EP1646893B1 - Flüssigkristall-projektionssystem - Google Patents

Flüssigkristall-projektionssystem Download PDF

Info

Publication number
EP1646893B1
EP1646893B1 EP04757243A EP04757243A EP1646893B1 EP 1646893 B1 EP1646893 B1 EP 1646893B1 EP 04757243 A EP04757243 A EP 04757243A EP 04757243 A EP04757243 A EP 04757243A EP 1646893 B1 EP1646893 B1 EP 1646893B1
Authority
EP
European Patent Office
Prior art keywords
projection system
projection
projection screen
polarizing means
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04757243A
Other languages
English (en)
French (fr)
Other versions
EP1646893A1 (de
Inventor
Michael V. Paukshto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of EP1646893A1 publication Critical patent/EP1646893A1/de
Application granted granted Critical
Publication of EP1646893B1 publication Critical patent/EP1646893B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • This invention relates generally to the field of projection systems. More specifically, the present invention is related to projection screen assemblies and digital projection systems employing liquid crystal displays for image formation.
  • Modem home TV appliances, movie theaters, and presentation apparatuses often use digital projection systems for the purposes of video or static image demonstration.
  • the conventional projection system comprises a projector and a projection screen.
  • One of the most promising solutions for digital projection employs a liquid crystal display (LCD) as the image-forming device.
  • the LCD forms an image as an array of pixels by selectively modulating the polarization state of incident light for each pixel.
  • High-resolution large-area LCDs can be fabricated more readily than the analogous devices of other types.
  • small thickness and low weight define the general portability and mobility of projection systems.
  • the LCD-based projection systems are often simpler in manufacturing and practical use, especially when large-area image or video demonstration is required.
  • projection screens typically include fine transparent or translucent porous particles embedded in a transparent medium and a reflective material located behind the particles.
  • the projection screens reflect substantially all the incident light, that is, they reflect ambient light as well as light from the imaging source. Since a part of the ambient light is reflected toward the viewers, the image contrast and the apparent brightness of the image is often reduced, particularly in areas where the ambient light intensity is relatively high.
  • some projection screens include retroreflective elements such as glass beads, which are capable of reflecting the ambient light back in the direction from which it was incident onto the screen.
  • retroreflective elements such as glass beads, which are capable of reflecting the ambient light back in the direction from which it was incident onto the screen.
  • the introduction of retroreflective elements narrows the range of angles over which the image can be viewed because the imaging light is also retroreflected.
  • the ambient light can also be retroreflected toward the viewers along with the imaging light.
  • the brightness of images produced by liquid crystal projectors can be relatively low because light of only one polarization state is projected onto the screen due to the nature of a liquid crystal display used to form the image. If the projection screen reflects ambient light at a low brightness of the projected, the image contrast can be significantly reduced. As a result, liquid crystal projectors are used primarily in areas with low levels of ambient light, such as rooms in which the windows are shuttered with curtains and in which artificial lighting is dimmed, to limit the contrast reducing effects of the ambient light. This may be undesirable, however, because it hinders the ability of viewers in the room to consult written materials, take notes, etc. during presentations.
  • the absorptive polarizing materials used in the projection screens provide for the preferential transmission of light with the first polarization state and block the light with the second polarization state.
  • the transmitted light is then reflected back from the reflective material and retransmitted through the absorptive polarizing material. Therefore, the liquid crystal projectors use light of only one polarization state to form images-that preferentially reflected by the projection screen.
  • Ambient light typically includes light having both polarization states and, therefore, a significant portion of the ambient light incident on the projection screen is absorbed rather than reflected.
  • the contrast and apparent brightness of the images formed by the liquid crystal projectors on projection screens employing absorptive polarizing materials can be improved as compared to conventional projection screens reflecting light of both polarization states.
  • the ideal absorptive polarizing material transmits all incident light having the first polarization state and absorb all incident light in the second polarization state
  • real absorptive polarizing materials absorb at least some of the incident light having the first polarization state along with the light in the second polarization state.
  • this material is located in front of the reflector. In this arrangement, the incident imaging light having the preferentially transmitted first polarization state must pass through the absorptive material two times before reaching the viewer. In each passage, the absorptive polarizing material can absorb a significant portion of the light with the first polarization state, thereby reducing image brightness.
  • projection screens with absorbing polarizers may also suffer from reduced image brightness and/or contrast if those additional elements cause some of the image light to change polarization states. A portion of the imaging light whose polarization changes to the state absorbed by the absorptive polarizing material will not reach the viewer. The result is reduced image brightness and contrast.
  • Projection systems usually require a large viewing angle characteristic of the projections screen. This requirement is especially desirable for the projections screens working in large rooms or in the outdoor environment. For the convenience of the projection screen viewers, the greater viewing angle is especially important in the horizontal plane.
  • the common drawback of the conventional polarizing projection screens made of iodine-containing organic polarizers is a small viewing angle. This drawback is due to a rodlike shape of molecules of the iodine-containing organic polarizers. The light polarized along a single direction coinciding with the axis of rod-shaped molecules is absorbed. Any deviation of the light polarization from said direction leads to a sharp decrease of the polarized light absorption.
  • the present invention provides a projection screen capable of projecting an image with enhanced contrast and a wide viewing angle in the presence of relatively high levels of ambient light, and a projection system using this screen.
  • the disclosed projection screens provide for the desired combination of effects by using a polarizing means formed on the screen, as defined in claims 1 and 24.
  • a conventional projection system of a light-reflecting type is schematically shown in Figure 1, which includes a digital projection device 11 and projection screen 12.
  • the projection screen 12 comprises a sheet material 13 and reflection sheet 14 covering the surface of the sheet material.
  • An image projected by projector 11 onto screen 12 is reflected by reflection sheet 14 so that viewers 15 can see the image.
  • the above described conventional projection system can produce a picture of high contrast on screen 12 when no ambient light is incident onto the screen as in a dark room.
  • the contrast of the picture on screen 12 significantly degrades.
  • the projection device 11 has a color display function, the influence of the ambient light is especially prominent for R (red), G (green) and B (blue) colors of the image.
  • An increase in the contrast and the viewing angle can be provided by applying special polarizing means onto the screen and by a special mutual orientation of the projection screen and the projector in the projection system.
  • the projection screen comprises substrate 21 (a polymer film), diffusive reflective layer 22, planarization layer 23, and polarizing means 24.
  • the polarizing means 24 is based on a film formed by rodlike supramolecules including at least one polycyclic organic compound with conjugated ⁇ -systems, whereby the viewing angle transmittance iso-line of the polarizing means has an aspect ratio of not less than 2.
  • the projection screen might further comprises a protective layer 25 placed onto film 24 and an antiglare (or antireflective) coating 26. In other embodiments, the projection screen comprises other additional functional layers and elements.
  • the rodlike supramolecules are aligned along the transmission axis of the polarizing means.
  • a condition of the formation of supramolecules is the presence of a developed system of ⁇ -conjugated bonds between conjugated aromatic rings of the molecules and the presence of groups (such as amine, phenol, ketone, etc.) lying in the plane of the molecules and involved into the aromatic system of bonds.
  • the molecules and/or their molecular fragments possess a planar structure and are capable of forming supramolecules in solution.
  • Another condition is the maximum overlap of ⁇ -orbitals in the stacks of supramolecules.
  • Raw materials for manufacturing the polarizing means are selected taking into account spectral characteristics of these substances.
  • Such films which are also named thin crystal films (TCFs), usually possess a crystal structure with a typical interplanar distance of 3.4 ⁇ 0.3 ⁇ along the transmission axis.
  • Aromatic polycyclic compounds suitable for obtaining TCFs are characterized by the general formula ⁇ R ⁇ ⁇ F ⁇ n , where R is a polycyclic fragment featuring ⁇ electron system, F is a modifying functional group ensuring solubility of a given compound in nonpolar or polar solvents (comprising aqueous media), and n is the number of functional groups.
  • the TCFs can be obtained by a method called Cascade Crystallization Process developed by Optiva, Inc. [P. Lazarev and M. Paukshto, Proceedings of the 7th International Workshop “Displays, Materials and Components” (Kobe, Japan, November 29-December 1, 2000), pp. 1159-1160].
  • WO 03/007025, US 2003-154909 and US 2004-067324 describe a Cascade Crystallization Process, the disclosures of which are hereby incorporated by reference in their entirety.
  • this method such an organic compound dissolved in an appropriate solvent forms a colloidal system (lyotropic liquid crystal solution) in which molecules are aggregated into supramolecules constituting kinetic units of the system.
  • This liquid crystal phase is essentially a precursor of the ordered state of the system, from which a solid anisotropic crystal film also called thin crystal film or TCF is formed in the course of subsequent alignment of the supramolecules and removal of the solvent.
  • the molecular planes are parallel to each other and the molecules form a three-dimensional crystal structure, at least in part of the layer. Optimization of the production technology may allow the formation of a single-crystal film.
  • the TCF thickness usually does not exceed approximately 1 ⁇ m.
  • the film thickness can be controlled by changing the content of a solid substance in the applied solution and by varying the applied layer thickness.
  • the raw materials for manufacturing suitable TCFs are chosen so that the polarizing means possesses mainly a neutral color and the 40% viewing angle transmittance iso-line of this polarizing means has an aspect ratio not less than 2.
  • the polarizing means described above can be used in the projection screen of any type, namely a front projection screen (a reflection type screen), a rear projection screen (a transmission type screen), and a semitransmissive projection screen.
  • a rear projection screen illustrated in Fig. 3 further comprises a one-side Fresnel layer 35.
  • Figure 3 presents the projection screen with the one-side Fresnel layer and exemplary the presented design comprises substrate 31 (a polymer film), diffuse scattering layer 32, planarization layer 33, and polarizing means 34 based on a film formed by rodlike supramolecules including at least one polycyclic organic compound with conjugated ⁇ -systems, whereby the viewing angle transmittance iso-line of this polarizing means has an aspect ratio of not less than 2.
  • This projection system exhibits increased stability and compensates or eliminates ghosting.
  • the one-side Fresnel layer can comprise a matrix and a plurality of particles embedded in the matrix, wherein these particles have a refractive index different from that of the matrix, with a Fresnel structure on one side of the Fresnel layer.
  • the rear projection screen can comprise a lenticular lens sheet.
  • the rear projection screen presented in Figure 4 consists of a Fresnel lens 42, a substrate 41 (a polymer film comprising scattering particles), a lenticular lens sheet 43, a black stripe 44, which is a film consisting of alternate transparence and absorption fields, planarization layer 45, a polarizing means 46 based on a film formed by rodlike supramolecules including at least one polycyclic organic compound with conjugated ⁇ -systems, and a protection layer 47.
  • the scattered ambient light and multiple reflected lights in the system can be cut off by black stripe (BS).
  • the black stripe is manufactured from polarizing material formed by rodlike supramolecules including at least one polycyclic organic compound with conjugated ⁇ -systems, as shown in Figure 5.
  • the transparent fields of the black stripe work as the polarizing means, and the absorption fields of the black stripe cut off light noise.
  • the exemplary rear projection screen consists of a Fresnel lens 52, a substrate 51, a lenticular lens sheet 53, a black stripe 54 comprising anisotropic material formed by rodlike supramolecules including at least one polycyclic organic compound with conjugated n-systems, and a protection layer 55.
  • Figure 6 is an oblique perspective view of the lenticular sheet showing ray flux.
  • the rays, which passed through the lenticular lens, are converged and diverged horizontally. This diverged angle corresponds to scattering angle, and work as view angle.
  • the rear projection screen comprising the lenticular lens sheet and the Fresnel lens shows wide horizontal view angle, fine pitch and high contrast.
  • vertical view angle rear projection screen is relatively narrow as well as conventional screen.
  • the simple arrangement to expand vertical view angle is a cross-lenticular lens sheet which is schematically shown in Figure 7, in which two lenticular lens sheets are combined in rectangle arrangement on one sheet.
  • cross-lenticular lens of one sheet permits to get arbitrary direction of the ray flux under control by optical design.
  • the cross-lenticular lens sheet can be used in any construction described above.
  • Figure 8 illustrates a projection system using a front (reflection type) projection screen 81 in combination with image projector 82. Also shown in Figure 8 is a source 83 of ambient light.
  • the front projection screen 81 includes a polarizing means 84 and other functional layers which are not depicted in this figure.
  • the polarizing means 84 preferentially transmits light having one (first) polarization state 85 and absorbs light having a different (second) polarization state.
  • the projector 82 is capable of projecting polarized light toward screen 81 to form a reflected image thereon.
  • any LCD image projector produces images using light of one polarization state, an additional polarizing means can be used for projectors of other types.
  • the polarized light 85 produced with projector 82 is reflected from the projection screen 81.
  • Ambient light 86 from light source 83 depicted in Figure 8 is also incident on projection screen 81 in addition to light 85 from projector 82.
  • the ambient light source 83 can be the sun, in which case ambient light 86 does not have a particular polarization state and is randomly polarized. Therefore, the front projection screen 81 reflects light of the first polarization state (about half of the ambient light intensity) and absorbs light having the second polarization state.
  • Figure 9 illustrates a projection system using a rear (transmission type) projection screen 91 in combination with image projector 92.
  • a source 93 of ambient light is situated on the same side of projection screen 91 from which viewers observe the screen.
  • the rear projection screen 91 includes a polarizing means 95.
  • the polarizing means 95 preferentially transmits light that has one (first) polarizing state 96 and absorbs light having a different (second) polarization state.
  • the ambient light source 93 emits light 97 having the second polarization state, which is perpendicular to the transmission axis of the polarizing means 95.
  • the projector 92 is capable of projecting polarized light toward screen 91 to form a transmitted image thereon.
  • Polarized ambient light 97 from light source 93, being incident on the projection screen 91 absorbs fully in the polarizing means 95. The image does not exhibit any flashes.
  • the projection system according to the present invention can be used for producing stereo images and other special optical effects.
  • the principles of functioning of the systems are illustrated in Figures 10 and 11.
  • the projection system illustrated in Figure 10 comprises projection screen 101 and two projectors: 102' and 102".
  • the projection screen 101 includes a polarizing means 105 and a semitransmissive layer 104.
  • the image is created by both projectors 102' and 102", which emit light 106' and 106" , respectively, having the identical polarization state.
  • the projection screen 101 and projector 102' are functioning as the front projection system.
  • the projection screen 101 and projector 102" are functioning as the rear projection system.
  • Each one or both projectors 102' and 102" may create images discriminated with respect to color, intensity, etc.
  • a source 103 of ambient light situated on the same side of the projection screen 101 as the projector 102'.
  • the ambient light source 103 emits light 107 having the second polarization state, which is perpendicular to the transmission axis of the polarizing means 105.
  • Figure 11 shows a projection system comprising projection screen 111 and two projectors: 112' and 112".
  • the projection screen 111 includes two polarizing means 115' and 115", situated from the opposite sides of projection screen 111 and semitransmissive layer 114.
  • the polarizing 115' and 115" have coinciding transmission axes.
  • the image is created by both projectors 112' and 112" which emit light 116' and 116", respectively, having the identical polarization state.
  • the projection screen 111 and projector 112' are functioning as the front projection system.
  • the projection screen 111 and the projector 112" are functioning as the rear projection system.
  • One or both projectors 112' and 112" may create images discriminate with respect to color, intensity, etc.
  • sources 113' and 113" of ambient light which are also situated from the opposite sides of projection screen 111.
  • the ambient light sources irradiate light (116' and 116"), having the second polarization state, which is perpendicular to transmission axes of the polarizing means 115' and 115", respectively.
  • the projection system comprises a front projection screen 121 in combination with image projector 122.
  • the sources of ambient light are room lamps 126 and ambient light source 123.
  • the front projection screen 121 includes a polarizing means 124.
  • the polarizing means 124 preferentially transmits light that has one (first) polarizing state 125 and absorbs light having a different (second) polarization state.
  • the projector 122 is capable of emitting polarized light toward screen 121 to form a reflected image thereon.
  • the polarized light: 125 produced by projector 122 is reflected from projection screen 121.
  • lamps 126 emit light 127" having the second polarization state, which is perpendicular to the transmission axis of the polarizing means 124.
  • the ambient light source 123 can be the sun, in which case windows in the room have the special ambient light polarizing means 128.
  • the ambient light polarizing means transmit light 127' having the second polarization state, which is perpendicular to the transmission axis of the polarizing means 124.
  • the walls of this room can have a special coating 129 capable of eliminating flashes.
  • the polarizing means placed onto the projection screen is based on a film formed by rodlike supramolecules including several polycyclic organic compounds with conjugated ⁇ -systems.
  • Supramolecular materials utilized in TCF manufacturing are based on a mixture of water-soluble products of sulfonation of indanthrone and dibenzimidazole derivatives of perylenetetracarboxylic and naphthalenetetracarboxylic acids (named N-015 TM - Optiva Inc.).
  • TCFs have two absorption axes and, therefore, their viewing angle characteristics differ from those of the conventional polarizers having only one absorption axis. Moreover, a high anisotropy of the angular transmittance of E-type polarizers allows them to be used for screen applications. Viewing angle characteristics of a screen covered by the ideal uniaxial E-type polarizer and the ideal O-type polarizer are shown in Figs. 13a and 13b, respectively. The vertical direction of the screen is parallel to the transmission direction of the polarizers. The 40% transmittance iso-line aspect ratio is about 1.4 for the O-type polarizer and about 4 for the E-type polarizer.
  • unpolarized ambient light coming from top or bottom of the screen will be substantially absorbed by the E-type polarizer.
  • the absorption will be about two times smaller.
  • Figure 14 shows a projection screen for the light of vertical polarization, where Z is the axis perpendicular to the screen and Y is the vertical axis parallel to the transmission direction of the polarizer. The angles ⁇ and ⁇ are measured from the vertical axis Z .
  • Figure 13a shows the results of calculation for a uniaxial TCF N-015 with a double thickness of 600 nm. The screen has a good horizontal visibility in the interval (-45°, +45°). For oblique incidence, even at 20° relative to the vertical axis, the transmittance for ambient light drops to about a half.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal (AREA)
  • Overhead Projectors And Projection Screens (AREA)

Claims (34)

  1. Projektionssystem umfassend:
    einen Projektor zum Erzeugen eines polarisierten Lichts zum Projizieren eines Bildes,
    wobei das polarisierte Licht eine erste Polarisationsebene aufweist;
    einen Projektionsschirm, auf dem das von dem Projektor projizierte Bild visualisiert ist,
    wobei der Projektionsschirm ein Polarisationsmittel mit einer zweiten Polarisationsebene, wenigstens eine linsenförmige Linsenplatte mit vertikaler Orientierung und einen schwarzen Streifen mit Transparent- und Absorptionsfeldern aufweist;
    wobei die erste Polarisationsebene des polarisierten Lichts und die zweite Polarisationsebene des Polarisationsmittels parallel sind;
    wobei das Polarisationsmittel eine Folie umfasst, die aus stabähnlichen Supramolekülen einschließlich wenigstens einer polyzyklischen organischen Verbindung mit konjugierten Π-Systemen ausgebildet ist, wobei die 40% Betrachtungswinkellichtdurchlässigkeitsisolinie des Polarisationsmittels des Schirms ein Verhältnis von nicht weniger als 2 aufweist; und
    wobei der schwarze Streifen ein Polarisationsmaterial umfasst, das aus stabähnlichen Supramoleküle ausgebildet ist, welche wenigstens eine polyzyklische organische Verbindung mit konjugierten TT-Systemen umfassen.
  2. Projektionssystem nach Anspruch 1, wobei das Verhältnis nicht weniger als 3,6 beträgt.
  3. Projektionssystem nach Anspruch 1 oder 2, wobei die ersten und zweiten Polarisationsebenen vertikal gerichtet sind.
  4. Projektionssystem nach einem der Ansprüche 1 bis 3, wobei der Projektionsschirm ein Frontprojektionsschirm ist.
  5. Projektionssystem nach einem der Ansprüche 1 bis 3, wobei der Projektionsschirm ein Rückprojektionsschirm ist.
  6. Projektionssystem nach einem der Ansprüche 1 bis 3, wobei der Projektionsschirm ein halbdurchlässiger Projektionsschirm ist.
  7. Projektionssystem nach einem der Ansprüche 1 bis 6, welches ferner wenigstens eine polarisierte Umgebungslichtquelle umfasst, wobei das Umgebungslicht eine Polarisationsebene senkrecht zu der zweiten Polarisationsebene des Polarisationsmittels aufweist.
  8. Projektionssystem nach einem der Ansprüche 1 bis 7, welches wenigstens ein Umgebungslichtpolarisationsmittel umfasst, wobei das Umgebungslichtpolarisationsmittel eine Durchlässigkeitsachse senkrecht zu der zweiten Polarisationsebene des Polarisationsmittels aufweist.
  9. Projektionssystem nach einem der Ansprüche 1 bis 8, welches ferner ein Lichtstreuelement umfasst, wobei das Polarisationsmittel auf dem Lichtstreuelement ausgebildet ist.
  10. Projektionssystem nach einem der Ansprüche 1 bis 9, welches ferner eine Reflexionsschutz- oder Blendschutzschicht umfasst, die sich auf der Betrachtungsseite des Projektionsschirms befindet.
  11. Projektionssystem nach einem der Ansprüche 1 bis 10, wobei die Folie eine kristalline Struktur aufweist.
  12. Projektionssystem nach Anspruch 11, wobei die Folie eine Struktur mit einem Zwischenebenenabstand von 0,34 ± 0,03 nm (3,4 ± 0,3 Å) entlang der Transmissionsachse aufweist.
  13. Projektionssystem nach einem der Ansprüche 1 bis 12, wobei die organische Verbindung Heterozyklen enthält.
  14. Projektionssystem nach einem der Ansprüche 1 bis 13, wobei die Folie aus einem lyotropischen Flüssigkristall ausgebildet ist.
  15. Projektionssystem nach einem der Ansprüche 1 bis 14, wobei das Polarisationsmittel eine neutrale Farbe hat.
  16. Projektionssystem nach einem der Ansprüche 1 bis 15, wobei das Polarisationsmittel in der Polarisationsebene mehr als 80% des polarisierten Lichts durchlässt.
  17. Projektionssystem nach Anspruch 16, wobei das Polarisationsmittel in der Polarisationsebene mehr als 90% des polarisierten Lichts durchlässt.
  18. Projektionssystem nach einem der Ansprüche 1 bis 17, wobei das Polarisationsmittel ein dichromatisches Verhältnis von größer 20 aufweist.
  19. Projektionssystem nach Anspruch 5, welches ferner eine einseitige Fresnel-Schicht umfasst.
  20. Projektionssystem nach Anspruch 19, wobei die einseitige Fresnel-Schicht umfasst:
    eine Matrix,
    eine Vielzahl von Partikel, die in der Matrix eingebettet sind,
    wobei die Partikel einen Brechungsindex, der sich von dem der Matrix unterscheidet, und eine Fresnel-Struktur, ausgebildet auf einer Seite der Fresnel-Schicht, aufweisen.
  21. Projektionssystem nach einem der Ansprüche 1 bis 20, wobei der Projektionsschirm ferner eine kreuzlinsenförmige Linsenplatte umfasst.
  22. Projektionssystem nach einem der Ansprüche 1 bis 21, wobei das polarisierte Licht zum Projizieren eines Bildes aus wenigstens drei Grundfarben besteht.
  23. Projektionssystem nach Anspruch 22, wobei die Projektion ferner wenigstens eine polarisierte Drehvorrichtung umfasst, um die Polarisation wenigstens einer Farbe in eine vorbestimmte Richtung zu drehen.
  24. Projektionsschirm umfassend ein Polarisationsmittel, wenigstens eine linsenförmige Linsenplatte mit einer vertikalen Orientierung und einen schwarzen Streifen mit Transparent- und Absorptionsfeldern, wobei das Polarisationsmittel eine Folie aus stabähnlichen Supramolekülen, umfassend wenigstens eine polyzyklische organische Verbindung mit konjugierten Π-Systemen, umfasst, und wobei die 40% Betrachtungswinkellichtdurchlässigkeitsisolinie des Polarisationsmittels ein Verhältnis von nicht weniger als 2 aufweist; und
    wobei der schwarze Streifen ein Polarisationsmaterial umfasst, das aus stabähnlichen Supramoleküle gebildet ist, welche wenigstens eine polyzyklische organische Verbindung mit konjugierten Π-Systemen umfassen.
  25. Projektionsschirm nach Anspruch 24, wobei das Verhältnis nicht weniger als 3,6 beträgt.
  26. Projektionsschirm nach Anspruch 24 oder 25, welcher ferner ein Lichtstreuelement umfasst und wobei das Polarisationsmittel auf diesem Lichtstreuelement ausgebildet ist.
  27. Projektionsschirm nach einem der Ansprüche 24 bis 26, welcher ferner eine Reflexionsschutz- oder Blendschutzschicht umfasst.
  28. Projektionsschirm nach einem der Ansprüche 24 bis 27, wobei die Folie eine kristalline Struktur aufweist.
  29. Projektionsschirm nach Anspruch 28, wobei die Folie eine Struktur mit einem Zwischenebenenabstand von 0,34 ± 0,03 nm (3,4 ± 0,3 Å) entlang der Transmissionsachse aufweist.
  30. Projektionsschirm nach einem der Ansprüche 24 bis 29, wobei die organische Verbindung Heterozyklen enthält.
  31. Projektionsschirm nach einem der Ansprüche 24 bis 30, wobei die Folie aus einem lyotropischen Flüssigkristall ausgebildet ist.
  32. Projektionsschirm nach einem der Ansprüche 24 bis 31, welcher ferner eine einseitige Fresnel-Schicht umfasst.
  33. Projektionsschirm nach Anspruch 32, wobei die einseitige Fresnel-Schicht umfasst:
    eine Matrix; und
    eine Vielzahl von Partikel, die in der Matrix eingebettet sind,
    wobei die Partikel einen Brechungsindex aufweisen, der sich von dem der Matrix unterscheidet, und wobei eine Fresnel-Struktur auf einer Seite der Fresnel-Schicht ausgebildet ist.
  34. Projektionsschirm nach einem der Ansprüche 24 bis 33, welcher ferner eine kreuzlinsenförmige Linsenplatte umfasst.
EP04757243A 2003-07-17 2004-07-14 Flüssigkristall-projektionssystem Expired - Lifetime EP1646893B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US48848703P 2003-07-17 2003-07-17
US10/884,843 US7234817B2 (en) 2003-07-17 2004-07-02 Liquid crystal projection system
PCT/US2004/023777 WO2005010577A1 (en) 2003-07-17 2004-07-14 Liquid crystal projection system

Publications (2)

Publication Number Publication Date
EP1646893A1 EP1646893A1 (de) 2006-04-19
EP1646893B1 true EP1646893B1 (de) 2007-04-11

Family

ID=34107770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04757243A Expired - Lifetime EP1646893B1 (de) 2003-07-17 2004-07-14 Flüssigkristall-projektionssystem

Country Status (7)

Country Link
US (1) US7234817B2 (de)
EP (1) EP1646893B1 (de)
JP (1) JP2007534975A (de)
KR (1) KR20060052793A (de)
DE (1) DE602004005865T2 (de)
TW (1) TWI248549B (de)
WO (1) WO2005010577A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231800A1 (en) * 2001-12-21 2005-10-20 Barret Lippey Selective reflecting
US7520624B2 (en) * 2001-12-21 2009-04-21 Bose Corporation Light enhancing
US6847483B2 (en) * 2001-12-21 2005-01-25 Bose Corporation Selective reflecting
US7515336B2 (en) * 2001-12-21 2009-04-07 Bose Corporation Selective reflecting
US7297209B2 (en) * 2003-12-18 2007-11-20 Nitto Denko Corporation Method and device for transferring anisotropic crystal film from donor to receptor, and the donor
US7407291B2 (en) * 2004-06-04 2008-08-05 Texas Instruments Incorporated Micromirror projection of polarized light
JP4717418B2 (ja) * 2004-11-18 2011-07-06 大日本印刷株式会社 投影システム
JP4717419B2 (ja) * 2004-11-18 2011-07-06 大日本印刷株式会社 投影システム
JP4822104B2 (ja) * 2005-01-21 2011-11-24 大日本印刷株式会社 投影システム
US7213930B2 (en) * 2005-04-18 2007-05-08 Quach Cang V Polarized projection display
US7517091B2 (en) * 2005-05-12 2009-04-14 Bose Corporation Color gamut improvement in presence of ambient light
JP5151430B2 (ja) * 2007-03-26 2013-02-27 セイコーエプソン株式会社 画像表示システム、画像表示方法及びスクリーン装置
KR101225889B1 (ko) * 2007-03-30 2013-01-24 강희범 컨트라스트 개선 스크린
JP2008275971A (ja) 2007-05-01 2008-11-13 Seiko Epson Corp スクリーン及びプロジェクションシステム
JP5899884B2 (ja) * 2011-12-12 2016-04-06 セイコーエプソン株式会社 偏光変換装置及びプロジェクターシステム
EP3358404B1 (de) * 2015-09-30 2022-03-16 AGC Inc. Bildprojektionsstruktur und bildprojektionsverfahren
CN113741135A (zh) * 2021-09-27 2021-12-03 青岛海信激光显示股份有限公司 一种投影屏幕及投影装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2793361A (en) 1954-06-18 1957-05-21 Carroll T White Cross-polarized lighting technique for improving operation of cathode-ray tube displays
US3319519A (en) 1962-08-23 1967-05-16 Morris V Shelanski Polarized image-projection system
US4928123A (en) 1987-06-16 1990-05-22 Sharp Kabushiki Kaisha Projection type liquid crystal display device
JPH0389316A (ja) 1989-09-01 1991-04-15 Canon Inc 投映型映像表示システム
JPH03211541A (ja) * 1990-01-17 1991-09-17 Matsushita Electric Ind Co Ltd 透過型スクリーンとその製造方法とそれを用いた透過型プロジェクションテレビ
US5251065A (en) * 1991-07-31 1993-10-05 Kuraray Co., Ltd. Polarizing screen and projector using the same
CA2128108A1 (en) 1992-01-31 1993-08-05 David Alan Braun High-contrast front projection video display system
KR0142032B1 (ko) 1993-09-24 1998-07-01 마쓰오 히로또 편광 스크린
JPH0792566A (ja) * 1993-09-24 1995-04-07 Kuraray Co Ltd 偏光スクリーン
JP3532337B2 (ja) 1996-02-08 2004-05-31 株式会社きもと 偏光プロジェクタ用反射型スクリーン
JPH10239777A (ja) 1997-02-28 1998-09-11 Kuraray Co Ltd 背面投写型映像表示装置
US6185038B1 (en) 1997-09-26 2001-02-06 Matsushita Electric Industrial Co., Ltd. Rear projection screen with light diffusion sheet and projector using same
RU2137801C1 (ru) * 1997-12-10 1999-09-20 ОПТИВА, Инк. Материал для дихроичных поляризаторов света
US6449089B1 (en) 1998-03-30 2002-09-10 3M Innovative Properties Company Rear projection screen with enhanced contrast
WO1999053376A2 (en) 1998-04-09 1999-10-21 Nashua Corporation Rear projection screen
JP2002520678A (ja) * 1998-07-15 2002-07-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ フロント投写スクリーン
RU2155978C2 (ru) 1998-10-28 2000-09-10 ОПТИВА, Инк. Дихроичный поляризатор и способ его изготовления
US6381068B1 (en) * 1999-03-19 2002-04-30 3M Innovative Properties Company Reflective projection screen and projection system
US6239907B1 (en) 1999-09-03 2001-05-29 3M Innovative Properties Company Rear projection screen using birefringent optical film for asymmetric light scattering
RU2178900C2 (ru) * 2000-02-25 2002-01-27 ОПТИВА, Инк. Дихроичный поляризатор и материал для его изготовления
WO2001081991A1 (en) * 2000-04-24 2001-11-01 Optiva, Inc. Liquid crystal display including o-type & e-type polarizer
ATE328940T1 (de) * 2000-05-01 2006-06-15 Kuraray Co Polyvinylalkoholfolie und polarisationsfilm
DE60234993D1 (de) 2001-02-07 2010-02-25 Nitto Denko Corp Verfahren zur gewinnung anisotroper kristalliner filme und einrichtung zur implementierung eines der verfahren
RU2226288C2 (ru) 2001-07-10 2004-03-27 ОПТИВА, Инк. Многослойное оптическое покрытие
US6847483B2 (en) * 2001-12-21 2005-01-25 Bose Corporation Selective reflecting
US6813074B2 (en) * 2002-05-31 2004-11-02 Microsoft Corporation Curved-screen immersive rear projection display
US6805445B2 (en) 2002-06-05 2004-10-19 Eastman Kodak Company Projection display using a wire grid polarization beamsplitter with compensator
US20040067324A1 (en) 2002-09-13 2004-04-08 Lazarev Pavel I Organic photosensitive optoelectronic device
JP2004212921A (ja) * 2002-11-15 2004-07-29 Sony Corp 反射型スクリーン、照明装置及び表示システム
JP2004287377A (ja) * 2003-01-27 2004-10-14 Sony Corp 反射型スクリーン及び表示システム

Also Published As

Publication number Publication date
DE602004005865D1 (de) 2007-05-24
US7234817B2 (en) 2007-06-26
DE602004005865T2 (de) 2008-01-17
US20050041213A1 (en) 2005-02-24
TWI248549B (en) 2006-02-01
TW200510904A (en) 2005-03-16
EP1646893A1 (de) 2006-04-19
JP2007534975A (ja) 2007-11-29
KR20060052793A (ko) 2006-05-19
WO2005010577A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1646893B1 (de) Flüssigkristall-projektionssystem
CN1928632B (zh) 最佳同步调整延迟器
JP4451485B2 (ja) バックライト及びフロントパネル上の反射型偏光子を有するlcd
JP4608687B2 (ja) 色選択性光変調器
TW513601B (en) Reflective cholesteric liquid crystal color filter and the manufacturing process thereof, image display panel, wide incident angle reflective broadband polarizer, liquid crystal display panel construction, liquid crystal display panel assembly, CLC-based
US5486884A (en) Reflecting image projection screen and image projection system comprising such a screen
US7324181B2 (en) Non-absorbing polarization color filter and liquid crystal display incorporating the same
US8451537B2 (en) Video viewing facility and self-luminous display
WO2008008646A2 (en) Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
CN1151060A (zh) 具有串联连接液晶滤光器的彩色显示器
JP2006292847A (ja) 液晶表示装置
JP3447145B2 (ja) プロジェクター
KR20170089833A (ko) 프로젝션 스크린 및 프로젝터의 시간 다중화를 사용하는 디스플레이 시스템 및 방법
EP1998573A2 (de) Stereoskopische Anzeige und phasendifferente Platte
JP2006221090A (ja) 投射型スクリーンおよび画像投影システム
US8400591B2 (en) Video image evaluation equipment
WO2007021981A2 (en) Contrast enhancement for liquid crystal based projection systems
KR100443381B1 (ko) 편광분리기,편광변환소자및그것을사용한액정표시장치
CN1813204A (zh) 液晶投影系统
US6735001B2 (en) Image display apparatus
CN1513127A (zh) 在偏振光影响下具有旋光性的滤色镜装置
JP2005156690A (ja) 投影スクリーン及びそれを備えた投影システム
JP2005300711A (ja) スクリーン及びリアプロジェクタ装置
JP2005141125A (ja) 投影システム
JP2005148489A (ja) 投影システム

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NITTO DENKO CORPORATION

17Q First examination report despatched

Effective date: 20060612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004005865

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080728

Year of fee payment: 5

Ref country code: NL

Payment date: 20080731

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080728

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090714

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100201