EP1630242B1 - Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung - Google Patents

Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung Download PDF

Info

Publication number
EP1630242B1
EP1630242B1 EP04090325A EP04090325A EP1630242B1 EP 1630242 B1 EP1630242 B1 EP 1630242B1 EP 04090325 A EP04090325 A EP 04090325A EP 04090325 A EP04090325 A EP 04090325A EP 1630242 B1 EP1630242 B1 EP 1630242B1
Authority
EP
European Patent Office
Prior art keywords
cemented carbide
phase
hard
surface region
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04090325A
Other languages
English (en)
French (fr)
Other versions
EP1630242A1 (de
Inventor
Hiroyuki Miura
Satoshi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34928818&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1630242(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to DE2004090325 priority Critical patent/DE04090325T1/de
Priority to EP04090325A priority patent/EP1630242B1/de
Priority to ES04090325T priority patent/ES2255896T3/es
Priority to DE200460016845 priority patent/DE602004016845D1/de
Publication of EP1630242A1 publication Critical patent/EP1630242A1/de
Application granted granted Critical
Publication of EP1630242B1 publication Critical patent/EP1630242B1/de
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a cemented carbide and a coated cemented carbide member, and more particularly, to a cemented carbide for a coated cemented carbide cutting tool capable of imparting superior wear resistance and chipping resistance to a tool that machines various types of material to be machined, such as steel, cast iron, heat-resistant alloys and non-ferrous metals, and a coated cemented carbide member in which a hard coating layer is coated onto a surface of the cemented carbide.
  • a cemented carbide substrate having a surface region free of NaCl-type cubic crystal structure grains consisting of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table, such as carbide, nitride or carbonitride ( ⁇ -free layer) ( J. of Japan Institute of Metals, Vol. 45 (1981), p.95 ).
  • Japanese Unexamined Patent Publication No. 2002-167640 discloses a coated cemented carbide member in which metal elements that form compounds of a metal or metals of group 4, 5 and 6 of the periodic table are nearly uniformly distributed in the surface region, although the metal elements excluding tungsten (W) are decreased in the surface region more than in the inner region of the substrate.
  • Japanese Unexamined Patent Publication No. 1995-180071 discloses a high-strength coated alloy comprising a cemented carbide substrate consisting of a three-layer structure.
  • a first layer with a thickness of 0.5 to 5 ⁇ m comprises a WC phase, an NaCl-type cubic crystal structure phase consisting of carbide or carbonitride of a metal or metals of group 4, 5 or 6 of the periodic table and an iron family metal.
  • a second layer with a thickness of 5 to 30 ⁇ m comprises the WC phase and a layer that is richer in the iron family metal than the inner substrate.
  • a third layer with a thickness of 10 to 50 ⁇ m comprises the WC phase, the NaCl-type cubic crystal structure phase and a layer that is more deficient in the iron family metal than the inner substrate.
  • the NaCl-type cubic crystal structure phase having lower toughness than the WC phase is present in the surface region directly below the coating layer, resulting in improvement of wear resistance but decrease in chipping resistance.
  • EP 1 348 779 A1 teaches a cutting tool insert consisting of a cemented carbide substrate and a coating.
  • the cemented carbide substrate comprises WC, 4-7 % by weight of cobalt, 6-9% by weight of cubic carbide forming metals from the groups IVb and Vb with a binder phase enriched surface zone with a thickness of more than 20 ⁇ m.
  • the coating comprises a first layer adjacent the cemented carbide substrate of Ti(C,N) having a thickness of from about 3 to about 15 ⁇ m, an alumina layer adjacent said first layer having a thickness of from about 3 to about 15 ⁇ m, a further layer adjacent the alumina layer of Ti(C,N) or Ti(C,O,N) having a thickness of from about 1 to 10 ⁇ m.
  • the total thickness of the coating being less than 30 ⁇ m, and the thickness of the first Ti(C,N) layer is within 1-3 times the thickness of the alumina layer, and the thickness of the outer Ti(C,N) layer is within 0.1-1.2 times the thickness of the first Ti(C,N) layer and the alumina layer.
  • the object of the present invention is to provide a cemented carbide having both superior wear resistance and chipping resistance that is used in cutting tools for various types of materials to be machined, such as steel, cast iron, heat-resistant alloys and non-ferrous metals, and a coated cemented carbide member in which a hard coating layer is coated onto the surface of this cemented carbide.
  • a cemented carbide for a coated cemented carbide member comprising a surface region consisting of a WC phase and an iron family metal phase, and an inner region present underneath the surface region consisting of the WC phase, the iron family metal phase and a phase consisting of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table having an NaCl-type cubic crystal structure: plastic deformation resistance at high temperatures of the surface region is improved by (a) preventing a grain growth of the WC phase in the surface region based on the optimizing sintering conditions, and by (b) increasing an amount of a binder phase in the surface region, which results in improvement of toughness in a vicinity of the boundary between the surface region and the inner region.
  • the present invention provides a cemented carbide comprising a binder phase consisting essentially of an iron family metal, a first hard phase consisting essentially of WC having a hexagonal crystal structure, and a second hard phase consisting essentially of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table having an NaCl-type cubic crystal structure; wherein, the cemented carbide is formed by a surface region with a thickness of 2 to 50 ⁇ m consisting of the binder phase and the first hard phase, and an inner region present underneath the surface region consisting of the binder phase, the first hard phase and the second hard phase, a ratio of an average grain size of the first hard phase in the surface region to an average grain size of the first hard phase in the inner region is 1 or less, and a ratio of an area of the binder phase in the surface region to an area of the binder phase in the inner region is greater than 1.
  • the cemented carbide for a coated cemented carbide cutting tool in the present invention is consisting of a binder phase consisting essentially of an iron family metal, a first hard phase consisting essentially of WC having a hexagonal crystal structure, and a second hard phase consisting essentially of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table having an NaCl-type cubic crystal structure, namely carbide, nitride or carbonitride.
  • the cemented carbide is formed by a surface region with a thickness of 2 to 50 ⁇ m consisting of the binder phase and the first hard phase, and an inner region present underneath the surface region consisting of the binder phase, the first hard phase and the second hard phase. Furthermore, as will be described later, the thickness of the surface region can be controlled by repeating a denitrification step in a vacuum or low-pressure nitrogen environment and a nitrification step in a pressurized nitrogen atmosphere.
  • the binder phase consisting essentially of the iron family metal is preferably present in the inner region of the cemented carbide at 2 to 20% by weight, and more preferably present at 5 to 12% by weight. If the amount of the binder phase is within this range, chipping resistance and wear resistance can be simultaneously imparted to a cutting tool made of a coated cemented carbide of the present invention. The amount of the binder phase can be controlled with the amount of the iron family metal contained in the cemented carbide.
  • the surface region is consisting essentially of WC phase and the iron family metal phase.
  • the iron family metal refers to iron, cobalt or nickel.
  • the binder phase of the cemented carbide substrate is preferably cobalt for its main component in consideration of heat resistance, toughness and adhesion to a hard coating layer.
  • a minute amount of the components of the first hard phase consisting essentially of WC and the second hard phase consisting essentially of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table, namely metal elements and C and/or N, can be present in the binder phase as solid solution.
  • the amount of solid solution in the binder phase is 1 to 20% by weight depending on the elements to be used.
  • the binder phase refers to herein as either the iron family metal phase or the iron family metal phase in which metal elements and C and/or N of the first hard phase and/or the second hard phase are present as solid solution.
  • the first hard phase consisting essentially of WC is preferably present in the inner region of the cemented carbide at 75 to 95% by weight, and more preferably present at 80 to 90% by weight.
  • the first hard phase has a hexagonal crystal structure, and a metal or metals of group 4, 5 or 6 of the periodic table may be present as solid solution in an extremely minute amount of, for example, 0.1% by weight or less.
  • the second hard phase consisting essentially of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table having an NaCl-type cubic crystal structure, namely carbide, nitride or carbonitride, is preferably present in the inner region of the cemented carbide at 2 to 15% by weight, and more preferably present at 3 to 10% by weight.
  • the group 4 of the periodic table includes Ti, Zr and Hf
  • the group 5 includes V, Nb and Ta
  • the group 6 includes Cr, Mo and W.
  • the second hard phase examples include TiN, Ti(C, N), (Ti, W)(C, N), TaC, Ta(C, N), (Ti, W, Ta)(C, N), NbC, NbN, Nb(C, N), VC, VN, V(C, N), ZrC, ZrN, Zr(C, N), (Ti, W, Nb, Zr)(C, N) and (Ti, W, Nb, Cr, Mo)(C, N).
  • the surface region formed on the surface of the cemented carbide of the present invention has a thickness of 2 to 50 ⁇ m and consisting of the binder phase consisting essentially of the iron family metal and the first hard phase consisting essentially of WC. If the thickness is within this range, both toughness and chipping resistance are greatly increased, and the propagation of cracks formed in the uppermost surface of the cutting tool is inhibited. Consequently, for a cutting tool, decreases in wear resistance accompanying plastic deformation that occurs easily in the surface region due to its low hardness can be prevented. More preferably, the thickness of the surface region is 8 to 30 ⁇ m, and even more preferably 8 to 20 ⁇ m.
  • a ratio of an average grain size of the first hard phase in the surface region to an average grain size of the first hard phase in the inner region is 1 or less.
  • the average grain size of the first hard phase consisting essentially of WC is smaller in the surface region than in the inner region.
  • the ratio of the first hard phase average grain sizes is preferably 0.8 to 1.0. If the ratio is 0.8 or more, the hardness of the surface region does not increase, and therefore toughness is not deteriorated since toughness is in an inverse relationship with hardness. Chipping resistance is thus improved. If the ratio is 1.0 or less, irregularities in the uppermost surface of the cemented carbide can be suppressed.
  • the ratio of the first hard phase average grain sizes is 0.9 to 1.0.
  • the average grain size itself of the first hard (WC) phase of the inner region is preferably 0.5 to 10 ⁇ m, and more preferably 0.6 to 5 ⁇ m, in consideration of wear resistance and strength of the cemented carbide.
  • a ratio of an area of the binder phase in the surface region to an area of the binder phase in the inner region is greater than 1. Namely, the area of the binder phase increases in the surface region more than in the inner region.
  • the ratio of the area of the binder phase is preferably 1.1 to 2.0. If the ratio is 1.1 or more, the propagation of cracks in the surface region is greatly suppressed, and high strength can be maintained. If the ratio is 2.0 or less, chipping resistance for a cutting tool is improved without decrease in hardness of the surface region.
  • the ratio is more preferably 1.3 to 1.7 and even more preferably 1.3 to 1.5.
  • the area is the value as measured by cross-sectional observation.
  • the binder phase of the cemented carbide reaches a minimum in a vicinity of the boundary between the surface region and the inner region, that is the area of the binder phase in the vicinity of the boundary is smaller than the area of the binder phase of the inner region or the surface region, cracks initiated at a surface of a coated cemented carbide cutting tool can easily propagate in the vicinity of the boundary, thereby resulting in decrease in chipping resistance.
  • the surface region may be sometimes removed by honing treatment (treatment for rounding cutting edges) that is typically performed on the cutting edge ridgelines of cutting tools.
  • the binder phase reaches a minimum in the vicinity of the boundary, which is located nearly directly below the hard coating layer, the effects of inhibiting the propagation of cracks initiated at the coated surface is considerably suppressed, resulting in decrease in chipping resistance.
  • the area of the binder phase of the cemented carbide should not be a minimum in the vicinity of the boundary.
  • the binder phase is preferably increased gradually from the vicinity of the boundary towards the uppermost surface of the surface region.
  • the area of the binder phase in the surface region is preferably 8 to 40% relative to an entire area of a cross-sectional observation surface. If the area is 8% or more, strength is not decreased, and if the area is 40% or less, wear resistance is not decreased.
  • the area of the binder phase in the surface region is more preferably 10 to 35% and even more preferably 10 to 25%.
  • the area of the binder phase in the inner region is preferably 5 to 30% relative to the entire area of a cross-sectional observation surface. If the area is 5% or more, strength is not decreased, and if the area is 30% or less, plastic deformation is not easily occurred.
  • the area of the binder phase in the inner region is more preferably 8 to 25% and even more preferably 8 to 20%.
  • the cemented carbide comprising the surface region and the inner region of the present invention is characterized by the ratio of the average grain size of the first hard phase in the surface region to the average grain size of the first hard phase in the inner region being 1 or less, and the ratio of the area of the binder phase in the surface region to the area of the binder phase in the inner region being greater than 1.
  • This characteristic can be achieved by the components and amount of the second hard phase consisting of one or more types of a compound of a metal or metals of group 4, 5 or 6 of the periodic table, a minute amount of which is present as solid solution in the binder phase.
  • the grain growth of the WC phase of the surface region is inhibited in a sintering process by the presence of elements that inhibit grain growth, such as Ti, Ta, Nb, Cr, Mo, V or N present in the binder phase as solid solution.
  • Grain growth of the WC phase proceeds as a result of melting/precipitation of WC through a liquid phase of the iron family melted at a high temperature of 1300°C or higher in the sintering process.
  • tungsten which has a low affinity with N, becomes difficult to melt if nitrogen is present in the liquid phase, thereby inhibiting WC grain growth.
  • an element such as Ti, Ta, Nb, Cr, Mo, V or N is present in the liquid phase of the iron family metal, W can no longer be present in the liquid phase as solid solution, and WC grain growth is inhibited.
  • the amount and the distribution of the binder phase consisting essentially of the iron family metal in the inner region and the surface region can be controlled by the amount of NaCl-type cubic crystal structure grains of a metal or metals of group 4, 5 or 6 of the periodic table, and the amount of solid solution of the metal and C and/or N in the binder phase.
  • the area of the binder phase of the iron family metal is gradually increased due to a rise in the solidification temperature of the liquid phase in the cooling step of the sintering process accompanying increase in the amount of solid solution of the metal and C and/or N in the liquid phase of the iron family metal.
  • the amount of solid solution of the metal and C and/or N in the liquid phase can be controlled in the surface region. Consequently, in order to produce the cemented carbide having the surface region of a thickness of 2 to 50 ⁇ m with the iron family metal and the first hard phase, and the inner region consisting of the iron family metal, the first hard phase and the second hard phase, and wherein the ratio of the first hard phase average grain sizes and the ratio of the area of the binder phase are both controlled to be within the ranges of the present invention, the amount of solid solution of the metal and C and/or N in the liquid phase of the surface region is decreased more than that of the inner region in the sintering process.
  • the amount of solid solution of the metal and C and/or N in the liquid phase of the iron family metal is repeatedly increased and decreased and then finally decreased in the surface region more than in the inner region in the sintering process at a temperature of about 1300°C or higher. More specifically, the atmosphere is alternately repeated between a denitrifying atmosphere in a vacuum and a pressurized nitrifying atmosphere at a nitrogen partial pressure of, for example, 200 to 5000 Pa at a temperature of 1350 to 1500°C, and preferably 1380 to 1450°C, at which the diffusion rate of the metal and C and/or N of the surface region is large.
  • the amount of solid solution can be also controlled by repeating a denitrification step in a low-pressure nitrogen atmosphere at a nitrogen partial pressure of, for example, 50 Pa or less instead of a vacuum, and the nitrification step in a pressurized nitrogen atmosphere.
  • prolonging the retention time accelerates grain growth of the WC phase of the surface region, resulting in the larger average grain size than the WC phase of the inner region.
  • the retention time in the denitrifying atmosphere is thus adjusted according to the degree of denitrification.
  • a retention time of 1 to 10 minutes is preferable in consideration of increases in thickness of the surface region and prevention of grain growth of the WC phase.
  • retention in the nitrifying atmosphere stops growth of the surface region while also inhibiting grain growth of the WC phase.
  • increases in retention time cause the formation of the second hard phase having the NaCl-type cubic crystal structure in the uppermost surface of the surface region.
  • the retention time in the nitrifying atmosphere is thus adjusted according to the degree of nitrification. It is preferably from 1 to 10 minutes in consideration of inhibiting grain growth of the WC phase as well as inhibiting the formation of the second hard phase having the NaCl-type cubic crystal structure.
  • the atmosphere is repeatedly changed between a denitrifying atmosphere and a nitrifying atmosphere.
  • the thickness of the surface region can be controlled with the difference between the total time of the denitrification step and the total time of the nitrification step, namely with number of repetitions multiplying with the difference between the total time of the denitrification step and the total time of the nitrification step.
  • the number of repetitions of the denitrification step and the nitrification step varies according to the degree of denitrification and the degree of nitrification. Each step is preferably alternately carried out 3 to 15 times.
  • a coated cemented carbide member having improved wear resistance and surface lubricity can be obtained by coating a hard coating layer onto the surface of the cemented carbide of the present invention.
  • the hard coating layer can be a single layer or a multilayer of one or more materials selected from the group consisting of a metal compound, a metal alloy compound, diamond and ceramics.
  • the coated cemented carbide member of the present invention is suited to a cutting tool, such as a cutting tip, drill, reamer or end mill, which is used to machine various types of materials to be machined, such as steel, cast iron, heat-resistant alloys and non-ferrous metals.
  • a coated cemented carbide of the present invention is particularly preferable for a cutting tool to suppress the propagation of cracks formed in the coated surface during cutting, as well as to inhibit plastic deformation of the tool surface when exposed to high temperatures.
  • the first hard phase consisting essentially of WC having a hexagonal crystal structure and the second hard phase consisting essentially of compound of one or more types of a carbide, nitride or carbonitride of a metal or metals of group 4, 5 or 6 of the periodic table can be respectively distinguished by observing the microstructure of a cross-section of the cemented carbide with an optical microscope or SEM.
  • the thickness of the surface region can be measured from the thickness of a portion in which the second hard phase is not present by grinding the sample at an angle of 90° relative to the sample surface.
  • the average grain size of the WC phase can be measured by image analysis of the cross-sectional microstructure by SEM.
  • the area of the binder phase consisting essentially of the iron family metal can be measured along the surface region to the inner region by inclined grinding the cemented carbide to an angle of 4 degrees relative to the sample surface, and then performing image analysis on the SEM structure of a field in which the inclined ground surface is magnified by a factor of 5000.
  • compositions shown in Table 1 were blended using each of the commercially available powders having an average grain size of 0.1 to 4 ⁇ m of WC, Ti(C, N), TaC, NbC, VC, ZrC and Co.
  • the blended powder, acetone and balls were then placed in a stainless steel mixing container, and ball-milling were carried out for 20 hours.
  • the green compact by the press forming was heated to 1400°C in a vacuum at 13 Pa.
  • the cemented carbides of Examples 1 through 5 and Comparative Examples 6 through 10 were then sintered while holding at the conditions shown in Tables 2 and 3.
  • a coating of TiN, Ti(C, N) or Al 2 O 3 with a thickness of 12 ⁇ m was then coated by CVD onto the surfaces of the cemented carbides of these examples and comparative examples to obtain cutting tools made of coated cemented carbide of Examples 1 through 5 and Comparative Examples 6 through 10.
  • the ratio of the average grain size of the first hard phase of the surface region to that of the inner region is within the range of 0.8 to 1.0, and the ratio of the area of the binder phase of surface region to that of the inner region is within the range of 1.3 to 1.8.
  • the amount of the binder phase also does not reach a minimum at the boundary between the inner region and surface region. Consequently, these coated cemented carbide members have superior wear resistance and chipping resistance in which the time until the corner wear of the cutting tools reaches 0.3 mm is 22 minutes or more, and the number of impacts until chipping occurs in terms of the average of three specimens exceeds 15,000 impacts.
  • Examples 1 through 5 have superior chipping resistance to Comparative Examples 6 through 10.
  • Examples 1 and 2 are superior to Comparative Examples 6 through 10 both in terms of wear resistance and chipping resistance.
  • a cutting tool made of coated cemented carbide of the present invention has both superior wear resistance and chipping resistance as compared with cutting tools made of coated cemented carbide of the prior art.
  • the cutting tool made of coated cemented carbide of the present invention offers the significant effects of inhibiting the propagation of cracks in the surface region as well as inhibiting plastic deformation of the surface region at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Claims (15)

  1. Ein Hartmetall bestehend aus:
    einer Binderphase, umfassend ein Metall der Eisenfamilie, das im Innenbereich des Hartmetalls zu 2 bis 20 Gew. % vorhanden ist,
    einer ersten Hartstoffphase, die im Innenbereich des Hartmetalls zu 75 bis 95 Gew. % vorhanden ist, wobei die erste Hartstoffphase aus WC mit einer hexagonalen Kristallstruktur und gegebenenfalls einem Metall der Gruppe 4, 5 oder 6 des Periodensystems als feste Lösung in einer Menge von 0,1 Gew. % oder weniger besteht, und
    einer zweiten Hartstoffphase, die im Innenbereich des Hartmetalls zu 2 bis 15 Gew. % vorhanden ist, wobei die zweite Hartstoffphase aus einer oder mehreren Varianten einer Verbindung eines Metalls oder von Metallen der Gruppe 4, 5 oder 6 des Periodensystems mit einer NaCl-artigen kubischen Kristallstruktur besteht,
    wobei
    das Hartmetall aus einem Oberflächenbereich mit einer Dicke von 2 bis 50 µm, der aus der Binderphase und der ersten Hartstoffphase besteht, und einem Innenbereich, der sich unter dem Oberflächenbereich befindet und der aus der Binderphase, der ersten Hartstoffphase und der zweiten Hartstoffphase besteht, gebildet wird,
    ein Verhältnis einer durchschnittlichen Korngröße der ersten Hartstoffphase im Oberflächenbereich zu einer durchschnittlichen Korngröße der ersten Hartstoffphase im Innenbereich 1 oder kleiner ist, und
    ein Verhältnis einer Fläche der Binderphase im Oberflächenbereich zu einer Fläche der Binderphase im Innenbereich größer als 1 ist.
  2. Ein Hartmetall nach Anspruch 1, wobei das Verhältnis der durchschnittlichen Korngröße der ersten Hartstoffphase im Oberflächenbereich zur durchschnittlichen Korngröße der ersten Hartstoffphase im Innenbereich 0,8 bis 1,0 ist, und das Verhältnis der Binderphasenfläche im Oberflächenbereich zur Binderphasenfläche im Innenbereich 1,1 bis 2,0 ist.
  3. Ein Hartmetall nach Anspruch 1 oder 2, wobei die Binderphasenfläche im Oberflächenbereich allmählich von einer Grenze zwischen dem Innenbereich und dem Oberflächenbereich in Richtung einer höchsten Oberfläche des Oberflächenbereichs zunimmt.
  4. Ein beschichtetes Hartmetallteil umfassend eine feste Überzugsschicht, die eine Oberfläche eines Hartmetalls nach Anspruch 1 beschichtet.
  5. Ein beschichtetes Hartmetallteil umfassend eine feste Überzugsschicht, die eine Oberfläche eines Hartmetalls nach Anspruch 2 beschichtet.
  6. Ein beschichtetes Hartmetallteil umfassend eine feste Überzugsschicht, die eine Oberfläche eines Hartmetalls nach Anspruch 3 beschichtet.
  7. Ein beschichtetes Hartmetallteil nach Anspruch 4, wobei die feste Überzugsschicht einschichtig oder mehrschichtig aus einem oder mehreren Materialien ist, ausgewählt aus der Gruppe bestehend aus einer Metallverbindung, einer Verbindung einer Metalllegierung, Diamant und Keramiken.
  8. Ein beschichtetes Hartmetallteil nach Anspruch 5, wobei die feste Überzugsschicht einschichtig oder mehrschichtig aus einem oder mehreren Materialien ist, ausgewählt aus der Gruppe bestehend aus einer Metallverbindung, einer Verbindung einer Metalllegierung, Diamant und Keramiken.
  9. Ein beschichtetes Hartmetallteil nach Anspruch 6, wobei die feste Überzugsschicht einschichtig oder mehrschichtig aus einem oder mehreren Materialien ist, ausgewählt aus der Gruppe bestehend aus einer Metallverbindung, einer Verbindung einer Metalllegierung, Diamant und Keramiken.
  10. Ein Verfahren zum Herstellen eines Hartmetalls umfassend die Schritte:
    (A) Bereitstellen einer Mischung, die 2 bis 20 Gewichtsprozente eines Metalls der Eisenfamilie umfasst, 75 bis 95 Gewichtsprozente WC und 3 bis 10 Gewichtsprozente einer oder mehrerer Varianten einer Verbindung eines Metalls oder von Metallen der Gruppe 4, 5 oder 6 des Periodensystems mit einer Endsumme von 100 Gewichtsprozenten;
    (B) Erhitzen der Mischung in einem Vakuum oder in einer Atmosphäre mit einem Stickstoff-Partialdruck von 50 Pa oder weniger auf eine vorher festgelegte Temperatur innerhalb des Bereiches von 1350 bis 1500°C;
    (C)Wiederholtes Sintern der Mischung 3- bis 15-mal bei der vorher festgelegten Temperatur für 1 bis 10 Minuten im Vakuum oder in der Atmosphäre mit einem Stickstoff-Partialdruck von 50 Pa oder weniger und anschließend in einer Atmosphäre mit einem Stickstoff-Partialdruck von 200 bis 5000 Pa; und
    (D) Kühlen der Mischung auf Normaltemperatur.
  11. Ein Verfahren zum Herstellen eines Hartmetalls nach Anspruch 10, wobei die Mischung nach dem Schritt (C) 1 bis 10 Minuten im Vakuum oder in der Atmosphäre mit einem Stickstoff-Partialdruck von 50 Pa oder weniger bei der vorher festgelegten Temperatur weiter gesintert wird.
  12. Ein Verfahren zum Herstellen eines beschichteten Hartmetallteils, weiterhin umfassend den Schritt (E) des Auftragens einer festen Überzugsschicht auf eine Oberfläche eines Hartmetalls, das durch ein Verfahren nach Anspruch 10 erhalten wurde.
  13. Ein Verfahren zum Herstellen eines beschichteten Hartmetallteils, weiterhin umfassend den Schritt (E) des Auftragens einer festen Überzugsschicht auf eine Oberfläche eines Hartmetalls, das durch ein Verfahren nach Anspruch 11 erhalten wurde.
  14. Ein Verfahren zum Herstellen eines beschichteten Hartmetallteils nach Anspruch 12, wobei die feste Überzugsschicht einschichtig oder mehrschichtig aus einem oder mehreren Materialien ist, ausgewählt aus der Gruppe bestehend aus einer Metallverbindung, einer Verbindung einer Metalllegierung, Diamant und Keramiken.
  15. Ein Verfahren zum Herstellen eines beschichteten Hartmetallteils nach Anspruch 13, wobei die feste Überzugsschicht einschichtig oder mehrschichtig aus einem oder mehreren Materialien ist, ausgewählt aus der Gruppe, bestehend aus einer Metallverbindung, einer Verbindung einer Metalllegierung, Diamant und Keramiken.
EP04090325A 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung Revoked EP1630242B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE2004090325 DE04090325T1 (de) 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung
EP04090325A EP1630242B1 (de) 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung
ES04090325T ES2255896T3 (es) 2004-08-24 2004-08-24 Carburo cementado, elemento revestido con carburo cementado y procesos de produccion del mismo.
DE200460016845 DE602004016845D1 (de) 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04090325A EP1630242B1 (de) 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung

Publications (2)

Publication Number Publication Date
EP1630242A1 EP1630242A1 (de) 2006-03-01
EP1630242B1 true EP1630242B1 (de) 2008-10-01

Family

ID=34928818

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04090325A Revoked EP1630242B1 (de) 2004-08-24 2004-08-24 Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung

Country Status (3)

Country Link
EP (1) EP1630242B1 (de)
DE (2) DE04090325T1 (de)
ES (1) ES2255896T3 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012018067A1 (de) * 2012-09-13 2014-03-13 Tutec Gmbh Hexagonales WC-Pulver, Verfahren zu dessen Herstellung sowie Verwendung dieses Pulvers
CN113182524B (zh) * 2021-04-25 2023-06-02 赣州澳克泰工具技术有限公司 一种钛基金属陶瓷及其制造方法和切削刀具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69304742T3 (de) * 1992-03-05 2001-06-13 Sumitomo Electric Industries Beschichteter Hartmetallkörper
SE520253C2 (sv) * 2000-12-19 2003-06-17 Sandvik Ab Belagt hårdmetallskär
SE526604C2 (sv) 2002-03-22 2005-10-18 Seco Tools Ab Belagt skärverktyg för svarvning i stål
AT5837U1 (de) * 2002-04-17 2002-12-27 Plansee Tizit Ag Hartmetallbauteil mit gradiertem aufbau

Also Published As

Publication number Publication date
EP1630242A1 (de) 2006-03-01
ES2255896T3 (es) 2009-04-16
DE602004016845D1 (de) 2008-11-13
ES2255896T1 (es) 2006-07-16
DE04090325T1 (de) 2006-06-22

Similar Documents

Publication Publication Date Title
JP5328653B2 (ja) Ti基サーメットおよび被覆サーメット並びに切削工具
KR102441723B1 (ko) 서멧, 절삭 공구, 및 서멧의 제조 방법
EP0499223B1 (de) Cermet mit hoher Zähigkeit und Verfahren zu ihrer Herstellung
EP2450136A1 (de) Cermet und beschichtetes cermet
EP3369831A1 (de) Sinterformteil und verfahren zur herstellung davon
EP2036997A1 (de) Beschichtete Hartmetallwendeplatten für Schneidwerkzeuge
EP0515340A2 (de) Karbonitrid auf Titanbasis mit Anreicherung der Bindemetallphase
JP2004292905A (ja) 傾斜組成燒結合金及びその製造方法
EP2407263B1 (de) Cermet und beschichtetes cermet
EP3147377A1 (de) Zementierte carbidlegierung und beschichtete zementierte carbidlegierung
WO2019116614A1 (ja) 超硬合金及び切削工具
EP3878992A1 (de) Hartmetall und dieses als basismaterial enthaltendes schneidwerkzeug
US7097685B2 (en) Cemented carbide, coated cemented carbide member and production processes of the same
EP1939313A2 (de) Beschichteter Hartmetalleinsatz, insbesondere für Hochleistungsvorgänge
EP1630242B1 (de) Hartmetall, beschichtetes Hartmetallteil und Verfahren zu dessen Herstellung
JP2005194573A (ja) サーメットおよび被覆サーメット並びにそれらの製造方法
JP5004145B2 (ja) サーメットおよび被覆サーメット並びにそれらの製造方法
CN111286661A (zh) 一种高温合金加工工具及其应用
JP2005097646A (ja) 傾斜組織焼結合金およびその製造方法
JP6695566B2 (ja) 非金属系材料を加工するための工具に用いる超硬合金
JP7385829B2 (ja) 耐塑性変形性、耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP2005248309A (ja) 超硬合金および被覆超硬合金
JP7161677B2 (ja) 耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
KR102584679B1 (ko) 절삭공구용 초경합금 및 이의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRCL

DET De: translation of patent claims
EL Fr: translation of claims filed
17P Request for examination filed

Effective date: 20060904

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20070925

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004016845

Country of ref document: DE

Date of ref document: 20081113

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255896

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SANDVIK INTELLECTUAL PROPERTY AB

Effective date: 20090701

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090824

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090825

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SANDVIK INTELLECTUAL PROPERTY AB

Effective date: 20090701

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140821

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150824

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 602004016845

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 602004016845

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160816

Year of fee payment: 13

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20160919

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170810

Year of fee payment: 14