EP1626238A1 - Wärmetauscher, bestehend aus Flachrohren - Google Patents

Wärmetauscher, bestehend aus Flachrohren Download PDF

Info

Publication number
EP1626238A1
EP1626238A1 EP04019339A EP04019339A EP1626238A1 EP 1626238 A1 EP1626238 A1 EP 1626238A1 EP 04019339 A EP04019339 A EP 04019339A EP 04019339 A EP04019339 A EP 04019339A EP 1626238 A1 EP1626238 A1 EP 1626238A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flat tubes
exchanger according
bypass
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04019339A
Other languages
English (en)
French (fr)
Other versions
EP1626238B1 (de
Inventor
Viktor Dipl.-Ing. Brost
Christoph Dipl.-Ing. Ruf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Priority to EP04019339A priority Critical patent/EP1626238B1/de
Priority to ES04019339T priority patent/ES2279264T3/es
Priority to DE502004002379T priority patent/DE502004002379D1/de
Priority to US11/201,783 priority patent/US7243707B2/en
Publication of EP1626238A1 publication Critical patent/EP1626238A1/de
Application granted granted Critical
Publication of EP1626238B1 publication Critical patent/EP1626238B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/12Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems characterised by means for attaching parts of an EGR system to each other or to engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/104Particular pattern of flow of the heat exchange media with parallel flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/092Heat exchange with valve or movable deflector for heat exchange fluid flow
    • Y10S165/109Heat exchange with valve or movable deflector for heat exchange fluid flow with by-pass of heat exchanger or heat exchanger section
    • Y10S165/11Bypass within or surrounds heat exchanger

Definitions

  • the invention relates to a heat exchanger, consisting of flat tubes, which are arranged to form channels to each other in which, for example, a gas, such as exhaust gas or charge air, flows through the flat tubes and thereby cooled by means of coolant flowing through the channels between the flat tubes and having a bypass through which the gas can flow uncooled.
  • a gas such as exhaust gas or charge air
  • a heat exchanger of this type has been described in the hitherto unpublished German application DE 103 28 638 and in the European application with the application number EP 4009615.8.
  • Such heat exchangers are extremely compact and have very good functional properties.
  • these heat exchangers are in great demand as exhaust gas heat exchangers, because to reduce emissions in motor vehicles, the path of exhaust gas recirculation increasingly stepped on.
  • the recirculated exhaust gas must be cooled in order to achieve a high efficiency in the recirculation, in particular in order to realize better filling levels.
  • it is about the overall system "motor vehicle with internal combustion engine” and an overall significantly improved energy balance. Therefore, many years ago, all operating phases in the motor vehicle were analyzed and measures taken to meet the changing load cases.
  • One of these measures is to bypass the exhaust gas heat exchanger by means of bypasses in phases in which the cooling of the exhaust gas would be counterproductive.
  • Such operating phases are, in particular, the starting phases of the motor vehicle which require a great deal of fuel, in which the heat energy of the exhaust gases, for example, is used directly for rapid warming up of the engine to its optimum operating temperature.
  • To circumvent the exhaust gas heat exchanger solutions are usually provided, as described for example in the European patent applications / patents EP 916 837 and EP 987 427.
  • a valve is arranged before the entry of the exhaust gases into the exhaust gas heat exchanger, with which the exhaust gas stream, if necessary, through the exhaust gas heat exchanger or at the same past, directly into the return line, is passed.
  • the bypass is integrated in the valve there.
  • the object of the invention is to provide the heat exchanger with a bypass option (bypass), for example by means of exhaust or charge air, that the exemplary functional properties and compactness are maintained, and that it remains mainly production friendly.
  • the solution according to the invention is carried out in a heat exchanger according to the preamble with the characterizing features of claim 1.
  • At least some of the flat tubes of the heat exchanger have two regions, wherein at least one bypass is formed in the uncooled region and wherein the other region is the cooled region in which the channels are located between the flat tubes.
  • the heat exchanger can be made very compact despite the presence of a bypass. It can be provided a single bypass, which is preferably formed along an inner edge region of the flat tubes.
  • each flat tube preferably consists of two deformed plates, wherein the channels and the at least one bypass are formed by the deformation of the plates.
  • a enclosing housing is not required in this case.
  • the deformed plates have a circumferential formation, with each of which two adjacent plates are connected to each other, wherein within the circumferential formation in each case a channel for the coolant, preferably for liquid, is formed.
  • An inlet and an outlet header for, for example, exhaust or charge air is present. These are preferably arranged at opposite ends of the flat tubes.
  • the flat tubes have according to a particular aspect only in their cooled area an indoor use.
  • the inner insert is a corrugated sheet whose corrugations preferably form discrete flow passages for example for exhaust gas or charge air.
  • the inner insert is soldered to the flat tube on the wall.
  • the separation between the bypass and the area in which the heat exchange between exhaust gas / charge air and coolant takes place takes place through the inserted inner insert and through a separating plate, which is arranged in the inlet or outlet collecting box.
  • the exemplary embodiments shown in the figures relate to exhaust gas heat exchangers for a motor vehicle which have been cooled by means of cooling liquid of the internal combustion engine and which are integrated into an exhaust gas recirculation system in a known manner (not shown).
  • Fig. 1 is a perspective, partially sectioned view of a portion of the heat exchanger according to the invention is shown.
  • only two flat tubes 3 are stacked on each other and each provided with a collecting box 20, 22 at the end faces of the heat exchanger.
  • the flat tubes 3 are composed of two identically deformed plates 1, 2 .
  • One of the plates 1 or 2 is rotated by 180 ° about the longitudinal axis. At the edge 9 along the longitudinal axis of the plates 1, 2 , they are soldered later.
  • the deformation of the plates 1, 2 comprises a circumferential formation 80 .
  • the cooled area 11 has been delimited from the uncooled area 12 by the inner inserts 5 .
  • the distribution of the exhaust gas to the cooled area 11 and / or the uncooled area 12 (bypass 4 ) is achieved outside of the heat exchanger by a switching valve 25 .
  • a separating plate 6 is integrated in the collecting box 20 .
  • At least this one flow passage 20 should be designed to be discreet so that the heat transfer from the cooled area 11 to the uncooled area 12 (bypass 4 ) is suppressed by the air contained therein.
  • the remaining flow passages 20 formed by the inner insert 5 do not necessarily have to be closed laterally, that is to say be discrete.
  • the curved wall 14 of the separating plate 6 points into the collecting box 20 and is at the separation of the two connecting pieces 21 a and 21 b fixedly soldered to the collecting box 20 .
  • FIG. 2 shows a horizontal section running through the heat exchanger of FIG. 1 with header boxes 20 and 22 , which passes through a coolant channel 10 , exactly in the plane of the solder joint between two plates 1 and 2 resting against one another with their formations 80 .
  • This channel 10 is enclosed all around by the circumferential formation 80 . Therefore, no tube bottom 90 and no enclosing housing for the heat exchanger is needed.
  • the coolant is passed via the ports 30 and 32 through the channels 10 . It flows preferably in countercurrent to the exhaust gas to be cooled. Also, the positioning of the terminals 30, 32 is to be understood merely as an example.
  • the positioning shown has the advantage that the flow of the exhaust gases is not hindered and that the inner liner 5 does not have to be cut out because the ports 30, 32 are outside the flow path of the exhaust gases.
  • the cooled region 11 is uniformly flowed through by the coolant.
  • the separating plate 6 with foot 13 and the curved wall 14 can be seen.
  • the advantage of this heat exchanger is that it can be produced after the assembly of all parts in a soldering process. For this, however, the switching valve 25 must be mounted outside of the heat exchanger, which is why the exhaust port 21 of the exhaust gas into two outlet ports 21a and 21b for both branches, cooled and uncooled exhaust gas is divided.
  • Fig. 4 is a vertical section according to IV-IV of Fig. 3 can be seen.
  • a cover plate 7 with circumferential formation 81 and a bottom plate 8 are mounted with circumferential formation 81 .
  • the deck - 7 and the bottom plate 8 are formed of slightly thicker sheets to increase the stability of the heat exchanger.
  • the circulating formation 81 is made wider on the longitudinal side 85 of the heat exchanger on which the bypass 4 is located in order to prevent coolant from flowing around the bypass 4 .
  • the cover 7 and the bottom plate 8 are in the uncooled area 12 directly on the flat tubes 3 .
  • Fig. 5 also shows a section in the transverse direction of the heat exchanger, but in a modified embodiment.
  • the cover 7 and bottom plate 8 were omitted.
  • There are characteristics 26 are provided. They are located in all plates 1, 2, since these are identical plates 1, 2 .
  • the characteristics 26 serve on the one hand to stabilize the channels 10 and on the other hand to increase the turbulence of the coolant.
  • the shapes 26 may be configured in the shape of a knob or a bead. Their number is also to be adapted to the size and stability requirements of the heat exchanger. In the case of the alternative solution proposal of a heat exchanger shown in FIGS.
  • FIG. 6 shows a front view of the end face of the heat exchanger without a separating plate 6 and without collecting boxes 20, 22 .
  • the last discrete flow channel 20, wave crest 16 of the inner insert 5 in front of the bypass 4 is still open here, since no separating plate 6 is placed yet.
  • FIGS. 7 and 8 each show a perspective view of the end face of the heat exchanger, but without collecting boxes 20, 22 .
  • the separating plate 6 By attaching the separating plate 6 with its projecting foot 13 on the last crest 16, this is at least almost sealed tightly for the exhaust, so that there is a thermal separation between the uncooled area 12 and the cooled area 11 . To illustrate this, the separating plate 6 is shown cut in Fig.8.
  • three stacked flat tubes 3 are provided with a housing 101 and with channels 10 for the coolant therebetween.
  • a corrugated inner insert 5 has been inserted into each flat tube 3 again.
  • the inner insert 5 extends only over the cooled region 11 of the flat tube 3.
  • the housing 101 is deformed here, so that it lies directly on the flat tubes 3 rests.
  • paragraph 106 is formed.
  • inserts 102 or similar devices are necessary, which, arranged between the flat tubes 3 , prevent the coolant from flowing around the individual bypasses 4 .
  • the housing 101 could also be formed in two parts. It would then have a connection seam, which allows a connection, preferably by means of soldering.
  • connection seam On the front sides of the heat exchanger tube sheets 90 and manifolds 20, 22 are placed for the exhaust. Both details are not shown, but necessary for the heat exchanger to work. Tube sheets 90 are known to the circumference of the flat tubes 3 corresponding openings, with the edge of the ends of the flat tubes 3 are tightly connected. Thus, the flow of gas from the collection box 20 or 22 is secured in the flat tubes 3 and at the same time ensures the separation to the channels 10 for the coolant.
  • the circumference of the tube sheets 90 is connected to the housing 101 . It is a partition plate 6 in one of the collecting tanks 20, 22 required in the collecting box 20, 22 to separate the cooled from the uncooled exhaust gas. Again, both variants can be used, either with integrated in the collection box 20, 22 switching valve 25 or with two outlet 21a and 21b. The separating plate 6 must then be designed accordingly.
  • Fig. 10 is a perspective view is shown.
  • 105 designates one of the inlet or outlet ports for the coolant.
  • the inlet and outlet nozzles 105 for the coolant may be attached laterally as shown, or also above and / or below the housing 101 .
  • forms 26, which space the flat tubes 3 . Such characteristics 26 are shown in Fig. 5.
  • the forms 26 are preferably present in the cooled region 11 .
  • spacer strips similar to the inserts 102, between two flat tubes 3 and between the flat tube 3 and housing 101 are used.
  • a corrugated inner insert 5 is inserted here in each flat tube 3 in the cooled area 11 and in one of the manifolds 20, 22, a partition plate 6 is provided.
  • both variants can be used, either with integrated in the collection box 20, 22 switching valve 25 or with two outlet 21a and 21b.
  • the separating plate 6 must then be designed accordingly.
  • the embodiments shown and described show heat exchanger with only one stack of flat tubes 3, consisting of two or three flat tubes 3. As already stated above, the number of flat tubes 3 per stack is adjusted appropriately. In addition, there are not shown embodiments that have multiple stacks of flat tubes 3 . In such cases, it may be appropriate to form the bypass 4 in at least the majority of the flat tubes 3 of a single stack. It is then possible to increase the cross section of the bypass 4 in comparison with the embodiments shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Die Erfindung betrifft einen Wärmetauscher, bestehend aus Flachrohren (3), die unter Bildung von Kanälen (10) angeordnet sind, bei dem beispielsweise ein Gas, wie Abgas oder Ladeluft, durch die Flachrohre (3) strömt und dabei, mittels Kühlmittel, das durch die Kanäle (10) zwischen den Flachrohren (3) strömt, gekühlt wird und der einen Bypass (4) aufweist, durch den das Gas im Wesentlichen ungekühlt strömen kann. Ein kompakter und herstellungsfreundlicher Wärmetauscher wird erfindungsgemäß dadurch geschaffen, dass wenigstens einige der Flachrohre (3) einen gekühlten Bereich (11) und einen ungekühlten Bereich (12) aufweisen, wobei in dem ungekühlten Bereich (12) der wenigstens eine Bypass (4) gebildet ist und wobei sich in dem gekühlten Bereich (11) zwischen je zwei Flachrohren (3) wenigstens ein Kanal (10) befindet.

Description

  • Die Erfindung betrifft einen Wärmetauscher, bestehend aus Flachrohren, die unter Bildung von Kanälen zueinander angeordnet sind, in dem beispielsweise ein Gas, wie Abgas oder Ladeluft, durch die Flachrohre strömt und dabei mittels Kühlmittel, das durch die Kanäle zwischen den Flachrohren strömt, gekühlt wird und der einen Bypass aufweist, durch den das Gas ungekühlt strömen kann.
  • Ein Wärmetauscher dieser Art wurde in der bisher nicht veröffentlichten deutschen Anmeldung DE 103 28 638 und in der europäischen Anmeldung mit der Anmeldenummer EP 4009615.8 beschrieben. Solche Wärmetauscher sind äußerst kompakt und haben sehr gute Funktionseigenschaften.
    Gegenwärtig werden diese Wärmetauscher als Abgaswärmetauscher stark nachgefragt, weil zur Emissionsreduzierung bei Kraftfahrzeugen verstärkt der Weg der Abgasrückführung beschritten wird. Das rückgeführte Abgas muss gekühlt werden, um eine hohe Effizienz bei der Rückführung zu erreichen, insbesondere um bessere Füllungsgrade zu realisieren. Natürlich geht es um das Gesamtsystem "Kraftfahrzeug mit Verbrennungsmotor" und um eine insgesamt deutlich verbesserte Energiebilanz. Deshalb wurden bereits vor vielen Jahren sämtliche Betriebsphasen im Kraftfahrzeug analysiert und Maßnahmen getroffen, mit denen den wechselnden Lastfällen entsprochen werden kann. Eine dieser Maßnahmen besteht darin, den Abgaswärmetauscher in Phasen, in denen die Kühlung des Abgases kontraproduktiv wäre, mittels Bypässen zu umgehen. Solche Betriebsphasen sind insbesondere die extrem viel Kraftstoff benötigenden Startphasen des Kraftfahrzeuges, in denen die Wärmeenergie der Abgase beispielsweise direkt zur schnellen Aufwärmung des Motors auf seine optimale Betriebstemperatur herangezogen wird. Zur Umgehung des Abgaswärmetauschers werden gewöhnlich Lösungen vorgesehen, wie sie beispielsweise in den europäischen Patentanmeldungen / Patenten EP 916 837 und EP 987 427 beschrieben sind. Dort ist ein Ventil vor dem Eintritt der Abgase in den Abgaswärmetauscher angeordnet, mit dem der Abgasstrom bedarfsweise durch den Abgaswärmetauscher oder an demselben vorbei, direkt in die Rückführleitung, geleitet wird. Der Bypass ist dort im Ventil integriert.
    In den deutschen Anmeldungen DE 197 33 964 A1 oder DE 199 06 401 A1 sind weitere Lösungen beschrieben worden, die zeigen, auf welche Art und Weise die Rückführung ferner geschehen kann. In dem erstgenannten Dokument sind eine Bypassleitung und der Abgaswärmetauscher voneinander getrennt, aber beide sind in einem gemeinsamen Gehäuse angeordnet, und im Letzteren geht die Bypassleitung außerhalb des Abgaswärmetauschers um denselben herum, ohne dass beide von einem Gehäuse umgeben sind. Bei den Abgaswärmetauschern selbst, scheint es sich um sogenannte Rohrbündelwärmetauscher oder um Spiralrohrwärmetauscher zu handeln, also um Wärmetauscher völlig anderen Aufbaus als diejenigen aus dem Oberbegriff. Diese Abgaswärmetauscher sind nicht besonders kompakt, d. h. raumsparend, ausgebildet.
    Bei Abgaswärmetauschern an sich, also auch solchen, die bereits vor Jahrzehnten vorgeschlagen und in Heizungen für Kabinen von Kraftfahrzeugen zum Einsatz kamen und kommen, ist die Umgehung derselben mit einem Bypass in der Regel auch erforderlich, u. a. deshalb, weil der Heizbedarf nicht permanent vorhanden ist. Aber auch diese Abgaswärmetauscher gehören gewöhnlich dem Rohrbündeltyp oder dem Spiralrohrtyp an. Hierzu zählen Abgaswärmetauscher, wie sie beispielsweise dem EP 942 156 A1 zu entnehmen sind.
    Weitere Lösungen mit integrierten Bypässen sind in der DE101 42 539 A1 und in der DE 199 62 863 A1 beschrieben worden. Die dort gezeigten Wärmetauscher werden mittels aufwendiger Schweißverfahren hergestellt. Die Ausbildung des Bypasses ist auch ziemlich aufwendig zu realisieren. Die Wärmetauscher sind nicht besonders kompakt ausgebildet.
  • Schlussfolgernd aus der vorstehenden Beschreibungseinleitung besteht die Aufgabe der Erfindung darin, den Wärmetauscher derart mit einer Möglichkeit zur Umgehung (Bypass), beispielsweise mittels Abgas oder Ladeluft, auszubilden, dass die vorbildlichen Funktionseigenschaften und die Kompaktheit erhalten bleiben, und dass er vor allem herstellungsfreundlich bleibt.
    Die erfindungsgemäße Lösung erfolgt bei einem dem Oberbegriff entsprechenden Wärmetauscher mit den kennzeichnenden Merkmalen des Anspruchs 1.
    Wenigstens einige der Flachrohre des Wärmetauschers weisen zwei Bereiche auf, wobei in dem ungekühlten Bereich wenigstens ein Bypass gebildet ist und wobei der andere Bereich der gekühlte Bereich ist, in dem sich die Kanäle zwischen den Flachrohren befinden. Durch diese vorgeschlagene Bauweise kann der Wärmetauscher trotz Vorhandenseins eines Bypasses sehr kompakt ausgebildet werden. Es kann ein einziger Bypass vorgesehen werden, der vorzugsweise entlang eines inneren Randbereiches der Flachrohre ausgebildet ist. Es können auch mehrere Bypässe innerhalb der Flachrohre ausgebildet werden, beispielsweise entlang gegenüberliegender Randbereiche der Flachrohre.
    Vorzugsweise werden sämtliche Flachrohre des Wärmetauschers mit einem Bypass ausgebildet. Es ist jedoch auch möglich, den Bypass nicht in allen Flachrohren auszubilden.
    Gemäß Anspruch 2 ist die Umsetzung des erfindungsgemäßen Vorschlages bei Wärmetauschern vorgesehen, deren Flachrohre allseitig von einem Gehäuse umgeben sind. In diesem Fall sind die Flachrohre vorzugsweise einstückig ausgebildet. Sie können beispielsweise aus Blech geformt und mittels Längsnaht geschweißt sein.
    Im Gegensatz dazu besteht, gemäß Anspruch 3, jedes Flachrohr vorzugsweise aus zwei verformten Platten, wobei durch die Verformung der Platten die Kanäle und der wenigstens eine Bypass gebildet sind. Ein einfassendes Gehäuse ist in diesem Fall nicht erforderlich. Diese Ausführungsform ist bevorzugt, weil sie eine noch kompaktere Bauweise des Wärmetauschers gestattet.
    Die verformten Platten weisen eine umlaufende Ausformung auf, mit der jeweils zwei angrenzende Platten miteinander verbunden sind, wobei innerhalb der umlaufenden Ausformung jeweils ein Kanal für das Kühlmittel, vorzugsweise für Flüssigkeit, ausgebildet ist.
  • Ein Einlass - und ein Auslasssammelkasten für beispielsweise Abgas oder Ladeluft ist vorhanden. Diese sind vorzugsweise an gegenüberliegenden Enden der Flachrohre angeordnet.
    Die Flachrohre weisen nach einem besonderen Aspekt lediglich in ihrem gekühlten Bereich einen Inneneinsatz auf. Der Inneneinsatz ist ein gewelltes Blech, dessen Wellungen vorzugsweise diskrete Strömungspassagen beispielsweise für Abgas oder Ladeluft bilden. Der Inneneinsatz ist im Flachrohr an dessen Wand angelötet.
  • Die Trennung zwischen dem Bypass und dem Bereich, in dem der Wärmeaustausch zwischen Abgas/Ladeluft und Kühlmittel stattfindet, erfolgt durch den eingelegten Inneneinsatz und durch ein Trennblech, das im Einlass - bzw. Auslasssammelkasten angeordnet ist.
  • Das hat den nicht unwesentlichen Vorteil, dass wenigstens die an den Bypass angrenzende Strömungspassage des Inneneinsatzes im wesentlichen nicht vom Gas durchströmt ist, wodurch der Wärmeübergang zwischen den Bereichen unterdrückt wird. Das durch den Bypass strömende Abgas soll im Wesentlichen nicht gekühlt werden.
  • Jede der verformten Platten ist mit einer bereits erwähnten umlaufenden Ausformung versehen, wie es prinzipiell bereits in dem EP 992 756 B1 gezeigt und beschrieben wurde, auf das wegen hier möglicherweise fehlender Details ausdrücklich hingewiesen wird. Außerdem wird auf das EP mit der Anm. - Nr. 03 007 724.2 verwiesen, wo bestimmte Merkmale des Diffusors (Sammelkastens) gezeigt und beschrieben sind. Jeweils zwei verformte Platten werden zu einem Flachrohr zusammengefügt und die Flachrohre werden zu einem Stapel zusammengesetzt. Dabei kommen je zwei verformte Platten mit ihrer umlaufenden Ausformung zusammen und schließen einen Kanal ein, der ein Strömungskanal für ein vorzugsweise flüssiges Kühlmittel darstellt. Diese Bauweise ist in dem erwähnten europäischen Patent näher beschrieben.
    Von besonderem Vorteil der hier vorgeschlagenen Lösungen ist es, dass der gesamte beispielsweise Abgaswärmetauscher nach wie vor in einer einzigen Lötoperation verbunden bzw. hergestellt werden kann. Dabei werden die Einzelteile des Abgaswärmetauschers durch die über die Enden der Flachrohre geschobenen Sammelkästen zusammengehalten. Für den Fall des in den Sammelkasten integrierten Umschaltventils wird der zugehörige Sammelkasten nach dem Lötprozess angebracht, beispielsweise aufgeschweißt.
    Wegen weiterer Merkmale wird auf die anderen abhängigen Ansprüche verwiesen.
    Die Erfindung wird im Anschluss in Ausführungsbeispielen beschrieben. Aus dieser Beschreibung können zusätzliche Merkmale und Vorteile hervorgehen, die sich später als besonders wichtig herausstellen können.
    • Fig. 1 perspektivische, geschnittene Ansicht eines Teils des Wärmetauschers;
    • Fig. 2 Horizontalschnitt durch den Wärmetauscher mit Sammelkästen;
    • Fig. 3 alternative Darstellung zur Fig. 2 mit Klappenventil im Sammelkasten;
    • Fig. 4 Vertikalschnitt gemäß IV - IV aus Fig. 3;
    • Fig. 5 ähnlich Fig. 4, ohne Abdeckplatten und mit Noppen in den Kanälen;
    • Fig. 6 Ansicht auf die Stirnseite des Wärmetauschers ohne Sammelkasten;
    • Fig. 7 perspektivische Ansicht auf zwei Flachrohre mit Trennblech;
    • Fig. 8 wie Fig. 7, Trennblech geschnitten;
    • Fig. 9 alternative Lösung mit Gehäuse, Vertikalschnitt;
    • Fig.10 alternative Lösung mit Gehäuse, perspektivische Ansicht ohne Sammelkästen;
  • Die in den Figuren gezeigten Ausführungsbeispiele beziehen sich auf mittels Kühlflüssigkeit der Brennkraftmaschine gekühlte Abgaswärmetauscher für ein Kraftfahrzeug, die in nicht gezeigter, bekannter Weise in ein Abgasrückführungssystem eingebunden sind.
  • In Fig. 1 ist eine perspektivische, teilweise geschnittene Ansicht eines Teils des erfindungsgemäßen Wärmetauschers gezeigt. In diesem Ausführungsbeispiel werden lediglich zwei Flachrohre 3 aufeinander gestapelt und mit je einem Sammelkasten 20, 22 an den Stirnseiten des Wärmetauschers versehen. (s. Fig. 2) Es können je nach Bedarf auch mehr als zwei Flachrohre 3 verwendet werden. Die Flachrohre 3 werden aus zwei identisch verformten Platten 1, 2 zusammengesetzt. Eine der Platten 1 oder 2 wird dabei um 180° um die Längsachse gedreht. Am Rand 9 entlang der Längsachse der Platten 1, 2 werden sie später verlötet. Die Verformung der Platten 1, 2 umfasst eine umlaufende Ausformung 80. Diese dient dazu, zwischen den Platten 1, 2 benachbarter Flachrohre 3 jeweils wenigstens einen Kanal 10 für das Kühlmittel auszubilden, der sich also jeweils zwischen zwei Flachrohren 3 befindet. Auf der Längsseite 85 des Wärmetauschers, wird die Ausformung 80 breiter ausgebildet, sodass dort die Platten 1 oder 2 flach aneinander liegen, um einen Bypass 4 im Flachrohr 3 auszubilden. Durch diesen kann das Abgas geleitet werden, wenn es nicht erwünscht ist, dass es durch das Kühlmittel gekühlt wird. Wie die Abbildungen zeigen, handelt es sich genaugenommen um mehrere, nämlich um eine der Anzahl der Flachrohre 3 entsprechende Anzahl von Bypässen. Diese werden hier jedoch als ein Bypass 4 angesehen, der mehrfach unterteilt ist. Es bestünde die Möglichkeit, die aneinander anliegenden Ausformungen 80 auf der Längsseite 85 mit einem oder mehreren Ausschnitten zu versehen, wodurch die Unterteilung in "mehrere Bypässe" aufgehoben wäre.
    Im Unterschied dazu besteht darüber hinaus die in den Figuren ebenfalls nicht gezeigte Möglichkeit, durch entsprechende Ausbildung der Platten 1, 2 , beispielsweise im unteren Abschnitt (Fig. 3), auf der anderen Längsseite 85 der Flachrohre 3, einen weiteren Bypass 4 einzurichten.
    In den Flachrohren 3 sind wellenförmige Inneneinsätze 5 mit vorzugsweise diskreten Strömungspassagen 20 für das Abgas eingesteckt worden. Die Inneneinsätze 5 erstrecken sich in Längsrichtung der Flachrohre 3 etwa über deren gesamte Länge, in Querrichtung jedoch nur über den gekühlten Bereich 11 der Flachrohre 3. Insofern ist durch die Inneneinsätze 5 der gekühlte Bereich 11 vom ungekühlten Bereich 12 abgegrenzt worden. Im in den Fig. 1 und 2 gezeigten Fall wird außerhalb des Wärmetauschers durch ein Umschaltventil 25 die Verteilung des Abgases auf den gekühlten Bereich 11 und/oder den ungekühlten Bereich 12 (Bypass 4) erreicht. (nicht gezeigt) Im Sammelkasten 20 ist ein Trennblech 6 integriert. Es sitzt mit einem abragenden Fuß 13 auf dem zum Bypass 4 hinweisenden letzten Wellenberg 16 bzw. auf der angrenzenden Strömungspassage 20 des Inneneinsatzes 5 auf, um diese Strömungspassage 20 zu verschließen. Zumindest diese eine Strömungspassage 20 sollte diskret ausgebildet sein, damit durch die darin enthaltene Luft der Wärmeübergang vom gekühlten Bereich 11 auf den ungekühlten Bereich 12 (Bypass 4) unterdrückt wird. Die restlichen durch den Inneneinsatz 5 gebildeten Strömungspassagen 20 müssen nicht unbedingt seitlich geschlossen, also diskret ausgebildet sein. Die gebogene Wand 14 des Trennbleches 6 weist in den Sammelkasten 20 und ist an der Trennung der beiden Anschlussstutzen 21a und 21 b fest mit dem Sammelkasten 20 verlötet.
  • In der Fig. 2 ist ein exakt in der Ebene der Lötverbindung zwischen zwei mit ihren Ausformungen 80 aneinander anliegenden Platten 1 und 2 verlaufender Horizontalschnitt durch den Wärmetauscher der Fig. 1 mit Sammelkästen 20 und 22 gezeigt, der also durch einen Kühlmittelkanal 10 hindurchgeht. Dieser Kanal 10 wird rundum von der umlaufenden Ausformung 80 eingefasst. Deshalb wird kein Rohrboden 90 und kein einfassendes Gehäuse für den Wärmetauscher benötigt. Das Kühlmittel wird über die Anschlüsse 30 und 32 durch die Kanäle 10 geleitet. Es fließt vorzugsweise im Gegenstrom mit dem zu kühlenden Abgas. Auch die Positionierung der Anschlüsse 30, 32 ist lediglich als beispielhaft zu verstehen. Die gezeigte Positionierung hat den Vorteil, dass die Strömung der Abgase nicht behindert wird und dass der Inneneinsatz 5 nicht ausgeschnitten werden muss, da sich die Anschlüsse 30, 32 außerhalb des Strömungsweges der Abgase befinden. (siehe auch EP 992 756 B1) Der gekühlte Bereich 11 wird gleichmäßig vom Kühlmittel durchströmt. Im Sammelkasten 20 ist das Trennblech 6 mit Fuß 13 und der gebogenen Wand 14 zu sehen. Der Vorteil dieses Wärmetauschers besteht darin, dass er nach dem Zusammenfügen aller Teile in einem Lötvorgang hergestellt werden kann. Dafür muss allerdings das Umschaltventil 25 außerhalb des Wärmetauschers angebracht werden, weshalb der Auslassstutzen 21 des Abgases in zwei Auslassstutzen 21a und 21b für beide Zweige, gekühltes und ungekühltes Abgas, unterteilt ist. Um den Strömungsweg des Abgases zu verdeutlichen, sind Strömungspfeile eingezeichnet. Diese Art von Abgaswärmetauscher wird in der Weise eingesetzt, dass das Umschaltventil 25 auf der Abgas - Auslassseite des Wärmetauschers angebracht ist.
    Im Vergleich dazu muss in Fig. 3, nach dem Löten des Wärmetauschers einschließlich seines linken Sammelkastens 22, der rechte Sammelkasten 20, mit dem bereits eingebautem Umschaltventil 25, nachträglich angebracht, beispielsweise angeschweisst werden. In diesem Fall wirkt die gebogene Wand 14 mit dem Umschaltventil 25 zusammen, um zu gewährleisten, dass kein Abgas vom ungekühlten Bereich 12 in den gekühlten Bereich 11 strömt und umgekehrt. Der Vorteil dieser Lösung ist die noch kompaktere Ausgestaltung des Systems "Wärmetauscher mit Umschaltventil 25 und Bypass 4".
  • In Fig. 4 ist ein Vertikalschnitt gemäß IV-IV aus Fig. 3 zu sehen. Um eine optimale Kühlung des Abgases zu erreichen, sind eine Deckplatte 7 mit umlaufender Ausformung 81 und eine Bodenplatte 8 mit umlaufender Ausformung 81 angebracht. Dadurch entstehen zwei zusätzliche Kanäle 10, durch die Kühlmittel strömen kann. Die Deck - 7 und die Bodenplatte 8 sind aus etwas dickeren Blechen geformt, um die Stabilität des Wärmetauschers zu erhöhen. Auch bei diesen beiden Platten wird auf der Längsseite 85 des Wärmetauschers, auf der sich der Bypass 4 befindet, die umlaufernde Ausformung 81 breiter ausgebildet, um zu verhindern, dass Kühlmittel um den Bypass 4 strömt. Die Deck- 7 und die Bodenplatte 8 liegen im ungekühlten Bereich 12 direkt auf den Flachrohren 3 auf.
  • Die Fig. 5 zeigt ebenfalls einen Schnitt in Querrichtung des Wärmetauschers, jedoch in einem modifizierten Ausführungsbeispiel. Dort wurden die Deck- 7 und Bodenplatte 8 weggelassen. Es sind Ausprägungen 26 vorgesehen. Sie befinden sich in allen Platten 1, 2, da es sich auch hier um identische Platten 1, 2 handelt. Die Ausprägungen 26 dienen einerseits dazu, die Kanäle 10 zu stabilisieren und andererseits dazu, die Turbulenz des Kühlmittels zu erhöhen. Die Ausprägungen 26 können noppenförmig oder sickenartig ausgestaltet sein. Auch ihre Anzahl ist der Größe und den Stabilitätsanforderungen des Wärmetauschers anzupassen.
    Im Fall des alternativen Lösungsvorschlages eines Wärmetauschers, der in den Fig. 9 und 10 gezeigt ist, und der aus einstückigen, geschweißten Flachrohren 3 und aus einem diese umfassenden Gehäuse 101 besteht, könnten ebenfalls Ausprägungen 26 vorgesehen werden, um die Kanäle 10 zwischen den Flachrohren 3 und zwischen dem Flachrohr 3 und dem Gehäuse 101 zu verstärken. Vorzugsweise sind die Ausprägungen 26 im gekühlten Bereich 11 vorhanden.
    In Fig 6 ist eine Frontalansicht der Stirnseite des Wärmetauschers ohne Trennblech 6 und ohne Sammelkästen 20, 22 zu sehen. Der letzte diskrete Strömungskanal 20, Wellenberg 16 des Inneneinsatzes 5 vor dem Bypass 4 ist hier noch offen, da noch kein Trennblech 6 aufgesetzt ist.
    In den Fig. 7 und 8 ist je eine perspektivische Ansicht der Stirnseite des Wärmetauschers, jedoch ohne Sammelkästen 20, 22, gezeigt. Durch das Anbringen des Trennbleches 6 mit seinem abragenden Fuß 13 auf dem letzten Wellenberg 16, wird dieser für das Abgas wenigstens nahezu dicht verschlossen, sodass hierdurch eine thermische Trennung zwischen dem ungekühlten Bereich 12 und dem gekühlten Bereich 11 besteht. Um dies zu verdeutlichen, ist das Trennblech 6 in Fig.8 geschnitten dargestellt.
  • Gemäß dem bereits angesprochenen alternativen Lösungsvorschlag aus den Figuren 9 und 10 sind drei übereinander gestapelte Flachrohre 3 mit einem Gehäuse 101 und mit dazwischen liegenden Kanälen 10 für das Kühlmittel vorgesehen. Auch hier ist wieder ein gewellter Inneneinsatz 5 in jedes Flachrohr 3 eingesteckt worden. Der Inneneinsatz 5 erstreckt sich nur über den gekühlten Bereich 11 des Flachrohres 3. Um zu verhindern, dass das Kühlmittel den ungekühlten Bereich 12, zusammengesetzt aus mehreren einzelnen Bypässen 4, umströmt, ist das Gehäuse 101 hier verformt, so dass es direkt auf den Flachrohren 3 aufliegt. Es ist ein Absatz 106 angeformt. Zur weiteren Trennung der Bereiche 11 und 12 sind Einlegeteile 102 oder vergleichbare Einrichtungen nötig, die, zwischen den Flachrohren 3 angeordnet, das Kühlmittel daran hindern, um die einzelnen Bypässe 4 herum zu strömen. Es besteht auch die Möglichkeit ein nicht verformtes Gehäuse 101 zu verwenden und dafür ein dem Einlegeteil 102 ähnliches Blech auch zwischen Gehäuse 101 und den äußeren Flachrohren 3 einzusetzten. Das Gehäuse 101 könnte auch zweiteilig ausgebildet sein. Es würde dann eine Verbindungsnaht aufweisen, die eine Verbindung vorzugsweise mittels Löten gestattet. Auf den Stirnseiten des Wärmetauschers sind Rohrböden 90 und Sammelkästen 20, 22 für das Abgas aufgesetzt. Beide Details sind nicht gezeigt, aber notwendig, damit der Wärmetauscher funktioniert. Rohrböden 90 weisen bekanntlich dem Umfang der Flachrohre 3 entsprechende Öffnungen auf, mit deren Rand die Enden der Flachrohre 3 dicht verbunden sind. Damit wird die Strömung des Gases vom Sammelkasten 20 oder 22 in die Flachrohre 3 gesichert und gleichzeitig die Trennung zu den Kanälen 10 für das Kühlmittel gewährleistet. Der Umfang der Rohrböden 90 ist mit dem Gehäuse 101 verbunden. Es ist ein Trennblech 6 in einem der Sammelkästen 20, 22 erforderlich, um auch im Sammelkasten 20, 22 das gekühlte vom ungekühlten Abgas zu trennen. Es können wieder beide Varianten verwendet werden, entweder mit im Sammelkasten 20, 22 integriertem Umschaltventil 25 oder mit zwei Auslassstutzen 21a und 21b. Das Trennblech 6 muss dann dementsprechend ausgebildet sein.
    In Fig. 10 ist eine perspektivische Ansicht gezeigt. Mit 105 ist einer der Einlass - oder Auslassstutzen für das Kühlmittel bezeichnet. Die Einlass- und Auslassstutzen 105 für das Kühlmittel können seitlich, wie gezeigt, oder auch oben und/oder unten am Gehäuse 101 angebracht sein.
    Nicht gezeigt, aber je nach Größe des Wärmetauschers sinnvoll, sind Ausprägungen 26, die die Flachrohre 3 beabstanden. Solche Ausprägungen 26 sind in Fig. 5 gezeigt. (siehe oben) Sie lassen sich auch auf anders gestaltete Flachrohre 3 übertragen. Die Ausprägungen 26 sind vorzugsweise im gekühlten Bereich 11 vorhanden. Alternativ können auch statt Ausprägungen 26 Distanzleisten, ähnlich den Einlegeteilen 102, zwischen je zwei Flachrohren 3 und zwischen Flachrohr 3 und Gehäuse 101 eingesetzt werden.
  • Eine weitere nicht gezeigte Alternative bei einstückigen Flachrohren 3 ist die Möglichkeit statt eines Einlegeteil 102 an den Flachrohren 3 selbst eine Ausformung 110 auszubilden, die sich über die gesamte Länge der Flachrohre 3 auf der Längsseite 85 erstreckt. Diese Ausformung 110 dient in erster Linie dazu den ungekühlten Bereich 12 vom gekühlten Bereich 11 zu trennen. Die Rohrböden 90 an den Strinseiten des Wärmetauschers müssen dann entstprechende Ausschnitte aufweisen, um die Flachrohre 3 aufnehmen zu können. Zusätzlich können diese Flachrohre 3 noch Ausprägungen 26 aufweisen. Sowohl die Ausformung 110, als auch die Ausprägungen 26, können auf beiden Flachseiten, oben und unten, an den Flachrohren 3 vorhanden sein, so wird auch der Absatz 106 am Gehäuse 101 überflüssig, da dessen Funktion nun von der Ausformung 110 übernommen wird. Wie in allen vorangehenden Ausführungsbeispielen wird auch hier in jedes Flachrohr 3 in den gekühlten Bereich 11 ein gewellter Inneneinsatz 5 eingesteckt und in einen der Sammelkästen 20, 22 ein Trennblech 6 vorgesehen. Es können wieder beide Varianten verwendet werden, entweder mit im Sammelkasten 20, 22 integriertem Umschaltventil 25 oder mit zwei Auslassstutzen 21a und 21b. Das Trennblech 6 muss dann dementsprechend ausgebildet sein.
  • Die gezeigten und beschriebenen Ausführungsbeispiele zeigen Wärmetauscher mit lediglich einem Stapel aus Flachrohren 3, bestehend aus zwei oder drei Flachrohren 3. Wie vorne bereits dargelegt, wird die Anzahl der Flachrohre 3 pro Stapel zweckentsprechend angepasst. Darüber hinaus gibt es nicht gezeigte Ausführungsbeispiele, die mehrere Stapel von Flachrohren 3 besitzen. In solchen Fällen kann es zweckmäßig sein, den Bypass 4 in wenigstens der Mehrzahl der Flachrohre 3 eines einzigen Stapels auszubilden. Es besteht dann die Möglichkeit, den Querschnitt des Bypasses 4 im Vergleich mit den gezeigten Ausführungen zu vergrößern.

Claims (16)

  1. Wärmetauscher, bestehend aus Flachrohren (3), die unter Bildung von Kanälen (10) zueinander angeordnet sind, bei dem beispielsweise ein Gas, wie Abgas oder Ladeluft, durch die Flachrohre (3) strömt und dabei, mittels Kühlmittel, das durch die Kanäle (10) zwischen den Flachrohren (3) strömt, gekühlt wird und der einen Bypass (4) aufweist, durch den das Gas im Wesentlichen ungekühlt strömen kann,
    dadurch gekennzeichnet, dass
    wenigstens einige der Flachrohre (3) einen gekühlten Bereich (11) und einen ungekühlten Bereich (12) aufweisen, wobei in dem ungekühlten Bereich (12) der wenigstens eine Bypass (4) gebildet ist und wobei sich in dem gekühlten Bereich (11) zwischen je zwei Flachrohren (3) wenigstens ein Kanal (10) befindet.
  2. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass alle Flachrohre (3) vorzugsweise einstückig ausgebildet sind und übereinander, unter Belassung von die Kanäle (10) bildenden Zwischenräumen angeordnet und von einem die Flachrohre (3) einfassenden Gehäuse (101) umgeben sind.
  3. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass jedes Flachrohr (3) aus zwei verformten Platten (1, 2) gebildet ist, wobei durch die Verformung der Platten (1, 2) die Kanäle (10) und der wenigstens eine Bypass (4) gebildet sind, wobei kein die Flachrohre (3) einfassendes Gehäuse (101) vorhanden ist.
  4. Wärmetauscher nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass ein Einlass - und ein Auslasssammelkasten (20, 22) für das Gas vorhanden sind.
  5. Wärmetauscher nach einem der Ansprüche 1 - 4, dadurch gekennzeichnet, dass die Flachrohre (3) in dem gekühlten Bereich (11) einen Inneneinsatz (5) aufweisen.
  6. Wärmetauscher nach Anspruch 5, dadurch gekennzeichnet, dass der Inneneinsatz (5) ein gewelltes Blech ist, dessen Wellungen vorzugsweise diskrete Strömungspassagen (16) für das Gas bilden.
  7. Wärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Trennung zwischen dem Bypass (4) und dem gekühlten Bereich (11) durch den eingelegten Inneneinsatz (5) und durch ein Trennblech (6) erfolgt, das im Einlass - bzw. Auslasssammelkasten (20, 22) angeordnet ist.
  8. Wärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens die an den Bypass (4) angrenzende Strömungspassage (20, 16) des Inneneinsatzes (5) im wesentlichen nicht vom Gas durchströmt ist und somit den Wärmeübergang zwischen den Bereichen (11) und (12) unterdrückt.
  9. Wärmetauscher wenigstens nach Anspruch 1 und 3, dadurch gekennzeichnet, dass die verformten Platten (1, 2) eine umlaufende Ausformung (80) aufweisen, mit der jeweils zwei angrenzende Platten (1, 2) miteinander verbunden sind, wobei innerhalb der umlaufenden Ausformung (80) jeweils ein Kanal (10) für das Kühlmittel, vorzugsweise für Flüssigkeit, ausgebildet ist.
  10. Wärmetauscher nach Anspruch 9, dadurch gekennzeichnet, dass
    die umlaufende Ausformung (80) auf der Längsseite (85), die den nicht gekühlten Bereich (11), Bypass (4) beinhaltet, breiter ist, als auf den restlichen drei Seiten des Wärmetauschers.
  11. Wärmetauscher nach Anspruch 2, dadurch gekennzeichnet, dass
    die Flachrohre (3) an einigen Stellen Ausprägungen (26) aufweisen, um die Flachrohre (3) zu beabstanden.
  12. Wärmetauscher nach Anspruch 3, dadurch gekennzeichnet, dass die Platten (1, 2) Ausprägungen (26) aufweisen, um die Kanäle (10) zu verstärken.
  13. Wärmetauscher nach Anspruch 1, 2 und 11, dadurch gekennzeichnet, dass der gekühlte Bereich (11) vom den Bypass (4) aufweisenden Bereich (12) dadurch abgetrennt ist, dass die Kanäle (10) zwischen den Flachrohren (3) sich erstreckende Einlegeteile (102) aufweisen.
  14. Wärmetauscher nach Anspruch 1, 2 und 11, dadurch gekennzeichnet, dass
    der gekühlte Bereich (11) vom den Bypass (4) aufweisenden Bereich (12) dadurch abgetrennt ist, dass die Flachrohre (3) dort eine sich über die gesamte Länge der Flachrohre (3) erstreckende Ausformung (110) aufweisen, .
  15. Wärmetauscher nach Anspruch 1, 2, 11, 13, 14 dadurch gekennzeichnet, dass
    ein Rohrboden (90) am Aus - und Einlasssammelkasten (20, 22) des Gases die Kühlmittelkanäle (10) dicht verschließt.
  16. Wärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Trennblech (6) ein integraler Teil des Sammelkastens ist.
EP04019339A 2004-08-14 2004-08-14 Wärmetauscher, bestehend aus Flachrohren Expired - Fee Related EP1626238B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04019339A EP1626238B1 (de) 2004-08-14 2004-08-14 Wärmetauscher, bestehend aus Flachrohren
ES04019339T ES2279264T3 (es) 2004-08-14 2004-08-14 Intercambiador de calor constituido por tubos planos.
DE502004002379T DE502004002379D1 (de) 2004-08-14 2004-08-14 Wärmetauscher, bestehend aus Flachrohren
US11/201,783 US7243707B2 (en) 2004-08-14 2005-08-11 Flat tube exhaust heat exchanger with bypass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04019339A EP1626238B1 (de) 2004-08-14 2004-08-14 Wärmetauscher, bestehend aus Flachrohren

Publications (2)

Publication Number Publication Date
EP1626238A1 true EP1626238A1 (de) 2006-02-15
EP1626238B1 EP1626238B1 (de) 2006-12-20

Family

ID=34926173

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04019339A Expired - Fee Related EP1626238B1 (de) 2004-08-14 2004-08-14 Wärmetauscher, bestehend aus Flachrohren

Country Status (4)

Country Link
US (1) US7243707B2 (de)
EP (1) EP1626238B1 (de)
DE (1) DE502004002379D1 (de)
ES (1) ES2279264T3 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801407A1 (de) * 2004-09-28 2007-06-27 T.RAD Co,.Ltd Agr-kühler
WO2007104595A1 (de) * 2006-03-16 2007-09-20 Pierburg Gmbh Wärmeübertragungseinheit
WO2008006604A1 (de) * 2006-07-14 2008-01-17 Behr Gmbh & Co. Kg Vorrichtung zur kühlung eines gasstroms eines verbrennungsmotors
WO2008049761A1 (fr) * 2006-10-27 2008-05-02 Valeo Termico S.A. Procede de fabrication d'un echangeur de chaleur a plaques empilees pourvu d'un conduit de derivation et echangeur obtenu au moyen de ce procede
US7631688B2 (en) 2004-11-10 2009-12-15 Modine Manufacturing Company Flat tube heat exchanger with housing
EP2936040A4 (de) * 2012-12-20 2016-08-24 Scania Cv Ab Wärmetauscher mit bypass-kanälen
CN110081743A (zh) * 2018-01-26 2019-08-02 摩丁制造公司 热交换器和冷却被加热空气流的方法
US20210215072A1 (en) * 2018-08-27 2021-07-15 Hanon Systems Heat exchanger of exhaust heat recovery apparatus

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040612A1 (de) * 2005-08-27 2007-03-01 Behr Gmbh & Co. Kg Abgaswärmeübertrager
JP4640288B2 (ja) * 2005-12-09 2011-03-02 株式会社デンソー インタークーラ
JP5145718B2 (ja) * 2006-02-03 2013-02-20 株式会社デンソー 熱交換器
US7841042B2 (en) * 2006-08-11 2010-11-30 Karcher North America, Inc. Truck mounted heat exchange device
US7610949B2 (en) * 2006-11-13 2009-11-03 Dana Canada Corporation Heat exchanger with bypass
DE102007036301A1 (de) * 2007-07-31 2009-02-05 Behr Gmbh & Co. Kg Wärmetauschergehäuse, Wärmetauscher oder Baueinheit mit einem oder mehreren Wärmetauschern, Abgasrückführsystem, Ladeluftzuführsystem und Verwendung des Wärmetauschers
US20090056909A1 (en) * 2007-08-30 2009-03-05 Braun Catherine R Heat exchanger having an internal bypass
FR2923859B1 (fr) * 2007-11-15 2009-12-18 Valeo Systemes Thermiques Branche Thermique Habitacle Echangeur de chaleur pour circuit d'alimentation en air d'un moteur de vehicule automobile
US8596339B2 (en) * 2008-04-17 2013-12-03 Dana Canada Corporation U-flow stacked plate heat exchanger
DE102008051268A1 (de) * 2008-10-10 2010-04-15 Mahle International Gmbh Kühleinrichtung
US20100206543A1 (en) * 2009-02-13 2010-08-19 Tylisz Brian M Two-stage heat exchanger with interstage bypass
US8458852B2 (en) * 2009-05-21 2013-06-11 Kärcher North America, Inc. Heat exchange configuration for use in a mobile system cleaning apparatus
US20110232696A1 (en) * 2010-03-23 2011-09-29 Guillermo Morales Barrios Compact radiator-based heat exchanger
US8597434B2 (en) * 2010-04-19 2013-12-03 Karcher North America, Inc. Towed portable cleaning station
AU2011201083B2 (en) * 2010-03-18 2013-12-05 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
US9309839B2 (en) * 2010-03-18 2016-04-12 Modine Manufacturing Company Heat exchanger and method of manufacturing the same
FR2978538B1 (fr) * 2011-07-25 2015-06-19 Valeo Systemes Thermiques Plaque d'echangeur de chaleur.
JP6556451B2 (ja) 2011-09-09 2019-08-07 デーナ、カナダ、コーパレイシャン 熱回収デバイスおよびガス/液体熱交換器
EP2584301B1 (de) 2011-10-19 2014-08-13 WS-Wärmeprozesstechnik GmbH Hochtemperatur-Wärmeübertrager
KR101339250B1 (ko) * 2012-06-11 2013-12-09 현대자동차 주식회사 차량용 열교환기
DE102012106782A1 (de) * 2012-07-26 2014-01-30 Halla Visteon Climate Control Corporation Wärmeübertrager zur Abgaskühlung in Kraftfahrzeugen
US9989322B2 (en) 2013-03-01 2018-06-05 Dana Canada Corporation Heat recovery device with improved lightweight flow coupling chamber and insertable valve
US9828275B2 (en) * 2013-06-28 2017-11-28 American Air Liquide, Inc. Method and heat exchange system utilizing variable partial bypass
DE102014106807B4 (de) * 2014-05-14 2017-12-21 Benteler Automobiltechnik Gmbh Abgaswärmetauscher aus Duplexstahl
KR101887743B1 (ko) * 2016-04-22 2018-08-10 현대자동차주식회사 차량의 배기 시스템 및 그 제어방법
EP3473961B1 (de) 2017-10-20 2020-12-02 Api Heat Transfer, Inc. Wärmetauscher
US11340027B2 (en) * 2019-07-15 2022-05-24 Modine Manufacturing Company Tube for a heat exchanger, and method of making the same
EP4220060A1 (de) * 2022-01-27 2023-08-02 Bosal Flanders NV Wärmetauschereinheit und verfahren für fluid zur passiven umgehung eines wärmetauschers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733964A1 (de) 1997-08-06 1999-02-11 Volkswagen Ag Ventilanordnung zur Steuerung eines rückgeführten Abgasstromes
EP0916837A2 (de) 1997-11-17 1999-05-19 Behr GmbH & Co. Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
EP0942156A1 (de) 1998-03-11 1999-09-15 Ecia - Equipements Et Composants Pour L'industrie Automobile Abgaswärmetauschervorrichtung
EP0987427A1 (de) 1998-09-14 2000-03-22 Modine Manufacturing Company Einrichtung zur Rückführung eines Abgasstromes zum Saugrohr einer Brennkraftmaschine
EP0992756A2 (de) * 1998-10-09 2000-04-12 Modine Manufacturing Company Wärmetauscher, insbesondere für Gase und Flüssigkeiten
DE19906401C1 (de) 1999-02-16 2000-08-31 Ranco Inc Of Delaware Wilmingt Abgasrückführsystem
DE19962863A1 (de) 1999-12-24 2001-06-28 Behr Gmbh & Co Wärmeübertrager
DE10142539A1 (de) 2001-08-30 2003-03-20 Behr Gmbh & Co Abgaswärmeübertrager

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10203003B4 (de) * 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
ITMI20021397A1 (it) 2002-06-25 2003-12-29 Zilmet Dei F Lli Benettolo S P Scambiatore di calore a piastre avente produzione semplificata
DE10328638A1 (de) 2003-06-26 2005-01-20 Modine Manufacturing Co., Racine Wärmetauscher in gehäuseloser Plattenbauweise

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19733964A1 (de) 1997-08-06 1999-02-11 Volkswagen Ag Ventilanordnung zur Steuerung eines rückgeführten Abgasstromes
EP0916837A2 (de) 1997-11-17 1999-05-19 Behr GmbH & Co. Vorrichtung zur Abgasrückführung für einen Verbrennungsmotor
EP0942156A1 (de) 1998-03-11 1999-09-15 Ecia - Equipements Et Composants Pour L'industrie Automobile Abgaswärmetauschervorrichtung
EP0987427A1 (de) 1998-09-14 2000-03-22 Modine Manufacturing Company Einrichtung zur Rückführung eines Abgasstromes zum Saugrohr einer Brennkraftmaschine
EP0992756A2 (de) * 1998-10-09 2000-04-12 Modine Manufacturing Company Wärmetauscher, insbesondere für Gase und Flüssigkeiten
EP0992756B1 (de) 1998-10-09 2002-11-27 Modine Manufacturing Company Wärmetauscher, insbesondere für Gase und Flüssigkeiten
DE19906401C1 (de) 1999-02-16 2000-08-31 Ranco Inc Of Delaware Wilmingt Abgasrückführsystem
DE19962863A1 (de) 1999-12-24 2001-06-28 Behr Gmbh & Co Wärmeübertrager
DE10142539A1 (de) 2001-08-30 2003-03-20 Behr Gmbh & Co Abgaswärmeübertrager

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801407A1 (de) * 2004-09-28 2007-06-27 T.RAD Co,.Ltd Agr-kühler
EP1801407A4 (de) * 2004-09-28 2011-04-20 T Rad Co Ltd Agr-kühler
US7631688B2 (en) 2004-11-10 2009-12-15 Modine Manufacturing Company Flat tube heat exchanger with housing
EP1657512B2 (de) 2004-11-10 2010-06-16 Modine Manufacturing Company Wärmetauscher mit offenem Profil als Gehäuse
US8403031B2 (en) 2006-03-16 2013-03-26 Pierburg Gmbh Heat transmission unit
WO2007104595A1 (de) * 2006-03-16 2007-09-20 Pierburg Gmbh Wärmeübertragungseinheit
WO2008006604A1 (de) * 2006-07-14 2008-01-17 Behr Gmbh & Co. Kg Vorrichtung zur kühlung eines gasstroms eines verbrennungsmotors
WO2008049761A1 (fr) * 2006-10-27 2008-05-02 Valeo Termico S.A. Procede de fabrication d'un echangeur de chaleur a plaques empilees pourvu d'un conduit de derivation et echangeur obtenu au moyen de ce procede
EP2936040A4 (de) * 2012-12-20 2016-08-24 Scania Cv Ab Wärmetauscher mit bypass-kanälen
CN110081743A (zh) * 2018-01-26 2019-08-02 摩丁制造公司 热交换器和冷却被加热空气流的方法
CN110081743B (zh) * 2018-01-26 2021-05-18 摩丁制造公司 热交换器和冷却被加热空气流的方法
US20210215072A1 (en) * 2018-08-27 2021-07-15 Hanon Systems Heat exchanger of exhaust heat recovery apparatus
US11603782B2 (en) * 2018-08-27 2023-03-14 Hanon Systems Heat exchanger of exhaust heat recovery apparatus

Also Published As

Publication number Publication date
EP1626238B1 (de) 2006-12-20
US7243707B2 (en) 2007-07-17
US20060032613A1 (en) 2006-02-16
ES2279264T3 (es) 2007-08-16
DE502004002379D1 (de) 2007-02-01

Similar Documents

Publication Publication Date Title
EP1626238B1 (de) Wärmetauscher, bestehend aus Flachrohren
EP1491837B1 (de) Wärmetauscher in gehäuseloser Plattenbauweise
EP1544564B1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
EP2906893B1 (de) Wärmetauscher
EP1762807B1 (de) Wärmetauscher
EP0974804B1 (de) Wärmetauscher, insbesondere Abgaswärmetauscher
EP0677715B1 (de) Wärmetauscher zum Kühlen von Abgas eines Kraftfahrzeugmotors
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE102012006346B4 (de) Wärmetauscher
WO2007045406A1 (de) Wärmetauscher
EP1586845B1 (de) Abgaswärmetauscher
WO2007009713A1 (de) Wärmeübertrager
DE102006049106A1 (de) Wärmetauscher
EP1701125A2 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
WO2012085008A1 (de) Saugrohr mit integriertem ladeluftkühler
DE102006033313A1 (de) Wärmeübertrager
DE112017005174T5 (de) Wärmetauscher mit aerodynamischen Eigenschaften zur Verbesserung der Leistung
DE3536325A1 (de) Waermeaustauscher
EP1279805A2 (de) Luftgekühlter Ladeluftkühler
DE112015002074T5 (de) Ladeluftkühler mit mehrteiligem Kunststoffgehäuse
DE102012211857A1 (de) Wärmeübertrager
WO2007104595A1 (de) Wärmeübertragungseinheit
EP1657512B1 (de) Wärmetauscher mit offenem Profil als Gehäuse
DE3142028C2 (de)
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050713

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004002379

Country of ref document: DE

Date of ref document: 20070201

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2279264

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070921

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170829

Year of fee payment: 14

Ref country code: ES

Payment date: 20170901

Year of fee payment: 14

Ref country code: FR

Payment date: 20170825

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170829

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180815

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002379

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004002379

Country of ref document: DE

Representative=s name: TER MEER STEINMEISTER & PARTNER PATENTANWAELTE, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R073

Ref document number: 502004002379

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R074

Ref document number: 502004002379

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210827

Year of fee payment: 18

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: DE

Effective date: 20210802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210820

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002379

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220814

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301