1.
  • the source S2 is slightly shifted relative to the reference mark REP1.
  • the number of sources S1-Sn to predict depends, in principle, the number of HRTFs that one wishes to calculate from the model. Typically, to calculate HRTFs throughout the 3D space, between 25 and 30 prerequisite directions in CAB Cabin are recommended. Nevertheless, for a satisfactory comfort of listening, about fifteen measures is sufficient.
  • the sources S1 to Sn are not necessarily arranged on the same area of the sphere portion.
  • the purpose of the measurement protocol of the figure 5 is not to obtain HRTFs in the strict sense of the term, but more precisely transfer functions of an individual, these transfer functions being partially representative of its HRTFs. These transfer functions are intended to be used as input parameters of the model 44.
  • the inventors have indeed found that the model was able to extract and use the individual information contained in these transfer functions, even if this information is partial or scrambled. What matters is not the quality of the HRTFs measured according to this protocol, but their reproducibility. It is essentially on this reproducibility that the model of HRTFs is based.
  • One advantage of this measurement protocol is to relax the constraints of the measurement procedure, without affecting the proper functioning of the model.
  • the sound sources S1-Sn provided in the cab CAB may be in respective positions belonging to different sphere surfaces.
  • the signals measured by the microphone PCM are collected by an interface 51 of a central unit UC (for example an audio acquisition board), which converts them into digital data.
  • a central unit UC for example an audio acquisition board
  • These data, if necessary enriched by a measurement of the morphological parameter (s) of the individual, are then processed by the model 44 in the sense of the invention.
  • the model 44 may be stored as a computer program product in a memory of the CPU.
  • the HRTFs calculated for all the directions of the space that the model gives can then be stored in memory 52 or recorded on a removable medium (on diskette or engraved on CD-ROM) or communicated via a network such as the Internet or equivalent .
  • the input layer of the neural network comprises a selection of HRTFs of the individual corresponding to any directions, but fixed a priori, and obtained under non-ideal conditions.
  • HRTFs are certainly obtained by direct measurement on the individual IND, but under non-ideal conditions, especially in an environment that is not necessarily anechoic.
  • the measurement protocol must be defined beforehand (typically in learning step b)) and must be rigorously followed in step c) of applying the model to any individual.
  • the resulting neural network is able to compute the HRTFs of any individual in any direction, since it has the steps in the directions ⁇ i and ⁇ i my my selected and obtained under these conditions predefined.
  • a single source can be provided which moves between positions S1 to Sn.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Claims (10)

  1. Verfahren zur Modellierung von einer Person eigenen HRTFs-Übertragungsfunktionen, wobei:
    a) eine Datenbank erstellt wird, die eine Vielzahl von HRTFs gemäß einer Vielfalt von Richtungen des Raums und für eine Vielzahl von Personen umfasst,
    b) durch Lernen in der Datenbank ein Modell konstruiert wird, das HRTFs für die Vielfalt von Richtungen angeben kann, ausgehend von einem Satz von Messwerten, die für HRTFs in aus der Vielfalt von Richtungen ausgewählten Richtungen repräsentativ sind, und
    c) für eine beliebige Person:
    c1) ein Satz von Funktionen gemessen wird, die für die HRTFs der Person nur in den ausgewählten Richtungen repräsentativ sind,
    c2) das Modell an die Messwerte in den ausgewählten Richtungen angewendet wird, und
    c3) die HRTFs der Person in der ganzen Vielfalt von Richtungen erhalten werden,
    und wobei:
    - die Messbedingungen und -richtungen zum Erhalt des Satzes von Messwerten willkürlich während des Lernschritts b) festgelegt werden, und
    - im Schritt c1) Messbedingungen angewendet werden, die im Wesentlichen mit den Messbedingungen des Schritts b) reproduzierbar sind.
  2. Verfahren nach Anspruch 1, wobei im Schritt a) parallel zur Erstellung der Datenbank für die Vielzahl von Personen außerdem an der Vielzahl von Personen jeweilige Sätze von Funktionen gemessen werden, die für die HRTFs unter den willkürlich festgelegten Messbedingungen und -richtungen repräsentativ sind, und für die Konstruktion des Modells im Schritt b):
    - am Eingang des Modells die jeweiligen Sätze angewendet werden, und
    - am Ausgang des Modells die Datenbank angewendet wird.
  3. Verfahren nach einem der Ansprüche 1 und 2, wobei das Modell unter Verwendung eines Netzwerks aus künstlichen Neuronen aufgebaut wird.
  4. Verfahren nach Anspruch 3, wobei der Schritt b) aufweist:
    - eine Lernphase,
    - eine Validierungsphase, die parallel zur Lernphase ausgeführt wird, und
    - eine Testphase,
    und wobei während der Validierungsphase eine optimale Anzahl (Nopt) von Messungen bestimmt wird, die am Eingang des Modells zur Durchführung des Schritts c) zu liefern sind, um eine Wirkung des Überlernens des Modells zu begrenzen.
  5. Verfahren nach Anspruch 4, wobei die optimale Anzahl (Nopt) in der Größenordnung von zwanzig liegt.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Modell außerdem mindestens einen eine Person kennzeichnenden morphologischen Parameter verwendet, und wobei im Schritt c2) außerdem ein Messwert des morphologischen Parameters an das Modell geliefert wird.
  7. Verfahren nach einem der vorhergehenden Ansprüche, wobei im Schritt c2) am Eingang des Modells geliefert wird:
    - der Satz von Messwerten in den ausgewählten Richtungen, und
    - mindestens eine Richtung (ϕj cal, θj cal) aus der Vielfalt von Richtungen, in der eine Schätzung von HRTFs gewünscht wird.
  8. Anlage zur Schätzung von einer Person eigenen HRTFs-Übertragungsfunktionen, die aufweist:
    - eine Messkabine für repräsentative Übertragungsfunktionen von HRTFs in einem Satz von ausgewählten Richtungen, und
    - eine Verarbeitungseinheit (UC), um einen Satz von Messwerten an einer Person in den ausgewählten Richtungen wiederzugewinnen und die HRTFs der Person in einer Vielfalt von Richtungen des Raums zu bewerten, die die ausgewählten Richtungen umfassen, ausgehend von einem Modell, das fähig ist, HRTFs für eine Vielfalt von Richtungen ausgehend von einem Satz von Messwerten anzugeben, die für HRTFs nur in einigen Richtungen repräsentativ sind, die willkürlich unter der Vielfalt von Richtungen festgelegt werden,
    wobei die Messrichtungen in der Kabine den willkürlich festgelegten Richtungen entsprechen, dadurch gekennzeichnet, dass, da die Kabine Bezugspunkte (REP1, REP2) auf Achsen (x, y) aufweist, deren Schnittstelle eine Stellung der Ohren der Person (IND) in der Kabine (CAB) definiert, Schallquellen (S1-Sn), die in der Kabine (CAB) zur Durchführung der Messungen vorgesehen sind, in unterschiedlichen Abständen von der Schnittstelle platziert sind.
  9. Computerprogrammprodukt, das dazu bestimmt ist, in einem Speicher einer Verarbeitungseinheit oder auf einem entfernbaren Träger gespeichert zu werden, der mit einem Lesegerät der Verarbeitungseinheit zusammenwirken kann, oder dazu bestimmt ist, von einem Server zur Verarbeitungseinheit übertragen zu werden, das Anweisungen in Form eines Computercodes aufweist, um ein Modell zu konstruieren, das auf einem Netzwerk aus künstlichen Neuronen basiert und fähig ist, HRTFs-Übertragungsfunktionen einer Person für eine Vielfalt von Richtungen ausgehend von einem Satz von an dieser Person ausgeführten Messungen anzugeben, die für HRTFs nur in einigen Richtungen repräsentativ sind und willkürlich unter der Vielfalt von Richtungen festgelegt werden, wobei das Programm ausgehend von einer Datenbank, die eine Vielzahl HRTFs gemäß einer Vielfalt von Richtungen des Raums und für eine Vielzahl von Personen umfasst, mindestens eine Lernphase durchführt.
  10. Computerprogrammprodukt, das dazu bestimmt ist, in einem Speicher einer Verarbeitungseinheit oder auf einem entfernbaren Träger gespeichert zu werden, der mit einem Lesegerät der Verarbeitungseinheit zusammenwirken kann, oder das dazu bestimmt ist, von einem Server zur Verarbeitungseinheit übertragen zu werden, das Anweisungen in Form eines Computercodes aufweist, um ein Modell anzuwenden, das auf einem Netzwerk aus künstlichen Neuronen basiert und fähig ist, HRTFs-Übertragungsfunktionen einer Person für eine Vielfalt von Richtungen ausgehend von einem Satz von an dieser Person ausgeführten Messungen anzugeben, die für HRTFs nur in einigen Richtungen repräsentativ sind und willkürlich unter der Vielfalt von Richtungen festgelegt werden, wobei die an der Person ausgeführten Messungen in einer Kabine durchgeführt werden, in der:
    - die Messrichtungen den willkürlich festgelegten Richtungen entsprechen, und
    - die Kabine Bezugspunkte (REP1, REP2) auf jeweiligen Achsen (x, y) aufweist, deren Schnittstelle eine Stellung der Ohren der Person (IND) in der Kabine (CAB) definiert, um die Messungen durchzuführen, wobei in der Kabine (CAB) vorgesehene Schallquellen (S1-Sn) in unterschiedlichen Abständen zur Schnittstelle platziert sind.
EP06709051.4A 2005-01-10 2006-01-09 Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung Active EP1836876B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0500218A FR2880755A1 (fr) 2005-01-10 2005-01-10 Procede et dispositif d'individualisation de hrtfs par modelisation
PCT/FR2006/000037 WO2006075077A2 (fr) 2005-01-10 2006-01-09 Procede et dispositif d’individualisation de hrtfs par modelisation

Publications (2)

Publication Number Publication Date
EP1836876A2 EP1836876A2 (de) 2007-09-26
EP1836876B1 true EP1836876B1 (de) 2018-07-18

Family

ID=34953232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06709051.4A Active EP1836876B1 (de) 2005-01-10 2006-01-09 Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung

Country Status (5)

Country Link
US (1) US20080137870A1 (de)
EP (1) EP1836876B1 (de)
JP (1) JP4718559B2 (de)
FR (1) FR2880755A1 (de)
WO (1) WO2006075077A2 (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048900A1 (fr) * 2005-10-27 2007-05-03 France Telecom Individualisation de hrtfs utilisant une modelisation par elements finis couplee a un modele correctif
WO2007101958A2 (fr) * 2006-03-09 2007-09-13 France Telecom Optimisation d'une spatialisation sonore binaurale a partir d'un encodage multicanal
JP4866301B2 (ja) * 2007-06-18 2012-02-01 日本放送協会 頭部伝達関数補間装置
DE102007051308B4 (de) * 2007-10-26 2013-05-16 Siemens Medical Instruments Pte. Ltd. Verfahren zum Verarbeiten eines Mehrkanalaudiosignals für ein binaurales Hörgerätesystem und entsprechendes Hörgerätesystem
WO2009106783A1 (fr) * 2008-02-29 2009-09-03 France Telecom Procede et dispositif pour la determination de fonctions de transfert de type hrtf
JP5346187B2 (ja) * 2008-08-11 2013-11-20 日本放送協会 頭部音響伝達関数補間装置、そのプログラムおよび方法
US8428269B1 (en) * 2009-05-20 2013-04-23 The United States Of America As Represented By The Secretary Of The Air Force Head related transfer function (HRTF) enhancement for improved vertical-polar localization in spatial audio systems
FR2958825B1 (fr) * 2010-04-12 2016-04-01 Arkamys Procede de selection de filtres hrtf perceptivement optimale dans une base de donnees a partir de parametres morphologiques
CN102802111B (zh) * 2012-07-19 2017-06-09 新奥特(北京)视频技术有限公司 一种输出环绕声的方法和系统
AU2012394979B2 (en) 2012-11-22 2016-07-14 Razer (Asia-Pacific) Pte. Ltd. Method for outputting a modified audio signal and graphical user interfaces produced by an application program
US20140355769A1 (en) 2013-05-29 2014-12-04 Qualcomm Incorporated Energy preservation for decomposed representations of a sound field
US9466305B2 (en) 2013-05-29 2016-10-11 Qualcomm Incorporated Performing positional analysis to code spherical harmonic coefficients
US9426589B2 (en) 2013-07-04 2016-08-23 Gn Resound A/S Determination of individual HRTFs
US9922656B2 (en) 2014-01-30 2018-03-20 Qualcomm Incorporated Transitioning of ambient higher-order ambisonic coefficients
US9489955B2 (en) 2014-01-30 2016-11-08 Qualcomm Incorporated Indicating frame parameter reusability for coding vectors
US10770087B2 (en) 2014-05-16 2020-09-08 Qualcomm Incorporated Selecting codebooks for coding vectors decomposed from higher-order ambisonic audio signals
US9852737B2 (en) 2014-05-16 2017-12-26 Qualcomm Incorporated Coding vectors decomposed from higher-order ambisonics audio signals
US9620137B2 (en) 2014-05-16 2017-04-11 Qualcomm Incorporated Determining between scalar and vector quantization in higher order ambisonic coefficients
US9747910B2 (en) 2014-09-26 2017-08-29 Qualcomm Incorporated Switching between predictive and non-predictive quantization techniques in a higher order ambisonics (HOA) framework
US9584942B2 (en) * 2014-11-17 2017-02-28 Microsoft Technology Licensing, Llc Determination of head-related transfer function data from user vocalization perception
US9544706B1 (en) 2015-03-23 2017-01-10 Amazon Technologies, Inc. Customized head-related transfer functions
JP6596896B2 (ja) * 2015-04-13 2019-10-30 株式会社Jvcケンウッド 頭部伝達関数選択装置、頭部伝達関数選択方法、頭部伝達関数選択プログラム、音声再生装置
FR3040253B1 (fr) * 2015-08-21 2019-07-12 Immersive Presonalized Sound Procede de mesure de filtres phrtf d'un auditeur, cabine pour la mise en oeuvre du procede, et procedes permettant d'aboutir a la restitution d'une bande sonore multicanal personnalisee
US9967693B1 (en) * 2016-05-17 2018-05-08 Randy Seamans Advanced binaural sound imaging
US10306396B2 (en) 2017-04-19 2019-05-28 United States Of America As Represented By The Secretary Of The Air Force Collaborative personalization of head-related transfer function
US11615339B2 (en) 2018-06-06 2023-03-28 EmbodyVR, Inc. Automated versioning and evaluation of machine learning workflows
WO2020008655A1 (ja) * 2018-07-03 2020-01-09 学校法人千葉工業大学 頭部伝達関数生成装置、頭部伝達関数生成方法およびプログラム
US10798513B2 (en) * 2018-11-30 2020-10-06 Qualcomm Incorporated Head-related transfer function generation
US10798515B2 (en) * 2019-01-30 2020-10-06 Facebook Technologies, Llc Compensating for effects of headset on head related transfer functions
JP7206027B2 (ja) * 2019-04-03 2023-01-17 アルパイン株式会社 頭部伝達関数学習装置および頭部伝達関数推論装置
GB2584152B (en) * 2019-05-24 2024-02-21 Sony Interactive Entertainment Inc Method and system for generating an HRTF for a user
KR20210008788A (ko) 2019-07-15 2021-01-25 삼성전자주식회사 전자 장치 및 그 제어 방법
WO2021010562A1 (en) * 2019-07-15 2021-01-21 Samsung Electronics Co., Ltd. Electronic apparatus and controlling method thereof
EP4085660A4 (de) 2019-12-30 2024-05-22 Comhear Inc Verfahren zum bereitstellen eines räumlichen schallfeldes
WO2022147208A1 (en) * 2020-12-31 2022-07-07 Harman International Industries, Incorporated Method and system for generating a personalized free field audio signal transfer function based on near-field audio signal transfer function data
JP2024502537A (ja) * 2020-12-31 2024-01-22 ハーマン インターナショナル インダストリーズ インコーポレイテッド 自由場オーディオ信号伝達関数データに基づいてパーソナライズされた自由場オーディオ信号伝達関数を生成する方法及びシステム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191500A (ja) * 1995-09-26 1997-07-22 Nippon Telegr & Teleph Corp <Ntt> 仮想音像定位用伝達関数表作成方法、その伝達関数表を記録した記憶媒体及びそれを用いた音響信号編集方法
WO1997025834A2 (en) * 1996-01-04 1997-07-17 Virtual Listening Systems, Inc. Method and device for processing a multi-channel signal for use with a headphone
US6243476B1 (en) * 1997-06-18 2001-06-05 Massachusetts Institute Of Technology Method and apparatus for producing binaural audio for a moving listener
DE19910372A1 (de) * 1998-04-20 1999-11-04 Florian M Koenig Individuelle Außenrohr-Übertragungsfunktions-Bestimmung ohne zugehörige, übliche, akustische Probanden-Vermessung
JP4226142B2 (ja) * 1999-05-13 2009-02-18 三菱電機株式会社 音響再生装置
AUPQ514000A0 (en) * 2000-01-17 2000-02-10 University Of Sydney, The The generation of customised three dimensional sound effects for individuals
JP3521900B2 (ja) * 2002-02-04 2004-04-26 ヤマハ株式会社 バーチャルスピーカアンプ
CN1685762A (zh) * 2002-09-23 2005-10-19 皇家飞利浦电子股份有限公司 声音重现系统、程序和数据载体
US7430300B2 (en) * 2002-11-18 2008-09-30 Digisenz Llc Sound production systems and methods for providing sound inside a headgear unit
US20090030552A1 (en) * 2002-12-17 2009-01-29 Japan Science And Technology Agency Robotics visual and auditory system
WO2005025270A1 (ja) * 2003-09-08 2005-03-17 Matsushita Electric Industrial Co., Ltd. 音像制御装置の設計ツールおよび音像制御装置
WO2007048900A1 (fr) * 2005-10-27 2007-05-03 France Telecom Individualisation de hrtfs utilisant une modelisation par elements finis couplee a un modele correctif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RICK L JENISON ET AL: "A Spherical Basis Function Neural Network for Modeling Auditory Space", NEURAL COMPUTATION., vol. 8, no. 1, 1 January 1996 (1996-01-01), US, pages 115 - 128, XP055356520, ISSN: 0899-7667, DOI: 10.1162/neco.1996.8.1.115 *

Also Published As

Publication number Publication date
EP1836876A2 (de) 2007-09-26
WO2006075077A2 (fr) 2006-07-20
FR2880755A1 (fr) 2006-07-14
JP4718559B2 (ja) 2011-07-06
JP2008527821A (ja) 2008-07-24
WO2006075077A3 (fr) 2006-10-05
US20080137870A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
EP1836876B1 (de) Verfahren und vorrichtung zur individualisierung von hrtfs durch modellierung
EP1946612B1 (de) Hrtfs-individualisierung durch modellierung mit finiten elementen gekoppelt mit einem korrekturmodell
EP3348079B1 (de) Verfahren und system zur entwicklung einer an ein individuum angepassten kopfbezogenen übertragungsfunktion
EP2898707B1 (de) Optimierte kalibrierung eines klangwiedergabesystems mit mehreren lautsprechern
EP1563485B1 (de) Verfahren zur verarbeitung von audiodateien und erfassungsvorrichtung zur anwendung davon
EP1992198B1 (de) Optimierung des binauralen raumklangeffektes durch mehrkanalkodierung
EP1600042B1 (de) Verfahren zum bearbeiten komprimierter audiodaten zur räumlichen wiedergabe
EP2258119B1 (de) Verfahren und vorrichtung zur bestimmung von übertragungsfunktionen vom typ hrtf
EP2374124B1 (de) Verwaltete codierung von mehrkanaligen digitalen audiosignalen
EP1479266B1 (de) Verfahren und vorrichtung zur steuerung einer anordnung zur wiedergabe eines schallfeldes
EP2901718B1 (de) Verfahren und vorrichtung zur wiedergabe eines audiosignals
EP1586220B1 (de) Verfahren und einrichtung zur steuerung einer wiedergabeeinheitdurch verwendung eines mehrkanalsignals
Yamamoto et al. Fully perceptual-based 3D spatial sound individualization with an adaptive variational autoencoder
FR3065137A1 (fr) Procede de spatialisation sonore
EP3384688B1 (de) Aufeinanderfolgende dekompositionen von audiofiltern
EP3449643B1 (de) Verfahren und system zum senden eines 360°-audiosignals
EP3484185A1 (de) Modellierung einer menge von akustischen übertragungsfunktionen einer person, 3d-soundkarte und 3d-sound-reproduktionssystem
EP3934282A1 (de) Verfahren zur umwandlung eines ersten satzes repräsentativer signale eines schallfelds in einen zweiten satz von signalen und entsprechende elektronische vorrichtung
FR3093264A1 (fr) Procédé de diffusion d’un signal audio
COMB 12/HRTF (q) cal cal j" 91'l

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070705

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ORANGE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1020662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006055839

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1020662

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006055839

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231219

Year of fee payment: 19