EP1620924B1 - Dipolstrahler, insbesondere dualpolarisierter dipolstrahler - Google Patents
Dipolstrahler, insbesondere dualpolarisierter dipolstrahler Download PDFInfo
- Publication number
- EP1620924B1 EP1620924B1 EP04730220A EP04730220A EP1620924B1 EP 1620924 B1 EP1620924 B1 EP 1620924B1 EP 04730220 A EP04730220 A EP 04730220A EP 04730220 A EP04730220 A EP 04730220A EP 1620924 B1 EP1620924 B1 EP 1620924B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dipole
- antenna element
- element arrangement
- dual
- electrical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010287 polarization Effects 0.000 claims description 14
- 239000012811 non-conductive material Substances 0.000 claims description 3
- 239000004020 conductor Substances 0.000 description 13
- 230000005855 radiation Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 125000006850 spacer group Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/24—Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
- H01Q21/26—Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/062—Two dimensional planar arrays using dipole aerials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
Definitions
- the invention relates to a dipole radiator according to the preamble of claim 1.
- a generic dipole radiator has become known, for example, from WO 00/39894 or also from US Pat. No. 6,313,809 B1. It is a dual-polarized radiator arrangement with multiple dipoles, which are arranged in plan view respectively in the manner of a dipole square or at least dipolequadrat-like.
- the radiator arrangement formed in the form of a dipole square or the radiator arrangement at least approximated to a dipole square is switched and fed in such a way that the radiator arrangement radiates in electrical terms in two mutually perpendicular polarization planes which are perpendicular to one another parallel to the two standing, formed by the radiator arrangement diagonals.
- a cross dipole is also known, for example, from US Pat. No. 5,977,929. It is a Buchdipol having a rectangular shape in plan view. The dipole halves are formed over the entire surface in this embodiment.
- the dipole halves are designed dragon-shaped in plan view.
- the dipole halves are formed by a circumferential line structure modeled on the kite structure.
- a further electrical connection is provided running from the center to the outside.
- the portion of the dipole half lying on the left or right of the axis of symmetry may also be formed as a full-area material.
- Object of the present invention is to provide, starting from the generic type mentioned above, a further improved radiator arrangement, which has improved properties in particular with respect to the broadband.
- each of the given four electrical dipole halves each having an electrically conductive cross-connection or cross-member which extends transversely and preferably perpendicular to the electrical polarization plane.
- the semi-dipole components are electrically not connected to each other at their outer end.
- the semi-dipole components terminate at their outer end region at a distance from each other.
- they may merely be mechanically interconnected at this point using a non-conductive material.
- the mentioned cross-connection or the mentioned transverse struts are preferably arranged such that they connect the respective two Halbdipol components belonging to one dipole half, preferably at the inner end point opposite the outer corner point.
- the electrical cross connection but also be arranged elsewhere or electrically connected between the two each cooperating Halbdipol components.
- the electrical cross connection or cross strut is designed as a straight transverse strut, which is perpendicular to the corresponding polarization plane. It can also be formed in plan view but also at least slightly convex or concave or with other bow sections. Likewise, it can also run at least partially outside the plane in which the individual Halbdipol components lie. In other words, the cross member may also run slightly upwards or downwards out of this plane, the above-mentioned plane usually being that in which all the half dipole components are arranged. This plane is usually parallel to the reflector plane.
- the respective cooperating half-dipole components end at a distance from one another or are merely mechanically connected to one another using a non-conductive material.
- the illustrated cross connection or transverse strut can also be designed as a planar element.
- This opening region passing through the dipole surface opens into a spacing space between the outer semi-dipole components which converge towards each other and can also be interpreted as an edge boundary of the respective dipole half, which in this embodiment are not electrically connected to one another in their outer corner region are.
- the dipole halves consist of planar elements, the boundary edges of two adjacent dipole halves belonging to the respective other polarization being arranged symmetrically and preferably parallel to one another.
- the two-dimensional dipole halves have in plan view in each case a square shape or a square approximated shape, wherein the respective outer and their outer corner areas successive outer boundary ends at least at a small distance from each other and by the distance space thus formed a connection to a Opening or breakthrough area, which passes through the two-dimensional dipole half.
- This opening area should have at least 20% of the area of the dipole halves.
- the two-dimensional dipole halves may also have further openings, for example, they may even be designed in the form of a grid or net.
- the surface elements of the dipole halves therefore perform that function, which is perceived in the embodiment according to claim 1 by the mentioned electrical cross-connections or transverse struts.
- a dual-polarized radiator with flat radiator elements has basically also become known from US Pat. No. 6,028,563.
- the dipole arms or dipole halves are triangular in shape, that is, the dipole halves themselves do not have a square structure.
- the known from the prior art planar dipole halves are not provided with openings.
- FIG. 1 shows a schematic perspective plan view of an antenna array with three dualpolated dipole radiators 1 arranged one above the other, wherein the dipole radiators 1 are designed in plan view in the manner of a dipole square or dipole square-like.
- the semi-dipole components explained in more detail below are vertically or horizontally aligned in the vertical orientation of the antenna array, the mentioned dipole radiators radiate in an orientation of + 45 ° and -45 °, respectively, with respect to the horizontal.
- the three mentioned dipoles 1 are arranged in front of a reflector sheet 33 in the embodiment according to FIG.
- the reflector sheet is provided at its opposite lateral outer edge sides, for example, with transverse to the reflector plane, preferably at right angles to the reflector plane extending electrically conductive edge portions 35.
- the dipole square at the outer boundary corners 202 can have a free section, which ends in the following also discussed in detail semi-dipole components at a distance to each other and are not connected to each other here. This is shown with reference to the uppermost radiator arrangement 1a.
- radiator arrangements 1 could also be designed such that the semi-dipole components in the corner regions 202 are connected to one another in an electrically conductive manner, preferably in the form of a fixed mechanical connection.
- the half-dipole halves in the outer corner regions could only be connected to one another mechanically, ie by means of non-conductive projections or inserts in the outer corner region.
- This outer corner region is thus defined by the two Halbdipol components belonging to an electric dipole half, which intersect in their outer corner region, or at least their extensions intersect in a so-called outer corner region.
- the semi-dipole components can end at a distance from one another, so that their outer end regions do not touch this outer corner region. Your outer end areas However, they can also be electrically connected to one another mechanically via a mechanical fixation and also via an electrical connection.
- an electrical cross connection 200 is formed respectively offset from the corner regions inwardly and transversely to the diagonal alignment of the beam or polarization planes, which may preferably be formed in the form of an electrical cross member, which will also be discussed in more detail below becomes.
- the dipole radiator shown somewhat diagrammatically in FIG. 2 in schematic plan view and with reference to FIGS. 3 and 3a acts - as will be discussed in detail below - in electrical terms as a dipole radiating with a polarization of ⁇ 45 °, ie, for example, like a crossed dipole.
- the radiator acting in electrical terms as a cross dipole 3 is shown in dashed lines in Figure 2.
- This radiator which acts in electrical terms as a crossed dipole 3 with a ⁇ 45 ° orientation with respect to the horizontal is tilted by an electric dipole 3 '(tilted in the + 45 ° direction) and a dipole 3 "(with -45 ° relative to the horizontal
- Each of the two electrically formed dipoles 3 'and 3 "comprises the respective dipole halves 3'a and 3'b for the dipole 3' as well as the dipole halves 3" a and 3 "b for the dipole 3".
- the electrically resulting dipole half 3'a is formed by two mutually perpendicular half-dipole components 114b and 111a.
- the half-dipole components 114b, 111a terminate with their ends running at right angles to one another at a distance from each other. However, they could also be connected there, both by an electrically conductive, metallic connection, as well as by insertion of an electrically non-conductive element or insulator, for example, to ensure a higher mechanical stability. At the ends of the dipole halves they can also be provided with smaller bends. In addition to FIG. 2, it is therefore shown in FIG. 2 a that the outer corner region 202 is closed in this emitter arrangement.
- next clockwise dipole half 3 "b of the electrical -45 'electrical-electrical dipole 3" is formed by the two half-dipole components 111b and 112a.
- the second dipole half 3'b formed in extension to the dipole half 3'a is formed in an analogous manner by the two half dipole components 112b, 113a and the fourth dipole half 3'a by the two half dipole components 113b, 114a.
- an electrical connection or transverse strut 200 is now provided or arranged with respect to each dipole half, which in the exemplary embodiment shown transversely, ie in particular perpendicular to the respective polarization plane 3 'or 3 " in each case two half dipole components, namely the half dipole components 114b and 111a, the half dipole components 111b and 112a, the two half dipole components 112b and 113a as well as the half dipole components 113b and 114a, this electrical connection or cross strut 200 being preferred arranged so that it occupies a maximum length, so preferably between the two diagonally opposite inner corner regions 201 is electrically and mechanically connected.
- These inner corner regions 201 are each formed by the end of the symmetrical lines 115 to 118, ie the respectively associated line half 115a to 118b and the adjoining half-dipole components (wherein the respective two line halves belonging to a half-dipole component, for example the both line halves 118b and 115a, which belong to the half-dipole component 114b, 111a, when viewed from a notional zero potential 20, represent an unbalanced line).
- these inner corner regions 201 lie opposite the outer corner region 202, in which in each case two half dipole components of a half dipole run towards one another, end shortly before, or are mechanically connected to one another via a mechanical fixation.
- the arranged as a dipole square half-dipole components are now fed by a respective symmetrical feed line 115, 116, 117 and 118, respectively.
- the two half-dipole components 114b and 111a ie in each case the adjacent orthogonally oriented Halbdipol components, via a common feed point, here the feed point 15 'excited in-phase.
- the connection lines belonging to these half-dipole components 114b, 111a consist in each case of two line halves 118b and 115a which, viewed individually, represent an unbalanced line with respect to a fictitious zero potential 20.
- the two next half dipole components 111b and 112a are electrically connected via the line halves 115b and 116a, respectively, to their common feed point 5 ", etc.
- the respectively associated symmetrical one is Feed line simultaneously designed so that it takes over the mechanical fixation of the dipoles, ie the semi-dipole components.
- the one asymmetrical line half 115a carries the dipole half 111a and the second line half 115b, which is preferably electrically parallel to the line half 115a, the second dipole half 111b.
- the two respective unbalanced line halves belonging to a symmetrical line 115 to 118 each carry the two dipole halves of a dipole 111 to 114 arranged in axial extension from one another.
- the line halves lead to the respective adjacent orthogonal dipole halves Are electrically conductively connected at their feed point, there are four interconnection points 15 ', 5 ", 15", 5', which in turn are fed symmetrically over cross, as is apparent in particular from the illustration in Figure 5.
- the resulting total radiator acts now by the in-phase excitation of the half-dipole components 114b, 111a and the half-dipole components 111b and 112a and 112b and 113a and 113b and 114a electrically like a Wiendipol.
- the line halves which are each arranged parallel to each other at a small distance and in opposite phase, the current flows therein, it is ensured that the line halves themselves provide no significant contribution to radiation, each radiation is thus extinguished by overlapping.
- the basic structure in plan view of the radiator arrangement according to FIG. 2 shows that the radiator module has a quadruple symmetry in plan view.
- Two symmetrical axes perpendicular to each other are represented by the symmetrical Lines 115 and 117 or 116 and 118 formed, wherein the third and fourth axis of symmetry in plan view of the radiator arrangement according to Figure 2 is rotated by 45 ° and by the resulting electrical dipoles 3 'and 3 "are formed.
- the interconnection point 15 'for the semi-dipole components 114b and 111a as well as the opposite interconnection point 15 "for the half-dipole components 112b and 113a in the region of the symmetrization 22 and 180 ° or opposite thereto in the balancing 22a which again likewise serves on the one hand for mechanically fixing the dipole structure to a rear reflector sheet 33 and on the other hand enables the transition to the asymmetrical feed line (or coaxial line) in the interconnection point
- the electrical supply is effected in cross-connection with a first circuit bridge 121 and a second circuit bridge 122, which is offset by 90 °, at the respectively opposite balancings 21 and 21a or 22 and 22a
- the latter circuit bridges 121 and 122 are arranged at a vertical distance from one another dnet, so not electrically with each other connected.
- the pin-shaped bridge 122 is mechanically fixedly attached to the rear half of the symmetrization 21 in FIG. 3 and is electrically connected there to the balancing 22, whereas the opposite free end of this pin-shaped bridge is replaced by a corresponding one larger sized hole protrudes through the front half of the balancing 22a, without being electrically connected to this balancing 22a.
- the second part of the bridge 121 is constructed accordingly, i.
- connection possibilities are also possible, for example, such that an inner conductor between the respective symmetries from bottom to top and then at a suitable location at the upper end of an associated Symmetrization is electrically connected to allow about the symmetrical feed.
- the outer conductor can be carried over a part of this route or already electrically connected to the opposite half of the balancing already electrically.
- the possible implementations of the feed are so far only exemplified.
- the supply is thus cross between the Einspeisticianen 5 ', 5 "or 15', 15".
- the mentioned electrical line halves 115a to 118b are each arranged in pairs symmetrically to each other, ie the adjacent electrical line halves of each two adjacent half-dipole components parallel to each other in a comparatively small distance, this distance preferably the distance 55 between each facing ends of the corresponding dipole halves, ie, for example, the distance between the mutually facing ends of the dipole halves 111a, 111b, etc.
- the line halves can run parallel to a rear reflector plate in the plane of the semi-dipole components. In contrast to this, in the embodiment according to FIGS.
- a rear reflector sheet 33 may be arranged. This is related to the wave range of the electromagnetic waves to be transmitted or received, since the height of the symmetrization over the reflector plate 33 should correspond to approximately ⁇ / 4 and with respect to the radiation characteristic it may be desirable that the dipoles and dipole halves are positioned closer to the reflector sheet 33.
- the design of the radiator arrangement shown in the drawings is such that the semi-dipole components have outwardly facing boundary edges (111a ', 114b'; 112a ', 111b'; 113a ', 112b'; 114a ').
- , 113b ') form a square at least approximately in plan view or surround and define a square structure, wherein these boundary edges are each not electrically connected to each other at the outer corner region 202.
- FIG. 1 shows that, using a dual-polarized dipole radiator 1 explained with reference to FIGS. 2 to 4, it is also possible to construct a corresponding antenna array with a plurality of dipole radiators 1 arranged one above the other in the vertical mounting direction, all in spite of the horizontally and vertically oriented semi-dipole components describe electrically in terms of +45 'and -45' polarized antenna.
- the radiator arrangements shown in FIG. 1 are each arranged with their associated balancing on a reflector sheet 33, which is provided in the mounting direction of the individual radiator modules on the opposite sides with electrically conductive edges 35 extending perpendicular to the reflector plane.
- the elements 115a to 118b designated in FIGS. 2 to 5 it is possible for the elements 115a to 118b designated in FIGS. 2 to 5 to be designed as nonconductive support elements for the dipole halves and for the lines 115 to 118 directly from below through the reflector plate 33 to the connection ends 215a, 215b , 216a, 216b, 217a, 217b and 218a, 218b, respectively.
- the feed lines can also extend longitudinally or parallel to the wire elements. It is the preferred embodiment of those in which the wire elements are simultaneously electrically conductive and serve as feed lines.
- the support members 115a to 118b for the dipole halves designed structurally completely different and arranged differently, for example, from the connection points 215a to 218b, starting from the middle of the dipole halves or from the corner of each perpendicular to each other dipole halves perpendicular or obliquely down to the reflector 33 to run and are mechanically anchored there.
- the reflector itself is designed as a printed circuit board, i.
- a printed circuit board on which the entire antenna assembly is constructed.
- the corresponding feed can be made on the back of the printed circuit board, from where starting the electrical line halves on a suitable path to the mentioned connection points 215a to 218b.
- care must be taken only that these halves of the line, regardless of how they are routed to the connection points on the dipole halves, are as far as possible, i. are substantially or at least approximately aligned parallel to each other, in other words at least substantially or approximately give a symmetrical line.
- FIG. 4 shows a plan view of a radiator arrangement, which is comparable in principle to that radiator arrangement as illustrated with reference to FIG. 1, FIG. 2 and FIGS. 3 and 3a.
- the in Figure 4 in plan view (ie perpendicular to the reflector plane) radiator arrangement shown has semi-dipole components that terminate contactlessly in the outer corner regions 202 at a small distance from each other.
- the semi-dipole components can be made from one piece.
- the mentioned transverse struts 200 are an integral part of the respective dipole half.
- the cross-shaped pin-shaped bridges 121 and 122 can also be seen.
- the inner conductor of a coaxial line can be led up to the supply for the two polarizations, preferably at the upper end directly in the connection area of the outer conductor of the coaxial directly through the metallic support structure, which also serves for balancing whereas the inner conductor is electrically connected to the bridge 122, over which the opposite second dipole half 3 "a is electrically energized, the structure itself forming the outer conductor, for the polarization offset by 90 °, the connection also takes place via a coaxial line in that in the other channel 400 the outer conductor of the coaxial line is formed by the metallic structure itself and at the upper end in the area of the dipole radiators the outer conductor of the coaxial or feed line is electrically connected to the associated dipole half 3b ' is closed, whereas the inner conductor is electrically connected to the bridge 121, which is electrically connected across the other bridge 122 electrically with the opposite dipole half 3'a electrically.
- the two cooperating half dipole components electrically connecting cross struts 200 may also be arranged elsewhere.
- these transverse struts 200 are arranged offset from their middle position (as shown in FIGS. 1 to 4) more to their outer corner region 202.
- the transverse struts 200 can also be arranged offset in the opposite direction (this is shown by dashed lines in FIG Tie points 200 'then not on the Halbdipol components and not at the end of the Halbdipol components opposite to their outer corner regions 202, but on the symmetrical lines 115, 116, 117 and 118 are, ie on the pairwise cooperating line halves for a dipole half ,
- this electrical connection or transverse strut 200 does not necessarily have to be straight. It is also possible that this electrical connection or transverse strut 200 in plan view, for example, at least slightly convex or concave. Likewise, the electrical cross connection or transverse strut 200 may be at least slightly curved and arranged such that the corresponding connecting portion extends at least partially above or below the plane formed by the Halbdipol components.
- transverse struts or cross-connections 200 can also be designed to be arched from the other plane of the dipole halves upwards or downwards (that is to say directed away from the reflector plate or directed toward this).
- a schematic plan view shows that a corresponding radiator arrangement can also have dipole halves which likewise have quadratic or approximately square structures in plan view, but in which the dipole surfaces in the inner region are essentially not free and empty, but rather full-surface ,
- the transverse strut or cross-connection 200 explained with reference to FIGS. 1 to 9 is formed in the exemplary embodiment according to FIG. 10 by a surface element 200 ', wherein the respective boundary edges 115a' to 118b 'facing each other are formed by the balancing lines in the exemplary embodiments 1 to 9, which are symmetrical and preferably parallel to each other.
- the outwardly facing boundary edges 111a 'to 114b' correspond in function to the exemplary embodiments according to FIGS. 1 to 9 to the half-dipole components 111a to 114b drawn there.
- the opening area 300 in the two-dimensional dipole halves 3'a to 3 "b are formed in the exemplary embodiments according to FIGS.
- the outer corner region 202 is preferably likewise designed to be open, so that the opening 300 passes through this spacer space 202 is not limited to the outside and is not framed especially closed in electrical terms.
- a non-conductive, merely mechanical stability serving corner element can be used, as shown in dashed lines in plan view of Figure 10 for the top right dipole half.
- the mentioned opening area 300 is preferably at least 20%, based on the total size of the square or square-like structure or outer boundary of the respective arrangement, which acts in electrical terms as dipole half 3'a, 3'b or 3 "a, 3" b.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Aerials With Secondary Devices (AREA)
- Motor Or Generator Current Collectors (AREA)
Description
- Die Erfindung betrifft einen Dipolstrahler nach dem Oberbegriff des Anspruches 1.
- Ein gattungsbildender Dipolstrahler ist beispielsweise aus der WO 00/39894 oder ebenso aus der US 6,313,809 B1 bekannt geworden. Es handelt sich um eine dualpolarisierte Strahleranordnung mit mehreren Dipolen, die in Draufsicht jeweils nach Art eines Dipolquadrates oder zumindest dipolquadrat-ähnlich angeordnet sind. Die in Form eines Dipolquadrates gebildete Strahleranordnung oder die einem Dipolquadrat zumindest angenäherte Strahleranordnung (von ihrer äußeren Betrachtungsform her in Draufsicht) ist so geschaltet und gespeist, dass die Strahleranordnung in elektrischer Hinsicht in zwei aufeinander senkrecht stehenden Polarisationsebenen strahlt, die parallel zu den beiden senkrecht aufeinander stehenden, durch die Strahleranordnung gebildeten Diagonalen verlaufen.
- Eine derartige dualpolarisierte Strahleranordnung hat sich in der Praxis sehr bewährt. Sie weist große Vorteile gegenüber früheren Strahleranordnungen auf.
- Eine dem vorstehend genannten gattungsbildenden Stand der Technik vergleichbare Antennenanordnung mit mehreren Dipolstrahlern ist auch aus der US 2002/163476 A1 bekannt geworden.
- Ein Kreuzdipol ist beispielsweise auch aus der US 5,977,929 A bekannt. Es handelt sich hierbei um einen Kreuzdipol, der in Draufsicht eine rechteckförmige Form aufweist. Die Dipolhälften sind bei diesem Ausführungsbeispiel vollflächig gebildet.
- Ein weiterer Kreuzdipol ist beispielsweise aus der Vorveröffentlichung US 5,796,372 A bekannt. Die Dipolhälften sind in Draufsicht drachenförmig gestaltet. Die Dipolhälften sind dabei durch eine der Drachenstruktur nachgebildeten umlaufende Leitungsstruktur gebildet. In Diagonalrichtung längs der Zentralachse, die gleichzeitig auch die Symmetrieachse für jede Dipolhälfte darstellt, ist vom Zentrum nach außen laufend jeweils eine weitere elektrische Verbindung vorgesehen. Dabei kann der jeweils links oder rechts der Symmetrieachse liegende Abschnitt der Dipolhälfte auch als vollflächiges Material ausgebildet sein.
- Aufgabe der vorliegenden Erfindung ist es, ausgehend von dem eingangs genannten gattungsbildenden Stand der Technik eine nochmals verbesserte Strahleranordnung zu schaffen, die insbesondere bezüglich der Breitbandigkeit verbesserte Eigenschaften aufweist.
- Die Aufgabe wird entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
- Es muss mehr als überraschend bezeichnet werden, dass die Breitbandigkeit einer gattungsbildenden Strahleranordnung nochmals deutlich verbessert werden konnte, und dies mit einfachen technischen Maßnahmen. Realisiert werden kann es erfindungsgemäß nämlich dadurch, dass jede der in elektrischer Hinsicht gegebenen vier Dipolhälften (der in elektrischer Hinsicht nach Art eines Dipolkreuzes strahlenden Strahleranordnung) jeweils eine elektrisch leitende Querverbindung oder Querstrebe aufweist, die quer und vorzugsweise senkrecht zur elektrischen Polarisationsebene verläuft. Die Halbdipol-Komponenten sind an ihrem außen liegenden Ende elektrisch jeweils nicht miteinander verbunden. In der bevorzugten Ausführungsform enden die Halbdipol-Komponenten an ihrem außen liegenden Endbereich im Abstand voneinander. Allerdings können sie in einer anderen Ausführungsform der Erfindung an dieser Stelle unter Verwendung eines nicht-leitenden Materials lediglich mechanisch miteinander verbunden sein.
- Es hat sich nunmehr gezeigt, dass durch die vorstehend erläuterten Maßnahmen die Breitbandigkeit einer Antenne nochmals deutlich verbessert werden kann.
- Die erwähnte Querverbindung bzw. die erwähnten Querstreben sind bevorzugt so angeordnet, dass sie die jeweils zu einer Dipolhälfte gehörenden beiden Halbdipol-Komponenten miteinander verbindet, und zwar bevorzugt an dem zum außen liegenden Eckpunkt gegenüberliegenden innenliegenden Endpunkt. Grundsätzlich kann die elektrische Querverbindung aber auch an anderer Stelle zwischen den beiden jeweils zusammenwirkenden Halbdipol-Komponenten angeordnet bzw. elektrisch angebunden sein. Bevorzugt ist die elektrische Querverbindung oder Querstrebe als gerade verlaufende Querstrebe ausgebildet, die senkrecht zu der entsprechenden Polarisationsebene liegt. Sie kann in Draufsicht aber auch zumindest leicht konvex oder konkav oder mit sonstigen Bogenabschnitten ausgebildet sein. Ebenso kann sie auch zumindest teilweise außerhalb der Ebene verlaufen, in der die einzelnen Halbdipol-Komponenten liegen. Mit anderen Worten kann die Querstrebe auch etwas nach oben oder nach unten hin aus dieser Ebene herauslaufen, wobei die vorstehend erwähnte Ebene in der Regel jene ist, in der alle Halbdipol-Komponenten angeordnet sind. Diese Ebene ist üblicherweise parallel zur Reflektorebene.
- An den außenliegenden Eckbereichen enden die jeweils zusammenwirkenden Halbdipol-Komponenten im Abstand voneinander oder sind unter Verwendung eines nicht-leitenden Materials lediglich mechanisch miteinander verbunden.
- Die erläuterte Querverbindung oder Querstrebe kann aber ebenso auch als flächiges Element ausgebildet sein. Dabei verbleibt bevorzugt ein zum äußeren Eckbereich verbleibender, die flächige Anordnung der so gebildeteten Dipolhälfte durchsetzender Öffnungsbereich, der vorzugsweise größer als zumindest 20 % der Gesamtfläche einer jeweiligen Dipolhälfte ist. Dieser die Dipolfläche durchsetzende Öffnungsbereich mündet in einen Abstandsraum zwischen den äußeren aufeinander zulaufenden und auch als Kantenbegrenzung der jeweiligen Dipolhälfte interpretierbaren Halbdipol-Komponenten, die in dieser Ausführungsform in ihren äußeren Eckbereich elektrisch nicht miteinander verbunden sind. Die Dipolhälften bestehen bei dieser Ausführungsform aus flächigen Elementen, wobei jeweils die aufeinander zu weisenden Begrenzungskanten zweier benachbart und zu der jeweils anderen Polarisation gehörenden Dipolhälften symmetrisch und dabei bevorzugt parallel zueinander verlaufend angeordnet sind. Die flächigen Dipolhälften weisen dabei in Draufsicht jeweils eine quadratische Formgebung oder eine einem Quadrat angenäherte Formgebung auf, wobei die jeweils nach außen liegenden und zu ihren äußeren Eckbereichen aufeinander zu laufenden Außenbegrenzungen zumindest im geringen Abstand voneinander enden und durch den so gebildeteten Abstandsraum eine Verbindung zu einem öffnungs- oder Durchbruchbereich aufweisen, der die flächige Dipolhälfte durchsetzt. Dieser Öffnungsbereich soll zumindest 20 % der Fläche der Dipolhälften aufweisen. Ansonsten können die flächigen Dipolhälften noch weitere Öffnungen aufweisen, beispielsweise sogar gitter- oder netzartig gestaltet sein. Die Flächenelemente der Dipolhälften nehmen von daher jene Funktion wahr, die bei der Ausführungsform gemäß Anspruch 1 durch die dort erwähnten elektrischen Querverbindungen oder Querstrebungen wahrgenommen wird.
- Ein dualpolarisierter Strahler mit flächigen Strahlerelementen ist grundsätzlich auch aus der US 6,028,563 bekannt geworden. Die Dipolarme oder Dipolhälften sind hier jedoch dreieckförmig gestaltet, d.h., dass die Dipolhälften selbst nicht eine quadratische Struktur aufweisen. Zudem sind die aus dem vorbekannten Stand der Technik bekannten flächigen Dipolhälften auch nicht mit Durchbrüchen versehen.
- Weitere Vorteile, Einzelheiten und Merkmale der Erfindung ergeben sich nachfolgend aus den anhand von Zeichnungen dargestellten Ausführungsbeispielen, wobei der nachfolgend erörterte Dipolstrahler 1 von seinem Grundaufbau her auch aus der bereits erwähnten WO 00/39894 bzw. der dazu parallelen US 6,313,809 B1 bekannt ist. Die beigefügten Figuren zeigen:
- Figur 1 :
- eine erfindungsgemäße perspektivische Darstellung eines Antennenarrays mit drei vertikal übereinander angeordneten erfindungsgemäßen dualpolarisierten Strahleranordnungen;
- Figur 2 :
- ein erstes Ausführungsbeispiel in schematischer Draufsicht einer erfindungsgemäßen Strahleranordnung;
- Figur 2a :
- ein zu Figur 2 abgewandeltes Ausführungsbeispiel entsprechend der Draufsicht;
- Figur 3 :
- eine perspektivische Darstellung eines konkreter gezeigten Ausführungsbeispieles eines erfindungsgemäßen Dipolstrahlers;
- Figur 3a :
- eine schematische Seitenansicht des erfindungsgemäßen dualpolarisierten Dipolstrahlers;
- Figur 4 :
- eine Draufsicht auf eine Strahleranordnung, die zu den Strahleranordnungen entsprechend den Darstellungen in Figur 1, 2 oder 3 geringfügig abgewandelt ist;
- Figur 5 :
- ein weiteres abgewandeltes Ausführungsbeispiel zu Figur 2;
- Figur 6 :
- ein weiteres zu Figur 2 und Figur 5 abewandeltes Ausführungsbeispiel;
- Figur 7 :
- ein nochmals abgewandeltes Ausführungsbeispiel in schematischer Draufsicht;
- Figur 8 :
- ein letztes weiteres abgewandeltes Ausführungsbeispiel in Ansicht in der Ebene der Dipole;
- Figur 9 :
- ein gegenüber Figur 8 leicht abgewandeltes Ausführungsbeispiel in einer Querschnittsdarstellung quer zur Reflektorebene; und
- Figur 10:
- eine Draufsicht auf ein abgewandeltes Ausführungsbeispiel mit eher flächenförmigen Dipolhälften.
- In Figur 1 ist in schematischer perspektivischer Draufsicht ein Antennenarray mit drei übereinander angeordneten dualpolisierten Dipolstrahlern 1 dargestellt, wobei die Dipolstrahler 1 in Draufsicht nach Art eines Dipolquadrates oder dipolquadratähnlich gestaltet sind. Obgleich die nachfolgend im Detail genauer erläuterten Halbdipolkomponenten bei der vertikalen Ausrichtung des Antennenarrays vertikal bzw. horizontal ausgerichtet sind oder erscheinen, strahlen die erwähnten Dipolstrahler in elektrischer Hinsicht in einer Ausrichtung von +45° bzw. -45° gegenüber der Horizontalen.
- Die drei erwähnten Dipole 1 sind in dem Ausführungsbeispiel gemäß Figur 1 vor einem Reflektorblech 33 angeordnet. Das Reflektorblech ist an seinen gegenüberliegenden seitlichen Außenränderseiten beispielsweise mit quer zur Reflektorebene, bei vorzugsweise senkrecht zur Reflektorebene verlaufenden elektrisch leitenden Randabschnitten 35 versehen.
- Anhand von Figur 1 ist auch gezeigt, dass das Dipolquadrat an den äußeren Begrenzungsecken 202 einen freien Abschnitt aufweisen kann, die nachfolgend noch im Einzelnen erörterten Halbdipol-Komponenten also im Abstand zueinander enden und hier nicht miteinander verbunden sind. Dies ist anhand der zuoberst liegenden Strahleranordnung 1a gezeigt.
- Abweichend dazu könnten die Strahleranordnungen 1 auch so ausgebildet sein, dass die Halbdipol-Komponenten in den Eckbereichen 202 elektrisch leitend miteinander verbunden sind, bevorzugt in Form einer festen mechanischen Verbindung.
- Ebenso könnten die Halbdipolhälften in den außen liegenden Eckbereichen nur mechanisch miteinander verbunden sein, also mittels nicht-leitender Ansätze oder Einsätze im außen liegenden Eckbereich. Dieser außen liegende Eckbereich wird also definiert durch die zu einer elektrischen Dipolhälfte gehörenden beiden Halbdipol-Komponenten, die sich in ihrem äußeren Eckbereich schneiden, oder zumindest deren Verlängerungen sich in einem sogenannten äußeren Eckbereich schneiden. In diesem Eckbereich können die Halbdipol-Komponenten im Abstand zueinander enden, so dass ihre außen liegenden Endbereiche diesen außen liegenden Eckbereich nicht berühren. Ihre außen liegenden Endbereiche können aber auch über eine mechanische Fixierung mechanisch und über eine elektrische Verbindung auch elektrisch miteinander in Verbindung stehen.
- Bei allen drei Strahleranordnungen 1a bis 1c ist jeweils von den Eckbereichen nach innen versetzt liegend und quer zur diagonalen Ausrichtung der Strahl- oder Polarisationsebenen eine elektrische Querverbindung 200 ausgebildet, die vorzugsweise in Form einer elektrischen Querstrebe gebildet sein kann, auf die nachfolgend ebenfalls noch näher eingegangen wird.
- Der in Figur 2 in schematischer Draufsicht und anhand der Figuren 3 und 3a etwas konkreter dargestellte Dipolstrahler wirkt - was nachfolgend noch im Einzelnen erörtert wird - in elektrischer Hinsicht wie ein mit einer Polarisation von ±45° strahlender Dipol, also beispielsweise wie ein Kreuzdipol. Der in elektrischer Hinsicht als Kreuzdipol 3 wirkende Strahler ist gestrichelt in Figur 2 eingezeichnet. Dieser in elektrischer Hinsicht als Kreuzdipol 3 wirkende Strahler mit einer ±45°-Ausrichtung gegenüber der Horizontalen wird durch einen elektrischen Dipol 3' (in +45° -Richtung geneigt) und einen dazu senkrechten Dipol 3" (mit -45° gegenüber der Horizontalen geneigt) gebildet. Jeder der beiden in elektrischer Hinsicht gebildeten Dipole 3' und 3" umfasst jeweils die zugehörigen Dipolhälften 3'a und 3'b für den Dipol 3' sowie die Dipolhälften 3"a sowie 3"b für den Dipol 3". In konstruktiver Hinsicht wird dabei die sich elektrisch ergebende Dipolhälfte 3'a durch zwei senkrecht aufeinander stehende Halbdipol-Komponenten 114b und 111a gebildet. Im gezeigten Ausführungsbeispiel enden die Halbdipol-Komponenten 114b, 111a mit ihren rechtwinklig aufeinander zu laufenden Enden im Abstand voneinander. Sie könnten dort allerdings auch verbunden sein, und zwar sowohl durch eine elektrisch leitende, metallische Verbindung, als auch durch Einfügung eines elektrisch nicht leitenden Elements oder Isolators, um z.B. eine höhere mechanische Stabilität zu gewährleisten. An den Enden der Dipolhälften können diese auch noch mit kleineren Abwinkelungen versehen sein. Ergänzend zu Figur 2 ist deshalb in Figur 2a gezeigt, dass der äußere Eckbereich 202 bei dieser Strahleranordnung geschlossen ist.
- Entsprechend wird die im Uhrzeigersinn nächste Dipolhälfte 3"b des in elektrischer Hinsicht mit -45'-Ausrichtung vorgesehenen elektrischen Dipols 3" durch die beiden Halbdipol-Komponenten 111b und 112a gebildet. Die in Verlängerung zur Dipolhälfte 3'a gebildete zweite Dipolhälfte 3'b wird durch die beiden Halbdipol-Komponenten 112b, 113a und die vierte Dipolhälfte 3"a durch die beiden Halbdipol-Komponenten 113b, 114a in analoger Weise gebildet.
- Wie in den Zeichnungen zu ersehen ist, ist nunmehr bezüglich jeder Dipolhälfte eine elektrische Verbindung oder Querstrebe 200 vorgesehen oder angeordnet, die im gezeigten Ausführungsbeispiel quer, d.h. insbesondere senkrecht auf der jeweiligen Polarisationsebene 3' bzw. 3" zu liegen kommt. Die Strebe 200 verbindet dabei jeweils zwei Halbdipol-Komponenten, nämlich die Halbdipol-Komponenten 114b und 111a, die Halbdipol-Komponenten 111b und 112a, die beiden Halbdipol-Komponenten 112b und 113a sowie die Halbdipol-Komponenten 113b und 114a. Diese elektrische Verbindung oder Querstrebe 200 wird dabei bevorzugt so angeordnet, dass sie eine maximale Länge einnimmt, also bevorzugt zwischen den beiden diagonal gegenüberliegenden inneren Eckbereichen 201 elektrisch und mechanisch angebunden ist. Diese inneren Eckbereiche 201 werden jeweils durch das Ende der symmetrischen Leitungen 115 bis 118, d.h. der jeweils zugeordneten Leitungshälfte 115a bis 118b und der sich daran anschließenden Halbdipol-Komponenten gebildet (wobei die jeweils beiden Leitungshälften, die zu einer Halbdipol-Komponente gehören, beispielsweise die beiden Leitungshälften 118b und 115a, die zur Halbdipol-Komponente 114b, 111a gehören, gegenüber einem fiktiven Nullpotential 20 betrachtet eine unsymmetrische Leitung darstellen). Mit anderen Worten liegen diese inneren Eckbereiche 201 gegenüberliegend zu dem äußeren Eckbereich 202, in welchem jeweils-zwei Halbdipol-Komponenten eines Halbdipols aufeinander zu laufen, kurz davor enden, oder über eine mechanische Fixierung miteinander mechanisch in Verbindung stehen.
- Die als Dipolquadrat angeordneten Halbdipol-Komponenten werden nunmehr durch jeweils eine symmetrische Speiseleitung 115, 116, 117 bzw. 118 gespeist. Dabei werden beispielsweise die beiden Halbdipol-Komponenten 114b und 111a, also jeweils die benachbarten orthogonal zueinander ausgerichteten Halbdipol-Komponenten, über eine gemeinsame Einspeisstelle, hier die Einspeisstelle 15' gleichphasig erregt. Die zu diesen Halbdipol-Komponenten 114b, 111a gehörende Anschlussleitungen bestehen aus jeweils zwei Leitungshälften 118b und 115a, welche einzeln betrachtet gegenüber einem fiktiven Nullpotential 20 eine unsymmetrische Leitung darstellen. Entsprechend werden beispielsweise die beiden nächsten Halbdipol-Komponenten 111b und 112a über die Leitungshälften 115b bzw. 116a mit ihrem gemeinsamen Einspeispunkt 5" elektrisch verbunden, usw. Bei dieser Verschaltung ist die jeweils zugehörige symmetrische Speiseleitung gleichzeitig so gestaltet, dass sie die mechanische Fixierung der Dipole, d.h. der Halbdipol-Komponenten, übernimmt. Dabei trägt beispielsweise von der symmetrischen Leitung 115 die eine unsymmetrische Leitungshälfte 115a die Dipolhälfte 111a und die von Leitungshälfte 115a elektrisch getrennte bevorzugt parallel verlaufende zweite Leitungshälfte 115b die zweite Dipolhälfte 111b. Mit anderen Worten tragen also jeweils die beiden zu einer symmetrischen Leitung 115 bis 118 gehörenden zugehörigen unsymmetrischen Leitungshälften jeweils die beiden in axialer Verlängerung zueinander angeordneten Dipolhälften eines Dipols 111 bis 114. Dadurch, dass die Leitungshälften, welche zu den jeweils benachbarten orthogonal aufeinander stehenden Dipolhälften führen, an ihrem Einspeispunkt elektrisch leitend verbunden sind, ergeben sich vier Zusammenschaltpunkte 15', 5", 15", 5', welche wiederum symmetrisch über Kreuz angespeist werden, wie sich insbesondere auch aus der Darstellung gemäß Figur 5 ergibt. Der dadurch entstehende Gesamtstrahler wirkt nunmehr durch die gleichphasige Erregung der Halbdipol-Komponenten 114b, 111a bzw. der Halbdipol-Komponenten 111b und 112a bzw. 112b und 113a bzw. 113b und 114a elektrisch wie ein Kreuzdipol. Durch die spezifische Anordnung der Leitungshälften, die jeweils parallel im geringen Abstand zueinander angeordnet sind und gegenphasig der Strom darin fließt, wird sichergestellt, dass die Leitungshälften selbst keinen nennenswerten Strahlungsbeitrag liefern, jede Strahlung also durch Überlappung ausgelöscht wird.
- Der Grundaufbau in Draufsicht auf die Strahleranordnung gemäß Figur 2 zeigt, dass das Strahlermodul eine in Draufsicht vierfache Symmetrie aufweist. Zwei rechtwinklig zueinander stehende Symmetrieachsen werden durch die symmetrischen Leitungen 115 und 117 bzw. 116 und 118 gebildet, wobei die dritte und vierte Symmetrieachse in Draufsicht auf die Strahleranordnung gemäß Figur 2 dazu um 45° verdreht liegt und durch die sich in elektrischer Hinsicht ergebenden Dipole 3' und 3" gebildet werden.
- In Figur 3 ist ferner noch an dem Einspeis- und Zusammenschaltpunkt 5' der jeweils eine Teil der Symmetrierung 21 und im geringfügigen Abstand gegenüberliegend zum Mittelpunkt 5 der andere Teil der Symmetrierung 21a gezeigt, welche einerseits zur mechanischen Befestigung der Dipolstruktur an dem Reflektorblech dient und andererseits den Übergang auf unsymmetrische Speiseleitungen (bspw. Koaxialleitungen) im Zusammenschaltpunkt ermöglicht.
- Entsprechend wird insbesondere in Figur 3 gezeigt, dass der Zusammenschaltpunkt 15' für die Halbdipol-Komponenten 114b und 111a sowie der gegenüberliegende Zusammenschaltpunkt 15" für die Halbdipol-Komponenten 112b und 113a im Bereich der Symmetrierung 22 und 180° bzw. dazu gegenüberliegend bei der Symmetrierung 22a gebildet ist, welche ebenfalls wieder einerseits der mechanischen Befestigung der Dipolstruktur an einem rückwärtigen Reflektorblech 33 dient und andererseits den Übergang auf die unsymmetrische Speiseleitung (bzw. Koaxialleitung) im Zusammenschaltpunkt ermöglicht. Dabei ist insbesondere in Figur 3 sehr gut zu sehen, wie über eine überkreuzschaltung mit einer ersten Schaltungsbrücke 121 und einer dazu um 90° versetzt liegenden zweiten Schaltungsbrücke 122 an den jeweils gegenüberliegenden Symmetrierungen 21 und 21a bzw. 22 und 22a die elektrische Anspeisung erfolgt. Die zuletzt genannten Schaltungsbrücken 121 und 122 sind im Vertikalabstand zueinander angeordnet, elektrisch also nicht miteinander verbunden.
- Dabei ist aus Figur 3 auch zu ersehen, dass beispielsweise die stiftförmige Brücke 122 an der in Figur 3 rückwärtig liegenden Hälfte der Symmetrierung 21 mechanisch fest angebracht und dort elektrisch mit der Symmetrierung 22 verbunden ist, wohingegen das gegenüberliegende freie Ende dieser stiftförmigen Brücke durch eine entsprechende größer bemessene Bohrung durch die vordere Hälfte der Symmetrierung 22a hinausragt, ohne mit dieser Symmetrierung 22a elektrisch verbunden zu sein. Dies eröffnet die Möglichkeit, vor der Symmetrierung 22a ein Koaxialkabel zur Anspeisung heraufzuführen, den Außenleiter an geeigneter Stelle an der Symmetrierung elektrisch anzubinden und den Innenleiter an dem freien Ende der Brücke 121 anzuschließen und darüber die Anspeisung zu bewerkstelligen. Auch der zweite Teil der Brücke 121 ist entsprechend aufgebaut, d.h. mit seinem rückwärtigen Ende an der Symmetrierung 22 mechanisch angebracht und elektrisch damit verbunden, wohingegen das gegenüberliegende freie Ende durch eine größer bemessene Bohrung ohne elektrische Kontaktierung über die in Figur 3 rechts vorne liegende Symmetrierung 21a übersteht. Dort kann das zweite Koaxialkabel von unten kommend beispielsweise parallel zur Symmetrierung verlegt werden, der Außenleiter mit der Symmetrierung elektrisch verbunden und der Innenleiter an dem freien Ende der stiftförmigen Brücke 121 angeschlossen werden.
- Nur der Vollständigkeit halber wird erwähnt, dass auch andere Anschlussmöglichkeiten ebenso möglich sind, beispielsweise dergestalt, dass ein Innenleiter zwischen den jeweiligen Symmetrierungen von unten nach oben geführt und dann an geeigneter Stelle am oberen Ende einer zugeordneten Symmetrierung elektrisch angeschlossen wird, um darüber die symmetrische Anspeisung zu ermöglichen. Der Außenleiter kann über einen Teil dieser Strecke mitgeführt oder bereits tieferliegend mit der jeweils gegenüberliegenden Hälfte der Symmetrierung elektrisch verbunden sein. Die möglichen Umsetzungen der Anspeisung sind insoweit nur beispielhaft erläutert.
- Mit anderen Worten erfolgt die Speisung also über Kreuz zwischen den Einspeispunkten 5', 5" bzw. 15', 15". Die erwähnten elektrischen Leitungshälften 115a bis 118b sind dabei jeweils paarweise symmetrisch zueinander angeordnet, d.h. die benachbarten elektrischen Leitungshälften jeweils zweier benachbart liegender Halbdipol-Komponenten verlaufen in vergleichsweise geringem Abstand zueinander parallel, wobei dieser Abstand bevorzugt dem Abstand 55 zwischen den jeweils aufeinander zu weisenden Enden der zugehörigen Dipolhälften entspricht, also beispielsweise dem Abstand zwischen den aufeinander zu weisenden Enden der Dipolhälften 111a, 111b usw. Grundsätzlich können dabei die Leitungshälften parallel zu einem rückwärtigen Reflektorblech in der Ebene der Halbdipol-Komponenten verlaufen. In Abweichung dazu ist in dem Ausführungsbeispiel gemäß Figuren 2 und 3 eine Ausführung gezeigt, bei welcher die auch die Haltereinrichtung für die Halbdipol-Komponenten darstellenden Leitungshälften von ihrer zugeordneten Symmetrierung ausgehend leicht abfallend montiert sind und in Höhe der Halbdipol-Komponenten enden, die parallel zu einem rückwärtigen Reflektorblech 33 angeordnet sein können. Dies hängt mit dem Wellenbereich der zu sendenden oder empfangenden elektromagnetischen Wellen zusammen, da die Höhe der Symmetrierung über dem Reflektorblech 33 etwa λ/4 entsprechen soll und bezüglich der Strahlungscharakteristik es ggf. wünschenswert sein kann, dass die Dipole und Dipolhälften näher gegenüber dem Reflektorblech 33 angeordnet sein sollen.
- Aufgrund dieser Anordnung wirkt demzufolge dabei ein Dipol immer gleichzeitig für die +45° und die -45° -Polarisation, wobei allerdings in Abweichung von der räumlich geometrischen Ausrichtung der einzelnen Halbdipol-Komponenten in Horizontal- und Vertikalrichtung erst durch die Kombination der Strahleranteile sich die resultierende +45'-Polarisation bzw. -45°-Polarisation, mit anderen Worten also der in elektrischer Hinsicht in Figur 2 eingezeichnete X-polarisierte Kreuzdipolstrahler 3 ergibt. Grundlage für die Wirkungsweise ist, dass sich die Ströme auf den jeweils benachbart und parallel zueinander liegenden Zu- oder Verbindungsleitungen, d.h. z.B. auf den elektrischen Leitungen 115a mit dem Strom auf der elektrischen Leitung 115b sowie der Strom auf der Leitung 116a mit jenem auf der elektrischen Leitung 116b usw. phasenmäßig so überlagern, dass diese nicht oder nur geringfügig mitstrahlen, gleichzeitig ergibt sich bei der Superposition der Ströme in den Speisepunkten eine Entkopplung der Speisepunkte 5', 5" von den Speisepunkten 15', 15".
- Nur der Vollständigkeit halber wird auch erwähnt, dass die Gestaltung der in den Zeichnungen wiedergegebenen Strahleranordnung derart ist, dass die Halbdipol-Komponenten nach außen weisende Begrenzungskanten (111a', 114b'; 112a', 111b'; 113a', 112b'; 114a', 113b') zumindest näherungsweise in Draufsicht ein Quadrat formen oder eine quadratische Struktur umgeben und begrenzen, wobei diese Begrenzungskanten jeweils am äußeren Eckbereich 202 elektrisch nicht miteinander verbunden sind.
- In Figur 1 ist dargestellt, dass unter Verwendung eines anhand von Figuren 2 bis 4 erläuterten dualpolarisierten Dipolstrahlers 1 auch ein entsprechendes Antennenarray mit mehreren bspw. in vertikaler Anbaurichtung übereinander angeordneten Dipolstrahlern 1 aufgebaut sein kann, die allesamt trotz der horizontal und vertikal ausgerichteten Halbdipol-Komponenten in elektrischer Hinsicht eine in +45' bzw. -45' polarisierte Antenne beschreiben.
- Die in Figur 1 gezeigten Strahleranordnungen sind mit ihrer zugehörigen Symmetrierung jeweils auf einem Reflektorblech 33 angeordnet, welches in Anbaurichtung der einzelnen-Strahlermodule an den gegenüberliegenden Seiten mit senkrecht zur Reflektorebene verlaufenden elektrisch leitenden Rändern 35 versehen ist.
- Abweichend von den gezeigten Ausführungsbeispielen ist es aber genauso möglich, die elektrische Einspeisung an den Dipolhälften nicht im Bereich der Symmetrierung und den an der Symmetrierung 21, 21a bzw. 22, 22a elektrisch befestigten und zudem die Haltefunktion wahrnehmenden Leitungshälften vorzunehmen. Abweichend dazu ist es möglich, dass die in den Figuren 2 bis 5 bezeichneten Elemente 115a bis 118b als nicht-leitende Tragelemente für die Dipolhälften ausgebildet sind und die Leitungen 115 bis 118 direkt von unten her durch das Reflektorblech 33 hindurch zu den Anschlussenden 215a, 215b, 216a, 216b, 217a, 217b bzw. 218a, 218b führen. Wichtig hierbei ist, dass an dem Speisepunkt der Dipolhälften ein symmetrischer oder nahezu symmetrischer Abstand erreicht wird und die Speisung der Dipolhälften in der beschriebenen Phasenlage zueinander erfolgt. Die Speiseleitungen können zudem auch längs oder parallel zu den Drahtelementen verlaufen. Dabei ist die bevorzugte Ausführungsform jene, bei der die Drahtelemente gleichzeitig elektrisch leitend sind und als Speiseleitungen dienen. Schließlich ist es ebenso denkbar, dass in einem derartigen Fall die Tragelemente 115a bis 118b für die Dipolhälften in konstruktiver Hinsicht völlig anders ausgestaltet und anders verlaufend angeordnet sind, beispielsweise von den Anschlussstellen 215a bis 218b, von der Mitte der Dipolhälften ausgehend oder vom Eckbereich der jeweils senkrecht aufeinander stehenden Dipolhälften senkrecht oder schräg nach unten auf den Reflektor 33 zu verlaufen und dort mechanisch verankert sind.
- Abweichend dazu ist ferner auch denkbar, dass der Reflektor selbst als Leiterplatine ausgebildet ist, d.h. beispielsweise als Oberseite einer Leiterplatine, auf welcher die gesamte Antennenanordnung aufgebaut ist. Die entsprechende Einspeisung kann auf der Rückseite der Leiterplatine vorgenommen werden, wobei von dort ausgehend die elektrischen Leitungshälften auf einem geeigneten Weg zu den erwähnten Anschlussstellen 215a bis 218b verlaufen. Zur Erzielung einer möglichst guten Strahlungscharakteristik ist lediglich darauf zu achten, dass diese Leitungshälften, unabhängig wie sie zu den Anschlussstellen an den Dipolhälften geführt sind, möglichst, d.h. im Wesentlichen oder zumindest annähernd parallel zueinander ausgerichtet sind, mit anderen Worten zumindest im Wesentlichen oder annähernd eine symmetrische Leitung ergeben.
- Anhand von Figur 4 ist eine Draufsicht auf eine Strahleranordnung wiedergegeben, wie sie im Prinzip her vergleichbar ist mit jener Strahleranordnung, wie sie anhand von Figur 1, Figur 2 sowie Figur 3 und 3a dargestellt ist. Die in Figur 4 in Draufsicht (also senkrecht zur Reflektorebene) dargestellte Strahleranordnung weist Halbdipol-Komponenten auf, die in den äußeren Eckbereichen 202 berührungslos im geringen Abstand zueinander enden. Die Halbdipol-Komponenten können dabei aus einem Stück gefertigt sein. Die erwähnten Querstreben 200 sind ein einstückiger Bestandteil der jeweiligen Dipolhälfte. In der Draufsicht gemäß Figur 4 sind dabei ferner die über Kreuz liegenden stiftförmigen Brücken 121 und 122 zu ersehen. In senkrecht zur Zeichen- oder Reflektorebene verlaufenden Kanälen oder Durchbrüchen 400 können die Innenleiter einer Koaxialleitung zur Speisung für die beiden Polarisationen hochgeführt werden, wobei bevorzugt am oberen Ende unmittelbar im Anschlussbereich der Außenleiter der Koaxialleitung direkt durch die metallische Tragestruktur, welche gleichzeitig zur Symmetrierung dient, gebildet wird, wohingegen der Innenleiter mit der Brücke 122 elektrisch verbunden ist, worüber die gegenüberliegende zweite Dipolhälfte 3"a elektrisch gespeist wird. Die Struktur bildet dabei selbst den Außenleiter. Für die um 90° versetzt liegende Polarisation erfolgt der Anschluss über eine Koaxialleitung ebenso derart, dass in dem anderen Kanal 400 der Außenleiter der Koaxialleitung durch die metallische Struktur selbst gebildet wird und am oberen Ende im Bereich der Dipolstrahler der Außenleiter der Koaxial- oder Speiseleitung elektrisch an der zugehörigen Dipolhälfte 3b' elektrisch angeschlossen ist, wohingegen der Innenleiter an der Brücke 121 elektrisch angeschlossen ist, die berührungslos über die andere Brücke 122 hinweg elektrisch mit der gegenüberliegenden Dipolhälfte 3'a elektrisch verbunden ist.
- Wie anhand der schematischen Draufsicht gemäß Figur 5 wiedergegeben ist, können gegebenenfalls diese elektrischen, die beiden jeweils zusammenarbeitenden Halbdipol-Komponenten elektrisch verbindenden Querstreben 200 auch an anderer Stelle angeordnet sein. Bei dem Ausführungsbeispiel gemäß Figur 5 sind diese Querstreben 200 von ihrer mittleren Position (so wie in den Figuren 1 bis 4 dargestellt) mehr zu ihrem äußeren Eckbereich 202 versetzt liegend angeordnet. In diesem Ausführungsbeispiel sind sie aber immer noch quer, d.h. senkrecht zur jeweiligen Polarisationsebene 3' und 3" angeordnet. Unter Umständen können die Querstreben 200 auch in umgekehrter Richtung versetzt liegend angeordnet sein (dies ist in Figur 5 beispielsweise strichliert eingezeichnet), wobei die elektrischen Anbindungspunkte 200' dann nicht an den Halbdipol-Komponenten und nicht an dem Ende der Halbdipol-Komponenten gegenüberliegend zu ihren äußeren Eckbereichen 202, sondern auf den symmetrischen Leitungen 115, 116, 117 und 118 liegen, d.h. auf den jeweils paarweise zusammenwirkenden Leitungshälften für eine Dipolhälfte.
- Wie anhand von Figur 6 und 7 gezeigt ist, muss diese elektrische Verbindung oder Querstrebe 200 nicht zwingend gerade verlaufen. Möglich ist auch, dass diese elektrische Verbindung oder Querstrebe 200 in Draufsicht beispielsweise zumindest leicht konvex oder konkav geformt ist. Ebenso kann die elektrische Querverbindung oder Querstrebe 200 zumindest leicht bogenförmig so gestaltet und angeordnet sein, dass der entsprechende Verbindungsabschnitt zumindest teilweise oberhalb oder unterhalb der Ebene verläuft, die durch die Halbdipol-Komponenten gebildet ist.
- Anhand von Figur 8 ist in vertikaler Querschnittsdarstellung quer zur Ebene des Reflektors 33 dargestellt (ebenso wie in Figur 9), dass die Querstreben oder Querverbindungen 200 auch aus der sonstigen Ebene der Dipolhälften nach oben hin oder nach unten hin (also vom Reflektorblech weg gerichtet oder auf dieses zugerichtet) gewölbt verlaufend ausgebildet sein können.
- Anhand von Figur 10 ist in schematischer Draufsicht gezeigt, dass eine entsprechende Strahleranordnung auch Dipolhälften aufweisen kann, die in Draufsicht ebenso quadratische oder näherungsweise quadratische Strukturen aufweisen, bei denen aber die Dipolflächen im inneren Bereich im Wesentlichen nicht frei und leer, sondern eher vollflächig gestaltet sind.
- Die anhand von Figuren 1 bis 9 erläuterte Querstrebe oder Querverbindung 200 wird bei dem Ausführungsbeispiel gemäß Figur 10 durch ein Flächenelement 200' gebildet, wobei die jeweils aufeinander zu weisenden Begrenzungskanten 115a' bis 118b' bei den Ausführungsbeispielen 1 bis 9 durch die Symmetrierungsleitungen gebildet werden, die symmetrisch und vorzugsweise parallel zueinander verlaufen. Die nach außen weisenden Begrenzungskanten 111a' bis 114b' entsprechen von der Funktion her bei den Ausführungsbeispielen nach Figuren 1 bis 9 den dort eingezeichneten Halbdipol-Komponenten 111a bis 114b. Der Öffnungsbereich 300 bei den flächenförmigen Dipolhälften 3'a bis 3"b werden bei den Ausführungsbeispielen nach den Figuren 1 bis 9 durch den entsprechenden Öffnungsbereich 300 gebildet, der durch die dort eingezeichneten Querstreben 200 und die jeweils nach außen weisenden Halbdipol-Komponenten 111a bis 113b gebildet werden. Bei dem Ausführungsbeispiel gemäß Figur 10 ist bevorzugt der äußere Eckbereich 202 ebenfalls offen gestaltet, so dass die Öffnung 300 durch diesen Abstandsraum 202 nach außen hin nicht begrenzt ist und speziell in elektrischer Hinsicht nicht geschlossen umrahmt ist. Ein nichtleitendes, lediglich der mechanischen Stabilität dienendes Eckelement kann jedoch eingesetzt werden, wie dies in Draufsicht gemäß Figur 10 für die oben rechtsliegende Dipolhälfte strichliert eingezeichnet ist. Der erwähnte Öffnungsbereich 300 beträgt vorzugsweise zumindest 20% bezogen auf die Gesamtgröße der in Draufsicht quadratischen oder quadratähnlichen Struktur oder Außenbegrenzung der jeweiligen Anordnung, die in elektrischer Hinsicht als Dipolhälfte 3'a, 3'b bzw. 3"a, 3"b wirkt.
Claims (14)
- Dualpolarisierte Strahleranordnung, mit den folgenden Merkmalen- die Strahleranordnung umfasst mehrere Dipole, die in Draufsicht nach Art eines Dipolquadrates oder dipolquadrat-ähnlich oder mit in Draufsicht dipolquadratähnlicher Umfangsstruktur angeordnet bzw. ausgebildet sind,- jeder Dipol wird mittels einer symmetrischen Leitung (115-118) gespeist,- die Strahleranordnung ist so verschaltet und wird so gespeist, dass die Strahleranordnung in elektrischer Hinsicht äquivalent zu einem Kreuzdipol mit zwei aufeinander senkrecht stehenden Polarisationsebenen (3', 3") ist, die parallel zu den beiden senkrecht aufeinander stehenden, durch die Strahleranordnung gebildeten Diagonalen verlaufen,- die in elektrischer Hinsicht zu einem Kreuzdipol äquivalenten Dipolhälften (3'a, 3'b; 3"a, 3"b) umfassen in konstruktiver Hinsicht jeweils zwei Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b), die quer und vorzugsweise senkrecht und/oder im Wesentlichen senkrecht zueinander verlaufend angeordnet sind und an ihrem gegenüber dem Zentrum der Strahleranordnung außen liegenden Eckbereich (202) im Abstand voneinander enden oder unter Verwendung eines nicht-leitenden Materials lediglich mechanisch miteinander verbunden sind,gekennzeichnet durch die folgenden weiteren Merkmale:- die jeweils zusammenenwirkenden Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b), die in elektrischer Hinsicht jeweils eine Dipolhälfte (3'a, 3'b; 3"a, 3"b) bilden, sind zusätzlich zu einer Verbindung an ihrer oder über ihre Einspeisestelle (5', 5"; 15', 15") auch über eine dazu zweite Verbindung oder Querstrebe (200) elektrisch miteinander verbunden, wobei diese zweite Verbindung oder Querstrebe (200) an den jeweils paarweise zusammenwirkenden Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) direkt oder indirekt zum außenliegenden Eckbereich (202) versetzt angreift.
- Dualpolarisierte Strahleranordnung nach Anspruch 1, dadurch gekennzeichnet, dass die elektrische Querverbindung oder Querstrebe (200) mit der jeweils zugehörigen Halbdipol-Komponente (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) und/oder der jeweils zugehörigen symmetrischen Leitung (115 - 118) an einer zum außenliegenden Eckbereich (202) entfernt liegende Stelle verbunden ist.
- Dualpolarisierte Strahleranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zwischen der Querverbindung oder Querstrebe (200) und dem außenliegenden Eckbereich (202) eine die Ebene der zugehörigen Dipolhälfte (3'a, 3'b; 3"a, 3"b) durchsetzende Öffnung (300) vorgesehen ist, deren flächenmäßige Größe zumindest 20 % der gesamten Fläche der zugehörigen Dipolhälfte (3'a, 3'b; 3"a, 3"b) entspricht, wobei die nach außen weisenden Begrenzungskanten (111a', 114b'; 112a', 111b'; 113a', 112b'; 114a', 113b') im zugehörigen äußeren Eckbereich (202) elektrisch nicht miteinander verbunden sind.
- Dualpolarisierte Strahleranordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Bereich, der durch die Querstrebe (200), die mit der Querstrebe (200) in Verbindung stehenden und der Einspeisstelle (5', 5"; 15', 15") zugewandt liegenden Anteile der jeweils beiden Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) und/oder die jeweilige Einspeisestelle (5', 5"; 15', 15") definiert ist, vollflächig ausgebildet ist, und dass die in dem jeweiligen Eckbereich (202) aufeinander zulaufenden Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) im Abstand voneinander enden, wobei-der Bereich zwischen der Querstrebe (200) und dem Eckbereich (202), der teilweise auch durch den verbleibenden Anteil der Halbdipol-Komponente (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) nach außen hin begrenzt ist, eine Öffnung oder Durchbrechung (300) aufweist.
- Dualpolarisierte Strahleranordnung nach Anspruch 4, dadurch gekennzeichnet, dass die nach außen weisenden Außenbegrenzungen (111a', 114b'; 112a', 111b'; 113a', 112b'; 114a', 113b') nach Art von Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) gebildet sind.
- Dualpolarisierte Strahleranordnung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Querstrebe oder Querverbindung (200) nach Art eines flächigen Abschnittes gebildet ist, der mit den nach außen weisenden Außenbegrenzungen (111a', 114b'; 112a', 111b'; 113a', 112b'; 114a', 113b') bzw. den dadurch nachgebildeten Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) zumindest mittelbar verbunden ist.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die elektrische Querverbindung oder Querstrebe (200) mit den jeweils zugehörigen Halbdipol-Komponenten ((111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) an einer Stelle (200') elektrisch verbunden ist, die zu dem außenliegenden Eckbereich (202) so angebunden ist, dass die elektrische Verbindungsstelle (200') zwischen dem außenliegenden Eckbereich (202) und dem gegenüberliegenden Endbereich der Halbdipol-Komponenten ((111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) liegt.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die elektrische Querverbindung (200) gerade verläuft.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die elektrische Verbindung (200) mit zumindest einer Krümmung versehen ist.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die elektrische Verbindung oder Querstrebe (200) in Draufsicht zumindest mit einer konkaven oder konvexen Krümmung versehen ist.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die elektrische Verbindung oder Querstrebe (200) in der Ebene liegt, in der auch die Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) zu liegen kommen.
- Dualpolarisierte Strahleranordnung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die elektrische Querverbindung oder Querstrebe (200) mit zumindest einer Krümmung so verläuft, dass zumindest ein Abschnitt der elektrischen Querverbindung oder Querstrebe (200) außerhalb der Ebene liegt, in der die Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) angeordnet sind.
- Dualpolarisierte Strahleranordnung nach einem der. Ansprüche 1 bis 12, dadurch gekennzeichnet, dass alle Halbdipol-Komponenten (111a, 114b; 112a, 111b; 113a, 112b; 114a, 113b) einschließlich der elektrischen Querverbindung oder Querstrebe (200) einstückig ausgebildet sind.
- Dualpolarisierte Strahleranordnung nach Anspruch 4, dadurch gekennzeichnet, dass die Öffnung oder Durchbrechung (300) eine Größe aufweist, die zumindest 20% der in elektrischer Hinsicht als Dipolhälfte (3'a, 3'b; 3"a, 3"b) wirkenden Anordnung beträgt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10320621A DE10320621A1 (de) | 2003-05-08 | 2003-05-08 | Dipolstrahler, insbesondere dualpolarisierter Dipolstrahler |
PCT/EP2004/004567 WO2004100315A1 (de) | 2003-05-08 | 2004-04-29 | Dipolstrahler, insbesondere dualpolarisierter dipolstrahler |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1620924A1 EP1620924A1 (de) | 2006-02-01 |
EP1620924B1 true EP1620924B1 (de) | 2006-12-06 |
Family
ID=33426704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04730220A Expired - Lifetime EP1620924B1 (de) | 2003-05-08 | 2004-04-29 | Dipolstrahler, insbesondere dualpolarisierter dipolstrahler |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1620924B1 (de) |
KR (1) | KR100958012B1 (de) |
CN (1) | CN2706887Y (de) |
BR (1) | BRPI0410135A (de) |
DE (2) | DE10320621A1 (de) |
ES (1) | ES2276295T3 (de) |
WO (1) | WO2004100315A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014014434A1 (de) | 2014-09-29 | 2016-03-31 | Kathrein-Werke Kg | Multiband-Strahlersystem |
RU2636259C1 (ru) * | 2016-08-10 | 2017-11-21 | Алексей Алексеевич Лобов | Двухполяризационная дипольная антенна |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202005015708U1 (de) * | 2005-10-06 | 2005-12-29 | Kathrein-Werke Kg | Dual polarisierte Dipolstrahler |
DE102006037517A1 (de) | 2006-08-10 | 2008-02-21 | Kathrein-Werke Kg | Antennenanordnung, insbesondere für eine Mobilfunk-Basisstation |
DE102006039279B4 (de) * | 2006-08-22 | 2013-10-10 | Kathrein-Werke Kg | Dipolförmige Strahleranordnung |
DE102008059268A1 (de) | 2008-11-27 | 2009-11-19 | Kathrein-Werke Kg | Einrichtung zur Lageerkennung einer Antennenanordnung |
TW201032392A (en) | 2008-12-23 | 2010-09-01 | Skycross Inc | Multi-port antenna |
KR20100095799A (ko) * | 2009-02-23 | 2010-09-01 | 주식회사 에이스테크놀로지 | 광대역 안테나 및 이에 포함된 복사 소자 |
KR101090113B1 (ko) * | 2009-02-23 | 2011-12-07 | 주식회사 에이스테크놀로지 | 유전체 부재를 사용하는 복사 소자 및 이를 포함하는 안테나 |
US8416142B2 (en) | 2009-12-18 | 2013-04-09 | Kathrein-Werke Kg | Dual-polarized group antenna |
DE102009058846A1 (de) | 2009-12-18 | 2011-06-22 | Kathrein-Werke KG, 83022 | Dualpolarisierte Gruppenantenne, insbesondere Mobilfunkantenne |
KR101230605B1 (ko) * | 2011-10-05 | 2013-02-06 | (주)하이게인안테나 | 이동통신용 지향성 섹터 안테나 및 그 제조방법 |
DE102013012305A1 (de) | 2013-07-24 | 2015-01-29 | Kathrein-Werke Kg | Breitband-Antennenarray |
DE202014009236U1 (de) | 2014-11-20 | 2014-12-18 | Kathrein-Werke Kg | Sende-Empfangs-Antennenanordnung, insbesondere Mobilfunkantenne |
DE102015007503A1 (de) | 2015-06-11 | 2016-12-15 | Kathrein-Werke Kg | Dipolförmige Strahleranordnung |
DE102015007504B4 (de) | 2015-06-11 | 2019-03-28 | Kathrein Se | Dipolförmige Strahleranordnung |
DE102016104611B4 (de) | 2016-03-14 | 2020-07-09 | Telefonaktiebolaget Lm Ericsson (Publ) | Dipolförmige Strahleranordnung |
US10148015B2 (en) | 2016-03-14 | 2018-12-04 | Kathrein-Werke Kg | Dipole-shaped antenna element arrangement |
DE102016104610A1 (de) | 2016-03-14 | 2017-09-14 | Kathrein-Werke Kg | Mehrfachhalter für eine dipolförmige Strahleranordnung und eine dipolförmige Strahleranordnung mit einem solchen Mehrfachhalter |
DE102016112257A1 (de) | 2016-07-05 | 2018-01-11 | Kathrein-Werke Kg | Antennenanordnung mit zumindest einer dipolförmigen Strahleranordnung |
US11784418B2 (en) * | 2021-10-12 | 2023-10-10 | Qualcomm Incorporated | Multi-directional dual-polarized antenna system |
KR102530491B1 (ko) * | 2021-11-03 | 2023-05-09 | 주식회사 에이스테크놀로지 | 5g 대역 안테나의 방사체 |
CN116435772B (zh) * | 2023-06-15 | 2023-09-01 | 东集技术股份有限公司 | 一种小型化低剖面双极化天线、天线组件及pda设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US577929A (en) * | 1897-03-02 | Lewis e | ||
FR968145A (de) * | 1947-06-28 | 1950-11-20 | ||
FR2751471B1 (fr) * | 1990-12-14 | 1999-02-12 | Dassault Electronique | Dispositif rayonnant a large bande susceptible de plusieurs polarisations |
US5796372A (en) * | 1996-07-18 | 1998-08-18 | Apti Inc. | Folded cross grid dipole antenna |
CA2240114A1 (en) * | 1997-07-03 | 1999-01-03 | Thomas P. Higgins | Dual polarized cross bow tie dipole antenna having integrated airline feed |
US5977929A (en) | 1998-07-02 | 1999-11-02 | The United States Of America As Represented By The Secretary Of The Navy | Polarization diversity antenna |
DE19860121A1 (de) * | 1998-12-23 | 2000-07-13 | Kathrein Werke Kg | Dualpolarisierter Dipolstrahler |
US6597324B2 (en) * | 2001-05-03 | 2003-07-22 | Radiovector U.S.A. Llc | Single piece element for a dual polarized antenna |
-
2003
- 2003-05-08 DE DE10320621A patent/DE10320621A1/de not_active Withdrawn
- 2003-11-12 CN CNU2003201006214U patent/CN2706887Y/zh not_active Expired - Lifetime
-
2004
- 2004-04-29 WO PCT/EP2004/004567 patent/WO2004100315A1/de active IP Right Grant
- 2004-04-29 DE DE502004002241T patent/DE502004002241D1/de not_active Expired - Lifetime
- 2004-04-29 EP EP04730220A patent/EP1620924B1/de not_active Expired - Lifetime
- 2004-04-29 ES ES04730220T patent/ES2276295T3/es not_active Expired - Lifetime
- 2004-04-29 BR BRPI0410135-9A patent/BRPI0410135A/pt not_active Application Discontinuation
- 2004-04-29 KR KR1020057019824A patent/KR100958012B1/ko active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014014434A1 (de) | 2014-09-29 | 2016-03-31 | Kathrein-Werke Kg | Multiband-Strahlersystem |
RU2636259C1 (ru) * | 2016-08-10 | 2017-11-21 | Алексей Алексеевич Лобов | Двухполяризационная дипольная антенна |
Also Published As
Publication number | Publication date |
---|---|
EP1620924A1 (de) | 2006-02-01 |
KR100958012B1 (ko) | 2010-05-17 |
BRPI0410135A (pt) | 2006-05-16 |
WO2004100315A1 (de) | 2004-11-18 |
DE10320621A1 (de) | 2004-12-09 |
CN2706887Y (zh) | 2005-06-29 |
ES2276295T3 (es) | 2007-06-16 |
KR20060009855A (ko) | 2006-02-01 |
DE502004002241D1 (de) | 2007-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1620924B1 (de) | Dipolstrahler, insbesondere dualpolarisierter dipolstrahler | |
EP1057224B1 (de) | Dualpolarisierter dipolstrahler | |
EP1194982B9 (de) | Antenne | |
EP0848862B1 (de) | Antennenarray | |
EP1749331B1 (de) | Mobilfunkantenne mit strahlformungselement | |
DE10256960B3 (de) | Zweidimensionales Antennen-Array | |
DE19829714B4 (de) | Antenne mit dualer Polarisation | |
EP1470615B1 (de) | Dualpolarisierte strahleranordnung | |
EP1082781B1 (de) | Antennenarray mit mehreren vertikal übereinander angeordneten primärstrahler-modulen | |
EP3411921B1 (de) | Dual polarisierte antenne | |
EP3306742A1 (de) | Mobilfunk-antenne | |
DE10012809A1 (de) | Dualpolarisierte Dipolantenne | |
EP2929589B1 (de) | Dualpolarisierte, omnidirektionale antenne | |
DE102005061636A1 (de) | Dual polarisierte Antenne | |
EP1817815A1 (de) | Zweiband-mobilfunkantenne | |
EP1772929A1 (de) | Dual polarisierte Dipolstrahler | |
EP3533110B1 (de) | Dual polarisierter hornstrahler | |
EP3220480A1 (de) | Dipolförmige strahleranordnung | |
DE10359622A1 (de) | Antenne mit zumindest einem Dipol oder einer dipolähnlichen Strahleranordnung | |
EP1525642B1 (de) | Zweidimensionales antennen-array | |
WO2016050336A1 (de) | Multiband-strahlersystem | |
DE202004008770U1 (de) | Dualpolarisierte Antenne | |
EP1481445B1 (de) | Antennenanordnung mit einem flächendipol | |
EP3333971B1 (de) | Dipolstrahlermodul |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB SE |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KINKER, ROBERT Inventor name: GOETTL, MAXIMILIAN |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB SE |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB SE |
|
RTI1 | Title (correction) |
Free format text: DIPOLE RADIATOR, IN PARTICULAR DUAL-POLARISED DIPOLE RADIATOR |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004002241 Country of ref document: DE Date of ref document: 20070118 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2276295 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070907 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20160422 Year of fee payment: 13 Ref country code: GB Payment date: 20160422 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170429 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20180705 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004002241 Country of ref document: DE Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004002241 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: KATHREIN SE, DE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004002241 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: ERICSSON AB, SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004002241 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004002241 Country of ref document: DE Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004002241 Country of ref document: DE Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20220427 Year of fee payment: 19 Ref country code: FR Payment date: 20220425 Year of fee payment: 19 Ref country code: DE Payment date: 20220427 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004002241 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |