EP1652406B1 - System and method for determining a representation of an acoustic field - Google Patents

System and method for determining a representation of an acoustic field Download PDF

Info

Publication number
EP1652406B1
EP1652406B1 EP04767818.0A EP04767818A EP1652406B1 EP 1652406 B1 EP1652406 B1 EP 1652406B1 EP 04767818 A EP04767818 A EP 04767818A EP 1652406 B1 EP1652406 B1 EP 1652406B1
Authority
EP
European Patent Office
Prior art keywords
acoustic
signals
acquisition means
filtering
restitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04767818.0A
Other languages
German (de)
French (fr)
Other versions
EP1652406A1 (en
Inventor
Rémy BRUNO
Arnaud Laborie
Sébastien MONTOYA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruno Remy
Trinnov Audio
Original Assignee
Bruno Remy
Trinnov Audio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruno Remy, Trinnov Audio filed Critical Bruno Remy
Publication of EP1652406A1 publication Critical patent/EP1652406A1/en
Application granted granted Critical
Publication of EP1652406B1 publication Critical patent/EP1652406B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/02Systems employing more than two channels, e.g. quadraphonic of the matrix type, i.e. in which input signals are combined algebraically, e.g. after having been phase shifted with respect to each other
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/15Aspects of sound capture and related signal processing for recording or reproduction

Definitions

  • the present invention relates to a method, a device and a system for determining a representation of an acoustic field in the form of a plurality of acoustic or audiophonic signals, each associated with a predetermined general direction of reproduction defined with respect to a given point of space.
  • acoustic wave acquisition means comprising a plurality of elementary sensors arranged in space and each delivering a measurement signal.
  • These measurement signals are processed by the application of filtering combinations, representative in particular of structural characteristics of the acquisition means and of the general directions of predetermined restitution, so as to obtain said plurality of acoustic signals.
  • Such a plurality of signals is commonly designated by the expression “multichannel signal” and corresponds to a plurality of signals, called “channels”, transmitted in parallel or multiplexed with each other.
  • Each of the signals is intended for an element or a group of reproduction elements forming an ideal source arranged in a predefined general direction with respect to a given point in space.
  • a classic multichannel standard known under the name of "5.1 ITU-R BF 775-1” comprises five channels intended for restitution elements arranged in five predetermined general directions defined by the angles 0 °, + 30 °, - 30 °, + 110 ° and -110 ° in relation to the listening center.
  • Such an arrangement therefore corresponds to the arrangement: of a loudspeaker or a group of loudspeakers in front of the center, one on each side in front on the left and on the right and one on each side behind on the left and on the right.
  • Certain existing acquisition means are formed from a set of elementary directional sensors where each sensor directly delivers a channel corresponding to one of the predetermined general directions of restitution.
  • each sensor is substantially oriented in the direction corresponding to its associated channel.
  • the quality of the representation obtained with such acquisition means is limited by the intrinsic directivity of the sensors, since no processing is carried out, so that the representation is not a high quality representation.
  • the object of the invention is to solve the foregoing problems by providing a system and a method for determining a high quality representation of an acoustic field in a multi-channel format of increased portability and speed and at reduced cost.
  • the subject of the invention is a system for determining a representation of an acoustic field according to claim 1.
  • the subject of the invention is also a method for determining a representation of an acoustic field according to claim 8.
  • This frame of reference is an orthonormal frame of reference, of origin O and comprising three axes (OX), ( OY ) and (OZ).
  • a position noted x is described by means of its spherical coordinates ( r, ⁇ , ⁇ ) , where r denotes the distance from the origin O , ⁇ the orientation in the vertical plane and ⁇ the orientation in the horizontal plane.
  • an acoustic field is known if we define at any point at each instant t the acoustic pressure noted p ( r, ⁇ , ⁇ , t ) , whose Fourier transform is noted P (r, ⁇ , ⁇ , f ) where f denotes the frequency.
  • the method of the invention is based on the use of spatio-temporal functions making it possible to describe any acoustic field in time and in the three dimensions of space.
  • these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter called Fourier-Bessel functions.
  • the Fourier-Bessel functions correspond to the solutions of the wave equation and constitute a basis which generates all the acoustic fields produced by sources located outside this zone.
  • the Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse temporal Fourier transform of the coefficients P l, m ( f ) .
  • the acoustic field is decomposed on a basis of functions, where each of the functions is expressed by a possibly infinite linear combination of Fourier-Bessel functions.
  • FIG 2 there is schematically shown a system according to the invention.
  • This system comprises acquisition means 1 formed of Q elementary sensors 2 1 to 2 Q delivering measurement signals c 1 ( t ) to c Q ( t ) , also denoted c 1 to c Q , which are introduced into a device 6 for determining a representation of an acoustic field.
  • the device 6 comprises processing means 8 suitable for applying to the measurement signals c 1 to c Q filtering combinations representative of structural characteristics of the acquisition means 1, to deliver at output a plurality of acoustic signals each associated with a direction predetermined general restitution defined with respect to a given point in space.
  • the acoustic signals sc 1 ( t ) to sc N ( t ) are then transmitted to reproduction means 10 comprising N of reproduction elements 12 1 to 12 N arranged in predetermined directions with respect to a given point 14 in space, corresponding to the center of the restitution means 10.
  • the processing means 8 of the device 6 are configured beforehand and are associated in a specific manner with a set of elementary sensors 2 1 to 2 Q forming the acquisition means 1 and with a set of restitution elements forming the means of restitution 10.
  • the processing means 8 however comprise a plurality of filtering combinations corresponding to different acquisition means and / or to different output formats and selectable by a user, for example directly by means of a switch or through a control interface.
  • the device 6 may take the form of electronic equipment dedicated to the implementation of the invention or else of computer software comprising program code instructions intended to be executed by equipment comprising a processing processor and interface means with acquisition means and restitution means.
  • the device 6 is formed by a computer associated with suitable interface cards.
  • the elementary sensors 2 1 to 2 Q are arranged at known points in space around a predetermined point 4, designated as the center of the acquisition means 1.
  • each elementary sensor 2 q is expressed in space in a spherical frame of reference such as the one described with reference to figure 1 , centered on the center 4 of the acquisition means 1.
  • the elementary sensors 2 1 to 2 Q are distributed in space in a substantially non-regular manner.
  • a configuration is non-regular if for all the usual reference frames, for at least one of the three coordinates of the reference frame, the values of the coordinates of the positions of all the sensors are distributed in an interval or domain of non-zero space and with a variable deviation of the coordinates taken successively.
  • configurations in which the sensors are arranged at regular intervals along a line or a circle, at the intersections of a fictitious plane grid or else at the intersections of a fictitious cubic mesh are regular configurations.
  • the coordinates of the sensors must be distributed in an interval greater than a tolerance interval and have deviations varying beyond this tolerance interval.
  • the position of a sensor corresponds to the position of the center of its sensitive part and a tolerance interval in each direction of space is defined around this position.
  • the tolerance interval for a set of elementary sensors forming the acquisition means corresponds to a distance equivalent to a quarter of the distance between the two closest elementary sensors.
  • a distance is of the order of 2cm, so that the tolerance interval corresponds approximately to 0.5cm.
  • a configuration is considered to be regular if, in one of the usual reference frames, for the three coordinates of the reference frame, the coordinate values of the positions of all the sensors are constant or distributed at constant pitch.
  • a configuration is regular if, in one of the usual reference frames, for all the coordinates of the reference frame, the coordinate values of the positions of all the sensors are distributed in a substantially zero interval or with a substantially constant successive deviation.
  • sensors with a substantially non-zero physical footprint contiguous to one another form a point or almost point distribution considered as a regular configuration.
  • the following method makes it possible to determine whether a given configuration of elementary sensors is regular or not.
  • the values of the positions of all the sensors are then checked according to a first coordinate of the reference frame, such as the abscissa. If these values are neither constant nor distributed at regular intervals, considering an interval tolerance, then the configuration is not regular in this reference and we start again with another reference.
  • the values of these first coordinates are either constant or distributed at regular intervals, the values of the positions of the sensors are verified according to a second coordinate of the reference frame, such as the ordinate.
  • the values of the positions of the sensors are checked according to the third and last coordinate of the reference frame, such as that along a vertical axis called the zenith coordinate.
  • Such a substantially non-regular distribution makes it possible to avoid the redundancy of the information taken by the elementary sensors in the acoustic field, so that a reduced number of sensors is necessary.
  • the maximum number Q of elementary sensors is less than or equal to five times the number of acoustic signals forming the representation of the acoustic field at the end of the treatment.
  • the distribution of the elementary sensors 2 q in space can meet certain rules while meeting the criteria of non-regularity as defined previously.
  • the acquisition means 1 reproduce the general geometric characteristics of the reproduction means 10, such as an arrangement planar and a certain symmetry, while respecting the criteria of non-regularity.
  • the acquisition means 1 are arranged in space in a substantially non-regular manner.
  • each sensor 2 q of the acquisition means 1 delivers a measurement signal c q ( t ) which corresponds to the measurement made by this sensor in the acoustic field P.
  • the acquisition means 1 therefore deliver a plurality of signals for measuring the acoustic field c 1 ( t ) to c Q ( t ) , which are directly linked to the acquisition capacities of the elementary sensors 2 1 to 2 Q.
  • the method then comprises a step 30 of processing by applying filtering combinations to the measurement signals c 1 to c Q delivered by the acquisition means 1.
  • these filtering combinations are representative of the structural characteristics of the acquisition means 1 and are adapted to deliver a plurality of acoustic signals sc 1 to sc N each associated with a general direction of predetermined restitution and defined by relative to a given point in space.
  • the N channels sc 1 ( t ) to sc N ( t ) are obtained from the Q measurement signals c 1 ( t ) to c Q ( t ) by means of a single matrix filtering involving N x Q filters varying as a function of the frequency, and denoted T n, q ( f ) .
  • Each output channel sc n ( t ) is obtained by filtering each of the measurement signals c 1 ( t ) to c Q ( t ) and by applying a linear combination to the signals thus filtered.
  • Each filter T n, q ( f ) is therefore representative of the contribution of the measurement signal c q ( t ) in the constitution of the channel sc n ( t ) .
  • SC n ( f ) is the Fourier transform of sc n ( t ) and C q ( f ) is the Fourier transform of c q ( t ) .
  • E is an encoding matrix representative of the characteristics of the acquisition means 1 and in particular of their spatial configuration.
  • the matrix E makes it possible to obtain a representation in Bessel Fourier coefficients of an acoustic field P ⁇ corresponding to an estimate of the acoustic field P in which the elementary sensors 2 1 to 2 Q are immersed, from the measurement signals c 1 ( t ) to c Q ( t ) .
  • the matrix E is of size ( L +1) 2 x Q, the coefficient L corresponding to the order to which the encoding is carried out and to the maximum resolution that the encoding makes it possible to achieve.
  • the coefficient ⁇ specifies a compromise between the fidelity of representation of the acoustic field P ⁇ and the minimization of the background noise provided by the elementary sensors 2 1 to 2 Q and can take all the values between 0 and 1.
  • the parameters L and ⁇ can vary with the frequency.
  • B is a spatial sampling matrix of size Q x ( L +1) 2 whose elements B q , l, m ( f ) are organized as follows: B 1 , 0.0 f B 1.1 , - 1 f B 1 , 1.0 f B 1 , 1.1 f ⁇ B 1 , L , - L f ⁇ B 1 , L , 0 f ⁇ B 1 , L , L f B 2 , 0.0 f B 2.1 , - 1 f B 2 , 1.0 f B 2 , 1.1 f ⁇ B 2 , L , - L f ⁇ B 2 , L , 0 f ⁇ B 2 , L , L f ⁇ ⁇ ⁇ B Q , 0.0 f B Q , 1 , - 1 f B Q , 1.0 f B Q , 1.1 f ⁇ B Q , L , - L f
  • ( r q , ⁇ q , ⁇ q ) is the position of the sensor 2 q in the spherical coordinate system described with reference to figure 1 .
  • each sensor 2 q is placed at the position ( r q , ⁇ q , ⁇ q ), has a directivity composed of a combination of omnidirectional and bidirectional diagrams of proportion d q and is oriented in the direction ⁇ q ⁇ ⁇ q ⁇ , so that the sensor 2 q has a maximum sensitivity in the direction ⁇ q ⁇ ⁇ q ⁇ .
  • the parameter d q takes the value 1 ⁇ 2 for the Q sensors.
  • the matrix denoted E is therefore representative of the position of the elementary sensors 2 1 to 2 Q.
  • the determination of E does not impose any constraint on the position ( r q , ⁇ q , ⁇ q ) of the sensors and makes it possible in particular to take account of non-regular configurations.
  • Such non-regular configurations are more efficient, because they make it possible to take more information on the initial field P , by being free from the redundancies introduced by the regular configurations.
  • the filtering matrix D is a decoding matrix representative of the selected predetermined restitution general directions.
  • the matrix D makes it possible to determine the control signals allowing the high precision restitution of the estimated acoustic field P ⁇ and therefore of the acquired acoustic field P.
  • W is a matrix corresponding to a spatial window defining the volume in which the restitution must be made. It is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is found 2 l +1 times in a row on the diagonal.
  • the values taken by the coefficients W l correspond to the values of a function such as a Hamming window of size 2 L +1 evaluated at l , so that the parameter W l is determined for / ranging from 0 to L.
  • M is a matrix corresponding to the general predetermined restitution directions, ie to the output multichannel format. It is a matrix of size ( L +1) 2 over N, made up of elements M l , m, n , the indices l, m denoting row l 2 + l + m and n denoting column n.
  • the matrix M therefore has the following form: M 0 , 0.1 M 0 , 0.2 ⁇ ⁇ M 0.0 , NOT M 1 , - 1.1 M 1 , - 1.2 ⁇ ⁇ M 1 , - 1 , NOT M 1 , 0.1 M 1 , 0.2 ⁇ ⁇ M 1.0 , NOT M 1 , 1.1 M 1 , 1.2 ⁇ ⁇ M 1.1 , NOT ⁇ ⁇ ⁇ M L , - L , 1 M L , - L , 2 ⁇ ⁇ M L , - L , NOT ⁇ ⁇ ⁇ M L , 0.1 M L , 0.2 ⁇ ⁇ L L , 0 , NOT ⁇ ⁇ ⁇ M L , L , 1 M L , L , 2 ⁇ ⁇ M L , L , NOT
  • Processing step 30 therefore corresponds to the application to all the measurement signals c 1 to c Q of filtering combinations to generate a plurality of processed signals constituting a representation P explicat of the acoustic field P ) substantially independent of the characteristics structural data acquisition means 1, in the form of a finite number of Fourier-Bessel coefficients.
  • Step 30 also corresponds to the application, to said processed signals, of specific linear combinations to generate the corresponding plurality of acoustic signals sc 1 to sc N.
  • FIG 4 there is shown schematically the implementation of the processing step 30 carried out by the means 8 described above.
  • the N output signals sc 1 ( t ) to sc N ( t ) obtained at the end of the processing of the invention are representative of an acoustic field P which is restored by connecting each channel sc n ( t ) to the corresponding restitution element 12 n emitting plane waves of direction ( ⁇ n , ⁇ n ) according to the specifications of the multichannel format.
  • the simultaneous action of the N restitution elements 12 1 to 12 N respectively controlled by the channels sc 1 ( t ) to sc N ( t ) makes it possible to reproduce the acoustic field .
  • the representation of the acoustic field in multichannel format is close to the acoustic field P in which the sensors 2 q are immersed. It appears that the matrix T is obtained by manipulating high order decomposed sound field descriptions and leads to a high quality representation of the sound field.
  • the number of elementary sensors is for example less than 25 and preferably less than 10.
  • the elementary sensors can all or in part be omnidirectional and / or cardioid sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Stereophonic Arrangements (AREA)

Description

La présente invention concerne un procédé, un dispositif et un système de détermination d'une représentation d'un champ acoustique sous la forme d'une pluralité de signaux acoustiques ou audiophoniques, associés chacun à une direction générale de restitution prédéterminée définie par rapport à un point donné de l'espace.The present invention relates to a method, a device and a system for determining a representation of an acoustic field in the form of a plurality of acoustic or audiophonic signals, each associated with a predetermined general direction of reproduction defined with respect to a given point of space.

La détermination d'une telle représentation est fondée sur l'utilisation de moyens d'acquisition d'ondes acoustiques comportant une pluralité de capteurs élémentaires disposés dans l'espace et délivrant chacun un signal de mesure.The determination of such a representation is based on the use of acoustic wave acquisition means comprising a plurality of elementary sensors arranged in space and each delivering a measurement signal.

Ces signaux de mesure sont traités par l'application de combinaisons de filtrage, représentatives notamment de caractéristiques structurelles des moyens d'acquisition et des directions générales de restitution prédéterminées, de manière à obtenir ladite pluralité de signaux acoustiques.These measurement signals are processed by the application of filtering combinations, representative in particular of structural characteristics of the acquisition means and of the general directions of predetermined restitution, so as to obtain said plurality of acoustic signals.

Une telle pluralité de signaux est couramment désignée par l'expression "signal multicanal" et correspond à une pluralité de signaux, appelés "canaux", transmis en parallèle ou multiplexés les uns avec les autres. Chacun des signaux est destiné à un élément ou un groupe d'éléments de restitution formant une source idéale disposée selon une direction générale prédéfinie par rapport à un point donné de l'espace.Such a plurality of signals is commonly designated by the expression “multichannel signal” and corresponds to a plurality of signals, called “channels”, transmitted in parallel or multiplexed with each other. Each of the signals is intended for an element or a group of reproduction elements forming an ideal source arranged in a predefined general direction with respect to a given point in space.

Par exemple, un standard multicanal classique connu sous le nom de "5.1 ITU-R BF 775-1", comporte cinq canaux destinés à des éléments de restitution disposés dans cinq directions générales prédéterminées définies par les angles 0°, +30°, -30°, +110° et -110° par rapport au centre d'écoute.For example, a classic multichannel standard known under the name of "5.1 ITU-R BF 775-1", comprises five channels intended for restitution elements arranged in five predetermined general directions defined by the angles 0 °, + 30 °, - 30 °, + 110 ° and -110 ° in relation to the listening center.

Une telle disposition correspond donc à la disposition: d'un haut-parleur ou un groupe de haut-parleurs devant au centre, un de chaque côté devant à gauche et à droite et un de chaque côté derrière à gauche et à droite.Such an arrangement therefore corresponds to the arrangement: of a loudspeaker or a group of loudspeakers in front of the center, one on each side in front on the left and on the right and one on each side behind on the left and on the right.

L'application des signaux acoustiques à des éléments de restitution disposés selon les directions générales prédéterminées appropriées permet en théorie la restitution d'un champ acoustique.The application of the acoustic signals to restitution elements arranged in the appropriate predetermined general directions theoretically allows the restitution of an acoustic field.

L'acquisition et le traitement constituent des éléments clés de la qualité de cette restitution.Acquisition and processing are key elements in the quality of this restitution.

Certains moyens d'acquisition existants sont formés d'un ensemble de capteurs élémentaires directionnels où chaque capteur délivre directement un canal correspondant à l'une des directions générales prédéterminées de restitution. Dans ce cas, chaque capteur est sensiblement orienté selon la direction correspondant à son canal associé.Certain existing acquisition means are formed from a set of elementary directional sensors where each sensor directly delivers a channel corresponding to one of the predetermined general directions of restitution. In this case, each sensor is substantially oriented in the direction corresponding to its associated channel.

La qualité de la représentation obtenue avec de tels moyens d'acquisition est limitée par la directivité intrinsèque des capteurs, car aucun traitement n'est effectué, de sorte que la représentation n'est pas une représentation de haute qualité.The quality of the representation obtained with such acquisition means is limited by the intrinsic directivity of the sensors, since no processing is carried out, so that the representation is not a high quality representation.

D'autres techniques, telles que les techniques regroupées sous le terme "ambisonic" sont fondées sur une modélisation des moyens d'acquisition sous la forme d'un ensemble ponctuel de capteurs élémentaires et directionnels, de manière à ne considérer que les directions de provenance des sons par rapport au centre des moyens d'acquisition.Other techniques, such as the techniques grouped under the term "ambisonic" are based on a modeling of the acquisition means in the form of a specific set of elementary and directional sensors, so as to consider only the directions of origin. sounds with respect to the center of the acquisition means.

Cependant, l'impossibilité de positionner l'ensemble des capteurs élémentaires en un même point, l'absence de capteurs élémentaires de caractéristiques de directivité élevées ainsi que la simplicité des traitements effectués, tels que des matrices de gains, restreignent ces technologies à une représentation dont la qualité est limitée au niveau de précision couramment appelé "ordre 1" sur la base des harmoniques sphériques.However, the impossibility of positioning all the elementary sensors at the same point, the absence of elementary sensors with high directivity characteristics as well as the simplicity of the processing operations carried out, such as gain matrices, restrict these technologies to a representation. the quality of which is limited to the level of precision commonly called "order 1" on the basis of spherical harmonics.

Enfin, le système décrit dans l'article intitulé " Circular microphone array for discrète multichannel audio recording", présenté le 22 mars 2003 à la 114ème convention de l'AES , utilise un réseau régulier circulaire de 288 microphones cardioïdes. Un traitement complexe en plusieurs étapes de l'ensemble des signaux délivrés par ce réseau de capteurs permet d'obtenir une représentation du champ acoustique de haute qualité.Finally, the system described in the article entitled " Circular microphone array for discrete multichannel audio recording ", presented on March 22, 2003 at the 114th AES convention , uses a circular regular array of 288 cardioid microphones. A complex processing in several stages of all the signals delivered by this network of sensors makes it possible to obtain a representation of the acoustic field of high quality.

Il apparaît donc que les moyens d'acquisition et de traitement existants requièrent une grande quantité de capteurs élémentaires répartis de manière régulière ainsi que des traitements complexes pour aboutir à une représentation de haute qualité du champ acoustique dans un format multicanal.It therefore appears that the existing acquisition and processing means require a large quantity of elementary sensors distributed in a regular manner as well as complex processing operations in order to achieve a high quality representation of the acoustic field in a multichannel format.

Ceci réduit notablement la portabilité de ces systèmes et accroît le coût de mise en œuvre ainsi que les temps de calcul.This significantly reduces the portability of these systems and increases the cost of implementation as well as the computation times.

Le document XP002280618 (Laborie, Bruno, Montoya: < < A new comprehensive approach of surround sound recording > >, 119th convention of the audio engineering society, convention paper 5717, 22 Mars 2003 ) décrit de traiter des signaux de mesure pour obtenir une représentation
du champ sonore en fonctions de Fourier-Bessel. Ce document explique en outre que le champ
encodé a été écouté en utilisant des haut-parleurs.
The document XP002280618 (Laborie, Bruno, Montoya: <<A new comprehensive approach of surround sound recording>>, 119th convention of the audio engineering society, convention paper 5717, March 22, 2003 ) describes how to process measurement signals to obtain a representation
of the sound field as a function of Fourier-Bessel. This document further explains that the field
encoded was listened to using speakers.

Le but de l'invention est de résoudre les problèmes précédents en fournissant un système et un procédé de détermination d'une représentation de haute qualité d'un champ acoustique dans un format multicanal de portabilité et de rapidité accrues et d'un coût réduit.The object of the invention is to solve the foregoing problems by providing a system and a method for determining a high quality representation of an acoustic field in a multi-channel format of increased portability and speed and at reduced cost.

A cet effet, l'invention a pour objet un système de détermination d'une représentation d'un champ acoustique selon la revendication 1.To this end, the subject of the invention is a system for determining a representation of an acoustic field according to claim 1.

D'autres caractéristiques du système sont énoncées dans les revendications 2 à 7.Other features of the system are set out in claims 2 to 7.

L'invention a également pour objet un procédé de détermination d'une représentation d'un champ acoustique selon la revendication 8.The subject of the invention is also a method for determining a representation of an acoustic field according to claim 8.

D'autres caractéristiques du procédé de l'invention sont énoncées dans les revendications 9 et 10.Other characteristics of the process of the invention are set out in claims 9 and 10.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

  • la Fig.1 est une représentation d'un repère sphérique;
  • la Fig.2 est un schéma bloc d'un système de restitution selon l'invention ;
  • la Fig.3 est un organigramme du procédé de l'invention ; et
  • la Fig.4 est une représentation détaillée du traitement réalisé par l'invention.
The invention will be better understood on reading the description which will follow, given solely by way of example and made with reference to the appended drawings, in which:
  • the Fig. 1 is a representation of a spherical coordinate system;
  • the Fig. 2 is a block diagram of a rendering system according to the invention;
  • the Fig. 3 is a flowchart of the method of the invention; and
  • the Fig. 4 is a detailed representation of the processing performed by the invention.

Sur la figure 1, on a représenté un repère sphérique classique, de manière à préciser le système de coordonnées auquel il est fait référence dans le texte.On the figure 1 , a conventional spherical frame has been shown, so as to specify the coordinate system to which reference is made in the text.

Ce repère est un repère orthonormal, d'origine O et comportant trois axes (OX), (OY) et (OZ). Dans ce repère, une position notée x est décrite au moyen de ses coordonnées sphériques (r,θ,φ),r désigne la distance par rapport à l'origine O, θ l'orientation dans le plan vertical et φ l'orientation dans le plan horizontal.This frame of reference is an orthonormal frame of reference, of origin O and comprising three axes (OX), ( OY ) and (OZ). In this frame, a position noted x is described by means of its spherical coordinates ( r, θ, φ ) , where r denotes the distance from the origin O , θ the orientation in the vertical plane and φ the orientation in the horizontal plane.

Dans un tel repère, un champ acoustique est connu si l'on définit en tout point à chaque instant t la pression acoustique notée p(r,θ,φ,t), dont la transformée de Fourier est notée P(r,θ,φ,f) où f désigne la fréquence.In such a frame, an acoustic field is known if we define at any point at each instant t the acoustic pressure noted p ( r, θ, φ, t ) , whose Fourier transform is noted P (r, θ, φ, f ) where f denotes the frequency.

Le procédé de l'invention se base sur l'utilisation de fonctions spatio-temporelles permettant de décrire un champ acoustique quelconque dans le temps et dans les trois dimensions de l'espace.The method of the invention is based on the use of spatio-temporal functions making it possible to describe any acoustic field in time and in the three dimensions of space.

Dans les modes de réalisation décrits, ces fonctions sont des fonctions dites de Fourier-Bessel sphériques de première espèce, appelées par la suite fonctions de Fourier-Bessel.In the embodiments described, these functions are so-called spherical Fourier-Bessel functions of the first kind, hereinafter called Fourier-Bessel functions.

Dans une zone vide de sources et vide d'obstacles, les fonctions de Fourier-Bessel correspondent aux solutions de l'équation des ondes et constituent une base qui engendre tous les champs acoustiques produits par des sources situées à l'extérieur de cette zone.In a zone void of sources and void of obstacles, the Fourier-Bessel functions correspond to the solutions of the wave equation and constitute a basis which generates all the acoustic fields produced by sources located outside this zone.

Tout champ acoustique tridimensionnel peut donc s'exprimer par une combinaison linéaire des fonctions de Fourier-Bessel, selon l'expression de la transformée de Fourier-Bessel inverse qui s'exprime : P r θ ϕ f = 4 π l = 0 m = l l P l , m f j l j l kr y l m θ ϕ

Figure imgb0001
Any three-dimensional acoustic field can therefore be expressed by a linear combination of Fourier-Bessel functions, according to the expression of the inverse Fourier-Bessel transform which is expressed: P r θ ϕ f = 4 π l = 0 m = - l l P l , m f j l j l kr y l m θ ϕ
Figure imgb0001

Dans cette équation, les termes Pl,m (f) sont définis comme les coefficients de Fourier-Bessel du champ p(r,θ,φ,t), k = 2 πf c ,

Figure imgb0002
c est la célérité du son dans l'air (340 ms-1), jl (kr) est la fonction de Bessel sphérique de première espèce d'ordre l définie par j l x = π 2 x J l + 1 / 2 x
Figure imgb0003
J v(x) est la fonction de Bessel de première espèce d'ordre v, et y l m θ ϕ
Figure imgb0004
est l'harmonique sphérique réelle d'ordre l et de terme m, avec m allant de -l à /, définie par : y l m θ ϕ = P l m cos θ trg m ϕ
Figure imgb0005
avec : trg m ϕ = { 1 π cos pour m > 0 1 2 π pour m = 0 1 π sin pour m < 0
Figure imgb0006
In this equation, the terms P l, m ( f ) are defined as the Fourier-Bessel coefficients of the field p ( r, θ, φ, t ) , k = 2 πf vs ,
Figure imgb0002
c is the speed of sound in air (340 ms -1 ), j l ( kr ) is the spherical Bessel function of the first kind of order l defined by j l x = π 2 x J l + 1 / 2 x
Figure imgb0003
where J v ( x ) is the Bessel function of the first kind of order v, and y l m θ ϕ
Figure imgb0004
is the real spherical harmonic of order l and term m, with m ranging from -l to /, defined by: y l m θ ϕ = P l m cos θ trg m ϕ
Figure imgb0005
with: trg m ϕ = { 1 π cos for m > 0 1 2 π for m = 0 1 π sin for m < 0
Figure imgb0006

Dans cette équation, les P l m x

Figure imgb0007
sont les fonctions de Legendre associées définies par : P l m x = 2 l + 1 2 l m ! l + m ! 1 x 2 m / 2 d m d x m P l x
Figure imgb0008
avec Pl (x) les polynômes de Legendre, définis par :
Figure imgb0009
In this equation, the P l m x
Figure imgb0007
are the associated Legendre functions defined by: P l m x = 2 l + 1 2 l - m ! l + m ! 1 - x 2 m / 2 d m d x m P l x
Figure imgb0008
with P l ( x ) the Legendre polynomials, defined by:
Figure imgb0009

Les coefficients de Fourier-Bessel s'expriment aussi dans le domaine temporel par les coefficients pl,m (t) correspondant à la transformée de Fourier temporelle inverse des coefficients Pl,m (f). The Fourier-Bessel coefficients are also expressed in the time domain by the coefficients p l, m ( t ) corresponding to the inverse temporal Fourier transform of the coefficients P l, m ( f ) .

Dans d'autres modes de réalisation, le champ acoustique est décomposé sur une base de fonctions, où chacune des fonctions s'exprime par une combinaison linéaire éventuellement infinie de fonctions de Fourier-Bessel.In other embodiments, the acoustic field is decomposed on a basis of functions, where each of the functions is expressed by a possibly infinite linear combination of Fourier-Bessel functions.

Sur la figure 2, on a représenté schématiquement un système selon l'invention.On the figure 2 , there is schematically shown a system according to the invention.

Ce système comporte des moyens d'acquisition 1 formés de Q capteurs élémentaire 21 à 2 Q délivrant des signaux de mesure c 1(t) à cQ (t), notés également c1 à cQ, qui sont introduits dans un dispositif 6 de détermination d'une représentation d'un champ acoustique.This system comprises acquisition means 1 formed of Q elementary sensors 2 1 to 2 Q delivering measurement signals c 1 ( t ) to c Q ( t ) , also denoted c 1 to c Q , which are introduced into a device 6 for determining a representation of an acoustic field.

Le dispositif 6 comporte des moyens 8 de traitement adaptés pour appliquer aux signaux de mesure c1 à cQ des combinaisons de filtrage représentatives de caractéristiques structurelles des moyens d'acquisition 1, pour délivrer en sortie une pluralité de signaux acoustiques associés chacun à une direction générale prédéterminée de restitution définie par rapport à un point donné de l'espace.The device 6 comprises processing means 8 suitable for applying to the measurement signals c 1 to c Q filtering combinations representative of structural characteristics of the acquisition means 1, to deliver at output a plurality of acoustic signals each associated with a direction predetermined general restitution defined with respect to a given point in space.

Les signaux acoustiques sc 1(t) à scN (t), notés également sc1 à scN, délivrés par le dispositif 6, sont ensuite transmis à des moyens de restitution 10 comportant N d'éléments de restitution 121 à 12N disposés selon des directions prédéterminées par rapport à un point donné 14 de l'espace, correspondant au centre des moyens de restitution 10.The acoustic signals sc 1 ( t ) to sc N ( t ) , also denoted sc 1 to sc N , delivered by the device 6, are then transmitted to reproduction means 10 comprising N of reproduction elements 12 1 to 12 N arranged in predetermined directions with respect to a given point 14 in space, corresponding to the center of the restitution means 10.

La commande de ces éléments de restitution 121 à 12N par les signaux acoustiques sc1 à scN, permet la restitution du champ acoustique capté par les moyens d'acquisition 1.The control of these restitution elements 12 1 to 12 N by the acoustic signals sc 1 to sc N , allows the restitution of the acoustic field picked up by the acquisition means 1.

De manière préférentielle, les moyens de traitement 8 du dispositif 6, sont configurés préalablement et sont associés de manière spécifique à un ensemble de capteurs élémentaires 21 à 2Q formant les moyens d'acquisition 1 et à un ensemble d'éléments de restitution formant les moyens de restitution 10.Preferably, the processing means 8 of the device 6 are configured beforehand and are associated in a specific manner with a set of elementary sensors 2 1 to 2 Q forming the acquisition means 1 and with a set of restitution elements forming the means of restitution 10.

Avantageusement, les moyens de traitement 8 comportent cependant une pluralité de combinaisons de filtrage correspondant à différents moyens d'acquisition et/ou à différents formats de sortie et sélectionnables par un utilisateur, par exemple directement au moyen d'un interrupteur ou au travers d'une interface de commande.Advantageously, the processing means 8 however comprise a plurality of filtering combinations corresponding to different acquisition means and / or to different output formats and selectable by a user, for example directly by means of a switch or through a control interface.

Le dispositif 6 peut prendre la forme d'un équipement électronique dédié à la mise en œuvre de l'invention ou encore d'un logiciel informatique comprenant des instructions de code de programme destinées à être exécutées par un équipement comprenant un processeur de traitement et des moyens d'interface avec des moyens d'acquisition et des moyens de restitution.The device 6 may take the form of electronic equipment dedicated to the implementation of the invention or else of computer software comprising program code instructions intended to be executed by equipment comprising a processing processor and interface means with acquisition means and restitution means.

Par exemple, le dispositif 6 est formé d'un ordinateur associé à des cartes d'interface adaptées.For example, the device 6 is formed by a computer associated with suitable interface cards.

Les capteurs élémentaires 21 à 2 Q sont disposés en des points connus de l'espace autour d'un point 4 prédéterminé, désigné comme le centre des moyens d'acquisition 1.The elementary sensors 2 1 to 2 Q are arranged at known points in space around a predetermined point 4, designated as the center of the acquisition means 1.

Ainsi, la position (rqqq ) de chaque capteur élémentaire 2 q s'exprime dans l'espace dans un repère sphérique tel que celui décrit en référence à la figure 1, centré sur le centre 4 des moyens d'acquisition 1.Thus, the position ( r q , θ q , φ q ) of each elementary sensor 2 q is expressed in space in a spherical frame of reference such as the one described with reference to figure 1 , centered on the center 4 of the acquisition means 1.

Selon l'invention, les capteurs élémentaires 21 à 2 Q sont distribués dans l'espace de manière sensiblement non régulière.According to the invention, the elementary sensors 2 1 to 2 Q are distributed in space in a substantially non-regular manner.

Pour qu'une configuration donnée, ou un réseau, soit considérée comme non régulière dans l'espace, il faut que pour tous les repères tridimensionnels usuels, soit cartésien, soit cylindrique ou encore sphérique, pour au moins une des coordonnées du repère, les valeurs des coordonnées des positions de tous les capteurs élémentaires ne soient ni constantes ni distribuées à pas constant, c'est-à-dire soient distribués sur des valeurs distinctes et à pas non constant.For a given configuration, or a network, to be considered as non-regular in space, it is necessary that for all the usual three-dimensional reference frames, either Cartesian, cylindrical or even spherical, for at least one of the coordinates of the reference frame, the values of the coordinates of the positions of all the elementary sensors are neither constant nor distributed at a constant pitch, that is to say they are distributed over distinct values and at a non-constant pitch.

Soit encore, une configuration est non régulière si pour tous les repères usuels, pour au moins une des trois coordonnées du repère, les valeurs des coordonnées des positions de tous les capteurs sont distribuées dans un intervalle ou domaine d'espace non nul et avec un écart variable des coordonnées prises successivement.Or again, a configuration is non-regular if for all the usual reference frames, for at least one of the three coordinates of the reference frame, the values of the coordinates of the positions of all the sensors are distributed in an interval or domain of non-zero space and with a variable deviation of the coordinates taken successively.

Ainsi, des configurations dans lesquelles les capteurs sont disposés à intervalles réguliers le long d'une ligne ou d'un cercle, aux intersections d'une grille plane fictive ou encore aux intersections d'un maillage cubique fictif, sont des configurations régulières.Thus, configurations in which the sensors are arranged at regular intervals along a line or a circle, at the intersections of a fictitious plane grid or else at the intersections of a fictitious cubic mesh, are regular configurations.

L'appréciation d'une telle distribution non régulière doit évidemment prendre en compte une tolérance résultant des contraintes de réalisation physique et des contraintes liées au dimensionnement des capteurs élémentaires utilisés.The assessment of such a non-regular distribution must obviously take into account a tolerance resulting from the constraints of physical production and the constraints linked to the sizing of the elementary sensors used.

De ce fait, les coordonnées des capteurs doivent être distribuées dans un intervalle supérieur à un intervalle de tolérance et présenter des écarts variant au-delà de cet intervalle de toléranceTherefore, the coordinates of the sensors must be distributed in an interval greater than a tolerance interval and have deviations varying beyond this tolerance interval.

De manière générale, la position d'un capteur correspond à la position du centre de sa partie sensible et un intervalle de tolérance selon chaque direction de l'espace est défini autour de cette position.In general, the position of a sensor corresponds to the position of the center of its sensitive part and a tolerance interval in each direction of space is defined around this position.

Avantageusement, l'intervalle de tolérance pour un ensemble de capteurs élémentaires formant les moyens d'acquisition, correspond à une distance équivalente à un quart de la distance entre les deux capteurs élémentaires les plus proches. Par exemple, une telle distance est de l'ordre de 2cm, de sorte que l'intervalle de tolérance correspond approximativement à 0,5cm.Advantageously, the tolerance interval for a set of elementary sensors forming the acquisition means corresponds to a distance equivalent to a quarter of the distance between the two closest elementary sensors. For example, such a distance is of the order of 2cm, so that the tolerance interval corresponds approximately to 0.5cm.

Par opposition, on considère qu'une configuration est régulière si, dans l'un des repères usuels, pour les trois coordonnées du repère, les valeurs de coordonnées des positions de tous les capteurs sont constantes ou distribuées à pas constant.In contrast, a configuration is considered to be regular if, in one of the usual reference frames, for the three coordinates of the reference frame, the coordinate values of the positions of all the sensors are constant or distributed at constant pitch.

Soit encore, une configuration est régulière si, dans l'un des repères usuels, pour toutes les coordonnées du repère, les valeurs de coordonnées des positions de tous les capteurs sont distribuées dans un intervalle sensiblement nul ou avec un écart successif sensiblement constant.Or again, a configuration is regular if, in one of the usual reference frames, for all the coordinates of the reference frame, the coordinate values of the positions of all the sensors are distributed in a substantially zero interval or with a substantially constant successive deviation.

Par ailleurs, des capteurs d'un encombrement physique sensiblement non nul accolés les uns aux autres, forment une distribution ponctuelle ou quasiment ponctuelle considérée comme une configuration régulière.Furthermore, sensors with a substantially non-zero physical footprint contiguous to one another, form a point or almost point distribution considered as a regular configuration.

Le procédé suivant permet de déterminer si une configuration donnée de capteurs élémentaires est régulière ou non régulière.The following method makes it possible to determine whether a given configuration of elementary sensors is regular or not.

On considère la configuration précitée en référence à un premier des trois repères usuels, tel que le repère cartésien tridimensionnel.The aforementioned configuration is considered with reference to a first of the three usual references, such as the three-dimensional Cartesian reference.

On vérifie ensuite les valeurs des positions de tous les capteurs selon une première coordonnée du repère, telle que l'abscisse. Si ces valeurs ne sont ni constantes, ni distribuées à intervalles réguliers, en considérant un intervalle de tolérance, alors la configuration est non régulière dans ce repère et l'on recommence avec un autre repère.The values of the positions of all the sensors are then checked according to a first coordinate of the reference frame, such as the abscissa. If these values are neither constant nor distributed at regular intervals, considering an interval tolerance, then the configuration is not regular in this reference and we start again with another reference.

Si les valeurs de ces premières coordonnées sont soit constantes, soit distribuées à intervalles réguliers, on vérifie les valeurs des positions des capteurs selon une seconde coordonnée du repère, telle que l'ordonnée.If the values of these first coordinates are either constant or distributed at regular intervals, the values of the positions of the sensors are verified according to a second coordinate of the reference frame, such as the ordinate.

Si les valeurs de ces secondes coordonnées ne sont ni constantes, ni distribuées à intervalles réguliers, la configuration est non régulière dans ce repère et l'on recommence avec un autre repère.If the values of these second coordinates are neither constant nor distributed at regular intervals, the configuration is non-regular in this coordinate system and we start over with another coordinate system.

Inversement, si les valeurs de ces coordonnées sont soit constantes, soit distribuées à intervalles réguliers, on vérifie les valeurs des positions des capteurs selon la troisième et dernière coordonnée du repère, telle que celle selon un axe vertical dite coordonnée zénithale.Conversely, if the values of these coordinates are either constant or distributed at regular intervals, the values of the positions of the sensors are checked according to the third and last coordinate of the reference frame, such as that along a vertical axis called the zenith coordinate.

Si les valeurs de ces troisièmes coordonnées ne sont ni constantes, ni distribuées à intervalles réguliers, la configuration est non régulière dans ce repère et l'on recommence avec un autre repère.If the values of these third coordinates are neither constant nor distributed at regular intervals, the configuration is non-regular in this coordinate system and we start over with another coordinate system.

Dans le cas inverse, dans ce repère, pour toutes les coordonnées, les valeurs des coordonnées des positions de tous les capteurs sont soit constantes, soit distribuées à intervalles réguliers. De ce fait, la configuration est régulière dans ce repère.In the opposite case, in this frame, for all the coordinates, the values of the coordinates of the positions of all the sensors are either constant or distributed at regular intervals. Therefore, the configuration is regular in this frame.

A l'issue des tests dans les trois repères usuels, si la configuration est régulière dans un des trois repères, elle est dite régulière. Inversement, si la configuration est non régulière dans les trois repères, elle est dite non régulière.At the end of the tests in the three usual benchmarks, if the configuration is regular in one of the three benchmarks, it is said to be regular. Conversely, if the configuration is non-regular in the three reference frames, it is said to be non-regular.

Une telle distribution sensiblement non régulière permet d'éviter la redondance des informations prélevées par les capteurs élémentaires dans le champ acoustique, de sorte qu'un nombre réduit de capteurs est nécessaire.Such a substantially non-regular distribution makes it possible to avoid the redundancy of the information taken by the elementary sensors in the acoustic field, so that a reduced number of sensors is necessary.

Avantageusement, le nombre maximal Q de capteurs élémentaires est inférieur ou égal à cinq fois le nombre de signaux acoustiques formant la représentation du champ acoustique à l'issue du traitement.Advantageously, the maximum number Q of elementary sensors is less than or equal to five times the number of acoustic signals forming the representation of the acoustic field at the end of the treatment.

Par ailleurs, la distribution des capteurs élémentaires 2q dans l'espace peut répondre à certaines règles tout en répondant aux critères de non-régularité tels que définis précédemment.Furthermore, the distribution of the elementary sensors 2 q in space can meet certain rules while meeting the criteria of non-regularity as defined previously.

Avantageusement, les moyens d'acquisition 1 reproduisent les caractéristiques géométriques générales des moyens de restitution 10, tels qu'une disposition planaire et une certaine symétrie, tout en respectant les critères de non-régularité.Advantageously, the acquisition means 1 reproduce the general geometric characteristics of the reproduction means 10, such as an arrangement planar and a certain symmetry, while respecting the criteria of non-regularity.

En référence aux figures 3 et 4, on va maintenant décrire le fonctionnement du système de l'invention.With reference to figures 3 and 4 , we will now describe the operation of the system of the invention.

Préalablement à la mise en œuvre de l'invention, les moyens d'acquisition 1 sont disposés dans l'espace de manière sensiblement non régulière.Prior to the implementation of the invention, the acquisition means 1 are arranged in space in a substantially non-regular manner.

Lors d'une première étape 20 d'acquisition, le système de l'invention est exposé à un champ acoustique P et chaque capteur 2 q des moyens d'acquisition 1 délivre un signal de mesure cq (t) qui correspond à la mesure faite par ce capteur dans le champ acoustique P.During a first acquisition step 20, the system of the invention is exposed to an acoustic field P and each sensor 2 q of the acquisition means 1 delivers a measurement signal c q ( t ) which corresponds to the measurement made by this sensor in the acoustic field P.

Les moyens d'acquisition 1 délivrent donc une pluralité de signaux de mesure du champ acoustique c 1(t) à cQ (t), qui sont directement liés aux capacités d'acquisition des capteurs élémentaires 21 à 2 Q .The acquisition means 1 therefore deliver a plurality of signals for measuring the acoustic field c 1 ( t ) to c Q ( t ) , which are directly linked to the acquisition capacities of the elementary sensors 2 1 to 2 Q.

Le procédé comporte ensuite une étape 30 de traitement par l'application de combinaisons de filtrage aux signaux de mesure c1 à cQ délivrés par les moyens d'acquisition 1.The method then comprises a step 30 of processing by applying filtering combinations to the measurement signals c 1 to c Q delivered by the acquisition means 1.

Ainsi que cela a été indiqué précédemment, ces combinaisons de filtrage sont représentatives des caractéristiques structurelles des moyens d'acquisition 1 et sont adaptées pour délivrer une pluralité de signaux acoustiques sc1 à scN associés chacun à une direction générale de restitution prédéterminée et définie par rapport à un point donné de l'espace.As has been indicated previously, these filtering combinations are representative of the structural characteristics of the acquisition means 1 and are adapted to deliver a plurality of acoustic signals sc 1 to sc N each associated with a general direction of predetermined restitution and defined by relative to a given point in space.

Plus particulièrement, les N canaux sc 1(t) à scN (t) sont obtenus à partir des Q signaux de mesure c 1(t) à cQ (t) au moyen d'un unique filtrage matriciel faisant intervenir N x Q filtres variant en fonction de la fréquence, et notés Tn,q (f). Chaque canal de sortie scn (t) est obtenu en filtrant chacun des signaux de mesure c 1(t) à cQ (t) et en appliquant une combinaison linéaire sur les signaux ainsi filtrés.More particularly, the N channels sc 1 ( t ) to sc N ( t ) are obtained from the Q measurement signals c 1 ( t ) to c Q ( t ) by means of a single matrix filtering involving N x Q filters varying as a function of the frequency, and denoted T n, q ( f ) . Each output channel sc n ( t ) is obtained by filtering each of the measurement signals c 1 ( t ) to c Q ( t ) and by applying a linear combination to the signals thus filtered.

Chaque filtre Tn,q (f) est donc représentatif de la contribution du signal de mesure cq (t) dans la constitution du canal scn (t). Les canaux sont obtenus selon la relation : SC n f = q = 1 Q T n , q f C q f

Figure imgb0010
Each filter T n, q ( f ) is therefore representative of the contribution of the measurement signal c q ( t ) in the constitution of the channel sc n ( t ) . The channels are obtained according to the relation: SC not f = q = 1 Q T not , q f VS q f
Figure imgb0010

Dans cette relation, SCn (f) est la transformée de Fourier de scn (t) et Cq (f) est la transformée de Fourier de cq (t). In this relation, SC n ( f ) is the Fourier transform of sc n ( t ) and C q ( f ) is the Fourier transform of c q ( t ) .

Les filtres Tn,q (f) peuvent être organisés dans une matrice T de taille N x Q de la manière suivante : T = T 1,1 f T 1,2 f T 1 , Q f T 2,1 f T 2,2 f T 2 , Q f T N , 1 f T N , 2 f T N , Q f

Figure imgb0011
The filters T n, q ( f ) can be organized in a matrix T of size N x Q as follows: T = T 1.1 f T 1.2 f T 1 , Q f T 2.1 f T 2.2 f T 2 , Q f T NOT , 1 f T NOT , 2 f T NOT , Q f
Figure imgb0011

Dans le mode de réalisation décrit, la matrice T est obtenue au moyen de la relation matricielle suivante : T = D E

Figure imgb0012
In the embodiment described, the matrix T is obtained by means of the following matrix relation: T = D E
Figure imgb0012

Dans cette équation, E est une matrice d'encodage représentative des caractéristiques des moyens d'acquisition 1 et notamment de leur configuration spatiale. La matrice E permet d'obtenir une représentation en coefficients de Fourrier Bessel d'un champ acoustique correspondant à une estimation du champ acoustique P dans lequel sont plongés les capteurs élémentaires 21 à 2 Q , à partir des signaux de mesure c 1(t) à cQ (t). La matrice E est de taille (L+1)2 x Q, le coefficient L correspondant à l'ordre auquel est conduit l'encodage et à la résolution maximale que l'encodage permet d'atteindre. La matrice E est obtenue au moyen de la relation : E = μ B T μ B B T + 1 μ I N 1

Figure imgb0013
In this equation, E is an encoding matrix representative of the characteristics of the acquisition means 1 and in particular of their spatial configuration. The matrix E makes it possible to obtain a representation in Bessel Fourier coefficients of an acoustic field corresponding to an estimate of the acoustic field P in which the elementary sensors 2 1 to 2 Q are immersed, from the measurement signals c 1 ( t ) to c Q ( t ) . The matrix E is of size ( L +1) 2 x Q, the coefficient L corresponding to the order to which the encoding is carried out and to the maximum resolution that the encoding makes it possible to achieve. The matrix E is obtained by means of the relation: E = μ B T μ B B T + 1 - μ I NOT - 1
Figure imgb0013

Dans cette équation, le coefficient µ spécifie un compromis entre la fidélité de représentation du champ acoustique et la minimisation du bruit de fond apporté par les capteurs élémentaires 21 à 2 Q et peut prendre toutes les valeurs entre 0 et 1. Ainsi, si µ=0, le bruit de fond est minimal et si µ=1, la qualité spatiale est maximaleIn this equation, the coefficient µ specifies a compromise between the fidelity of representation of the acoustic field and the minimization of the background noise provided by the elementary sensors 2 1 to 2 Q and can take all the values between 0 and 1. Thus, if µ = 0, the background noise is minimal and if µ = 1, the spatial quality is maximum

Avantageusement, les paramètres L et µ peuvent varier avec la fréquence.Advantageously, the parameters L and µ can vary with the frequency.

Dans cette relation, B est une matrice d'échantillonnage spatial de taille Q x (L+1)2 dont les éléments B q,l,m (f) sont organisés de la manière suivante : B 1 , 0,0 f B 1,1 , 1 f B 1 , 1,0 f B 1 , 1,1 f B 1 , L , L f B 1 , L , 0 f B 1 , L , L f B 2 , 0,0 f B 2,1 , 1 f B 2 , 1,0 f B 2 , 1,1 f B 2 , L , L f B 2 , L , 0 f B 2 , L , L f B Q , 0,0 f B Q , 1 , 1 f B Q , 1,0 f B Q , 1,1 f B Q , L , L f B Q , L , 0 f B Q , L , L f

Figure imgb0014
In this relation, B is a spatial sampling matrix of size Q x ( L +1) 2 whose elements B q , l, m ( f ) are organized as follows: B 1 , 0.0 f B 1.1 , - 1 f B 1 , 1.0 f B 1 , 1.1 f B 1 , L , - L f B 1 , L , 0 f B 1 , L , L f B 2 , 0.0 f B 2.1 , - 1 f B 2 , 1.0 f B 2 , 1.1 f B 2 , L , - L f B 2 , L , 0 f B 2 , L , L f B Q , 0.0 f B Q , 1 , - 1 f B Q , 1.0 f B Q , 1.1 f B Q , L , - L f B Q , L , 0 f B Q , L , L f
Figure imgb0014

Dans le cas où tous les capteurs élémentaires 21 à 2Q sont des capteurs de type omnidirectionnel, le terme B s'exprime de la manière suivante : B q , l , m f = 4 πj l j l kr q y l m θ q ϕ q

Figure imgb0015
If all the elementary sensors 2 1 to 2 Q are sensors of the omnidirectional type, the term B is expressed as follows: B q , l , m f = 4 πj l j l kr q y l m θ q ϕ q
Figure imgb0015

Dans cette relation, (rqqq ) est la position du capteur 2 q dans le repère sphérique décrit en référence à la figure 1.In this relation, ( r q , θ q , φ q ) is the position of the sensor 2 q in the spherical coordinate system described with reference to figure 1 .

Dans d'autres modes de réalisation, chaque capteur 2q est placé à la position (rq ,θq ,φq ), présente une directivité composée d'une combinaison de diagrammes omnidirectionnels et bidirectionnels de proportion dq et est orienté dans la direction θ q α ϕ q α ,

Figure imgb0016
de sorte que le capteur 2q présente une sensibilité maximale dans la direction θ q α ϕ q α .
Figure imgb0017
Dans ce cas les éléments Bq,l,m (f) sont obtenus de la manière suivante : B n , l , m f = 4 π j l × 1 d q j l kr q y l m θ q ϕ q jd q × j l kr q y l m θ q ϕ q u r j l kr q kr q R l m cos θ q trg m ϕ q u θ + mj l kr q kr q sin θ q y l m θ q ϕ q u ϕ
Figure imgb0018
où : j l kr q = l j l 1 kr q l + 1 j l + 1 kr q 2 l + 1
Figure imgb0019
R l m cos θ q = { l l + 1 P l 1 cos θ q pour m = 0 l m l + m + 1 2 P l m + 1 cos θ q l + m l m + 1 2 P l m 1 cos θ q pour 1 m l 1 l 2 P l l 1 cos θ q pour m = l
Figure imgb0020
et où : u r = sin θ q sin θ q α cos ϕ q ϕ q α + cos θ q cos θ q α
Figure imgb0021
u θ = cos θ q sin θ q α cos ϕ q ϕ q α sin θ q cos θ q α
Figure imgb0022
u ϕ = sin θ q α sin ϕ q α ϕ q
Figure imgb0023
In other embodiments, each sensor 2 q is placed at the position ( r q , θ q , φ q ), has a directivity composed of a combination of omnidirectional and bidirectional diagrams of proportion d q and is oriented in the direction θ q α ϕ q α ,
Figure imgb0016
so that the sensor 2 q has a maximum sensitivity in the direction θ q α ϕ q α .
Figure imgb0017
In this case the elements B q, l, m ( f ) are obtained as follows: B not , l , m f = 4 π j l × 1 - d q j l kr q y l m θ q ϕ q - jd q × j l kr q y l m θ q ϕ q u r - j l kr q kr q R l m cos θ q trg m ϕ q u θ + mj l kr q kr q sin θ q y l - m θ q ϕ q u ϕ
Figure imgb0018
or : j l kr q = l j l - 1 kr q - l + 1 j l + 1 kr q 2 l + 1
Figure imgb0019
R l m cos θ q = { l l + 1 P l 1 cos θ q for m = 0 l - m l + m + 1 2 P l m + 1 cos θ q - l + m l - m + 1 2 P l m - 1 cos θ q for 1 m l - 1 - l 2 P l l - 1 cos θ q for m = l
Figure imgb0020
and or : u r = sin θ q sin θ q α cos ϕ q - ϕ q α + cos θ q cos θ q α
Figure imgb0021
u θ = cos θ q sin θ q α cos ϕ q - ϕ q α - sin θ q cos θ q α
Figure imgb0022
u ϕ = sin θ q α sin ϕ q α - ϕ q
Figure imgb0023

Dans le cas ou les moyens d'acquisition 1 ne comportent que des capteurs cardioïdes, le paramètre dq prend la valeur ½ pour les Q capteurs.In the case where the acquisition means 1 only include cardioid sensors, the parameter d q takes the value ½ for the Q sensors.

De manière générale, la matrice notée E est donc représentative de la position des capteurs élémentaires 21 à 2Q.In general, the matrix denoted E is therefore representative of the position of the elementary sensors 2 1 to 2 Q.

La détermination de E n'impose pas de contrainte sur la position (rqqq ) des capteurs et permet notamment de prendre en compte les configurations non régulières. De telles configurations non régulières sont plus efficaces, car elles permettent de prélever plus d'informations sur le champ initial P, en s'affranchissant des redondances introduites par les configurations régulières.The determination of E does not impose any constraint on the position ( r q , θ q , φ q ) of the sensors and makes it possible in particular to take account of non-regular configurations. Such non-regular configurations are more efficient, because they make it possible to take more information on the initial field P , by being free from the redundancies introduced by the regular configurations.

Dans l'équation exprimant T, la matrice de filtrage D est une matrice de décodage représentative des directions générales de restitution prédéterminées sélectionnées. La matrice D permet de déterminer les signaux de pilotage permettant la restitution de haute précision du champ acoustique estimé et donc du champ acoustique acquis P. La matrice D est de taille N x (L+1)2 et est obtenue au moyen de la relation matricielle suivante : D = M T W M 1 M T W

Figure imgb0024
In the equation expressing T, the filtering matrix D is a decoding matrix representative of the selected predetermined restitution general directions. The matrix D makes it possible to determine the control signals allowing the high precision restitution of the estimated acoustic field and therefore of the acquired acoustic field P. The matrix D is of size N x ( L +1) 2 and is obtained by means of the following matrix relation: D = M T W M - 1 M T W
Figure imgb0024

W est une matrice correspondant à une fenêtre spatiale définissant le volume dans lequel la restitution doit être faite. C'est une matrice diagonale de taille (L+1)2 contenant des coefficients de pondération Wl et dans laquelle chaque coefficient Wl se trouve 2l+1 fois à la suite sur la diagonale. La matrice W a donc la forme suivante : W = W 0 0 0 0 W 1 W 1 W 1 W L 0 0 0 W L

Figure imgb0025
W is a matrix corresponding to a spatial window defining the volume in which the restitution must be made. It is a diagonal matrix of size ( L +1) 2 containing weighting coefficients W l and in which each coefficient W l is found 2 l +1 times in a row on the diagonal. The matrix W therefore has the following form: W = W 0 0 0 0 W 1 W 1 W 1 W L 0 0 0 W L
Figure imgb0025

Dans le mode de réalisation décrit, les valeurs prises par les coefficients Wl correspondent aux valeurs d'une fonction telle qu'une fenêtre de Hamming de taille de 2L+1 évaluée en l, de sorte que le paramètre Wl est déterminé pour / allant de 0 à L. In the embodiment described, the values taken by the coefficients W l correspond to the values of a function such as a Hamming window of size 2 L +1 evaluated at l , so that the parameter W l is determined for / ranging from 0 to L.

M est une matrice correspondant aux directions générales de restitution prédéterminées, soit au format multicanal de sortie. C'est une matrice de taille (L+1)2 sur N, constituée d'éléments M l,m,n , les indices l,m désignant la ligne l 2+l+m et n désignant la colonne n. La matrice M a donc la forme suivante : M 0 , 0,1 M 0 , 0,2 M 0,0 , N M 1 , 1,1 M 1 , 1,2 M 1 , 1 , N M 1 , 0,1 M 1 , 0,2 M 1,0 , N M 1 , 1,1 M 1 , 1,2 M 1,1 , N M L , L , 1 M L , L , 2 M L , L , N M L , 0,1 M L , 0,2 L L , 0 , N M L , L , 1 M L , L , 2 M L , L , N

Figure imgb0026
M is a matrix corresponding to the general predetermined restitution directions, ie to the output multichannel format. It is a matrix of size ( L +1) 2 over N, made up of elements M l , m, n , the indices l, m denoting row l 2 + l + m and n denoting column n. The matrix M therefore has the following form: M 0 , 0.1 M 0 , 0.2 M 0.0 , NOT M 1 , - 1.1 M 1 , - 1.2 M 1 , - 1 , NOT M 1 , 0.1 M 1 , 0.2 M 1.0 , NOT M 1 , 1.1 M 1 , 1.2 M 1.1 , NOT M L , - L , 1 M L , - L , 2 M L , - L , NOT M L , 0.1 M L , 0.2 L L , 0 , NOT M L , L , 1 M L , L , 2 M L , L , NOT
Figure imgb0026

Dans le mode de réalisation décrit, les éléments M l,m,n s'obtiennent à partir du format multicanal selon la relation : M l , m , n = y l m θ n ϕ n

Figure imgb0027
où (θn ,φn ) correspond à la direction générale associée au canal scn (t) dans le format multicanal.In the embodiment described, the elements M l , m, n are obtained from the multichannel format according to the relation: M l , m , not = y l m θ not ϕ not
Figure imgb0027
where ( θ n , φ n ) corresponds to the general direction associated with the channel sc n ( t ) in the multichannel format.

L'étape 30 de traitement correspond donc à l'application à l'ensemble des signaux de mesure c1 à cQ, de combinaisons de filtrages pour engendrer une pluralité de signaux traités constituant une représentation du champ acoustique P) sensiblement indépendante des caractéristiques structurelles des moyens d'acquisition 1, sous la forme d'un nombre fini de coefficients de Fourier-Bessel.Processing step 30 therefore corresponds to the application to all the measurement signals c 1 to c Q of filtering combinations to generate a plurality of processed signals constituting a representation P représentation of the acoustic field P ) substantially independent of the characteristics structural data acquisition means 1, in the form of a finite number of Fourier-Bessel coefficients.

L'étape 30 correspond également à l'application, auxdits signaux traités, de combinaisons linéaires spécifiques pour engendrer la pluralité correspondante de signaux acoustiques sc1 à scN.Step 30 also corresponds to the application, to said processed signals, of specific linear combinations to generate the corresponding plurality of acoustic signals sc 1 to sc N.

Sur la figure 4, on a représenté de manière schématique la mise en œuvre de l'étape 30 de traitement réalisée par les moyens 8 décrits précédemment.On the figure 4 , there is shown schematically the implementation of the processing step 30 carried out by the means 8 described above.

Les filtres Tn,q (f) sont appliqués aux signaux de mesure c 1(t) à cN (t) au moyen des méthodes usuelles de filtrage comme par exemple :

  • le filtrage dans le domaine fréquentiel comme par exemple, des techniques de convolution par bloc ;
  • le filtrage dans le domaine temporel par réponse impulsionnelle ; et
  • le filtrage dans le domaine temporel au moyen de filtres récursifs à réponse impulsionnelle infinie.
The filters T n, q ( f ) are applied to the measurement signals c 1 ( t ) to c N ( t ) by means of the usual filtering methods such as for example:
  • filtering in the frequency domain such as, for example, block convolution techniques;
  • impulse response time domain filtering; and
  • time domain filtering using recursive infinite impulse response filters.

Les N signaux de sortie sc 1(t) à scN (t) obtenus à l'issue du traitement de l'invention sont représentatifs d'un champ acoustique P qui est restitué en connectant chaque canal scn (t) à l'élément de restitution correspondant 12 n émettant des ondes planes de direction (θn ,φn ) selon les spécifications du format multicanal. L'action simultanée des N éléments de restitution 121 à 12 N respectivement pilotés par les canaux sc 1(t) à scN (t) permet de reproduire le champ acoustique

Figure imgb0028
.The N output signals sc 1 ( t ) to sc N ( t ) obtained at the end of the processing of the invention are representative of an acoustic field P which is restored by connecting each channel sc n ( t ) to the corresponding restitution element 12 n emitting plane waves of direction ( θ n , φ n ) according to the specifications of the multichannel format. The simultaneous action of the N restitution elements 12 1 to 12 N respectively controlled by the channels sc 1 ( t ) to sc N ( t ) makes it possible to reproduce the acoustic field
Figure imgb0028
.

Grâce au traitement réalisé correspondant à la matrice de filtrage T, la représentation du champ acoustique

Figure imgb0028
au format multicanal est proche du champ acoustique P dans lequel sont plongés les capteurs 2q. Il apparaît que la matrice T est obtenue en manipulant des descriptions de champ acoustique décomposées à un ordre élevé et conduit à une représentation de haute qualité du champ acoustique.Thanks to the processing carried out corresponding to the filtering matrix T, the representation of the acoustic field
Figure imgb0028
in multichannel format is close to the acoustic field P in which the sensors 2 q are immersed. It appears that the matrix T is obtained by manipulating high order decomposed sound field descriptions and leads to a high quality representation of the sound field.

Il apparaît donc que la mise en œuvre d'une distribution sensiblement non régulière des capteurs élémentaires, permet de singulariser chacun des capteurs et de prélever davantage d'informations spatiales sur le champ acoustique.It therefore appears that the implementation of a substantially non-regular distribution of the elementary sensors makes it possible to single out each of the sensors and to take more spatial information on the acoustic field.

Grâce au traitement de l'invention, toutes ces informations peuvent être restituées au mieux afin d'obtenir une représentation de haute qualité au format multicanal avec un faible nombre de capteurs élémentaires.Thanks to the processing of the invention, all this information can be reproduced at best in order to obtain a high quality representation in the multichannel format with a small number of elementary sensors.

Notamment, dans le cas d'une restitution de type dit 5.1 telle que décrite précédemment, le nombre de capteurs élémentaires est par exemple inférieur à 25 et préférentiellement inférieur à 10.In particular, in the case of a reproduction of the so-called 5.1 type as described above, the number of elementary sensors is for example less than 25 and preferably less than 10.

Bien entendu, de nombreux modes de réalisation peuvent être envisagés.Of course, many embodiments can be envisaged.

Notamment, d'autres types de capteurs peuvent être utilisés en modifiant les équations en fonction de leur nature. Par exemple, les capteurs élémentaires peuvent tous ou en partie être des capteurs omnidirectionnels et/ou cardioïdes. In particular, other types of sensors can be used by modifying the equations according to their nature. For example, the elementary sensors can all or in part be omnidirectional and / or cardioid sensors.

Claims (10)

  1. System for determining a representation of an acoustic field (P) of the type comprising:
    - acoustic wave acquisition means (1) comprising a plurality of elementary sensors (21 to 2Q) which are distributed in space and which each deliver a measurement signal (c1 to cQ); and
    a device for determining a representation of an acoustic field (P) of the type comprising:
    means (8) for processing the measurement signals (c1 to cQ) delivered by the acoustic wave acquisition means (1), by applying filtering combinations representative of structural characteristics of the said acquisition means (1) in order to deliver a plurality of acoustic signals (sc1 to scN) each associated with a predetermined general direction of restitution defined with respect to a given point in space (14), said acoustic signals (sc1 to scN) forming a representation of said acoustic field (P), said processing means (8) being adapted to process signals delivered by the acquisition means (1),
    the determining device being configured for transmitting the acoustic signals to restitution means comprising N restitution elements (121 to 12N) arranged according to the predetermined general directions with respect to the given point in space (14), N being a positive integer,
    said elementary sensors (21 to 2Q) being distributed in space in a substantially non-regular manner and said filtering combinations being representative of this distribution;
    the determination system being characterized in that said processing means (8) are adapted to implement a single matrix filtering receiving as input said measurement signals (c1 to cQ) and delivering as output said plurality of acoustic signals (sc1 to scN),
    the matrix filtering comprising a matrix T=DE, with E an encoding matrix representative of the acquisition means (1) and D a decoding matrix representative of the selected predetermined general directions of restitution.
  2. System according to claim 1, wherein said acquisition means (1) are such that, for all of the usual coordinate systems, for at least one of the coordinates of the coordinate system, the values of the coordinates of the positions of all of the elementary sensors (21 to 2Q) are distributed on distinct values and at a non-constant step.
  3. System according to claim 1 or claim 2, wherein said acquisition means (1) comprise at least one omnidirectional elementary sensor.
  4. System according to any one of claims 1 to 3, wherein said acquisition means (1) comprise at least one elementary sensor whose directivity is a combination of omnidirectional and bidirectional patterns.
  5. System according to any one of claims 1 to 4, wherein said acquisition means (1) comprise a number of elementary sensors (21 to 2 Q ) of one to five times the number of predetermined general directions of restitution.
  6. System according to claim 5, wherein said processing means (8) form weighted linear combinations of the measurement signals (c1 to cQ) in order to form the acoustic output signals (sc1 to scN).
  7. System according to any one of claims 1 to 6, wherein the processing means (8) permit the application of filtering combinations which vary with the frequency of the measurement signals (c1 to cQ) processed.
  8. Method for determining a representation of an acoustic field (P), comprising:
    - a step (20) of acquiring, at a plurality of points distributed in space in a substantially non-regular manner, the acoustic field (P) by acoustic wave acquisition means (1) in order to deliver a plurality of measurement signals (c1 to cN) which are representative at each point, in amplitude and in phase, of the acoustic field (P);
    - a step (30) of processing by applying, to the measurement signals (c1 to cQ), filtering combinations representative of structural characteristics of the acquisition means (1) in order to deliver a plurality of acoustic signals (sc1 to scN) which are each associated with a predetermined general direction of restitution defined relative to a given point in space (14), the set of acoustic signals (sc1 to scN) forming a representation of the acoustic field (P),
    the method comprising transmitting the acoustic signals to restitution means comprising N restitution elements (121 to 12N) arranged according to the predetermined general directions with respect to the given point in space (14), N being a positive integer,
    le method being characterized in that it comprises a step of carrying out a single matrix filtering receiving as input said measurement signals (c1 to cQ) and delivering as output said plurality of acoustic signals (sc1 to scN),
    the matrix filtering comprising a matrix T=DE, with E an encoding matrix representative of the acquisition means (1) and D a decoding matrix representative of the selected predetermined general directions of restitution.
  9. Method according to claim 8, wherein the processing step (30) corresponds to:
    - the application to the measurement signals (c1 to cQ) of filtering combinations in order to generate a plurality of processed signals constituting a representation of the acoustic field (P) which is substantially independent of the structural characteristics of the acquisition means (1), in the form of a finite number of Fourier-Bessel coefficients; and
    - the application to the processed signals of specific linear combinations in order to generate the corresponding plurality of acoustic signals (sc1 to scN).
  10. Method according to claim 8 or claim 9, wherein said processing step (30) corresponds to the application of filtering combinations in accordance with a technique selected from the group formed:
    - by filtering techniques in the frequency domain;
    - by filtering techniques in the temporal domain by impulse response; and
    - by filtering techniques in the temporal domain by means of infinite impulse response recursive filters.
EP04767818.0A 2003-07-31 2004-07-29 System and method for determining a representation of an acoustic field Active EP1652406B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309471A FR2858403B1 (en) 2003-07-31 2003-07-31 SYSTEM AND METHOD FOR DETERMINING REPRESENTATION OF AN ACOUSTIC FIELD
PCT/FR2004/002044 WO2005013643A1 (en) 2003-07-31 2004-07-29 System and method for determining a representation of an acoustic field

Publications (2)

Publication Number Publication Date
EP1652406A1 EP1652406A1 (en) 2006-05-03
EP1652406B1 true EP1652406B1 (en) 2021-06-23

Family

ID=34043713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767818.0A Active EP1652406B1 (en) 2003-07-31 2004-07-29 System and method for determining a representation of an acoustic field

Country Status (7)

Country Link
US (1) US7856106B2 (en)
EP (1) EP1652406B1 (en)
JP (1) JP5000297B2 (en)
KR (1) KR20060121807A (en)
CN (1) CN1849844B (en)
FR (1) FR2858403B1 (en)
WO (1) WO2005013643A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028784A1 (en) * 2008-09-11 2010-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and computer program for providing a set of spatial cues on the basis of a microphone signal and apparatus for providing a two-channel audio signal and a set of spatial cues
US8023660B2 (en) * 2008-09-11 2011-09-20 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus, method and computer program for providing a set of spatial cues on the basis of a microphone signal and apparatus for providing a two-channel audio signal and a set of spatial cues
NZ587483A (en) 2010-08-20 2012-12-21 Ind Res Ltd Holophonic speaker system with filters that are pre-configured based on acoustic transfer functions
EP2450880A1 (en) 2010-11-05 2012-05-09 Thomson Licensing Data structure for Higher Order Ambisonics audio data
US8873762B2 (en) * 2011-08-15 2014-10-28 Stmicroelectronics Asia Pacific Pte Ltd System and method for efficient sound production using directional enhancement
KR101282673B1 (en) 2011-12-09 2013-07-05 현대자동차주식회사 Method for Sound Source Localization
EP2765791A1 (en) 2013-02-08 2014-08-13 Thomson Licensing Method and apparatus for determining directions of uncorrelated sound sources in a higher order ambisonics representation of a sound field
US9956910B2 (en) * 2016-07-18 2018-05-01 Toyota Motor Engineering & Manufacturing North America, Inc. Audible notification systems and methods for autonomous vehicles
EP3313089A1 (en) 2016-10-19 2018-04-25 Holosbase GmbH System and method for handling digital content
WO2019149337A1 (en) * 2018-01-30 2019-08-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatuses for converting an object position of an audio object, audio stream provider, audio content production system, audio playback apparatus, methods and computer programs
FR3077886B1 (en) 2018-02-13 2020-05-22 Observatoire Regional Du Bruit En Idf SOUND INTENSITY THRESHOLD SIGNALING SYSTEM
US11317233B2 (en) * 2018-05-11 2022-04-26 Clepseadra, Inc. Acoustic program, acoustic device, and acoustic system
CN109709519B (en) * 2019-01-21 2024-03-22 广西科技大学 Free sound field batch microphone amplitude sensitivity and phase quantity measuring device
FR3131640B1 (en) 2021-12-31 2024-05-10 Observatoire Regional Du Bruit En Idf SYSTEM FOR LOCALIZING A SOUND SOURCE, IN PARTICULAR SOUND NOISE COMING FROM VEHICLES
CN114252148B (en) * 2021-12-31 2022-12-06 中国人民解放军海军工程大学 Sound field reconstruction method based on prolate ellipsoid wave superposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594800A (en) * 1991-02-15 1997-01-14 Trifield Productions Limited Sound reproduction system having a matrix converter
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
WO2001082651A1 (en) * 2000-04-19 2001-11-01 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics in three dimensions

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3158695A (en) * 1960-07-05 1964-11-24 Ht Res Inst Stereophonic system
GB9307986D0 (en) * 1993-04-17 1993-06-02 Adaptive Audio Ltd Method of reproducing sound
DE19645867A1 (en) * 1996-11-07 1998-05-14 Deutsche Telekom Ag Multiple channel sound transmission method
US6526147B1 (en) * 1998-11-12 2003-02-25 Gn Netcom A/S Microphone array with high directivity
JP3584800B2 (en) * 1999-08-17 2004-11-04 ヤマハ株式会社 Sound field reproduction method and apparatus
US6845163B1 (en) * 1999-12-21 2005-01-18 At&T Corp Microphone array for preserving soundfield perceptual cues
NZ502603A (en) * 2000-02-02 2002-09-27 Ind Res Ltd Multitransducer microphone arrays with signal processing for high resolution sound field recording
US6826284B1 (en) * 2000-02-04 2004-11-30 Agere Systems Inc. Method and apparatus for passive acoustic source localization for video camera steering applications
JP2001346299A (en) * 2000-05-31 2001-12-14 Sony Corp Sound field correction method and audio unit
JP2002081902A (en) * 2000-09-08 2002-03-22 Toshiba Corp Position sensor
JP4465870B2 (en) * 2000-12-11 2010-05-26 ソニー株式会社 Audio signal processing device
KR101010099B1 (en) * 2002-08-30 2011-01-24 닛토보 온쿄 엔지니어링 가부시키가이샤 Sound source search system
CA2499754A1 (en) * 2002-09-30 2004-04-15 Electro Products, Inc. System and method for integral transference of acoustical events
FI118247B (en) * 2003-02-26 2007-08-31 Fraunhofer Ges Forschung Method for creating a natural or modified space impression in multi-channel listening

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594800A (en) * 1991-02-15 1997-01-14 Trifield Productions Limited Sound reproduction system having a matrix converter
US6072878A (en) * 1997-09-24 2000-06-06 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics
WO2001082651A1 (en) * 2000-04-19 2001-11-01 Sonic Solutions Multi-channel surround sound mastering and reproduction techniques that preserve spatial harmonics in three dimensions

Also Published As

Publication number Publication date
US20060239465A1 (en) 2006-10-26
CN1849844A (en) 2006-10-18
EP1652406A1 (en) 2006-05-03
JP5000297B2 (en) 2012-08-15
CN1849844B (en) 2010-07-21
FR2858403B1 (en) 2005-11-18
WO2005013643A1 (en) 2005-02-10
US7856106B2 (en) 2010-12-21
FR2858403A1 (en) 2005-02-04
JP2007500962A (en) 2007-01-18
KR20060121807A (en) 2006-11-29

Similar Documents

Publication Publication Date Title
EP1652406B1 (en) System and method for determining a representation of an acoustic field
EP2898707B1 (en) Optimized calibration of a multi-loudspeaker sound restitution system
EP1563485B1 (en) Method for processing audio data and sound acquisition device therefor
EP1586220B1 (en) Method and device for controlling a reproduction unit using a multi-channel signal
EP2374123B1 (en) Improved encoding of multichannel digital audio signals
EP1992198B1 (en) Optimization of binaural sound spatialization based on multichannel encoding
EP2005420B1 (en) Device and method for encoding by principal component analysis a multichannel audio signal
EP1546916B1 (en) Method and system for processing a sound field representation
EP1479266B1 (en) Method and device for control of a unit for reproduction of an acoustic field
EP2374124A1 (en) Advanced encoding of multi-channel digital audio signals
FR2744871A1 (en) SOUND SPATIALIZATION SYSTEM, AND PERSONALIZATION METHOD FOR IMPLEMENTING SAME
WO2006075077A2 (en) Method and device for individualizing hrtfs by modeling
EP1502475B1 (en) Method and system of representing a sound field
EP3895446B1 (en) Method for interpolating a sound field and corresponding computer program product and device
EP3400599B1 (en) Improved ambisonic encoder for a sound source having a plurality of reflections
WO2018050292A1 (en) Device and method for capturing and processing a three-dimensional acoustic field
FR3065137A1 (en) SOUND SPATIALIZATION METHOD
EP3934282A1 (en) Method for converting a first set of signals representing a sound field into a second set of signals and associated electronic device
WO2005096268A2 (en) Method for processing audio data, in particular in an ambiophonic context
WO2022184800A1 (en) Method for determining a propagation direction of a sound source by creating sinusoidal signals from sound signals received by microphones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE DK GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H04S 3/02 20060101ALN20201214BHEP

Ipc: H04S 3/00 20060101AFI20201214BHEP

INTG Intention to grant announced

Effective date: 20210115

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRUNO, REMY

Inventor name: LABORIE, ARNAUD

Inventor name: MONTOYA, SEBASTIEN

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004054996

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004054996

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230712

Year of fee payment: 20