EP1586220B1 - Method and device for controlling a reproduction unit using a multi-channel signal - Google Patents

Method and device for controlling a reproduction unit using a multi-channel signal Download PDF

Info

Publication number
EP1586220B1
EP1586220B1 EP04703418.6A EP04703418A EP1586220B1 EP 1586220 B1 EP1586220 B1 EP 1586220B1 EP 04703418 A EP04703418 A EP 04703418A EP 1586220 B1 EP1586220 B1 EP 1586220B1
Authority
EP
European Patent Office
Prior art keywords
determining
reproduction unit
reproduction
acoustic
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04703418.6A
Other languages
German (de)
French (fr)
Other versions
EP1586220A2 (en
Inventor
Rémy BRUNO
Arnaud Laborie
Sébastien MONTOYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinnov Audio
Original Assignee
Trinnov Audio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinnov Audio filed Critical Trinnov Audio
Publication of EP1586220A2 publication Critical patent/EP1586220A2/en
Application granted granted Critical
Publication of EP1586220B1 publication Critical patent/EP1586220B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S5/00Pseudo-stereo systems, e.g. in which additional channel signals are derived from monophonic signals by means of phase shifting, time delay or reverberation 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding using interchannel correlation to reduce redundancy, e.g. joint-stereo, intensity-coding or matrixing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2205/00Details of stereophonic arrangements covered by H04R5/00 but not provided for in any of its subgroups
    • H04R2205/024Positioning of loudspeaker enclosures for spatial sound reproduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic

Definitions

  • the present invention relates to a method and a device for controlling a set of restitution of an acoustic field comprising a plurality of rendering elements, from a plurality of acoustic or audiophonic signals each associated with a general direction of restitution. predetermined, defined with respect to a point of the given space.
  • Such a set of signals is commonly referred to as "multichannel signal” and corresponds to a plurality of signals, called channels, transmitted in parallel or multiplexed with each other, each intended for an element or a group of elements of restitution, arranged in a predefined general direction with respect to a given point.
  • a conventional multichannel system known as "5.1 ITU-R BF 775-1" and comprises five channels for rendition elements placed in five predetermined general directions with respect to a listening center, defined by angles 0 °, + 30 °, -30 °, + 110 ° and -110 °.
  • Such an arrangement therefore corresponds to the arrangement of a loudspeaker or group of speakers in front of the center, one on each side in front of right and left and one on each side behind to the right and left.
  • control signals being each associated with a determined direction, the application of these signals to a restitution assembly whose elements do not respond to the predetermined spatial configuration, causes significant deformations of the acoustic field restored.
  • the object of the present invention is to remedy this problem by defining a method and a system for controlling the reproduction assembly, the spatial configuration of which is arbitrary.
  • the invention also relates to a computer program comprising program code instructions for executing the steps of the method when said program is executed by a computer.
  • the invention also also relates to a removable medium of the type comprising at least one processing processor and a non-volatile memory element, characterized in that said memory comprises a program comprising code instructions for executing the steps of the method when said processor executes said program.
  • This reference is an orthonormal reference, of origin O and having three axes ( OX ), ( OY ) and ( OZ ).
  • a noted position x is described by means of its spherical coordinates ( r , ⁇ , ⁇ ,), where r denotes the distance from the origin O , ⁇ the orientation in the vertical plane and ⁇ the orientation in the horizontal plane.
  • an acoustic field is known if one defines at every point at each instant t the acoustic pressure noted p ( r , ⁇ , ⁇ , t ), whose time Fourier transform is noted P ( r , ⁇ , ⁇ , f ) where f is the frequency.
  • the invention is based on the use of a family of space-time functions for describing the characteristics of any acoustic field.
  • these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter referred to as Fourier-Bessel functions.
  • the Fourier-Bessel functions are solutions of the wave equation and constitute a base that generates all acoustic fields produced by sound sources located outside this zone. .
  • the Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse time Fourier transform of the coefficients P l, m ( f ).
  • the method of the invention uses function bases expressing themselves as linear combinations, possibly infinite, of Fourier-Bessel functions.
  • FIG. 2 schematically shows a restitution system in which the method of the invention is implemented.
  • This system comprises a decoder or adapter 1 driving a reproduction assembly 2 which comprises a plurality of elements 3 1 to 3 N , such that loudspeakers, loudspeakers or any other sound source or group of sound sources, arranged in any manner in a listening place 4.
  • the origin O of the reference mark is placed arbitrarily in listening area 4 called center 5 of the restitution set.
  • the set of spatial, acoustic and electrodynamic characteristics is considered as the intrinsic characteristics of the restitution ensemble 2.
  • the adapter 1 receives as input a signal SI of multichannel type comprising acoustic information to be reproduced and a definition signal SL comprising information representative of at least spatial characteristics of the reproduction unit 2 and in particular enabling the determination of representative parameters for at least one element 3 n of the reproduction unit 2 to its position in three dimensions of space in relation to the given point 5.
  • the adapter 1 transmits to the attention of each of the elements or groups of elements 3 1 to 3 N of the reproduction assembly 2, a signal sc 1 to sc N specific steering.
  • FIG 3 schematically shows the main steps of the method according to the invention implemented with a restitution system such as that described with reference to the figure 2 .
  • This method comprises a step 10 of determining operating parameters, adapted to allow at least the determination of the spatial characteristics of the reproduction assembly 2.
  • Step 10 comprises a step 20 for entering the parameters and / or a calibration step 30 making it possible to determine and / or measure characteristics of the reproduction assembly 2.
  • step 10 also comprises a step 40 of determining description parameters of the predetermined general directions associated with the different channels of the multichannel input signal SI.
  • step 10 information relating to at least the different predetermined general directions associated with each of the input channels as well as to the position in the three dimensions of the space of each of the elements or groups of elements 3 n of the restitution assembly 2, are determined.
  • This information is used during a step 50 of determining the adaptation filters making it possible to take into account the spatial characteristics of the reproduction unit 2 in order to define adaptation filters of the multichannel input signal to the spatial configuration specific of the refund set 2.
  • step 10 also makes it possible to determine acoustic characteristics for all or part of the elements 3 1 to 3 N of the reproduction assembly 2.
  • the method comprises a step 60 for determining acoustic compensation filters for compensating for the influence of the specific acoustic characteristics of the elements 3 1 to 3 N.
  • the filters defined during the steps 50 and advantageously 60 can thus be stored, so that the steps 10, 50 and 60 must be repeated only if the spatial configuration of the reproduction assembly 2 and / or the nature of the multichannel input signal.
  • the method then comprises a step 70 for determining the control signals sc 1 to sc N intended for the elements of the reproduction assembly 2, comprising a sub-step 80 for applying the adaptation filters determined during step 50 to the different channels c 1 ( t ) to c Q ( t ) forming the multichannel input signal SI and advantageously, a sub-step 90 for applying the acoustic compensation filters determined in step 60.
  • the signals sc 1 to sc N thus delivered are applied to the elements 3 1 to 3 N of the reproduction unit 2, in order to restore the acoustic field represented by the multichannel input signal SI with an optimum adaptation to the spatial characteristics and advantageously acoustic, of the restitution assembly 2.
  • the characteristics of the acoustic field restored are substantially independent of the intrinsic characteristics of restitution of the restitution assembly 2 and in particular of its spatial configuration.
  • This step 20 is implemented by means of an interface of conventional type such as a microcomputer or any other appropriate means.
  • calibration means comprise a decomposition module 91, an impulse response determination module 92 and a calibration parameter determination module 93.
  • the calibration means are adapted to be connected to a sound acquisition device 100 such as a microphone or any other suitable device, and to be connected in turn to each element 3 n of the reproduction assembly 2 in order to collect information about this element.
  • the calibration means emit a specific signal u n ( t ) such as a pseudo-random sequence MLS (Maximum Length Sequence) to the attention of an element 3 n .
  • the acquisition device 100 receives, at a sub-step 34, the sound wave emitted by the element 3 n in response to receiving the signal u n (t) and transmits signals I 1 cp (t) cp 1 ( t ) representative of the wave received at the decomposition module 91.
  • the decomposition module 91 decomposes the signals picked up by the acquisition device 100 into a finite number of Fourier-Bessel coefficients q l, m ( t ).
  • the acquisition device 100 consists of 4 pressure sensors located at the 4 vertices of a tetrahedron of radius R as shown with reference to FIG. figure 6 .
  • the signals of the 4 pressure sensors are then noted cp 1 ( t ) to cp 4 ( t ).
  • CP 1 ( f ) to CP 4 ( f ) are the Fourier transforms from cp 1 ( t ) to cp 4 ( t ) and Q 0,0 ( f ) to Q 1,1 ( f ) are the transforms Fourier of q 0.0 ( t ) to q 1.1 ( t ).
  • the response determination module 92 determines the impulse responses hp l, m ( t ) which connect the Fourier-Bessel coefficients q l, m ( t ) and the transmitted signal u n ( t). ).
  • the determination method depends on the specific signal emitted.
  • the described embodiment uses a method adapted to MLS type signals, such as the correlation method.
  • the impulse response delivered by the response determination module 92 is addressed to the parameter determination module 93.
  • the module 93 derives information on elements of the reproduction set.
  • the parameter determination module 93 determines the distance r n between the element 3 n and the center 5 from its response hp 0,0 ( t ) and the measurement of the time put by the it is propagated from the element 3 n to the acquisition device 100, by delay estimation methods on the response hp 0,0 ( t ).
  • the direction ( ⁇ n , ⁇ n ) of the element 3 n is deduced by calculating the maximum of the inverse spherical Fourier transform applied to the responses hp 0,0 ( t ) to hp 1,1 ( t ) taken at the time t where hp 0,0 (t) has a maximum.
  • the coordinates ⁇ n and ⁇ n are estimated over several instants, chosen preferably around the moment when hp 0,0 ( t ) has a maximum.
  • the final determination of the coordinates ⁇ n and ⁇ n is obtained by means of averaging techniques between the different estimations.
  • the acquisition device 100 is able to unambiguously encode the orientation of a source in space.
  • the coordinates ⁇ n and ⁇ n are estimated from other responses among the hp l, m ( t ) available or are estimated in the frequency domain from the responses HP / , m ( f ), corresponding to the transforms Fourier responses hp / , m ( t ).
  • step 30 makes it possible to determine the parameters r n , ⁇ n and ⁇ n .
  • the module 93 also delivers the transfer function H n ( f ) of each element 3 n , from the responses hp / , m ( t ) from the response determination module 92.
  • a first solution consists in constructing the response hp ' 0,0 ( t ) corresponding to the selection of the part of the response hp 0,0 ( t ) which comprises a non-zero signal and devoid of the reflections introduced by the listening site. 4.
  • the frequency response H n ( f ) is derived by Fourier transform from the previously freened response hp ' 0,0 ( t ).
  • the window can be chosen from conventional smoothing windows, such as for example rectangular, Hamming, Hanning, and Blackman.
  • a second more complex solution consists in applying a smoothing on the module and advantageously on the phase of the frequency response HP 0.0 ( f ) obtained by Fourier transform of the response hp 0.0 ( t ).
  • the smoothing is obtained by convolution of the response HP 0.0 ( f ) by a window centered on f .
  • This convolution corresponds to an averaging of the response HP 0.0 ( f ) around the frequency f .
  • the window can be chosen from conventional windows, for example rectangular, triangles and Hamming.
  • the width of the window varies with the frequency.
  • the window width can be proportional to the frequency f which is applied to the smoothing.
  • a variable window with the frequency makes it possible to at least partially eliminate the room effect in the high frequencies while avoiding a truncation effect of the response HP 0.0 ( f ) in the low frequencies .
  • Sub-steps 32 to 39 are repeated for all the elements 3 1 to 3 N of the reproduction assembly 2.
  • the calibration means comprise other means for acquiring information relating to the elements 3 1 to 3 N , such as laser position measuring means, signal processing means using signal processing techniques. lane formation or any other appropriate means.
  • the means implementing the calibration step 30 consist for example of an electronic card or a computer program or any other appropriate means.
  • Step 40 thus makes it possible, as has been said above, to determine parameters describing the format of the multichannel input signal and in particular the general predetermined directions associated with each channel.
  • This step 40 may correspond to an operator selecting a format from a list of formats each associated with stored parameters, and may also correspond to an automatic format detection performed on the input multichannel signal.
  • the method is adapted for a single given multichannel signal format.
  • step 40 allows a user to specify his own format by manually entering the parameters describing the directions associated with each channel.
  • the steps 20, 30 and 40 forming the parameter determination step 10 allow at least the determination of positioning parameters in the space of the elements 3 n of the reproduction assembly 2 and the format of the multichannel signal. SI .
  • step 50 of determining the matching filters is shown.
  • This step comprises a plurality of sub-steps for calculating and determining matrices representative of the previously determined parameters.
  • the step 50 of determining adaptation filters then comprises a substep 52 of determining a matrix W of the acoustic field weighting.
  • This matrix W corresponds to a spatial window W ( r , f ) representative of the distribution in space of the desired precision during the reconstruction of the field.
  • a window makes it possible to specify the size and the shape of the zone where the field must be correctly reconstructed. For example, it may be a ball centered on the center 5 of the rendering assembly.
  • the spatial window and the matrix W are independent of the frequency.
  • W is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is 2 1 + 1 times later on the diagonal.
  • the values taken by the coefficients W 1 are the values of a function such as a Hamming window of size of 2 L +1 evaluated at 1 , so that the parameter W 1 is determined for l ranging from 0 to L.
  • Step 50 then comprises a substep 53 for determining a matrix M representative of the radiation of the reproduction assembly, in particular from the position parameters. x n .
  • the radiation matrix M makes it possible to deduce Fourier-Bessel coefficients representing the acoustic field emitted by each element 3 n from the reproduction unit as a function of the signal it receives.
  • M is a matrix of size ( L +1) 2 on N , consisting of elements M l, m, n , the indices l , m denoting the line l 2 + l + m and n denoting the column n .
  • the matrix M thus has the following form: M 0 , 0 , 1 M 0 , 0 , 2 ⁇ ⁇ M 0 , 0 , NOT M 1 , - 1 , 1 M 1 , - 1 , 2 ⁇ ⁇ M 1 , - 1 , NOT M 1 , 0 , 1 M 1 , 0 , 2 ⁇ ⁇ M 1 , 0 , NOT M 1 , 1 , 1 M 1 , 1 , 2 ⁇ ⁇ M 1 , 1 , NOT ⁇ ⁇ ⁇ M The , - The , 1 M The , - The , 2 ⁇ ⁇ M The , - The , NOT ⁇ ⁇ ⁇ M The , 0 , 1 M The , 0 , 2 ⁇ ⁇ M The , 0 , NOT ⁇ ⁇ ⁇ M The , The 0 , 1 M The , 0 , 2 ⁇ ⁇ M The , 0 , NOT ⁇
  • the matrix M thus defined is representative of the radiation of the reproduction unit.
  • M is representative of the spatial configuration of the restitution set.
  • Sub-steps 51 to 53 may be executed sequentially or simultaneously.
  • the step 50 of determining adaptation filters then comprises a substep 54 of taking into account all the parameters of the rendering system 2 determined previously, in order to deliver a decoding matrix D representative of so-called reconstruction filters. .
  • the elements D n, l, m ( f ) of the matrix D correspond to reconstruction filters which, applied to the Fourrier-Bessel coefficients P l, m ( f ) of a known acoustic field, make it possible to determine the control signals of a reproduction unit for reproducing this acoustic field.
  • the decoding matrix D is therefore the inverse of the radiation matrix M.
  • the matrix D is obtained from the matrix M by means of inversion methods under constraints involving additional optimization parameters.
  • step 50 is adapted to perform an optimization thanks to the weighting matrix of the acoustic field W which In particular, it makes it possible to reduce the spatial distortion in the reproduced acoustic field.
  • the matrices M and W are independent of the frequency, so that the matrix D is also independent of the frequency. It consists of elements denoted D n, l, m organized as follows: D 1 , 0 , 0 D 1 , 1 , - 1 D 1 , 1 , 0 D 1 , 1 , 1 ⁇ D 1 , The , - The ⁇ D 1 , The , 0 ⁇ D 1 , The , The D 2 , 0 , 0 D 2 , 1 , - 1 D 2 , 1 , 0 D 2 , 1 , 1 ⁇ D 2 , The , - The ⁇ D 2 , The , 0 ⁇ D 2 , The , The ⁇ ⁇ ⁇ ⁇ ⁇ D NOT , 0 , 0 D NOT , 1 , 0 D NOT , 1 , 1 ⁇ D NOT , The , - The
  • Step 54 thus makes it possible to deliver the matrix D representative of so-called reconstruction filters and enabling the reconstruction of an acoustic field from any configuration of the reproduction assembly. Thanks to this matrix, the method of the invention makes it possible to take into account the configuration of the reproduction assembly 2 and in particular to compensate the alterations of the acoustic field due to its specific spatial configuration.
  • the parameters relating to the reproduction assembly 2 may be variable depending on the frequency.
  • each element D n, 1, m ( f ) of the matrix D can be determined by associating with each of the N control signals a directivity function D n ( ⁇ , ⁇ , f ) specifying at each frequency f amplitude, and advantageously the desired phase on the n sc drive signal in the case of a plane wave in the direction ( ⁇ , ⁇ ).
  • directivity function D n ( ⁇ , ⁇ , f ) is meant a function that associates a real or complex value, possibly depending on the frequency or a frequency range, with each direction of the space.
  • the directivity functions are independent of the frequency and denoted D n ( ⁇ , ⁇ ).
  • These directivity functions D n ( ⁇ , ⁇ ) can be determined by specifying that certain physical quantities between an ideal field and the same field reproduced by the restitution set comply with predetermined laws. For example, these quantities may be the pressure at the center and the orientation of the velocity vector.
  • the active piloting signals denoted sc n 1 to sc n 3
  • the active rendering elements denoted 3 n 1 to 3 n 3
  • the values of the directivities D n1 ( ⁇ , ⁇ ) to D n 3 ( ⁇ , ⁇ ) associated with the 3 active elements 3 n 1 to 3 n 3 are given by: with
  • corresponds to the vector containing [ D n1 ( ⁇ , ⁇ ) ... D n3 ( ⁇ , ⁇ )] and the directions ( ⁇ n1 , ⁇ n2 ), ( ⁇ n2 , ⁇ n2 ) and ( ⁇ n3 , ⁇ n3 ) correspond respectively to the directions of the elements 3 n 1 , 3 n 2 and 3 n 3 .
  • each of the directivity functions D n ( ⁇ , ⁇ ) is provided in the form of a list of K samples.
  • Each sample is provided in the form of a pair ⁇ (( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ where ( ⁇ k , ⁇ k ) is the direction of the sample k and where D n ( ⁇ k , ⁇ k ) is the value of the directivity function associated with the control signal sc n for the direction (( ⁇ k , ⁇ k ).
  • the coefficients D n , l , m ( f ) of each directivity function are deduced from the samples ⁇ ((( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ . are obtained by inversion of the angular sampling process which makes it possible to deduce the samples from the list ⁇ (( ⁇ k , ⁇ k ), D n ( ⁇ k , ⁇ k )) ⁇ from a directivity function provided under This inversion can take different forms to control the interpolation between samples.
  • the directivity functions are directly provided in the form of Fourrier-Bessel type D n, / , m ( f ) coefficients.
  • the coefficients D n , /, m ( f ) thus determined are used to form the matrix D.
  • Step 50 then comprises a step 55 of determining an ideal multichannel radiation matrix S representative of the predetermined general directions associated with each channel of the multichannel input signal SI .
  • the S matrix is representative of the radiation a set of ideal restitution, i.e. full conformity with the predetermined branch of the multichannel format.
  • Each element S l , m , q ( f ) of the matrix S makes it possible to deduce the Fourier-Bessel coefficients P l , m ( f ) from the acoustic field ideally restored by each channel c q ( t ).
  • the matrix S is determined by associating with each input channel c q ( t ) and advantageously for each frequency f , a directivity figure representative of a distribution of sources supposed to emit the signal of the channel c q ( t ).
  • the distribution of sources is given in the form of spherical harmonics coefficients S l , m , q ( f ).
  • the coefficients S /, m , q ( f ) are arranged in the matrix S of size ( L +1) 2 on Q , where Q is the number of channels.
  • the shaping step associates with each channel c q ( t ) a plane wave source oriented in the direction ( ⁇ q , ⁇ q ) corresponding to the direction ⁇ q vs ⁇ q vs associated with the channel c q ( t ) in the multichannel input format.
  • the ideal radiation matrix S combines a discrete distribution of plane wave sources with certain channels to simulate the effect of a speaker belt.
  • the coefficients S l , m , q are obtained by summation of the contributions of each of the elementary sources.
  • the ideal radiation matrix S associates certain channels c q ( t ) with a continuous distribution of plane wave sources described by a directivity function S q ( ⁇ , ⁇ ).
  • the coefficients S l , m , q of the matrix S are obtained directly by Spherical Fourier transform of the directivity function S q ( ⁇ , ⁇ ) .
  • the matrix S is independent of frequency.
  • the matrix S associates with certain channels, a distribution of sources producing a diffuse field.
  • the matrix S varies with the frequency.
  • the matrix S associates sound sources whose response is not flat to certain channels.
  • the coefficients S l , m , q ( f ) of the radiation matrix are obtained by summation of the coefficients associated with each type of distribution of source.
  • step 50 comprises a substep 56 for determining a spatial adaptation matrix A corresponding to the adaptation filters to be applied to the multichannel input signal in order to obtain an optimum restitution taking into account the spatial configuration of the input signal. restitution set 2.
  • the adaptation matrix A makes it possible to generate signals sa 1 ( t ) to its N ( t ) adapted to the spatial configuration of the reproduction set from the channels c 1 ( t ) to c Q ( t ).
  • Each element A n, q ( f ) is a filter specifying the contribution of the channel c q ( t ) to the adapted signal sa n ( t ). Thanks to the adaptation matrix A , the method of the invention allows the optimum restitution of the acoustic field described by the multichannel signal by a restitution set of any spatial configuration.
  • the matrices D and S are independent of the frequency and the matrix A also.
  • the elements of the matrix A are constants denoted A n, q and each of the adapted signals sa 1 ( t ). its N ( t ) is obtained by simple linear combinations of the input channels c 1 ( t ) to c Q ( t ), where appropriate followed by delay as will be described below.
  • the filters represented by the matrix A can be implemented in different forms of filters and / or filtering methods.
  • the coefficients A n, q ( f ) are directly delivered by step 50.
  • the step 50 of determining adaptation filters comprises a sub-step. step 57 conversion to determine the filter parameters for other filtering methods.
  • step 50 the parameters of the adaptation filters A n , q ( f ) are provided.
  • Step 60 thus makes it possible, as has been said above, to determine the filters for compensating the acoustic characteristics of the elements of the reproduction assembly 2 in the case where parameters relating to these acoustic characteristics such as the frequency responses H n ( f ), are determined during step 10 of determining the parameters.
  • the determination of such filters, noted H not I f , from the frequency responses H n ( f ), can be carried out conventionally by applying filter inversion methods, such as direct inversion, deconvolution methods, Wiener or other methods.
  • the compensation relates only to the amplitude of the response or else to the amplitude and the phase.
  • This step 60 makes it possible to determine a compensation filter for each element 3 n of the reproduction assembly 2 as a function of its specific acoustic characteristics.
  • the filters can be implemented in different forms of filters and / or filtering methods.
  • the used filters are parameterized directly with frequency responses, the responses H not I f are directly applied.
  • the step 60 of determining compensation filters comprises a conversion sub-step in order to determine the parameters of the filters for other filtering methods.
  • step 60 the parameters of the compensation filters H not I f are provided.
  • step 70 of determining driving signals We will now describe in more detail step 70 of determining driving signals.
  • This step 70 comprises a sub-step 80 for applying the adaptation filters represented by the matrix A to the multichannel input signal SI corresponding to the acoustic field to be restored.
  • the adaptation filters A n , q ( f ) integrate the characteristic parameters of the reproduction set 2.
  • the adaptation is continued by an adjustment of the gains and the application of delays in order to align the wave fronts of the elements 3 1 to 3 N of the reproduction assembly 2 temporally with respect to the element furthest away.
  • the substep 80 ends with a gain adjustment and the application of delays in order to temporally align the wave fronts of the elements 3 1 to 3 N of the restitution assembly 2 with respect to the element furthest away.
  • step 70 comprises a sub-step 90 for compensating for the acoustic characteristics of the reproduction assembly.
  • compensation filters H not I f acoustic characteristics is described with reference to the figure 9 .
  • the method of the invention does not compensate for the specific acoustic characteristics of the elements of the rendering assembly.
  • step 60 as well as substep 90 are not performed and the appropriate signals sa 1 ( t ) to its N ( t ) correspond directly to the control signals sc 1 to sc N.
  • each element 3 1 to 3 N therefore receives a specific driving signal sc 1 to sc N and emits an acoustic field which contributes to the optimal reconstruction of the acoustic field to be restored.
  • the simultaneous control of the set of elements 3 1 to 3 N allows an optimal reconstruction of the acoustic field corresponding to the multichannel input signal by the restitution set 2 whose spatial configuration is arbitrary, or else does not correspond to to a fixed configuration.
  • the parameters N l , m , n ( f ) and RM ( f ) occur in the sub-step 53 of determining the radiation matrix M
  • the parameters W (r, f), W l (f) R (f) are involved in the substep 52 of determining the matrix W
  • the parameters ⁇ (l k, m k ) ⁇ ( f ) intervene in an additional substep in the determination of a matrix F.
  • the decoding matrix D is then determined during the sub-step 54, for each frequency f , as a function of the matrices M , W and F and the parameters G n ( f ) and ⁇ ( f ).
  • the calculation of the matrix D can be done frequency by frequency by considering only the active elements for each frequency considered.
  • This method of determining the matrix D uses the parameter G n ( f ) and makes it possible to make the most of a restitution set whose elements have different operating frequency bands.
  • FIG. 10 there is shown a diagram of an embodiment of an apparatus implementing the method as described above.
  • This apparatus comprises the adapter 1 which is formed of a unit 110 delivering a multichannel signal such as an audio-video disk reading unit called DVD player 112.
  • the multichannel signal delivered by the unit 110 is intended for the elements of 2.
  • the format of this signal SI is automatically recognized by the adapter 1 which is adapted to match parameters describing the predetermined general direction associated with each channel of the signal SI.
  • this adapter 1 also integrates an additional calculation unit 114 as well as information acquisition means 116.
  • the input means 116 are formed of an infrared interface with a remote control or with a computer and allow a user to determine the parameters defining the positions in the space of the restitution elements 3 1 to 3 N.
  • the computer 114 applies the adaptive filters multichannel signal SI to output the control signals sc sc 1 to N to the reproduction unit 2.
  • the device embodying the invention can take other forms, such as software implemented on a computer or a complete device incorporating calibration means and means for capturing and determining characteristics. of the restitution set more complete.
  • the method can also be implemented in the form of a device dedicated to the optimization of multichannel rendering systems, outside an audio-video decoder and associated therewith.
  • the device is adapted to receive a multichannel signal as input and to output control signals of elements of a reproduction set.
  • the device is adapted to be connected to the acquisition device 100 necessary for the calibration step and / or is provided with an interface for entering parameters, in particular the position of the elements of the reproduction set and possibly the multichannel input format.
  • Such an acquisition device 100 can be connected wired or wireless (radio, infra-red) and can be integrated with an accessory, such as a remote control, or be independent.
  • the method may be implemented by a device integrated into an element of an audio-video system responsible for the processing of multichannel signals, for example a "surround" processor or decoder, an audio-video amplifier integrating decoding functions. multichannel or a fully integrated audio-video system.
  • the method of the invention can also be implemented in an electronic card or in a dedicated chip.
  • it can be integrated as a program in a signal processing processor (DSP).
  • DSP signal processing processor
  • the method may take the form of a computer program to be executed by a computer.
  • the program receives as input a multichannel signal and delivers the control signals of a reproduction set that may be integrated into this computer.
  • the calibration means can be made by implementing a method different from that described above, such as, for example, a method inspired by the techniques described in the French patent application filed May 7, 2002 under the number 02 05 741 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Stereophonic System (AREA)

Description

La présente invention concerne un procédé et un dispositif de pilotage d'un ensemble de restitution d'un champ acoustique comportant une pluralité d'éléments de restitution, à partir d'une pluralité de signaux acoustiques ou audiophoniques associés chacun à une direction générale de restitution prédéterminée, définie par rapport à un point de l'espace donné.The present invention relates to a method and a device for controlling a set of restitution of an acoustic field comprising a plurality of rendering elements, from a plurality of acoustic or audiophonic signals each associated with a general direction of restitution. predetermined, defined with respect to a point of the given space.

Un tel ensemble de signaux est couramment désigné par l'expression « signal multicanal » et correspond à une pluralité de signaux, appelés canaux, transmis en parallèle ou multiplexés les uns avec les autres, chacun destiné à un élément ou un groupe d'éléments de restitution, disposé dans une direction générale prédéfinie par rapport à un point donné.Such a set of signals is commonly referred to as "multichannel signal" and corresponds to a plurality of signals, called channels, transmitted in parallel or multiplexed with each other, each intended for an element or a group of elements of restitution, arranged in a predefined general direction with respect to a given point.

Par exemple, un système multicanal classique et connu sous le nom de « 5.1 ITU-R BF 775-1 » et comporte cinq canaux destinés à des éléments de restitutions placés dans cinq directions générales prédéterminées par rapport à un centre d'écoute, définies par les angles 0°, + 30°, -30°, +110° et -110°.For example, a conventional multichannel system known as "5.1 ITU-R BF 775-1" and comprises five channels for rendition elements placed in five predetermined general directions with respect to a listening center, defined by angles 0 °, + 30 °, -30 °, + 110 ° and -110 °.

Une telle disposition correspond donc à la disposition d'un haut-parleur ou un groupe de haut-parleurs devant au centre, un de chaque côté devant à droite et à gauche et un de chaque côté derrière à droite et à gauche.Such an arrangement therefore corresponds to the arrangement of a loudspeaker or group of speakers in front of the center, one on each side in front of right and left and one on each side behind to the right and left.

Les signaux de pilotage étant associés chacun à une direction déterminée, l'application de ces signaux à un ensemble de restitution dont les éléments ne répondent pas à la configuration spatiale prédéterminée, entraîne des déformations importantes du champ acoustique restitué.The control signals being each associated with a determined direction, the application of these signals to a restitution assembly whose elements do not respond to the predetermined spatial configuration, causes significant deformations of the acoustic field restored.

Il existe des systèmes qui intègrent des moyens de retard sur les canaux, afin de compenser au moins partiellement, l'éloignement des éléments de restitution par rapport au centre d'écoute. Ces systèmes ne permettent cependant pas de prendre en compte la disposition dans l'espace de l'ensemble de restitution.There are systems that incorporate delay means on the channels, to compensate at least partially, the distance of the playback elements from the listening center. These systems, however, do not allow to take into account the spatial arrangement of the restitution set.

Il apparaît donc qu'aucun procédé ou système existant, ne permet une restitution de bonne qualité à partir d'un signal de type multicanal avec un ensemble de restitution de configuration spatiale quelconque.It therefore appears that no existing method or system allows a good quality rendering from a multichannel type signal with a restitution set of any spatial configuration.

La présente invention a pour objet de remédier à ce problème, en définissant un procédé et un système de pilotage de l'ensemble de restitution dont la configuration spatiale est quelconque.The object of the present invention is to remedy this problem by defining a method and a system for controlling the reproduction assembly, the spatial configuration of which is arbitrary.

L'invention a pour objet un procédé de pilotage d'un ensemble de restitution d'un champ acoustique comportant une pluralité d'éléments de restitution associés chacun à une direction générale de restitution prédéterminée définie par rapport à un point donné, pour obtenir un champ acoustique restitué de caractéristiques spécifiques sensiblement indépendantes des caractéristiques intrinsèques de restitution dudit ensemble, caractérisé en ce qu'il comporte :

  • une étape de détermination de caractéristiques au moins spatiales dudit ensemble de restitution, permettant la détermination de paramètres représentatifs pour au moins un élément dudit ensemble de restitution de sa position dans les trois dimensions de l'espace par rapport audit point donné ;
  • une étape de détermination de filtres d'adaptation à partir desdites caractéristiques au moins spatiales dudit ensemble de restitution et desdites directions générales de restitution prédéterminée associées à ladite pluralité de signaux d'entrée d'informations acoustiques ;
  • une étape de détermination d'au moins un signal de pilotage desdits éléments dudit ensemble de restitution par l'application desdits filtres d'adaptation à ladite pluralité de signaux d'entrée d'informations acoustiques; et
  • une étape de délivrance dudit au moins un signal de pilotage en vue d'une application auxdits éléments de restitution.
The subject of the invention is a method of controlling a set of restitution of an acoustic field comprising a plurality of restitution elements each associated with a predetermined general restitution direction relative to a given point, to obtain a field acoustics restored with specific characteristics substantially independent of the intrinsic characteristics of restitution of said assembly, characterized in that it comprises:
  • a step of determining at least spatial characteristics of said restitution set, allowing the determination of representative parameters for at least one element of said set of restitution of its position in the three dimensions of the space with respect to said given point;
  • a step of determining matching filters from said at least spatial characteristics of said restitution set and said predetermined restitution general directions associated with said plurality of acoustic information input signals;
  • a step of determining at least one control signal of said elements of said restitution set by applying said matching filters to said plurality of acoustic information input signals; and
  • a step of delivering said at least one control signal for application to said rendering elements.

Suivant d'autres caractéristiques :

  • ladite étape de détermination de caractéristiques au moins spatiales dudit ensemble de restitution, comporte une sous-étape de saisie permettant de déterminer tout ou partie des caractéristiques dudit ensemble de restitution ;
  • ladite étape de détermination de caractéristiques au moins spatiales dudit ensemble de restitution, comporte une étape de calibrage permettant de délivrer tout ou partie des caractéristiques dudit ensemble de restitution ;
  • ladite sous-étape de calibrage comporte pour au moins un des éléments de restitution :
  • une sous-étape d'émission d'un signal spécifique vers ledit au moins un élément dudit ensemble de restitution ;
  • une sous-étape d'acquisition de l'onde sonore émise en réponse par ledit au moins un élément ;
  • une sous-étape de transformation desdits signaux acquis en un nombre fini desdits coefficients représentatifs de l'onde sonore émise ; et
  • une sous-étape de détermination de paramètres spatiaux et/ou acoustiques dudit élément à partir desdits coefficients représentatifs de l'onde sonore émise ;
  • ladite sous-étape de calibrage comporte en outre une sous-étape de détermination de la position dans au moins l'une des trois dimensions de l'espace dudit au moins un élément dudit ensemble de restitution ;
  • ladite étape de calibrage comporte une sous-étape de détermination de la réponse en fréquence dudit au moins un élément dudit ensemble de restitution ;
  • ladite étape de détermination de filtres d'adaptation comprend :
  • une sous-étape de détermination d'une matrice de décodage représentative de filtres permettant la compensation des altérations de restitution dues aux caractéristiques spatiales dudit ensemble de restitution ;
  • une sous-étape de détermination d'une matrice de rayonnement multicanal idéale représentative des directions générales prédéterminées associes à chaque signal d'informations de la pluralité des signaux d'entrée ; et
  • une sous-étape de détermination d'une matrice représentative desdits filtres d'adaptation à partir de ladite matrice de décodage et de ladite matrice de rayonnement multicanal ;
  • ladite étape de détermination de filtres d'adaptation comporte une pluralité de sous-étapes de calcul permettant de délivrer un ordre limite de précision spatiale des filtres d'adaptation, une matrice correspondant à une fenêtre spatiale représentative de la répartition dans l'espace de la précision souhaitée lors de la reconstruction du champ acoustique et une matrice représentative du rayonnement de l'ensemble de restitution, ladite sous-étape de calcul de la matrice de décodage étant réalisée à partir des résultats de ces sous-étapes de calcul ;
  • les matrices de décodage, de rayonnement multicanal idéal et d'adaptation sont indépendantes de la fréquence, l'étape de détermination d'au moins un signal de pilotage desdits éléments dudit ensemble de restitution par l'application desdits filtres d'adaptation correspondant à de simples combinaisons linéaires suivies de retard.
  • ladite étape de détermination de caractéristiques dudit ensemble de restitution permet la détermination de caractéristiques acoustiques dudit ensemble de restitution et ledit procédé comporte une étape de détermination de filtres de compensation de ces caractéristiques acoustiques, ladite étape de détermination d'au moins un signal de pilotage comprenant alors une sous-étape d'application desdits filtres de compensation acoustique ;
  • ladite étape de détermination de caractéristiques acoustiques est adaptée pour délivrer des paramètres représentatifs pour au moins un élément de sa réponse en fréquence ;
  • ladite étape de détermination d'au moins un signal de pilotage comporte une sous-étape d'ajustement de gain et d'application de retards afin d'aligner temporellement le front d'onde des éléments de restitution en fonction de leur distance par rapport audit point donné.
According to other characteristics:
  • said step of determining at least spatial characteristics of said restitution set, comprises an input sub-step for determining all or part of the characteristics of said restitution set;
  • said step of determining at least spatial characteristics of said restitution set, comprises a calibration step for delivering all or part of the characteristics of said restitution set;
  • said substep of calibration comprises for at least one of the restitution elements:
  • a substep of transmitting a specific signal to said at least one element of said restitution set;
  • a substep of acquisition of the sound wave emitted in response by said at least one element;
  • a substep of transforming said acquired signals into a finite number of said coefficients representative of the emitted sound wave; and
  • a sub-step of determining spatial and / or acoustic parameters of said element from said coefficients representative of the sound wave emitted;
  • said calibration sub-step further comprises a substep of determining the position in at least one of the three dimensions of the space of said at least one element of said rendering assembly;
  • said calibration step comprises a substep of determining the frequency response of said at least one element of said restitution set;
  • said step of determining adaptation filters comprises:
  • a sub-step of determining a decoding matrix representative of filters allowing the compensation of the restitution alterations due to the spatial characteristics of said restitution set;
  • a substep of determining an ideal multi-channel radiation matrix representative of the predetermined general directions associated with each information signal of the plurality of input signals; and
  • a substep of determining a representative matrix of said matching filters from said decoding matrix and said multichannel radiation matrix;
  • said step of determining adaptation filters comprises a plurality of calculation sub-steps for delivering a limit order of spatial accuracy of the adaptation filters, a matrix corresponding to a spatial window representative of the spatial distribution of the adaptation filter; desired precision during the reconstruction of the acoustic field and a representative matrix of the radiation of the restitution assembly, said substep of calculating the decoding matrix being carried out on the basis of the results of these calculation sub-steps;
  • the decoding, multichannel radiation and adaptation matrices are independent of the frequency, the step of determining at least one control signal of said elements of said restitution set by the application of said matching filters corresponding to simple linear combinations followed by delay.
  • said step of determining characteristics of said restitution assembly makes it possible to determine acoustic characteristics of said set of restitution and said method comprises a step of determining compensation filters of these acoustic characteristics, said step of determining at least one control signal then comprising a substep of application of said acoustic compensation filters;
  • said step of determining acoustic characteristics is adapted to deliver representative parameters for at least one element of its frequency response;
  • said step of determining at least one pilot signal includes a gain and delay adjustment sub-step for temporally aligning the wavefront of the rendering elements according to their distance from said auditing point given.

L'invention a également pour objet un programme d'ordinateur comprenant des instructions de code de programme pour l'exécution des étapes du procédé lorsque ledit programme est exécuté par un ordinateur.The invention also relates to a computer program comprising program code instructions for executing the steps of the method when said program is executed by a computer.

L'invention a encore également pour objet un support amovible du type comprenant au moins un processeur de traitement et un élément de mémoire non volatile, caractérisé en ce que ladite mémoire comprend un programme comprenant des instructions de code pour l'exécution des étapes du procédé, lorsque ledit processeur exécute ledit programme.The invention also also relates to a removable medium of the type comprising at least one processing processor and a non-volatile memory element, characterized in that said memory comprises a program comprising code instructions for executing the steps of the method when said processor executes said program.

L'invention a encore pour objet un dispositif de pilotage d'un ensemble de restitution d'un champ acoustique comportant une pluralité d'éléments de restitution, comportant des moyens d'entrée d'une pluralité de signaux d'entrée d'informations acoustiques associés chacun à une direction générale de restitution prédéterminée définie par rapport à un point donné, caractérisé en ce qu'il comporte en outre :

  • des moyens de détermination de caractéristiques au moins spatiales dudit ensemble de restitution, permettant la détermination de paramètres représentatifs pour au moins un élément dudit ensemble de restitution de sa position dans les trois dimensions de l'espace par rapport audit point donné ;
  • des moyens de détermination de filtres d'adaptation à partir desdites caractéristiques au moins spatiales dudit ensemble de restitution et des directions générales de restitution prédéterminée associées à ladite pluralité des signaux d'entrée d'informations acoustiques ; et
  • des moyens de détermination d'au moins un signal de pilotage desdits éléments dudit ensemble de restitution par l'application desdits filtres d'adaptation à ladite pluralité de signaux d'entrée d'informations acoustiques.
The subject of the invention is also a device for controlling a set of restitution of an acoustic field comprising a plurality of rendering elements, comprising means for inputting a plurality of acoustic information input signals. each associated with a predetermined general direction of restitution defined with respect to a given point, characterized in that it further comprises:
  • means for determining at least spatial characteristics of said restitution set, enabling the determination of representative parameters for at least one element of said set of restitution of its position in the three dimensions of space with respect to said given point;
  • means for determining adaptation filters from said at least spatial characteristics of said restitution assembly and predetermined restitution general directions associated with said plurality of acoustic information input signals; and
  • means for determining at least one control signal of said elements of said restitution set by applying said matching filters to said plurality of acoustic information input signals.

Suivant d'autres caractéristiques de ce dispositif :

  • lesdits moyens de détermination des caractéristiques au moins spatiales dudit ensemble de restitution comportent des moyens de saisie directe desdites caractéristiques ;
  • il est adapté pour être associé à des moyens de calibrage permettant la détermination des caractéristiques au moins spatiales dudit ensemble de restitution ;
  • lesdits moyens de calibrage comprennent des moyens d'acquisition d'une onde sonore comportant quatre capteurs de pression disposés selon une forme générale de tétraèdre ;
  • lesdits moyens de détermination de caractéristiques sont adaptés pour la détermination de caractéristiques acoustiques d'au moins un desdits éléments de restitution dudit ensemble de restitution, ledit dispositif comportant des moyens de détermination de filtres de compensation acoustique à partir desdites caractéristiques acoustiques et lesdits moyens de détermination d'au moins un signal de pilotage étant adaptés pour l'application desdits filtres de compensation acoustique ;
  • lesdits moyens de détermination des caractéristiques acoustiques sont adaptés pour la détermination de la réponse en fréquence desdits éléments de l'ensemble de restitution.
According to other features of this device:
  • said means for determining the at least spatial characteristics of said restitution assembly comprise means for directly inputting said characteristics;
  • it is adapted to be associated with calibration means for determining the at least spatial characteristics of said restitution set;
  • said calibration means comprise means for acquiring a sound wave comprising four pressure sensors arranged in a general shape of a tetrahedron;
  • said characteristic determining means are adapted for the determination of acoustic characteristics of at least one of said rendering elements of said reproduction assembly, said device comprising means for determining acoustic compensation filters from said acoustic characteristics and said determining means at least one pilot signal being adapted for the application of said acoustic compensation filters;
  • said means for determining the acoustic characteristics are suitable for determining the frequency response of said elements of the reproduction unit.

L'invention a également pour objet un appareil de traitement de données audio et vidéo comportant des moyens de détermination d'une pluralité de signaux d'entrée d'informations acoustiques associés chacun à une direction générale de restitution prédéterminée définie par un point donné, caractérisé en ce qu'il comporte en outre un dispositif de pilotage d'un ensemble de restitution ;

  • lesdits moyens de détermination d'une pluralité de signaux d'entrée sont formés d'une unité de lecture et de décodage des disques audio et/ou vidéo numériques.
The invention also relates to an audio and video data processing apparatus comprising means for determining a plurality of acoustic information input signals each associated with a predetermined general restitution direction defined by a given point, characterized in that it further comprises a device for controlling a reproduction unit;
  • said means for determining a plurality of input signals are formed by a unit for reading and decoding digital audio and / or video discs.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

  • la Fig.1 est une représentation d'un repère sphérique ;
  • la Fig.2 est un schéma d'un système de restitution selon l'invention ;
  • la Fig.3 est un organigramme du procédé de l'invention ;
  • la Fig.4 est un schéma de moyens de calibrage mis en oeuvre dans le procédé de l'invention ;
  • la Fig.5 est un organigramme détaillé de l'étape de calibrage ;
  • la Fig.6 est une représentation simplifiée d'un capteur utilisé pour la mise en oeuvre de l'étape de calibrage ;
  • la Fig.7 est un organigramme détaillé de l'étape de détermination de filtres d'adaptation ; et
  • les Figs.8 et 9 sont des schémas de moyens de détermination de signaux de pilotage ; et
  • la Fig.10 est un schéma d'un mode de réalisation d'un dispositif mettant en oeuvre le procédé de l'invention.
The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the appended drawings, in which:
  • the Fig.1 is a representation of a spherical landmark;
  • the Fig.2 is a diagram of a rendering system according to the invention;
  • the Fig.3 is a flowchart of the method of the invention;
  • the Fig.4 is a scheme of calibration means implemented in the method of the invention;
  • the Fig.5 is a detailed flowchart of the calibration step;
  • the Fig.6 is a simplified representation of a sensor used for the implementation of the calibration step;
  • the Fig.7 is a detailed flowchart of the step of determining adaptation filters; and
  • the Figs.8 and 9 are diagrams of means for determining driving signals; and
  • the Fig.10 is a diagram of an embodiment of a device implementing the method of the invention.

Sur la figure 1, on a représenté un repère sphérique classique, de manière à préciser le système de coordonnées auquel il est fait référence dans le texte.On the figure 1 a conventional spherical landmark has been shown to specify the coordinate system referred to in the text.

Ce repère est un repère orthonormal, d'origine O et comportant trois axes (OX), (OY) et (OZ).This reference is an orthonormal reference, of origin O and having three axes ( OX ), ( OY ) and ( OZ ).

Dans ce repère, une position notée x est décrite au moyen de ses coordonnées sphériques (r,θ,φ,), où r désigne la distance par rapport à l'origine O, θ l'orientation dans le plan vertical et φ l'orientation dans le plan horizontal.In this reference, a noted position x is described by means of its spherical coordinates ( r , θ, φ,), where r denotes the distance from the origin O , θ the orientation in the vertical plane and φ the orientation in the horizontal plane.

Dans un tel repère, un champ acoustique est connu si l'on définit en tout point à chaque instant t la pression acoustique notée p(r,θ,φ,t), dont la transformée de Fourier temporelle est notée P(r,θ,φ,f) où f désigne la fréquence.In such a reference, an acoustic field is known if one defines at every point at each instant t the acoustic pressure noted p ( r , θ, φ, t ), whose time Fourier transform is noted P ( r , θ , φ, f ) where f is the frequency.

L'invention est fondée sur l'utilisation d'une famille de fonctions spatio-temporelles permettant de décrire les caractéristiques de tout champ acoustique.The invention is based on the use of a family of space-time functions for describing the characteristics of any acoustic field.

Dans le mode de réalisation décrit, ces fonctions sont des fonctions dites de Fourier-Bessel sphériques de première espèce appelées par la suite fonctions de Fourier-Bessel.In the embodiment described, these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter referred to as Fourier-Bessel functions.

Dans une zone vide de sources sonores et vide d'obstacles, les fonctions de Fourier-Bessel sont solutions de l'équation des ondes et constituent une base qui engendre tous les champs acoustiques produits par des sources sonores situées à l'extérieur de cette zone.In an empty zone of sound sources and empty of obstacles, the Fourier-Bessel functions are solutions of the wave equation and constitute a base that generates all acoustic fields produced by sound sources located outside this zone. .

Tout champ acoustique tridimensionnel s'exprime donc par une combinaison linéaire des fonctions de Fourier-Bessel, selon l'expression de la transformée de Fourier-Bessel inverse qui s'exprime : P r θ φ f = 4 π l = 0 m = - l l P l , m f j l j l kr y l m θ φ

Figure imgb0001
Any three-dimensional acoustic field is thus expressed by a linear combination of the Fourier-Bessel functions, according to the expression of the inverse Fourier-Bessel transform which expresses: P r θ φ f = 4 π Σ l = 0 Σ m = - l l P l , m f j l j l kr there l m θ φ
Figure imgb0001

Dans cette équation, les termes Pl,m (f) sont, par définition, les coefficients de Fourier-Bessel du champ p(r,θ,φ,t), k = 2 πf c

Figure imgb0002
c est la célérité du son dans l'air (340 ms-1), jr(kr) est la fonction de Bessel sphérique de première espèce d'ordre l définie par j l x = π 2 x J l + 1 / 2 x
Figure imgb0003
Jv (x) est la fonction de Bessel de première espèce d'ordre v, et y l m θ φ
Figure imgb0004
est l'harmonique sphérique réelle d'ordre l et de terme m, avec m allant de -l à l, définie par : y l m θ φ = { 1 π P l m cos θ cos m φ pour m > 0 1 2 π P l 0 cos θ pour m = 0 1 π P l m cos θ sin m φ pour m < 0
Figure imgb0005
In this equation, the terms P l, m ( f ) are, by definition, the Fourier-Bessel coefficients of the field p ( r , θ, φ, t ), k = 2 πf vs
Figure imgb0002
it is the celerity of the sound in the air (340 ms -1 ), jr ( kr ) is the spherical Bessel function of first kind of order l defined by j l x = π 2 x J l + 1 / 2 x
Figure imgb0003
where J v ( x ) is the Bessel function of the first kind of order v , and there l m θ φ
Figure imgb0004
is the real spherical harmonic of order l and of term m , with m ranging from - l to l , defined by: there l m θ φ = { 1 π P l m cos θ cos m φ for m > 0 1 2 π P l 0 cos θ for m = 0 1 π P l m cos θ sin m φ for m < 0
Figure imgb0005

Dans cette équation, les P l m x

Figure imgb0006
sont les fonctions de Legendre associées définies par : P l m x = 2 l + 1 2 l - m ! l + m ! 1 - x 2 m / 2 d m d x m P l x
Figure imgb0007
avec Pl (x) les polynômes de Legendre, définis par : P l x = 1 2 l l ! d l d x l x 2 - 1 l
Figure imgb0008
In this equation, the P l m x
Figure imgb0006
are the associated Legendre functions defined by: P l m x = 2 l + 1 2 l - m ! l + m ! 1 - x 2 m / 2 d m d x m P l x
Figure imgb0007
with P l ( x ) the Legendre polynomials, defined by: P l x = 1 2 l l ! d l d x l x 2 - 1 l
Figure imgb0008

Les coefficients de Fourier-Bessel s'expriment aussi dans le domaine temporel par les coefficients pl,m (t) correspondant à la transformée de Fourier temporelle inverse des coefficients Pl,m (f).The Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse time Fourier transform of the coefficients P l, m ( f ).

En variante, le procédé de l'invention utilise des bases de fonctions s'exprimant comme des combinaisons linéaires, éventuellement infinies, de fonctions de Fourier-Bessel.In a variant, the method of the invention uses function bases expressing themselves as linear combinations, possibly infinite, of Fourier-Bessel functions.

Sur la figure 2, on a représenté schématiquement un système de restitution dans lequel on met en oeuvre le procédé de l'invention.On the figure 2 schematically shows a restitution system in which the method of the invention is implemented.

Ce système comporte un décodeur ou adaptateur 1 pilotant un ensemble de restitution 2 qui comporte une pluralité d'éléments 31 à 3 N , tels que des haut-parleurs, des enceintes acoustiques ou toute autre source sonore ou groupe de sources sonores, agencés de manière quelconque dans un lieu d'écoute 4. On place arbitrairement, dans le lieu d'écoute 4, l'origine O du repère que l'on appelle centre 5 de l'ensemble de restitution.This system comprises a decoder or adapter 1 driving a reproduction assembly 2 which comprises a plurality of elements 3 1 to 3 N , such that loudspeakers, loudspeakers or any other sound source or group of sound sources, arranged in any manner in a listening place 4. The origin O of the reference mark is placed arbitrarily in listening area 4 called center 5 of the restitution set.

L'ensemble des caractéristiques spatiales, acoustiques et électrodynamiques est considéré comme les caractéristiques intrinsèques de l'ensemble de restitution 2.The set of spatial, acoustic and electrodynamic characteristics is considered as the intrinsic characteristics of the restitution ensemble 2.

L'adaptateur 1 reçoit en entrée un signal SI de type multicanal comportant des informations acoustiques à restituer et un signal de définition SL comportant des informations représentatives de caractéristiques au moins spatiales de l'ensemble de restitution 2 et notamment permettant la détermination de paramètres représentatifs pour au moins un élément 3n de l'ensemble de restitution 2 de sa position dans les trois dimensions de l'espace par rapport au point donné 5.The adapter 1 receives as input a signal SI of multichannel type comprising acoustic information to be reproduced and a definition signal SL comprising information representative of at least spatial characteristics of the reproduction unit 2 and in particular enabling the determination of representative parameters for at least one element 3 n of the reproduction unit 2 to its position in three dimensions of space in relation to the given point 5.

A l'issue du traitement correspondant au procédé de l'invention, l'adaptateur 1 émet à l'attention de chacun des éléments ou groupes d'éléments 31 à 3 N de l'ensemble de restitution 2, un signal sc1 à sc N de pilotage spécifique.At the end of the treatment corresponding to the method of the invention, the adapter 1 transmits to the attention of each of the elements or groups of elements 3 1 to 3 N of the reproduction assembly 2, a signal sc 1 to sc N specific steering.

Sur la figure 3, on a représenté schématiquement les étapes principales du procédé selon l'invention mis en oeuvre avec un système de restitution tel que celui décrit en référence à la figure 2.On the figure 3 schematically shows the main steps of the method according to the invention implemented with a restitution system such as that described with reference to the figure 2 .

Ce procédé comporte une étape 10 de détermination de paramètres de fonctionnement, adaptée pour permettre au moins la détermination des caractéristiques spatiales de l'ensemble de restitution 2.This method comprises a step 10 of determining operating parameters, adapted to allow at least the determination of the spatial characteristics of the reproduction assembly 2.

L'étape 10 comporte une étape 20 de saisie des paramètres et/ou une étape 30 de calibrage permettant de déterminer et/ou mesurer des caractéristiques de l'ensemble de restitution 2.Step 10 comprises a step 20 for entering the parameters and / or a calibration step 30 making it possible to determine and / or measure characteristics of the reproduction assembly 2.

Dans le mode de réalisation décrit, l'étape 10 comporte également une étape 40 de détermination de paramètres de description des directions générales prédéterminées associées aux différents canaux du signal d'entrée multicanal SI.In the embodiment described, step 10 also comprises a step 40 of determining description parameters of the predetermined general directions associated with the different channels of the multichannel input signal SI.

A l'issue de l'étape 10, des informations relatives au moins aux différentes directions générales prédéterminées associées à chacun des canaux d'entrée ainsi qu'à la position dans les trois dimensions de l'espace de chacun des éléments ou groupes d'éléments 3 n de l'ensemble de restitution 2, sont déterminées.At the end of step 10, information relating to at least the different predetermined general directions associated with each of the input channels as well as to the position in the three dimensions of the space of each of the elements or groups of elements 3 n of the restitution assembly 2, are determined.

Ces informations sont utilisées lors d'une étape 50 de détermination des filtres d'adaptation permettant de prendre en compte les caractéristiques spatiales de l'ensemble de restitution 2 afin de définir des filtres d'adaptation du signal d'entrée multicanal à la configuration spatiale spécifique de l'ensemble de restitution 2.This information is used during a step 50 of determining the adaptation filters making it possible to take into account the spatial characteristics of the reproduction unit 2 in order to define adaptation filters of the multichannel input signal to the spatial configuration specific of the refund set 2.

Avantageusement, l'étape 10 permet également de déterminer des caractéristiques acoustiques pour tout ou partie des éléments 31 à 3 N de l'ensemble de restitution 2.Advantageously, step 10 also makes it possible to determine acoustic characteristics for all or part of the elements 3 1 to 3 N of the reproduction assembly 2.

Dans ce cas, le procédé comporte une étape 60 de détermination de filtres de compensation acoustique permettant de compenser l'influence des caractéristiques acoustiques spécifiques des éléments 31 à 3 N .In this case, the method comprises a step 60 for determining acoustic compensation filters for compensating for the influence of the specific acoustic characteristics of the elements 3 1 to 3 N.

Les filtres définis lors des étapes 50 et avantageusement 60, peuvent ainsi être mémorisés, de sorte que les étapes 10, 50 et 60 ne doivent être répétées qu'en cas de modification de la configuration spatiale de l'ensemble de restitution 2 et/ou de la nature du signal d'entrée multicanal.The filters defined during the steps 50 and advantageously 60, can thus be stored, so that the steps 10, 50 and 60 must be repeated only if the spatial configuration of the reproduction assembly 2 and / or the nature of the multichannel input signal.

Le procédé comporte ensuite une étape 70 de détermination des signaux de pilotage sc1 à sc N destinés aux éléments de l'ensemble de restitution 2, comportant une sous-étape 80 d'application des filtres d'adaptation déterminés lors de l'étape 50 aux différents canaux c 1(t) à cQ (t) formant le signal multicanal d'entrée SI et avantageusement, une sous-étape 90 d'application des filtres de compensation acoustique déterminés lors de l'étape 60.The method then comprises a step 70 for determining the control signals sc 1 to sc N intended for the elements of the reproduction assembly 2, comprising a sub-step 80 for applying the adaptation filters determined during step 50 to the different channels c 1 ( t ) to c Q ( t ) forming the multichannel input signal SI and advantageously, a sub-step 90 for applying the acoustic compensation filters determined in step 60.

Les signaux sc 1 à scN ainsi délivrés, sont appliqués aux éléments 31 à 3N de l'ensemble de restitution 2, afin de restituer le champ acoustique représenté par le signal multicanal d'entrée SI avec une adaptation optimum aux caractéristiques spatiales et avantageusement acoustiques, de l'ensemble de restitution 2.The signals sc 1 to sc N thus delivered are applied to the elements 3 1 to 3 N of the reproduction unit 2, in order to restore the acoustic field represented by the multichannel input signal SI with an optimum adaptation to the spatial characteristics and advantageously acoustic, of the restitution assembly 2.

Il apparaît donc que grâce à la mise en oeuvre du procédé de l'invention, les caractéristiques du champ acoustique restitué sont sensiblement indépendantes des caractéristiques intrinsèques de restitution de l'ensemble de restitution 2 et notamment de sa configuration spatiale.It therefore appears that, thanks to the implementation of the method of the invention, the characteristics of the acoustic field restored are substantially independent of the intrinsic characteristics of restitution of the restitution assembly 2 and in particular of its spatial configuration.

On va maintenant décrire plus en détail les étapes principales du procédé de l'invention.The main steps of the process of the invention will now be described in greater detail.

Lors de l'étape 20 de saisie de paramètres un opérateur ou un système de mémoire adapté peut spécifier tout ou partie des paramètres de calcul et notamment :

  • des paramètres x n exprimés dans le repère sphérique au moyen des coordonnées rn , θ n , et φ n , et représentatifs de la position des éléments 3 n par rapport au centre d'écoute 5 ; et/ou
  • des paramètres Hn (f), représentatifs de la réponse en fréquence des éléments 3 n .
During the step 20 of entering parameters an operator or a suitable memory system can specify all or part of the calculation parameters and in particular:
  • parameters x n expressed in the spherical coordinate system by means of the coordinates r n , θ n , and φ n , and representative of the position of the elements 3 n with respect to the listening center 5; and or
  • parameters H n ( f ), representative of the frequency response of the elements 3 n .

Cette étape 20 est mise en oeuvre au moyen d'une interface de type classique telle qu'un micro-ordinateur ou tout autre moyen approprié.This step 20 is implemented by means of an interface of conventional type such as a microcomputer or any other appropriate means.

On va maintenant décrire plus en détail l'étape 30 de calibrage ainsi que des moyens de mise en oeuvre de cette étape.The calibration step 30 and the means for implementing this step will now be described in more detail.

Sur la figure 4 on a représenté le détail de moyens de calibrage. Ils comportent un module 91 de décomposition, un module 92 de détermination de réponse impulsionnelle et un module 93 de détermination de paramètres de calibrage.On the figure 4 the detail of calibration means is shown. They comprise a decomposition module 91, an impulse response determination module 92 and a calibration parameter determination module 93.

Les moyens de calibrage sont adaptés pour être connectés à un dispositif d'acquisition sonore 100 tel qu'un microphone ou tout autre dispositif adapté, et pour être connectés tour à tour à chaque élément 3n de l'ensemble de restitution 2 afin de prélever des informations sur cet élément.The calibration means are adapted to be connected to a sound acquisition device 100 such as a microphone or any other suitable device, and to be connected in turn to each element 3 n of the reproduction assembly 2 in order to collect information about this element.

Sur la figure 5, on a représenté le détail d'un mode de réalisation de l'étape 30 de calibrage mise en oeuvre par les moyens de calibrage décrits précédemment et permettant de mesurer des caractéristiques de l'ensemble de restitution 2.On the figure 5 the detail of an embodiment of the calibration step 30 implemented by the calibration means described above and making it possible to measure characteristics of the reproduction assembly 2 is shown.

Lors d'une sous-étape 32, les moyens de calibrage émettent un signal spécifique un (t) tel qu'une séquence pseudo-aléatoire MLS (Maximum Length Sequence) à l'attention d'un élément 3 n . Le dispositif d'acquisition 100 reçoit, lors d'une sous-étape 34, l'onde sonore émise par l'élément 3 n en réponse à la réception du signal un (t) et transmet I signaux cp 1(t) à cp1 (t) représentatifs de l'onde reçue au module de décomposition 91.In a sub-step 32, the calibration means emit a specific signal u n ( t ) such as a pseudo-random sequence MLS (Maximum Length Sequence) to the attention of an element 3 n . The acquisition device 100 receives, at a sub-step 34, the sound wave emitted by the element 3 n in response to receiving the signal u n (t) and transmits signals I 1 cp (t) cp 1 ( t ) representative of the wave received at the decomposition module 91.

Lors d'une sous-étape 36, le module de décomposition 91 décompose les signaux captés par le dispositif d'acquisition 100 en un nombre fini de coefficients de Fourier-Bessel ql,m (t).In a substep 36, the decomposition module 91 decomposes the signals picked up by the acquisition device 100 into a finite number of Fourier-Bessel coefficients q l, m ( t ).

Par exemple, le dispositif d'acquisition 100 est constitué de 4 capteurs de pression localisés aux 4 sommets d'un tétraèdre de rayon R ainsi que cela est représenté en référence à la figure 6. Les signaux des 4 capteurs de pression sont alors notés cp 1(t) à cp 4(t). Les coefficients q 0,0(t) à q 1,1(t) représentatifs du champ acoustique capté se déduisent des signaux cp 1(t) à cp 4(t) selon les relations suivantes : Q 0 , 0 f = 1 4 π C P 1 f + C P 2 f + C P 3 f + C P 4 f 4

Figure imgb0009
Q 1 , - 1 f = 3 8 π c 2 πjRf C P 1 f - C P 2 f + C P 3 f - C P 4 f
Figure imgb0010
Q 1 , 0 f = 3 8 π c 2 πjRf C P 1 f + C P 2 f - C P 3 f - C P 4 f
Figure imgb0011
Q 1 , 1 f = 3 8 π c 2 πjRf C P 1 f - C P 2 f - C P 3 f + C P 4 f
Figure imgb0012
For example, the acquisition device 100 consists of 4 pressure sensors located at the 4 vertices of a tetrahedron of radius R as shown with reference to FIG. figure 6 . The signals of the 4 pressure sensors are then noted cp 1 ( t ) to cp 4 ( t ). The coefficients q 0.0 ( t ) to q 1.1 ( t ) representative of the sensed acoustic field are deduced from the signals cp 1 ( t ) to cp 4 ( t ) according to the following relations: Q 0 , 0 f = 1 4 π VS P 1 f + VS P 2 f + VS P 3 f + VS P 4 f 4
Figure imgb0009
Q 1 , - 1 f = 3 8 π vs 2 πjRf VS P 1 f - VS P 2 f + VS P 3 f - VS P 4 f
Figure imgb0010
Q 1 , 0 f = 3 8 π vs 2 πjRf VS P 1 f + VS P 2 f - VS P 3 f - VS P 4 f
Figure imgb0011
Q 1 , 1 f = 3 8 π vs 2 πjRf VS P 1 f - VS P 2 f - VS P 3 f + VS P 4 f
Figure imgb0012

Dans ces relations CP 1(f) à CP 4(f) sont les transformées de Fourier de cp 1(t) à cp 4(t) et Q 0,0(f) à Q 1,1(f) sont les transformées de Fourier de q 0,0(t) à q 1,1(t).In these relations CP 1 ( f ) to CP 4 ( f ) are the Fourier transforms from cp 1 ( t ) to cp 4 ( t ) and Q 0,0 ( f ) to Q 1,1 ( f ) are the transforms Fourier of q 0.0 ( t ) to q 1.1 ( t ).

Lorsque ces coefficients sont définis par le module 91, ils sont adressés au module 92 de détermination de réponse.When these coefficients are defined by the module 91, they are addressed to the response determination module 92.

Lors d'une sous-étape 38, le module 92 de détermination de réponse détermine les réponses impulsionnelles hpl,m (t) qui relient les coefficients de Fourier-Bessel ql,m (t) et le signal émis un (t). La méthode de détermination dépend du signal spécifique émis. Le mode de réalisation décrit utilise une méthode adaptée aux signaux de type MLS, comme par exemple la méthode de corrélation.In a substep 38, the response determination module 92 determines the impulse responses hp l, m ( t ) which connect the Fourier-Bessel coefficients q l, m ( t ) and the transmitted signal u n ( t). ). The determination method depends on the specific signal emitted. The described embodiment uses a method adapted to MLS type signals, such as the correlation method.

La réponse impulsionnelle délivrée par le module 92 de détermination de réponse est adressée au module 93 de détermination de paramètres.The impulse response delivered by the response determination module 92 is addressed to the parameter determination module 93.

Lors d'une sous-étape 39, le module 93 déduit des informations sur des éléments de l'ensemble de restitution.In a substep 39, the module 93 derives information on elements of the reproduction set.

Dans le mode de réalisation décrit, le module 93 de détermination de paramètres détermine la distance rn entre l'élément 3 n et le centre 5 à partir de sa réponse hp 0,0(t) et de la mesure du temps mis par le son pour se propager de l'élément 3 n au dispositif d'acquisition 100, grâce à des méthodes d'estimation de retard sur la réponse hp 0,0(t).In the embodiment described, the parameter determination module 93 determines the distance r n between the element 3 n and the center 5 from its response hp 0,0 ( t ) and the measurement of the time put by the it is propagated from the element 3 n to the acquisition device 100, by delay estimation methods on the response hp 0,0 ( t ).

La direction (θn n ) de l'élément 3 n est déduite par calcul du maximum de la transformée de Fourier sphérique inverse appliquée aux réponses hp 0,0(t) à hp 1,1(t) prises à l'instant thp 0,0(t) présente un maximum. Avantageusement, les coordonnées θn et φ n sont estimées sur plusieurs instants, choisis de préférence autour de l'instant où hp 0,0(t) présente un maximum. La détermination finale des coordonnées θn et φ n est obtenue au moyen de techniques de moyennage entre les différentes estimations.The direction ( θ n , φ n ) of the element 3 n is deduced by calculating the maximum of the inverse spherical Fourier transform applied to the responses hp 0,0 ( t ) to hp 1,1 ( t ) taken at the time t where hp 0,0 (t) has a maximum. Advantageously, the coordinates θ n and φ n are estimated over several instants, chosen preferably around the moment when hp 0,0 ( t ) has a maximum. The final determination of the coordinates θ n and φ n is obtained by means of averaging techniques between the different estimations.

Ainsi, dans le mode de réalisation décrit, le dispositif d'acquisition 100 est en mesure d'encoder sans ambiguïté l'orientation d'une source dans l'espace.Thus, in the embodiment described, the acquisition device 100 is able to unambiguously encode the orientation of a source in space.

En variante, les coordonnées θ n et φ n sont estimées à partir d'autres réponses parmi les hpl,m (t) disponibles ou sont estimées dans le domaine fréquentiel à partir des réponses HP /,m (f), correspondant aux transformées de Fourier des réponses hp /,m (t).As a variant, the coordinates θ n and φ n are estimated from other responses among the hp l, m ( t ) available or are estimated in the frequency domain from the responses HP / , m ( f ), corresponding to the transforms Fourier responses hp / , m ( t ).

Ainsi l'étape 30 permet de déterminer les paramètres rn , θ n et φ n .Thus, step 30 makes it possible to determine the parameters r n , θ n and φ n .

Dans le mode de réalisation décrit, le module 93 délivre également la fonction de transfert Hn (f) de chaque élément 3 n , à partir des réponses hp /,m (t) issues du module 92 de détermination de réponse.In the embodiment described, the module 93 also delivers the transfer function H n ( f ) of each element 3 n , from the responses hp / , m ( t ) from the response determination module 92.

Une première solution consiste à construire la réponse hp'0,0 (t) correspondant à la sélection de la partie de la réponse hp 0,0(t) qui comporte un signal non nul et dénué des réflexions introduites par le lieu d'écoute 4. La réponse en fréquence Hn (f) est déduite par transformée de Fourier de la réponse hp'0,0 (t) préalablement fenêtrée. La fenêtre peut être choisie parmi les fenêtres classiques de lissage, comme par exemple rectangulaire, Hamming, Hanning, et Blackman.A first solution consists in constructing the response hp ' 0,0 ( t ) corresponding to the selection of the part of the response hp 0,0 ( t ) which comprises a non-zero signal and devoid of the reflections introduced by the listening site. 4. The frequency response H n ( f ) is derived by Fourier transform from the previously freened response hp ' 0,0 ( t ). The window can be chosen from conventional smoothing windows, such as for example rectangular, Hamming, Hanning, and Blackman.

Une seconde solution plus complexe consiste à appliquer un lissage sur le module et avantageusement sur la phase de la réponse en fréquence HP 0,0(f) obtenue par transformée de Fourier de la réponse hp0,0 (t). Pour chaque fréquence f, le lissage est obtenu par convolution de la réponse HP0,0 (f) par une fenêtre centrée sur f. Cette convolution correspond à un moyennage de la réponse HP 0,0(f) autour de la fréquence f. La fenêtre peut être choisie parmi les fenêtres classiques, comme par exemple rectangulaires, triangles et Hamming. Avantageusement, la largeur de la fenêtre varie avec la fréquence. Par exemple, la largeur de la fenêtre peut être proportionnelle à la fréquence f à laquelle est appliquée le lissage. Par rapport à une fenêtre fixe, une fenêtre variable avec la fréquence permet d'éliminer au moins partiellement l'effet de salle dans les hautes fréquences tout en évitant un effet de troncature de la réponse HP 0,0(f) dans les basses fréquences.A second more complex solution consists in applying a smoothing on the module and advantageously on the phase of the frequency response HP 0.0 ( f ) obtained by Fourier transform of the response hp 0.0 ( t ). For each frequency f , the smoothing is obtained by convolution of the response HP 0.0 ( f ) by a window centered on f . This convolution corresponds to an averaging of the response HP 0.0 ( f ) around the frequency f . The window can be chosen from conventional windows, for example rectangular, triangles and Hamming. Advantageously, the width of the window varies with the frequency. For example, the window width can be proportional to the frequency f which is applied to the smoothing. Compared to a fixed window, a variable window with the frequency makes it possible to at least partially eliminate the room effect in the high frequencies while avoiding a truncation effect of the response HP 0.0 ( f ) in the low frequencies .

Les sous-étapes 32 à 39 sont répétées pour tous les éléments 31 à 3 N de l'ensemble de restitution 2.Sub-steps 32 to 39 are repeated for all the elements 3 1 to 3 N of the reproduction assembly 2.

En variante, les moyens de calibrage comportent d'autres moyens d'acquisition d'informations relatives aux éléments 31 à 3 N , tels que des moyens de mesure de position au laser, des moyens de traitement du signal mettant en oeuvre des techniques de formation de voies ou tout autre moyen approprié.As a variant, the calibration means comprise other means for acquiring information relating to the elements 3 1 to 3 N , such as laser position measuring means, signal processing means using signal processing techniques. lane formation or any other appropriate means.

Les moyens mettant en oeuvre l'étape 30 de calibrage sont constitués par exemple d'une carte électronique ou d'un programme d'ordinateur ou de tout autre moyen approprié.The means implementing the calibration step 30 consist for example of an electronic card or a computer program or any other appropriate means.

L'étape 40 permet ainsi que cela a été dit précédemment, de déterminer des paramètres décrivant le format du signal multicanal d'entrée et notamment les directions prédéterminées générales associées à chaque canal.Step 40 thus makes it possible, as has been said above, to determine parameters describing the format of the multichannel input signal and in particular the general predetermined directions associated with each channel.

Cette étape 40 peut correspondre à une sélection par un opérateur d'un format parmi une liste de formats associés chacun à des paramètres mémorisés, et peut également correspondre à une détection automatique de format effectuée sur le signal multicanal d'entrée. Alternativement, le procédé est adapté pour un unique format de signal multicanal donné. Dans encore un autre mode de réalisation, l'étape 40 permet à un utilisateur de spécifier son propre format en saisissant manuellement les paramètres décrivant les directions associées à chaque canal.This step 40 may correspond to an operator selecting a format from a list of formats each associated with stored parameters, and may also correspond to an automatic format detection performed on the input multichannel signal. Alternatively, the method is adapted for a single given multichannel signal format. In yet another embodiment, step 40 allows a user to specify his own format by manually entering the parameters describing the directions associated with each channel.

Il apparaît que les étapes 20, 30 et 40 formant l'étape 10 de détermination de paramètres, permettent au moins la détermination de paramètres de positionnement dans l'espace des éléments 3 n de l'ensemble de restitution 2 et du format du signal multicanal SI.It appears that the steps 20, 30 and 40 forming the parameter determination step 10 allow at least the determination of positioning parameters in the space of the elements 3 n of the reproduction assembly 2 and the format of the multichannel signal. SI .

Sur la figure 7, on a représenté un organigramme détaillé de l'étape 50 de détermination des filtres d'adaptation.On the figure 7 a detailed flowchart of step 50 of determining the matching filters is shown.

Cette étape comporte une pluralité de sous-étapes de calcul et de détermination de matrices représentatives des paramètres déterminés préalablement.This step comprises a plurality of sub-steps for calculating and determining matrices representative of the previously determined parameters.

Ainsi, lors d'une sous-étape 51, un paramètre L, appelé ordre limite représentatif de la précision spatiale souhaitée lors de l'étape 50 de détermination des filtres d'adaptation, est déterminé par exemple de la manière suivante :

  • le plus petit angle α min formé par une paire d'éléments de l'ensemble de restitution 2 est calculé automatiquement au moyen d'une relation trigonométrique, telle que par exemple : a n 1 * , n 2 * = acos sin θ n 1 sin θ n 2 cos φ n 1 - φ n 2 + cos θ n 1 cos θ n 2
    Figure imgb0013
    a min = min a n 1 , n 2
    Figure imgb0014
    parmi l'ensemble des couples (n1, n2) tels que n1n2; et
  • ensuite, l'ordre maximum L est déterminé automatiquement comme étant le plus grand entier respectant la relation suivant : L < π / a min .
    Figure imgb0015
Thus, during a substep 51, a parameter L , called limit order representative of the spatial accuracy desired during the step 50 of determining the adaptation filters, is determined for example as follows:
  • the smallest angle α min formed by a pair of elements of the restitution set 2 is automatically calculated by means of a trigonometric relation, such as for example: at not 1 * , not 2 * = acos sin θ not 1 sin θ not 2 cos φ not 1 - φ not 2 + cos θ not 1 cos θ not 2
    Figure imgb0013
    at min = min at not 1 , not 2
    Figure imgb0014
    from the set of pairs ( n1 , n2 ) such that n1n2 ; and
  • then, the maximum order L is automatically determined as being the largest integer respecting the following relation: The < π / at min .
    Figure imgb0015

L'étape 50 de détermination de filtres d'adaptation comprend ensuite une sous-étape 52 de détermination d'une matrice W de pondération du champ acoustique. Cette matrice W correspond à une fenêtre spatiale W(r,f) représentative de la répartition dans l'espace de la précision souhaitée lors de la reconstruction du champ. Une telle fenêtre permet de spécifier la taille et la forme de la zone où le champ doit être correctement reconstruit. Par exemple, il peut s'agir d'une boule centrée sur le centre 5 de l'ensemble de restitution. Dans le mode de réalisation décrit, la fenêtre spatiale et la matrice W sont indépendantes de la fréquence.The step 50 of determining adaptation filters then comprises a substep 52 of determining a matrix W of the acoustic field weighting. This matrix W corresponds to a spatial window W ( r , f ) representative of the distribution in space of the desired precision during the reconstruction of the field. Such a window makes it possible to specify the size and the shape of the zone where the field must be correctly reconstructed. For example, it may be a ball centered on the center 5 of the rendering assembly. In the embodiment described, the spatial window and the matrix W are independent of the frequency.

W est une matrice diagonale de taille (L+1)2 contenant des coefficients de pondération Wl et dans laquelle chaque coefficient Wl se trouve 2l+1 fois à la suite sur la diagonale. La matrice W a donc la forme suivante : W = W 0 0 0 0 W 1 W 1 W 1 W L 0 0 0 W L

Figure imgb0016
W is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is 2 1 + 1 times later on the diagonal. The matrix W thus has the following form: W = W 0 0 0 0 W 1 W 1 W 1 W The 0 0 0 W The
Figure imgb0016

Dans le mode de réalisation décrit, les valeurs prises par les coefficients Wl sont les valeurs d'une fonction telle qu'une fenêtre de Hamming de taille de 2L+1 évaluée en l, de sorte que le paramètre Wl est déterminé pour l allant de 0 à L.In the embodiment described, the values taken by the coefficients W 1 are the values of a function such as a Hamming window of size of 2 L +1 evaluated at 1 , so that the parameter W 1 is determined for l ranging from 0 to L.

L'étape 50 comporte ensuite une sous-étape 53 de détermination d'une matrice M représentative du rayonnement de l'ensemble de restitution notamment à partir des paramètres de position x n . La matrice de rayonnement M permet de déduire des coefficients de Fourier-Bessel représentant le champ acoustique qu'émet chaque élément 3 n de l'ensemble de restitution en fonction du signal qu'il reçoit.Step 50 then comprises a substep 53 for determining a matrix M representative of the radiation of the reproduction assembly, in particular from the position parameters. x n . The radiation matrix M makes it possible to deduce Fourier-Bessel coefficients representing the acoustic field emitted by each element 3 n from the reproduction unit as a function of the signal it receives.

M est une matrice de taille (L+1)2 sur N, constituée d'éléments Ml,m,n , les indices l,m désignant la ligne l 2+l+m et n désignant la colonne n. La matrice M a donc la forme suivante : M 0 , 0 , 1 M 0 , 0 , 2 M 0 , 0 , N M 1 , - 1 , 1 M 1 , - 1 , 2 M 1 , - 1 , N M 1 , 0 , 1 M 1 , 0 , 2 M 1 , 0 , N M 1 , 1 , 1 M 1 , 1 , 2 M 1 , 1 , N M L , - L , 1 M L , - L , 2 M L , - L , N M L , 0 , 1 M L , 0 , 2 M L , 0 , N M L , L , 1 M L , L , 2 M L , L , N

Figure imgb0017
M is a matrix of size ( L +1) 2 on N , consisting of elements M l, m, n , the indices l , m denoting the line l 2 + l + m and n denoting the column n . The matrix M thus has the following form: M 0 , 0 , 1 M 0 , 0 , 2 M 0 , 0 , NOT M 1 , - 1 , 1 M 1 , - 1 , 2 M 1 , - 1 , NOT M 1 , 0 , 1 M 1 , 0 , 2 M 1 , 0 , NOT M 1 , 1 , 1 M 1 , 1 , 2 M 1 , 1 , NOT M The , - The , 1 M The , - The , 2 M The , - The , NOT M The , 0 , 1 M The , 0 , 2 M The , 0 , NOT M The , The , 1 M The , The , 2 M The , The , NOT
Figure imgb0017

Dans le mode de réalisation décrit, les éléments Ml,m,n s'obtiennent à partir d'un modèle de rayonnement en ondes planes, de sorte que : M l , m , n = y l m θ n φ n

Figure imgb0018
In the embodiment described, the elements M l, m, n are obtained from a plane wave radiation model, so that: M l , m , not = there l m θ not φ not
Figure imgb0018

La matrice M ainsi définie est représentative du rayonnement de l'ensemble de restitution. En particulier, M est représentative de la configuration spatiale de l'ensemble de restitution.The matrix M thus defined is representative of the radiation of the reproduction unit. In particular, M is representative of the spatial configuration of the restitution set.

Les sous-étapes 51 à 53 peuvent être exécutées séquentiellement ou simultanément.Sub-steps 51 to 53 may be executed sequentially or simultaneously.

L'étape 50 de détermination de filtres d'adaptation comprend ensuite une sous-étape 54 de prise en compte de l'ensemble des paramètres du système de restitution 2 déterminés précédemment, afin de délivrer une matrice D de décodage représentative de filtres dits de reconstruction.The step 50 of determining adaptation filters then comprises a substep 54 of taking into account all the parameters of the rendering system 2 determined previously, in order to deliver a decoding matrix D representative of so-called reconstruction filters. .

En effet, les éléments Dn,l,m (f) de la matrice D correspondent à des filtres de reconstruction qui, appliqués aux coefficients de Fourrier-Bessel Pl,m (f) d'un champ acoustique connu, permettent de déterminer les signaux de pilotage d'un ensemble de restitution pour reproduire ce champ acoustique.Indeed, the elements D n, l, m ( f ) of the matrix D correspond to reconstruction filters which, applied to the Fourrier-Bessel coefficients P l, m ( f ) of a known acoustic field, make it possible to determine the control signals of a reproduction unit for reproducing this acoustic field.

La matrice de décodage D est donc l'inverse de la matrice de rayonnement M .The decoding matrix D is therefore the inverse of the radiation matrix M.

La matrice D est obtenue à partir de la matrice M au moyen de méthodes d'inversion sous contraintes faisant intervenir des paramètres d'optimisation supplémentaires.The matrix D is obtained from the matrix M by means of inversion methods under constraints involving additional optimization parameters.

Dans le mode de réalisation décrit, l'étape 50 est adaptée pour réaliser une optimisation grâce à la matrice de pondération du champ acoustique W qui permet notamment de réduire la distorsion spatiale dans le champ acoustique reproduit.In the embodiment described, step 50 is adapted to perform an optimization thanks to the weighting matrix of the acoustic field W which In particular, it makes it possible to reduce the spatial distortion in the reproduced acoustic field.

Cette matrice D est délivrée notamment à partir de la matrice M, selon l'expression suivante : D = M T WM - 1 M T W

Figure imgb0019
dans laquelle M T est la matrice transposée conjuguée de M .This matrix D is delivered in particular from the matrix M , according to the following expression: D = M T WM - 1 M T W
Figure imgb0019
where M T is the conjugated transposed matrix of M.

Dans le mode de réalisation décrit, les matrices M et W sont indépendantes de la fréquence, de sorte que la matrice D est également indépendante de la fréquence. Elle est constituée d'éléments notés Dn,l,m organisés de la manière suivante : D 1 , 0 , 0 D 1 , 1 , - 1 D 1 , 1 , 0 D 1 , 1 , 1 D 1 , L , - L D 1 , L , 0 D 1 , L , L D 2 , 0 , 0 D 2 , 1 , - 1 D 2 , 1 , 0 D 2 , 1 , 1 D 2 , L , - L D 2 , L , 0 D 2 , L , L D N , 0 , 0 D N , 1 , - 1 D N , 1 , 0 D N , 1 , 1 D N , L , - L D N , L , 0 D N , L , L

Figure imgb0020
In the embodiment described, the matrices M and W are independent of the frequency, so that the matrix D is also independent of the frequency. It consists of elements denoted D n, l, m organized as follows: D 1 , 0 , 0 D 1 , 1 , - 1 D 1 , 1 , 0 D 1 , 1 , 1 D 1 , The , - The D 1 , The , 0 D 1 , The , The D 2 , 0 , 0 D 2 , 1 , - 1 D 2 , 1 , 0 D 2 , 1 , 1 D 2 , The , - The D 2 , The , 0 D 2 , The , The D NOT , 0 , 0 D NOT , 1 , - 1 D NOT , 1 , 0 D NOT , 1 , 1 D NOT , The , - The D NOT , The , 0 D NOT , The , The
Figure imgb0020

L'étape 54 permet ainsi de délivrer la matrice D représentative de filtres dits de reconstruction et permettant la reconstruction d'un champ acoustique à partir d'une configuration quelconque de l'ensemble de restitution. Grâce à cette matrice, le procédé de l'invention permet de prendre en compte la configuration de l'ensemble de restitution 2 et notamment de compenser les altérations du champ acoustique dues à sa configuration spatiale spécifique.Step 54 thus makes it possible to deliver the matrix D representative of so-called reconstruction filters and enabling the reconstruction of an acoustic field from any configuration of the reproduction assembly. Thanks to this matrix, the method of the invention makes it possible to take into account the configuration of the reproduction assembly 2 and in particular to compensate the alterations of the acoustic field due to its specific spatial configuration.

En variante, les paramètres relatifs à l'ensemble de restitution 2 peuvent être variables en fonction de la fréquence.As a variant, the parameters relating to the reproduction assembly 2 may be variable depending on the frequency.

Par exemple, dans un tel mode de réalisation, chaque élément Dn,l,m (f) de la matrice D peut être déterminé en associant à chacun des N signaux de pilotage une fonction de directivité Dn (θ,φ,f) spécifiant à chaque fréquence f l'amplitude, et avantageusement la phase souhaitée sur le signal de pilotage scn dans le cas d'une onde plane dans la direction (θ,φ).For example, in such an embodiment, each element D n, 1, m ( f ) of the matrix D can be determined by associating with each of the N control signals a directivity function D n ( θ , φ , f ) specifying at each frequency f amplitude, and advantageously the desired phase on the n sc drive signal in the case of a plane wave in the direction (θ, φ).

On entend par fonction de directivité Dn (θ,φ,f) une fonction qui associe une valeur réelle ou complexe, éventuellement fonction de la fréquence ou d'une plage de fréquences, à chaque direction de l'espace.By directivity function D n (θ, φ, f ) is meant a function that associates a real or complex value, possibly depending on the frequency or a frequency range, with each direction of the space.

Dans le mode de réalisation décrit, les fonctions de directivités sont indépendantes de la fréquence et notés Dn (θ,φ).In the embodiment described, the directivity functions are independent of the frequency and denoted D n (θ, φ).

Ces fonctions de directivité Dn (θ,φ) peuvent être déterminées en spécifiant que certaines grandeurs physiques entre un champ idéal et le même champ reproduit par l'ensemble de restitution respectent des lois prédéterminées. Par exemple, ces grandeurs peuvent être la pression au centre et l'orientation du vecteur vitesse. Dans certains cas, on souhaite que seulement 3 signaux de pilotage soient actifs pour reproduire une onde plane. Les signaux de pilotage actifs, notés sc n1 à sc n3, sont ceux qui alimentent les éléments de restitution dont les directions sont les plus proches de la direction (θ,φ) de l'onde plane. Les éléments de restitution actifs, notés 3 n1 à 3 n3, forment un triangle contenant la direction (θ,φ) de l'onde plane. Dans ce cas, les valeurs des directivités Dn1 (θ,φ) à D n3(θ,φ) associés aux 3 éléments actifs 3 n1 à 3 n3 sont donnés par :

Figure imgb0021
avec
Figure imgb0022
These directivity functions D n (θ, φ) can be determined by specifying that certain physical quantities between an ideal field and the same field reproduced by the restitution set comply with predetermined laws. For example, these quantities may be the pressure at the center and the orientation of the velocity vector. In some cases, it is desired that only 3 driving signals be active to reproduce a plane wave. The active piloting signals, denoted sc n 1 to sc n 3 , are those that supply the restitution elements whose directions are closest to the direction (θ, φ) of the plane wave. The active rendering elements, denoted 3 n 1 to 3 n 3 , form a triangle containing the direction (θ, φ) of the plane wave. In this case, the values of the directivities D n1 (θ, φ) to D n 3 (θ, φ) associated with the 3 active elements 3 n 1 to 3 n 3 are given by:
Figure imgb0021
with
Figure imgb0022

Dans cette relation, α correspond au vecteur contenant [Dn1 (θ,φ)...Dn3 (θ,φ)] et les directions (θ n1 n2 ), (θ n2 n2 ) et (θ n3 n3 ) correspondent respectivement aux directions des éléments 3 n1, 3 n2 et 3 n3.In this relation, α corresponds to the vector containing [ D n1 (θ, φ) ... D n3 (θ, φ)] and the directions ( θn1 , φn2 ), ( θn2 , φn2 ) and ( θn3 , φ n3 ) correspond respectively to the directions of the elements 3 n 1 , 3 n 2 and 3 n 3 .

On considère que les valeurs des directivités Dn (θ,φ) correspondant aux éléments de restitution non actifs sont nulles.It is considered that the values of the directivities D n (θ, φ) corresponding to the non-active restitution elements are zero.

La relation précédente est répétée pour K directions (θ k k ) d'ondes planes différentes. Ainsi, chacune des fonctions de directivité Dn (θ,φ) est fournie sous la forme d'une liste de K échantillons. Chaque échantillon est fournit sous la forme d'un couple {((θ k k ), Dn k k ))} où (θ k k ) est la direction de l'échantillon k et où Dn k k) est la valeur de la fonction de directivité associée au signal de pilotage scn pour la direction ((θ k k ).The above relationship is repeated for K directions (θ k, φ k) of different plane waves. Thus, each of the directivity functions D n (θ, φ) is provided in the form of a list of K samples. Each sample is provided in the form of a pair {((θ k , φ k ), D n k , φ k ))} where (θ k , φ k ) is the direction of the sample k and where D n k , φ k ) is the value of the directivity function associated with the control signal sc n for the direction ((θ k , φ k ).

Pour chaque fréquence f, les coefficients D n,l,m (f) de chaque fonction de directivité sont déduits des échantillons {(((θ k k ), Dn k k ))}. Ces coefficients sont obtenus par inversion du processus d'échantillonnage angulaire qui permet de déduire les échantillons de la liste {((θ k k ), Dn k k ))} à partir d'une fonction de directivité fournie sous forme de coefficients d'harmoniques sphériques. Cette inversion peut prendre différentes formes afin de contrôler l'interpolation entre les échantillons.For each frequency f , the coefficients D n , l , m ( f ) of each directivity function are deduced from the samples {(((θ k , φ k ), D n k , φ k ))}. are obtained by inversion of the angular sampling process which makes it possible to deduce the samples from the list {((θ k , φ k ), D n k , φ k ))} from a directivity function provided under This inversion can take different forms to control the interpolation between samples.

Dans d'autres modes de réalisation, les fonctions de directivité sont directement fournies sous la forme de coefficients D n,/,m (f) de type Fourrier- Bessel.In other embodiments, the directivity functions are directly provided in the form of Fourrier-Bessel type D n, / , m ( f ) coefficients.

Les coefficients D n,/,m (f) ainsi déterminés sont utilisés pour former la matrice D .The coefficients D n , /, m ( f ) thus determined are used to form the matrix D.

L'étape 50 comporte ensuite une étape 55 de détermination d'une matrice de rayonnement multicanale idéale S représentative des directions générales prédéterminées associées à chaque canal du signal multicanal d'entrée SI.Step 50 then comprises a step 55 of determining an ideal multichannel radiation matrix S representative of the predetermined general directions associated with each channel of the multichannel input signal SI .

La matrice S est représentative du rayonnement d'un ensemble de restitution idéal, c'est à dire respectant parfaitement les directions générales prédéterminées du format multicanal. Chaque élément S l,m,q (f) de la matrice S permet de déduire les coefficients de Fourier-Bessel P l,m (f) du champ acoustique idéalement restitué par chaque canal cq (t).The S matrix is representative of the radiation a set of ideal restitution, i.e. full conformity with the predetermined branch of the multichannel format. Each element S l , m , q ( f ) of the matrix S makes it possible to deduce the Fourier-Bessel coefficients P l , m ( f ) from the acoustic field ideally restored by each channel c q ( t ).

La matrice S est déterminée en associant à chaque canal d'entrée cq (t) et avantageusement pour chaque fréquence f, une figure de directivité représentative d'une distribution de sources supposées émettre le signal du canal cq (t).The matrix S is determined by associating with each input channel c q ( t ) and advantageously for each frequency f , a directivity figure representative of a distribution of sources supposed to emit the signal of the channel c q ( t ).

La distribution de sources est donnée sous la forme de coefficients d'harmoniques sphériques S l,m,q (f). Les coefficients S /,m,q (f) sont rangés dans la matrice S de taille (L+1)2 sur Q, où Q est le nombre de canaux.The distribution of sources is given in the form of spherical harmonics coefficients S l , m , q ( f ). The coefficients S /, m , q ( f ) are arranged in the matrix S of size ( L +1) 2 on Q , where Q is the number of channels.

Dans le mode de réalisation décrit, l'étape de mise en forme associe à chaque canal cq (t) une source d'onde plane orientée dans la direction (θ q q ) correspondant à la direction θ q c φ q c

Figure imgb0023
associée au canal cq (t) dans le format multicanal d'entrée. Les coefficients S l,m,q (f) sont alors indépendants de la fréquence. Ils sont notés S /,m,q et s'obtiennent par la relation : S l , m , q f = y l m θ q φ q
Figure imgb0024
In the embodiment described, the shaping step associates with each channel c q ( t ) a plane wave source oriented in the direction (θ q , φ q ) corresponding to the direction θ q vs φ q vs
Figure imgb0023
associated with the channel c q ( t ) in the multichannel input format. The coefficients S l , m , q ( f ) are then independent of the frequency. They are noted S /, m , q and are obtained by the relation: S l , m , q f = there l m θ q φ q
Figure imgb0024

Dans d'autres modes de réalisation, la matrice de rayonnement idéale S associe une distribution discrète de sources d'ondes planes à certains canaux pour simuler l'effet d'une ceinture de haut-parleurs. Dans ce cas, les coefficients S l,m,q sont obtenus par sommation des contributions de chacune des sources élémentaires.In other embodiments, the ideal radiation matrix S combines a discrete distribution of plane wave sources with certain channels to simulate the effect of a speaker belt. In this case, the coefficients S l , m , q are obtained by summation of the contributions of each of the elementary sources.

Dans encore d'autres modes de réalisation, la matrice de rayonnement idéale S associe certains canaux cq (t) à une distribution continue de sources d'ondes planes décrite par une fonction de directivité Sq (θ,φ). Dans ce cas, les coefficients S l,m,q de la matrice S sont obtenus directement par transformée de Fourier Sphérique de la fonction de directivité Sq (θ,φ). Dans ces modes de réalisation, la matrice S est indépendante de la fréquence.In still other embodiments, the ideal radiation matrix S associates certain channels c q ( t ) with a continuous distribution of plane wave sources described by a directivity function S q (θ, φ). In this case, the coefficients S l , m , q of the matrix S are obtained directly by Spherical Fourier transform of the directivity function S q ( θ, φ) . In these embodiments, the matrix S is independent of frequency.

Dans d'autres modes de réalisation plus complexes la matrice S associe à certains canaux, une distribution de sources produisant un champ diffus. Dans ce cas, la matrice S varie avec la fréquence. Ces modes de réalisation sont adaptés aux formats multicanaux qui considèrent différemment les canaux avants et arrières. Par exemple, dans les applications destinées à la restitution dans des salles cinéma, les canaux arrières sont souvent destinés à recréer une ambiance diffuse.In other more complex embodiments the matrix S associates with certain channels, a distribution of sources producing a diffuse field. In this case, the matrix S varies with the frequency. These embodiments are adapted to multichannel formats which consider differently the front and rear channels. For example, in applications intended for rendering in cinema theaters, the rear channels are often intended to recreate a diffuse atmosphere.

Dans d'autres modes de réalisation, la matrice S associe à certains canaux des sources sonores dont la réponse n'est pas plate. Par exemple, dans le cas où le format multicanal associe au canal cq (t) une source d'onde plane de réponse en fréquence H (q)(f), les S /,m,q (f) varient avec la fréquence et s'obtiennent par la relation : S l , m , q f = y l m θ q φ q H q f

Figure imgb0025
In other embodiments, the matrix S associates sound sources whose response is not flat to certain channels. For example, in the case where the multichannel format associates with the channel c q ( t ) a plane wave source of frequency response H ( q ) ( f ), the S /, m , q ( f ) vary with the frequency and are obtained by the relation: S l , m , q f = there l m θ q φ q H q f
Figure imgb0025

Si le format multicanal associe à certains canaux une superposition des types de distributions de sources pré-citées, les coefficients S l,m,q (f) de la matrice de rayonnement s'obtiennent par sommation des coefficients associés à chaque type de distribution de source.If the multichannel format associates with some channels a superposition of the aforementioned source distribution types, the coefficients S l , m , q ( f ) of the radiation matrix are obtained by summation of the coefficients associated with each type of distribution of source.

Enfin, l'étape 50 comporte une sous-étape 56 de détermination d'une matrice d'adaptation spatiale A correspondant aux filtres d'adaptation à appliquer au signal d'entrée multicanal pour obtenir une restitution optimum prenant en compte la configuration spatiale de l'ensemble de restitution 2.Finally, step 50 comprises a substep 56 for determining a spatial adaptation matrix A corresponding to the adaptation filters to be applied to the multichannel input signal in order to obtain an optimum restitution taking into account the spatial configuration of the input signal. restitution set 2.

La matrice d'adaptation spatiale A est obtenue à partir des matrices de mise en forme S et de décodage D au moyen de la relation : A = DS

Figure imgb0026
The spatial adaptation matrix A is obtained from the S- shaping and D- decoding matrices by means of the relation: AT = DS
Figure imgb0026

La matrice d'adaptation A permet de générer des signaux sa1 (t) à saN (t) adaptés à la configuration spatiale de l'ensemble de restitution à partir des canaux c1 (t) à cQ (t). Chaque élément An,q (f) est un filtre spécifiant la contribution du canal cq (t) au signal adapté san (t). Grâce à la matrice d'adaptation A , le procédé de l'invention permet la restitution optimum du champ acoustique décrit par le signal multicanal par un ensemble de restitution de configuration spatiale quelconque.The adaptation matrix A makes it possible to generate signals sa 1 ( t ) to its N ( t ) adapted to the spatial configuration of the reproduction set from the channels c 1 ( t ) to c Q ( t ). Each element A n, q ( f ) is a filter specifying the contribution of the channel c q ( t ) to the adapted signal sa n ( t ). Thanks to the adaptation matrix A , the method of the invention allows the optimum restitution of the acoustic field described by the multichannel signal by a restitution set of any spatial configuration.

Dans le mode de réalisation décrit, les matrices D et S sont indépendantes de la fréquence et la matrice A également. Dans ce cas, les éléments de la matrice A sont des constantes notées An,q et chacun des signaux adaptés sa1 (t) à saN (t) s'obtient par de simples combinaisons linéaires des canaux d'entrée c1 (t) à cQ (t), le cas échéant suivies de retard ainsi qu'il sera décrit ci-après.In the embodiment described, the matrices D and S are independent of the frequency and the matrix A also. In this case, the elements of the matrix A are constants denoted A n, q and each of the adapted signals sa 1 ( t ). its N ( t ) is obtained by simple linear combinations of the input channels c 1 ( t ) to c Q ( t ), where appropriate followed by delay as will be described below.

Les filtres représentés par la matrice A peuvent être mis en oeuvre sous différentes formes de filtres et /ou méthodes de filtrage. Dans le cas où les filtres utilisés sont paramétrés directement avec des réponses en fréquence, les coefficients An,q (f) sont directement délivrés par l'étape 50. Avantageusement, l'étape 50 de détermination de filtres d'adaptation comprend une sous-étape 57 de conversion afin de déterminer les paramètres des filtres pour d'autres méthodes de filtrage.The filters represented by the matrix A can be implemented in different forms of filters and / or filtering methods. In the case where the filters used are parameterized directly with frequency responses, the coefficients A n, q ( f ) are directly delivered by step 50. Advantageously, the step 50 of determining adaptation filters comprises a sub-step. step 57 conversion to determine the filter parameters for other filtering methods.

Par exemple, les combinaisons de filtrage A n,q (f) sont converties en :

  • des réponses impulsionnelles finies a n,q (t) calculées par transformée de Fourier temporelle inverse de A n,q (f), chaque réponse impulsionnelle a n,q (t) est échantillonnée puis tronquée à une longueur propre à chaque réponse ; ou
  • des coefficients de filtres récursifs à réponses impulsionnelles infinies calculées à partir des A n,q (f) avec des méthodes d'adaptation.
For example, the filter combinations A n , q ( f ) are converted to:
  • finite impulse responses a n , q ( t ) computed by inverse time Fourier transform of A n , q ( f ), each impulse response a n , q ( t ) is sampled and then truncated to a length specific to each response; or
  • recursive filter coefficients with infinite impulse responses computed from A n , q ( f ) with adaptation methods.

A l'issue de l'étape 50 les paramètres des filtres d'adaptation A n,q (f) sont fournis.At the end of step 50 the parameters of the adaptation filters A n , q ( f ) are provided.

L'étape 60 permet ainsi que cela a été dit précédemment, de déterminer les filtres de compensation des caractéristiques acoustiques des éléments de l'ensemble de restitution 2 dans le cas où des paramètres relatifs à ces caractéristiques acoustiques tels que les réponses en fréquence Hn (f), sont déterminés lors de l'étape 10 de détermination des paramètres.Step 60 thus makes it possible, as has been said above, to determine the filters for compensating the acoustic characteristics of the elements of the reproduction assembly 2 in the case where parameters relating to these acoustic characteristics such as the frequency responses H n ( f ), are determined during step 10 of determining the parameters.

La détermination de tels filtres, notés H n I f ,

Figure imgb0027
à partir des réponses en fréquence Hn (f), peut être réalisée de manière classique en appliquant des méthodes d'inversion de filtres, comme par exemple l'inversion directe, les méthodes de déconvolution, les méthodes Wiener ou d'autres.The determination of such filters, noted H not I f ,
Figure imgb0027
from the frequency responses H n ( f ), can be carried out conventionally by applying filter inversion methods, such as direct inversion, deconvolution methods, Wiener or other methods.

En fonction des modes de réalisation, la compensation porte uniquement sur l'amplitude de la réponse ou encore sur l'amplitude et la phase.Depending on the embodiments, the compensation relates only to the amplitude of the response or else to the amplitude and the phase.

Cette étape 60 permet de déterminer un filtre de compensation pour chaque élément 3 n de l'ensemble de restitution 2 en fonction de ses caractéristiques acoustiques spécifiques.This step 60 makes it possible to determine a compensation filter for each element 3 n of the reproduction assembly 2 as a function of its specific acoustic characteristics.

De même que précédemment, ces filtres peuvent être mis en oeuvre sous différentes formes de filtres et/ou méthodes de filtrage. Dans le cas où les filtres utilisés sont paramétrés directement avec des réponses en fréquence, les réponses H n I f

Figure imgb0028
sont directement appliquées. Avantageusement, l'étape 60 de détermination de filtres de compensation comprend une sous-étape de conversion afin de déterminer les paramètres des filtres pour d'autres méthodes de filtrage.As before, these filters can be implemented in different forms of filters and / or filtering methods. In case the used filters are parameterized directly with frequency responses, the responses H not I f
Figure imgb0028
are directly applied. Advantageously, the step 60 of determining compensation filters comprises a conversion sub-step in order to determine the parameters of the filters for other filtering methods.

Par exemple, les combinaisons de filtrage H n I f

Figure imgb0029
sont converties en :

  • des réponses impulsionnelles finies h n I t
    Figure imgb0030
    calculées par transformée de Fourier temporelle inverse de H n I f ,
    Figure imgb0031
    chaque réponse impulsionnelle h n I t
    Figure imgb0032
    est échantillonnée puis tronquée à une longueur propre à chaque réponse ; ou
  • des coefficients de filtres récursifs à réponses impulsionnelles infinies calculées à partir des H n I f
    Figure imgb0033
    avec des méthodes d'adaptation.
For example, filtering combinations H not I f
Figure imgb0029
are converted to:
  • finite impulse responses h not I t
    Figure imgb0030
    calculated by inverse time Fourier transform of H not I f ,
    Figure imgb0031
    each impulse response h not I t
    Figure imgb0032
    is sampled and truncated to a specific length for each response; or
  • infinite impulse response recursive filter coefficients calculated from the H not I f
    Figure imgb0033
    with methods of adaptation.

A l'issue de l'étape 60 les paramètres des filtres de compensation H n I f

Figure imgb0034
sont fournis.At the end of step 60, the parameters of the compensation filters H not I f
Figure imgb0034
are provided.

On va maintenant décrire plus en détail l'étape 70 de détermination de signaux de pilotage.We will now describe in more detail step 70 of determining driving signals.

Cette étape 70 comporte une sous-étape 80 d'application des filtres d'adaptation représentés par la matrice A au signal multicanal d'entrée SI correspondant au champ acoustique à restituer. Ainsi que cela a été dit précédemment, les filtres d'adaptation A n,q (f) intègrent les paramètres caractéristiques de l'ensemble de restitution 2.This step 70 comprises a sub-step 80 for applying the adaptation filters represented by the matrix A to the multichannel input signal SI corresponding to the acoustic field to be restored. As has been said previously, the adaptation filters A n , q ( f ) integrate the characteristic parameters of the reproduction set 2.

Lors de la sous-étape 80, des signaux adaptés sa1 (t) à saN (t) sont obtenus par l'application des filtres d'adaptation An,q (f) aux canaux c 1 (t) à cQ (t) du signal SI.At substep 80, appropriate signals its 1 (t) at its N (t) are obtained by the application of adaptive filters A n, q (f) to the channels c 1 (t) Q c ( t ) the signal SI .

Dans le mode de réalisation décrit, la matrice d'adaptation A est indépendante de la fréquence et les coefficients d'adaptation An,q sont appliqués de la façon suivante : v n f = q = 1 Q c q t A n , q

Figure imgb0035
In the embodiment described, the adaptation matrix A is independent of the frequency and the adaptation coefficients A n, q are applied as follows: v not f = Σ q = 1 Q vs q t AT not , q
Figure imgb0035

L'adaptation se poursuit par un ajustement des gains et l'application de retards afin d'aligner temporellement les fronts d'onde des éléments 31 à 3 N de l'ensemble de restitution 2 par rapport à l'élément le plus éloigné. Les signaux adaptés sa1 (t) à saN (t) se déduisent des signaux v 1(t) à vN (t) selon l'expression : s a n t = r n v n t - max r n - r n c

Figure imgb0036
The adaptation is continued by an adjustment of the gains and the application of delays in order to align the wave fronts of the elements 3 1 to 3 N of the reproduction assembly 2 temporally with respect to the element furthest away. The signals adapted its 1 ( t ) to its N ( t ) are deduced from the signals v 1 ( t ) to v N ( t ) according to the expression: s at not t = r not v not t - max r not - r not vs
Figure imgb0036

Dans d'autres modes de réalisation, la matrice d'adaptation A varie avec la fréquence et les filtres d'adaptation A n,q (f) sont appliqués de la façon suivante : V n f = q = 1 Q C q f A n , q f

Figure imgb0037
avec Cq (f) la transformée de Fourier temporelle du canal cq (t) et Vn (f) défini par: V n f = SA n f r n e - 2 πjr n f / c
Figure imgb0038
SAn (f) est la transformée de Fourier temporelle de san (t).In other embodiments, the adaptation matrix A varies with the frequency and the adaptation filters A n , q ( f ) are applied as follows: V not f = Σ q = 1 Q VS q f AT not , q f
Figure imgb0037
with C q ( f ) the time Fourier transform of the channel c q ( t ) and V n ( f ) defined by: V not f = HER not f r not e - 2 πjr not f / vs
Figure imgb0038
where SA n ( f ) is the temporal Fourier transform of its n ( t ).

Selon la forme des paramètres des filtres d'adaptation A n,q (f), chaque filtrage des canaux cq (t) par les filtres d'adaptation A n,q (f) peut être réalisé selon des méthodes classiques de filtrage, telles que par exemple :

  • les paramètres sont directement les réponses en fréquence A n,q (f), et le filtrage est effectué dans le domaine fréquentiel, par exemple, à l'aide des techniques usuelles de convolution par blocs ;
  • les paramètres sont directement les réponses impulsionnelles finies a n,q (t), et le filtrage est effectué dans le domaine temporel par convolution ; ou
  • les paramètres sont les coefficients de filtres récursifs à réponses impulsionnelles infinies, et le filtrage est effectué dans le domaine temporel au moyen des relations de récurrence.
According to the form of the parameters of the adaptation filters A n , q ( f ), each filtering of the channels c q ( t ) by the adaptation filters A n , q ( f ) can be carried out according to conventional filtering methods, such as for example:
  • the parameters are directly the frequency responses A n , q ( f ), and the filtering is performed in the frequency domain, for example, using standard block convolution techniques;
  • the parameters are directly the finite impulse responses to n , q ( t ), and the filtering is done in the time domain by convolution; or
  • the parameters are the recursive filter coefficients with infinite impulse responses, and the filtering is done in the time domain by means of the recurrence relations.

La sous étape 80 se termine par un ajustement des gains et l'application de retards afin d'aligner temporellement les fronts d'onde des éléments 31 à 3 N de l'ensemble de restitution 2 par rapport à l'élément le plus éloigné. Les signaux adaptés sa 1(t) à saN (t) se déduisent des signaux v 1(t) à vN (t) selon l'expression : s c n t = r n v n t - max r n - r n c

Figure imgb0039
The substep 80 ends with a gain adjustment and the application of delays in order to temporally align the wave fronts of the elements 3 1 to 3 N of the restitution assembly 2 with respect to the element furthest away. . The signals adapted its 1 ( t ) to its N ( t ) are deduced from the signals v 1 ( t ) to v N ( t ) according to the expression: s vs not t = r not v not t - max r not - r not vs
Figure imgb0039

Sur la figure 8, on a représenté la structure de filtrage correspondant à la sous étape 80 d'application des filtres d'adaptation spatiale telle que décrite précédemment.On the figure 8 the filtering structure corresponding to the sub-step 80 for applying the spatial adaptation filters as described above is represented.

Avantageusement, l'étape 70 comporte une sous-étape 90 de compensation des caractéristiques acoustiques de l'ensemble de restitution. Chaque filtre de compensation H n I f

Figure imgb0040
est appliqué au signal adapté san (t) correspondant afin d'obtenir le signal de pilotage scn (t) de l'élément 3n , selon la relation : SC n f = SA n f H n I f
Figure imgb0041
SCn (f) est la transformée de Fourier temporelle de scn (t) et où SAn (f) est la transformée de Fourier temporelle de san (t).Advantageously, step 70 comprises a sub-step 90 for compensating for the acoustic characteristics of the reproduction assembly. Each compensation filter H not I f
Figure imgb0040
is applied to the corresponding signal its corresponding n ( t ) in order to obtain the control signal sc n ( t ) of the element 3 n , according to the relation: SC not f = HER not f H not I f
Figure imgb0041
where SC n ( f ) is the time Fourier transform of sc n ( t ) and where SA n ( f ) is the time Fourier transform of its n ( t ).

L'application des filtres de compensation H n I f

Figure imgb0042
des caractéristiques acoustiques est décrite en référence à la figure 9.The application of compensation filters H not I f
Figure imgb0042
acoustic characteristics is described with reference to the figure 9 .

Selon la forme des paramètres de ces filtres, chaque filtrage des signaux san (t) peut être réalisé selon des méthodes classiques de filtrage, telles que par exemple :

  • dans le cas où les paramètres de filtrage sont des réponses en fréquence H n I f ,
    Figure imgb0043
    le filtrage peut être effectué au moyen de méthodes de filtrage dans le domaine fréquentiel, comme par exemple des techniques de convolution par bloc ;
  • dans le cas où les paramètres de filtrage sont des réponses impulsionnelles h n I t ,
    Figure imgb0044
    le filtrage peut être effectué dans le domaine temporel par convolution temporelle ;
  • dans le cas où les paramètres de filtrage sont des coefficients de relations de récurrence, le filtrage peut être réalisé dans le domaine temporel au moyen de filtres récursifs à réponse impulsionnelle infinie.
According to the form of the parameters of these filters, each filtering of the signals sa n ( t ) can be carried out according to conventional filtering methods, such as for example:
  • in case the filtering parameters are frequency responses H not I f ,
    Figure imgb0043
    the filtering can be carried out by means of filtering methods in the frequency domain, for example block convolution techniques;
  • in the case where the filtering parameters are impulse responses h not I t ,
    Figure imgb0044
    the filtering can be done in the time domain by time convolution;
  • in the case where the filtering parameters are recurrence relation coefficients, the filtering can be performed in the time domain by means of infinite impulse response recursive filters.

Dans certains modes de réalisation simplifiés, le procédé de l'invention ne compense pas les caractéristiques acoustiques spécifiques des éléments de l'ensemble de restitution. Dans ce cas, l'étape 60 ainsi que la sous-étape 90 ne sont pas réalisées et les signaux adaptés sa 1(t) à saN (t) correspondent directement aux signaux de pilotage sc 1 à scN .In some simplified embodiments, the method of the invention does not compensate for the specific acoustic characteristics of the elements of the rendering assembly. In this case, step 60 as well as substep 90 are not performed and the appropriate signals sa 1 ( t ) to its N ( t ) correspond directly to the control signals sc 1 to sc N.

Par l'application du procédé de l'invention, chaque élément 31 à 3 N reçoit donc un signal de pilotage spécifique sc 1 à scN et émet un champ acoustique qui contribue à la reconstruction optimale du champ acoustique à restituer. En effet, le pilotage simultané de l'ensemble des éléments 31 à 3 N permet une reconstruction optimale du champ acoustique correspondant au signal multicanal d'entrée par l'ensemble de restitution 2 dont la configuration spatiale est quelconque, soit encore ne correspond pas à une configuration fixe.By applying the method of the invention, each element 3 1 to 3 N therefore receives a specific driving signal sc 1 to sc N and emits an acoustic field which contributes to the optimal reconstruction of the acoustic field to be restored. Indeed, the simultaneous control of the set of elements 3 1 to 3 N allows an optimal reconstruction of the acoustic field corresponding to the multichannel input signal by the restitution set 2 whose spatial configuration is arbitrary, or else does not correspond to to a fixed configuration.

Par ailleurs, d'autres modes de réalisation du procédé de l'invention peuvent être envisagés et notamment des modes de réalisation inspirés de techniques décrites dans la demande de brevet en France déposée le 28 février 2002, sous le n° 02 02 585 .Moreover, other embodiments of the method of the invention may be envisaged, and in particular embodiments inspired by the techniques described in the French patent application filed on February 28, 2002, under No. 02 02 585 .

Notamment, l'étape 50 de détermination des filtres d'adaptation spatiale peut prendre en compte de nombreux paramètres d'optimisation tel que :

  • Gn (f), représentatif du gabarit de l'élément 3 n de l'ensemble de restitution spécifiant la bande de fréquence de fonctionnement de cet élément ;
  • N l,m,n (f), représentatif de la réponse spatio-temporelle de l'élément 3 n correspondant au champ acoustique produit dans le lieu d'écoute 4 par l'élément 3 n , lorsque celui-ci reçoit en entrée un signal impulsionnel ;
  • W(r,f), décrivant pour chaque fréquence f considérée une fenêtre spatiale représentative de la répartition dans l'espace de contraintes de reconstruction du champ acoustique, ces contraintes permettant de spécifier la répartition dans l'espace de l'effort de reconstruction du champ acoustique ;
  • Wl (f), décrivant directement sous forme de pondération des coefficients de Fourier-Bessel et pour chaque fréquence f considérée, une fenêtre spatiale représentative de la répartition dans l'espace de contraintes de reconstruction du champ acoustique ;
  • R(f), représentatif, pour chaque fréquence f considérée, du rayon de la fenêtre spatiale lorsque celle-ci est une boule ;
  • µ(f), représentatif, pour chaque fréquence f considérée, de la capacité d'adaptation locale souhaitée à l'irrégularité spatiale de la configuration de l'ensemble de restitution ;
  • {(lk , mk )}(f), constituant pour chaque fréquence f considérée, une liste de fonctions spatio-temporelles dont la reconstruction est imposée ;
  • L(f), imposant, pour chaque fréquence f considérée, l'ordre limite de détermination de filtres ;
  • RM(f), définissant, pour chaque fréquence f considérée, le modèle de rayonnement des éléments 31 à 3 N de l'ensemble de restitution 2.
In particular, the step 50 of determining the spatial adaptation filters can take into account numerous optimization parameters such as:
  • G n ( f ), representative of the template of the element 3 n of the reproduction unit specifying the operating frequency band of this element;
  • N l , m , n ( f ), representative of the spatio-temporal response of the element 3 n corresponding to the acoustic field produced in the listening location 4 by the element 3 n , when the latter receives as input a pulse signal;
  • W ( r , f ), describing for each frequency f considered a spatial window representative of the distribution in the space of reconstruction constraints of the acoustic field, these constraints making it possible to specify the spatial distribution of the reconstruction effort of the acoustic field;
  • W l ( f ), describing directly in the form of weighting of the Fourier-Bessel coefficients and for each frequency f considered, a spatial window representative of the spatial distribution of reconstruction constraints of the acoustic field;
  • R ( f ), representative, for each frequency f considered, of the radius of the spatial window when the latter is a ball;
  • μ ( f ), representative, for each frequency f considered, of the desired local adaptation capacity to the spatial irregularity of the configuration of the reproduction unit;
  • {( l k , m k )} ( f ), constituting for each frequency f considered, a list of spatio-temporal functions whose reconstruction is imposed;
  • L ( f ), imposing, for each frequency f considered, the limit order of determination of filters;
  • RM ( f ), defining, for each frequency f considered, the radiation pattern of the elements 3 1 to 3 N of the reproduction assembly 2.

Tout ou partie de ces paramètres d'optimisation peuvent intervenir lors de la sous-étape 54 de détermination de la matrice de décodage D . Ainsi, comme cela est décrit dans la demande de brevet en France déposée sous le numéro 02 02 585 , les paramètres N l,m,n (f) et RM(f) interviennent dans la sous-étape 53 de détermination de la matrice de rayonnement M , les paramètres W(r,f), Wl (f), R(f) interviennent dans la sous-étape 52 de détermination de la matrice W , les paramètres {(lk , mk )}(f) interviennent dans une sous-étape supplémentaire dans la détermination d'une matrice F . La matrice de décodage D est alors déterminée lors de la sous-étape 54, pour chaque fréquence f, en fonction des matrices M, W et F et des paramètres Gn (f) et µ(f).All or part of these optimization parameters can intervene during the sub-step 54 of determining the decoding matrix D. Thus, as described in the patent application filed in France under the number 02 02 585 , the parameters N l , m , n ( f ) and RM ( f ) occur in the sub-step 53 of determining the radiation matrix M, the parameters W (r, f), W l (f) R (f) are involved in the substep 52 of determining the matrix W, the parameters {(l k, m k )} ( f ) intervene in an additional substep in the determination of a matrix F. The decoding matrix D is then determined during the sub-step 54, for each frequency f , as a function of the matrices M , W and F and the parameters G n ( f ) and μ ( f ).

Toujours, selon la demande de brevet 02 02 585 , le calcul de la matrice D peut être effectué fréquence par fréquence en considérant uniquement les éléments actifs pour chaque fréquence considérée. Cette méthode de détermination de la matrice D fait intervenir le paramètre Gn (f) et permet d'exploiter au mieux un ensemble de restitution dont les éléments ont des bandes de fréquences de fonctionnement différentes.Still, according to the patent application 02 02 585 , the calculation of the matrix D can be done frequency by frequency by considering only the active elements for each frequency considered. This method of determining the matrix D uses the parameter G n ( f ) and makes it possible to make the most of a restitution set whose elements have different operating frequency bands.

Il apparaît que la mise en oeuvre du procédé de l'invention décrit ici est plus efficace et donc plus rapide que les procédés existants et notamment que le procédé décrit dans la demande de brevet français déposée sous le numéro 02 02 585 .It appears that the implementation of the method of the invention described here is more efficient and therefore faster than existing methods and in particular that the method described in the French patent application filed under the number 02 02 585 .

En effet, pour adapter un signal multicanal comportant Q canaux à un ensemble de restitution comportant N éléments avec une précision spatiale d'ordre L, il apparaît que le procédé de l'invention nécessite Q×N filtres d'adaptation au lieu des Q(L+1) 2 + (L+1)2 N filtres nécessaires à la mise en oeuvre du procédé décrit dans la demande de brevet en France déposée sous le n° 02 02 585 .Indeed, to adapt a multichannel signal comprising Q channels to a restitution set comprising N elements with a spatial precision of order L , it appears that the method of the invention requires Q × N adaptation filters instead of Q ( L +1 ) 2 + ( L +1) 2 N filters necessary for the implementation of the process described in the French patent application filed under No. 02 02 585 .

Par exemple, l'adaptation d'un signal « 5.1 ITU-R BF 775-1 » à un ensemble de restitution à 5 haut parleurs avec une précision d'ordre 5 nécessite 25 filtres au lieu de 360 filtres.For example, the adaptation of a "5.1 ITU-R BF 775-1" signal to a 5-speaker reproduction set with 5-fold precision requires 25 filters instead of 360 filters.

Sur la figure 10, on a représenté un schéma d'un mode de réalisation d'un appareil mettant en oeuvre le procédé tel que décrit précédemment.On the figure 10 , there is shown a diagram of an embodiment of an apparatus implementing the method as described above.

Cet appareil comprend l'adaptateur 1 qui est formé d'une unité 110 délivrant un signal multicanal telle qu'une unité de lecture de disques audio-vidéo dite lecteur DVD 112. Le signal multicanal délivré par l'unité 110 est destiné aux éléments de l'ensemble de restitution 2. Le format de ce signal SI est reconnu automatiquement par l'adaptateur 1 qui est adapté pour lui faire correspondre des paramètres décrivant la direction générale prédéterminée associée à chaque canal du signal SI.This apparatus comprises the adapter 1 which is formed of a unit 110 delivering a multichannel signal such as an audio-video disk reading unit called DVD player 112. The multichannel signal delivered by the unit 110 is intended for the elements of 2. The format of this signal SI is automatically recognized by the adapter 1 which is adapted to match parameters describing the predetermined general direction associated with each channel of the signal SI.

Selon l'invention, cet adaptateur 1 intègre également une unité de calcul supplémentaire 114 ainsi que des moyens de saisie d'informations 116.According to the invention, this adapter 1 also integrates an additional calculation unit 114 as well as information acquisition means 116.

Par exemple, les moyens de saisie 116 sont formés d'une interface infrarouge avec une télécommande ou encore avec un ordinateur et permettent à un utilisateur de déterminer les paramètres définissant les positions dans l'espace des éléments de restitution 31 à 3 N .For example, the input means 116 are formed of an infrared interface with a remote control or with a computer and allow a user to determine the parameters defining the positions in the space of the restitution elements 3 1 to 3 N.

Ces différents paramètres sont utilisés par le calculateur 114 pour déterminer la matrice A définissant les filtres d'adaptation.These different parameters are used by the computer 114 to determine the matrix A defining the adaptation filters.

Ultérieurement, le calculateur 114 applique ces filtres d'adaptation au signal multicanal SI afin de délivrer les signaux de pilotage sc 1 à scN à destination de l'ensemble de restitution 2.Subsequently, the computer 114 applies the adaptive filters multichannel signal SI to output the control signals sc sc 1 to N to the reproduction unit 2.

Bien entendu, le dispositif mettant en oeuvre l'invention peut prendre d'autres formes, telles qu'un logiciel mis en oeuvre sur un ordinateur ou encore un dispositif complet intégrant des moyens de calibrage ainsi que des moyens de saisie et de détermination des caractéristiques de l'ensemble de restitution plus complet.Of course, the device embodying the invention can take other forms, such as software implemented on a computer or a complete device incorporating calibration means and means for capturing and determining characteristics. of the restitution set more complete.

Ainsi, le procédé peut également être mis en oeuvre sous la forme d'un dispositif dédié a l'optimisation de systèmes de restitution multicanal, extérieur à un décodeur audio-vidéo et associé à celui-ci. Dans ce cas, le dispositif est adapté pour recevoir en entrée un signal multicanal et délivrer en sortie des signaux de pilotage d'éléments d'un ensemble de restitution.Thus, the method can also be implemented in the form of a device dedicated to the optimization of multichannel rendering systems, outside an audio-video decoder and associated therewith. In this case, the device is adapted to receive a multichannel signal as input and to output control signals of elements of a reproduction set.

Avantageusement, le dispositif est adapté pour être connecté au dispositif 100 d'acquisition nécessaire à l'étape de calibrage et/ou est muni d'une interface permettant de saisir des paramètres, notamment, la position des éléments de l'ensemble de restitution et éventuellement le format multicanal d'entrée.Advantageously, the device is adapted to be connected to the acquisition device 100 necessary for the calibration step and / or is provided with an interface for entering parameters, in particular the position of the elements of the reproduction set and possibly the multichannel input format.

Un tel dispositif d'acquisition 100 peut être relié de manière filaire ou non filaire (radio, infra-rouge) et peut être intégré à un accessoire, comme une télécommande, ou être indépendant.Such an acquisition device 100 can be connected wired or wireless (radio, infra-red) and can be integrated with an accessory, such as a remote control, or be independent.

Le procédé peut être mis en oeuvre par un dispositif intégré dans un élément d'une chaîne audio-vidéo chargé du traitement de signaux multicanal, comme par exemple un processeur ou décodeur dit « surround », un amplificateur audio-vidéo intégrant des fonctions de décodage multicanal ou encore une chaîne audio-vidéo complètement intégrée.The method may be implemented by a device integrated into an element of an audio-video system responsible for the processing of multichannel signals, for example a "surround" processor or decoder, an audio-video amplifier integrating decoding functions. multichannel or a fully integrated audio-video system.

Le procédé de l'invention peut également être mis en oeuvre dans une carte électronique ou dans une puce dédiée. Avantageusement, il peut être intégré sous la forme d'un programme dans un processeur de traitement de signal (DSP).The method of the invention can also be implemented in an electronic card or in a dedicated chip. Advantageously, it can be integrated as a program in a signal processing processor (DSP).

Le procédé peut prendre la forme d'un programme informatique destiné à être exécuté par un ordinateur. Le programme reçoit en entrée un signal multicanal et délivre les signaux de pilotage d'un ensemble de restitution éventuellement intégré à cet ordinateur.The method may take the form of a computer program to be executed by a computer. The program receives as input a multichannel signal and delivers the control signals of a reproduction set that may be integrated into this computer.

Par ailleurs, les moyens de calibrage peuvent être réalisés en mettant en oeuvre un procédé différent de celui décrit précédemment, tel que par exemple, un procédé inspiré de techniques décrites dans la demande de brevet en France déposée le 7 mai 2002 sous le numéro 02 05 741 .Furthermore, the calibration means can be made by implementing a method different from that described above, such as, for example, a method inspired by the techniques described in the French patent application filed May 7, 2002 under the number 02 05 741 .

Claims (22)

  1. A method for controlling a reproduction unit (2) for an acoustic field including a plurality of reproduction elements (3n) from a plurality of acoustic information input signals (SI) each associated with a predetermined general reproduction direction defined relative to a given point (5) of the space, to obtain a reproduced acoustic field with specific characteristics substantially independent from the intrinsic reproduction characteristics of said unit (2), characterized in that it includes:
    - a step (10) for determining at least spatial characteristics of said reproduction unit (2), making it possible to determine representative parameters for at least one element (3n) of said reproduction unit (2) from its position in all three spatial dimensions relative to said given point (5);
    - a step (50) for determining adaptation filters (A) from said at least spatial characteristics of said reproduction unit (2) and said general predetermined reproduction directions associated with said plurality of acoustic information input signals (SI);
    - a step (70) for determining at least one control signal for said elements of said reproduction unit by applying said adaptation filters to said plurality of acoustic information input signals (SI); and
    - a step for delivering said at least one control signal for application to said reproduction elements (3n).
  2. The method according to claim 1, characterized in that said step (10) for determining at least spatial characteristics of said reproduction unit (2) includes a capture sub-step (20) making it possible to determine all or some of the characteristics of said reproduction unit (2).
  3. The method according to any one of claims 1 and 2, characterized in that said step (10) for determining at least spatial characteristics of said reproduction unit (2) includes a calibration step (30) making it possible to deliver all or some of the characteristics of said reproduction unit (2).
  4. The method according to claim 3, characterized in that said calibration sub-step (30) includes, for at least one of the reproduction elements (3n):
    - a sub-step (32) for emitting a specific signal (un(t)) toward said at least one element (3n) of said reproduction unit (2);
    - a sub-step (34) for acquisition of the sound wave emitted in response by said at least one element (3n);
    - a sub-step (36) for converting said acquired signals into a finite number of said coefficients representative of the emitted sound wave; and
    - a sub-step (39) for determining spatial and/or acoustic parameters of said element (3n) from said coefficients representative of the emitted sound wave.
  5. The method according to any one of claims 3 and 4, characterized in that said calibration sub-step (30) further includes a sub-step for determining the position in at least one of the three spatial dimensions of said at least one element (3n) of said reproduction unit (2).
  6. The method according to any one of claims 3 to 5, characterized in that said calibration step (30) includes a sub-step for determining the frequency response (Hn(f)) of said at least one element (3n) of said reproduction unit (2).
  7. The method according to any one of claims 1 to 6, characterized in that said step (50) for determining adaptation filters comprises:
    - a sub-step (54) for determining a decoding matrix (D) representative of filters making it possible to compensate reproduction alterations due to the spatial characteristics of said reproduction unit (2);
    - a sub-sub (55) for determining an ideal multi-channel radiation matrix (S) representative of the predetermined general directions associated with each information signal of the plurality of input signals (SI); and
    - a sub-step (56) for determining a matrix (A) representative of said adaptation filters from said decoding matrix (D) and said multi-channel radiation matrix (S).
  8. The method according to claim 7, characterized in that said step (50) for determining adaptation filters includes a plurality of calculation sub-steps (51, 52, 53) making it possible to deliver a limiting order (L) for the spatial precision of the adaptation filters, a matrix (W) corresponding to a spatial window representative of the distribution in space of the desired precision during the reconstruction of the acoustic field, and a matrix (M) representative of the radiation of the reproduction unit (2), said sub-step (54) for calculating the decoding (D) matrix (2) being carried out from the results of said calculation sub-steps.
  9. The method according to one of claims 7 or 8, characterized in that the decoding (D), ideal multi-channel radiation (S) and adaptation (A) matrices are independent of the frequency, the step (70) for determining at least one control signal of said elements of said reproduction unit by applying said adaptation filters corresponding to simple linear combinations followed by delay.
  10. The method according to any one of claims 1 to 9, characterized in that said step (10) for determining characteristics of said reproduction unit (2) makes it possible to determine acoustic characteristics of said reproduction unit (2) and in that said method includes a step (60) for determining compensation filters of these acoustic characteristics, said step (70) for determining at least one control signal then comprising a sub-step (90) for applying said acoustic compensation filters.
  11. The method according to claim 10, characterized in that said step (10) for determining acoustic characteristics is suitable for delivering representative parameters for at least one element (3n) of its frequency response (Hn(f)).
  12. The method according to any one of claims 1 to 11, characterized in that said step (70) for determining at least one control signal includes a sub-step for adjusting the gain and applying delays so as to temporally align the wave front of the reproduction elements (3n) based on their distance relative to said given point (5).
  13. A computer program comprising program code instructions for carrying out the steps of the method according to any one of claims 1 to 12 when said program is running on a computer.
  14. A removable support of the type comprising at least one processor and at least one non-volatile memory, characterized in that said memory comprises a program comprising code instructions for carrying out the steps of the method according to any one of claims 1 to 12, when said processor runs said program.
  15. A control device of a reproduction unit (2) of an acoustic field including a plurality of reproduction elements (3n), including input means (112) for a plurality of acoustic information input signals (SI) each associated with a predetermined general reproduction direction defined relative to a given point (5), characterized in that it further includes:
    - means (116) for determining at least spatial characteristics of said reproduction unit (2), making it possible to determine representative parameters for at least one element (3n) of said reproduction unit (2) from its position in the three spatial dimensions relative to said given point (5);
    - means (114) for determining adaptation filters (A) from said at least spatial characteristics of said reproduction unit (2) and predetermined general reproduction directions associated with said plurality of acoustic information input signals (SI); and
    - means (114) for determining at least one control signal (scn) for said elements (3n) of said reproduction unit (2) by applying said adaptation filters (A) to said plurality of acoustic information input signals (SI).
  16. The device according to claim 15, characterized in that said means for determining at least spatial characteristics of said reproduction unit (2) include direct input means (116) for said characteristics.
  17. The device according to any one of claims 15 and 16, characterized in that it is suitable for being associated with calibration means (91, 92, 93, 100) making it possible to determine at least spatial characteristics of said preproduction unit (2).
  18. The device according to claim 17, characterized in that said calibration means comprise means for acquiring a sound wave (100) including four pressure sensors positioned generally in the shape of a tetrahedron.
  19. The device according to any one of claims 15 to 18, characterized in that said means for determining characteristics are suitable for determining acoustic characteristics of at least one of said elements (3n) of said reproduction unit (2), said device including means for determining acoustic compensation filters from said acoustic characteristics and said means for determining at least one control signal being suitable for applying said acoustic compensation filters.
  20. The device according to claim 19, characterized in that said means for determining acoustic characteristics are suitable for determining the frequency response (Hn(f)) of said elements (3n) of the reproduction unit (2).
  21. An audio and video data processing apparatus including means (112) for determining a plurality of acoustic information input signals (SI) each associated with a predetermined general reproduction direction defined by a given point (5), characterized in that it further includes a control device for a reproduction unit (2) according to any one of claims 1 to 19.
  22. The apparatus according to claim 21, characterized in that said means for determining a plurality of input signals are made up of a unit (112) for reading and decoding digital audio and/or video discs.
EP04703418.6A 2003-01-20 2004-01-20 Method and device for controlling a reproduction unit using a multi-channel signal Expired - Lifetime EP1586220B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0300571 2003-01-20
FR0300571A FR2850183B1 (en) 2003-01-20 2003-01-20 METHOD AND DEVICE FOR CONTROLLING A RESTITUTION ASSEMBLY FROM A MULTICHANNEL SIGNAL
PCT/FR2004/000115 WO2004068463A2 (en) 2003-01-20 2004-01-20 Method and device for controlling a reproduction unit using a multi-channel signal

Publications (2)

Publication Number Publication Date
EP1586220A2 EP1586220A2 (en) 2005-10-19
EP1586220B1 true EP1586220B1 (en) 2013-10-23

Family

ID=32605871

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04703418.6A Expired - Lifetime EP1586220B1 (en) 2003-01-20 2004-01-20 Method and device for controlling a reproduction unit using a multi-channel signal

Country Status (7)

Country Link
US (1) US8213621B2 (en)
EP (1) EP1586220B1 (en)
JP (1) JP2006517072A (en)
KR (1) KR101248505B1 (en)
CN (1) CN1751540B (en)
FR (1) FR2850183B1 (en)
WO (1) WO2004068463A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8078659B2 (en) * 2005-10-31 2011-12-13 Telefonaktiebolaget L M Ericsson (Publ) Reduction of digital filter delay
GB0523946D0 (en) * 2005-11-24 2006-01-04 King S College London Audio signal processing method and system
US7864968B2 (en) * 2006-09-25 2011-01-04 Advanced Bionics, Llc Auditory front end customization
FR2915041A1 (en) * 2007-04-13 2008-10-17 Canon Kk METHOD OF ALLOCATING A PLURALITY OF AUDIO CHANNELS TO A PLURALITY OF SPEAKERS, COMPUTER PROGRAM PRODUCT, STORAGE MEDIUM AND CORRESPONDING MANAGEMENT NODE.
US20090232316A1 (en) * 2008-03-14 2009-09-17 Chieh-Hung Chen Multi-channel blend system for calibrating separation ratio between channel output signals and method thereof
US20100057472A1 (en) * 2008-08-26 2010-03-04 Hanks Zeng Method and system for frequency compensation in an audio codec
EP2309781A3 (en) 2009-09-23 2013-12-18 Iosono GmbH Apparatus and method for calculating filter coefficients for a predefined loudspeaker arrangement
CN102741920B (en) * 2010-02-01 2014-07-30 伦斯莱尔工艺研究院 Decorrelating audio signals for stereophonic and surround sound using coded and maximum-length-class sequences
JP5387478B2 (en) * 2010-03-29 2014-01-15 ソニー株式会社 Audio reproduction apparatus and audio reproduction method
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
US20120148075A1 (en) * 2010-12-08 2012-06-14 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US20130051572A1 (en) * 2010-12-08 2013-02-28 Creative Technology Ltd Method for optimizing reproduction of audio signals from an apparatus for audio reproduction
US9031268B2 (en) 2011-05-09 2015-05-12 Dts, Inc. Room characterization and correction for multi-channel audio
WO2012164444A1 (en) * 2011-06-01 2012-12-06 Koninklijke Philips Electronics N.V. An audio system and method of operating therefor
TWI453451B (en) * 2011-06-15 2014-09-21 Dolby Lab Licensing Corp Method for capturing and playback of sound originating from a plurality of sound sources
WO2014032709A1 (en) 2012-08-29 2014-03-06 Huawei Technologies Co., Ltd. Audio rendering system
CN109996166B (en) * 2014-01-16 2021-03-23 索尼公司 Sound processing device and method, and program
KR102362121B1 (en) * 2015-07-10 2022-02-11 삼성전자주식회사 Electronic device and input and output method thereof
CN111972928B (en) * 2020-08-21 2023-01-24 浙江指云信息技术有限公司 Sleep-aiding pillow with surrounding sound field and adjusting and controlling method thereof
CN112014639B (en) * 2020-09-02 2022-07-05 安徽一天电能质量技术有限公司 Alternating current power harmonic direction measurement method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4060850A (en) * 1977-04-25 1977-11-29 The United States Of America As Represented By The Secretary Of The Navy Beam former using bessel sequences
US4893342A (en) * 1987-10-15 1990-01-09 Cooper Duane H Head diffraction compensated stereo system
US5757927A (en) * 1992-03-02 1998-05-26 Trifield Productions Ltd. Surround sound apparatus
US6154549A (en) * 1996-06-18 2000-11-28 Extreme Audio Reality, Inc. Method and apparatus for providing sound in a spatial environment
US5889867A (en) * 1996-09-18 1999-03-30 Bauck; Jerald L. Stereophonic Reformatter
JP3539855B2 (en) * 1997-12-03 2004-07-07 アルパイン株式会社 Sound field control device
DE19847689B4 (en) * 1998-10-15 2013-07-11 Samsung Electronics Co., Ltd. Apparatus and method for three-dimensional sound reproduction
JP2000261900A (en) * 1999-03-09 2000-09-22 Sony Corp Sound field correction method and acoustic device
JP2000354300A (en) * 1999-06-11 2000-12-19 Accuphase Laboratory Inc Multi-channel audio reproducing device
JP2001157293A (en) * 1999-12-01 2001-06-08 Matsushita Electric Ind Co Ltd Speaker system
WO2001082650A2 (en) * 2000-04-21 2001-11-01 Keyhold Engineering, Inc. Self-calibrating surround sound system
JP2002345097A (en) * 2001-05-15 2002-11-29 Sony Corp Surround sound field reproduction system
FR2836571B1 (en) * 2002-02-28 2004-07-09 Remy Henri Denis Bruno METHOD AND DEVICE FOR DRIVING AN ACOUSTIC FIELD RESTITUTION ASSEMBLY

Also Published As

Publication number Publication date
KR20050103280A (en) 2005-10-28
KR101248505B1 (en) 2013-04-03
FR2850183B1 (en) 2005-06-24
US8213621B2 (en) 2012-07-03
US20060167963A1 (en) 2006-07-27
WO2004068463A3 (en) 2005-08-25
WO2004068463A2 (en) 2004-08-12
EP1586220A2 (en) 2005-10-19
CN1751540B (en) 2012-08-08
CN1751540A (en) 2006-03-22
FR2850183A1 (en) 2004-07-23
JP2006517072A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1586220B1 (en) Method and device for controlling a reproduction unit using a multi-channel signal
EP1563485B1 (en) Method for processing audio data and sound acquisition device therefor
EP2898707B1 (en) Optimized calibration of a multi-loudspeaker sound restitution system
EP1546916B1 (en) Method and system for processing a sound field representation
EP1836876B1 (en) Method and device for individualizing hrtfs by modeling
EP1992198B1 (en) Optimization of binaural sound spatialization based on multichannel encoding
EP1479266B1 (en) Method and device for control of a unit for reproduction of an acoustic field
FR2899424A1 (en) Audio channel multi-channel/binaural e.g. transaural, three-dimensional spatialization method for e.g. ear phone, involves breaking down filter into delay and amplitude values for samples, and extracting filter`s spectral module on samples
EP1946612A1 (en) Hrtfs individualisation by a finite element modelling coupled with a revise model
EP1652406B1 (en) System and method for determining a representation of an acoustic field
EP1502475B1 (en) Method and system of representing a sound field
FR3065137A1 (en) SOUND SPATIALIZATION METHOD
EP3384688B1 (en) Successive decompositions of audio filters
EP3449643B1 (en) Method and system of broadcasting a 360° audio signal
FR3069693B1 (en) METHOD AND SYSTEM FOR PROCESSING AUDIO SIGNAL INCLUDING ENCODING IN AMBASSIC FORMAT
FR2866974A1 (en) Audio data processing method for e.g. documentary recording, involves encoding sound signals, and applying spatial component amplitude attenuation in frequency range defined by component order and distance between source and reference point

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050714

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110124

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 638125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004043628

Country of ref document: DE

Effective date: 20131219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131023

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 638125

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043628

Country of ref document: DE

BERE Be: lapsed

Owner name: TRINNOV AUDIO

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

26N No opposition filed

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004043628

Country of ref document: DE

Effective date: 20140724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140120

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040120

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131023

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Effective date: 20171128

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20171226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20171226

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221212

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230123

Year of fee payment: 20

Ref country code: DE

Payment date: 20230112

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004043628

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240119