EP1614783B1 - Induktorkern für beheizbare Galette - Google Patents

Induktorkern für beheizbare Galette Download PDF

Info

Publication number
EP1614783B1
EP1614783B1 EP04015841A EP04015841A EP1614783B1 EP 1614783 B1 EP1614783 B1 EP 1614783B1 EP 04015841 A EP04015841 A EP 04015841A EP 04015841 A EP04015841 A EP 04015841A EP 1614783 B1 EP1614783 B1 EP 1614783B1
Authority
EP
European Patent Office
Prior art keywords
inductor core
inductor
godet roll
radial
heatable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04015841A
Other languages
English (en)
French (fr)
Other versions
EP1614783A1 (de
Inventor
Klaus Meier
Thomas Digel
Roland Reiber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SSM Schaerer Schweiter Mettler AG
Original Assignee
SSM AG
SSM Schaerer Schweiter Mettler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SSM AG, SSM Schaerer Schweiter Mettler AG filed Critical SSM AG
Priority to EP04015841A priority Critical patent/EP1614783B1/de
Priority to DE502004005205T priority patent/DE502004005205D1/de
Priority to US11/172,183 priority patent/US7170386B2/en
Priority to KR1020050059254A priority patent/KR100698658B1/ko
Priority to TW094122755A priority patent/TWI294929B/zh
Priority to CNB2005100825170A priority patent/CN100518417C/zh
Priority to JP2005197464A priority patent/JP4039638B2/ja
Publication of EP1614783A1 publication Critical patent/EP1614783A1/de
Application granted granted Critical
Publication of EP1614783B1 publication Critical patent/EP1614783B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/225Mechanical characteristics of stretching apparatus
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J13/00Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass
    • D02J13/005Heating or cooling the yarn, thread, cord, rope, or the like, not specific to any one of the processes provided for in this subclass by contact with at least one rotating roll
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/14Tools, e.g. nozzles, rollers, calenders
    • H05B6/145Heated rollers

Definitions

  • the invention relates to an inductor core for an inductively heated godet and an inductor and an inductively heated godet.
  • the inductor core comprises a plurality of star-shaped radially arranged Induktorkernlamellen with radial sections and in each case an outer and an inner axial section.
  • a sleeve is disposed around the inductor core laminations with the outer axial portions of the inductor core laminations adjacent the sleeve.
  • godets are used on spinning machines or on machines for producing fibers, for example yarns, as guide and take-off rolls for the fibers to be processed.
  • Inductively heated godets are known in the art. Such godets have a magnetic inductor core, which is wound with coil windings, wherein the coil windings can be acted upon by an electrical alternating current.
  • the inductor core causes bundling and amplification of the magnetic field generated by the current-carrying coil windings.
  • electrical eddy currents are induced in electrically conductive parts of the galette, which heat the electrically conductive parts and thus the galette.
  • gray iron inductor cores made of gray cast iron. Although gray iron inductor cores can be produced inexpensively, even at low magnetic field strengths, ie at approximately 1100 VA, the inductor cores become magnetically saturated, which impedes penetration of the magnetic field generated by the electrical current flowing in the coil windings into the inductor core. High heating capacities that make it possible to heat the surfaces of the godet in contact with the fibers to be processed to a temperature of 240 ° C. and above, which is necessary for various processing methods of fibers, are therefore difficult to achieve with gray iron inductor cores. In addition, electrical eddy currents are also induced in such inductor cores. This leads to a heating of the inductor core itself, which makes a rapid control of the galette temperature difficult.
  • inductors with laminated inductor cores are known.
  • inductor core laminations having radial sections and each having an outer and an inner axial section are arranged around an inner tube such that the inductor core laminations each adjoin the outer surface of the inner tube with their inner axial section.
  • the Induktorkernlamellen are welded to the inner axial portion of each of the outer surface of the inner tube.
  • the Induktorkernlamellen are made of transformer sheet.
  • the inductor core is wound with coil windings. When wrapping care must be taken that insulation of the wire from which the coil windings are constructed is not damaged.
  • Laminated inductor cores prevent, according to a laminated Transformer core, the formation of eddy currents in the inductor core. If the sleeve is made of an electrically conductive material, eg of steel, eddy currents are induced in the sleeve which lead to a heating of the sleeve and thus of the godet, into which the inductor core is inserted. The inductor core itself does not heat up significantly by laminating the inductor core. Local heating is achieved close to the surface of the galette. Laminated inductor cores have significantly higher magnetic saturation limits than gray iron inductor cores due to the material used to make the fins, which allows much higher magnetic fields to be generated by the inductors.
  • a disadvantage of the known laminated inductor cores is that the Induktorkernlamellen must be individually welded to the inner tube. Furthermore, it is complicated to arrange the inductor core lamellae in a star shape, ie spaced apart from one another at the outer diameter.
  • the sheets from which the Induktorkernlamellen are made they are provided at their outer areas with a nose as a spacer. When assembling the Induktorkerns the sheets are then arranged individually. For better fixation, the sheets can be fixed to a sleeve with a weld seam, whereby disadvantageous eddy currents occur during operation of a galette equipped with such an inductor core.
  • the pamphlets DE 19 57 110 A1 and CH 467 363 A each disclose a heatable Gallette with an inductor core, which comprises a plurality of star-shaped radially arranged Induktorkernlamellen, wherein formed as locking fixation means are provided.
  • the latches are formed circumferentially on Abschlußdorfer so that the Induktorkernlamellen are secured against slipping in the radial direction.
  • the invention has for its object to provide an inductor core and an inductor for an inductively heated godet and an inductively heated godet, which avoid the disadvantages of the prior art and in particular are easy to manufacture and allow high heat output.
  • the task with respect to the inductor core is achieved by an inductor core for a heatable godet with a plurality of star-shaped radially arranged inductor core lamellae with radial sections and in each case one outer and one inner axial section.
  • the inductor core has fixing means designed as latches, wherein the fixing means are arranged to fix the inductor core lamellae at their radial sections to termination plates each having a surface complementary to the radial sections.
  • the inductor core laminations are arranged between the finalists.
  • the locking means formed as locking means are formed as radially outwardly extending arranged on the Abschlußstellern and at the radial sections of tongue and groove locks.
  • the latches are designed according to tongue and groove connections, wherein preferably the radial sections of the inductor core lamellae are inserted as a spring into mating complementary grooves in the termination plates, that is to say latched. This is a particularly easy to manufacture embodiment of the fixative.
  • the fixing means may be arranged to lock the Induktorkernlamellen with their inner axial sections on an outer surface of an inner tube with the inner tube.
  • the inductor core therefore has termination plates each with a surface that is complementary to the radial sections.
  • the Induktorkernlamellen are arranged between the Abschlußstellern and the fixing means are adapted to fix the Induktorkernlamellen at the radial portions of the Abschlußstellern.
  • the complementary surfaces of the terminator points in the direction of the radial sections of the Induktorkernlamellen.
  • the surfaces have a shape that shapes the radial sections. In the simplest case, the radial sections and / or the axial sections are straight edges of, preferably punched, sheets.
  • impressions on the surfaces of the end plates are designed as grooves that extend radially outward from a center point of the respective plate and into which in each case a radial section of the inductor core lamellae can be inserted. This leads to a positional fixation of the inductor core laminations relative to the termination plates.
  • the Induktorkernlamellen be through easy assembly and / or mating fixed to the end plates or the inner tube.
  • a laminated inductor core is provided which combines the advantages of known laminated inductor cores with a simple and inexpensive manufacturability. With the inductor core according to the invention heating powers of 1000 watts and more can be achieved, whereby the coming into contact with the fibers in contact surfaces of a galette can be heated above 240 ° C. It is a precise heating with rapid temperature changes possible. Furthermore, a change in the inductor core length is very easily possible by varying the length of the inductor core lamellae, without incurring additional expense during assembly of the inductor core.
  • the inductor core lamellae are formed as cuboidal packets of sheets, preferably with integrally formed spacers.
  • cuboidal laminations can be produced very cheaply from punched sheet metal parts.
  • the arrangement of a plurality of cuboid laminated cores facilitates the assembly of the inductor core according to the invention over an embodiment with many individual sheets as Induktorkernlamellen, wherein the magnetic properties may have the same values.
  • the spacers prevent that the sheets can be electrically conductively connected over a large area, whereby the formation of eddy currents is further complicated.
  • a regular distance between the sheets is achieved, creating a symmetrical magnetic field and thus a uniform heating of the godet can be achieved.
  • the sheets are preferably formed as stampings. This allows a simple and rapid production of Induktorkernlamellen.
  • the Induktorkernlamellen can preferably be made of transformer sheet, for example punched.
  • the catches particularly preferably each comprise a peripheral groove in the end plates and complementary elevations on the radial sections and radial grooves complementary to the radial sections in the end plates.
  • This embodiment of the latches is particularly suitable for the positional fixing of inductor core lamellae designed as a package of sheets. The packets are thereby prevented by the circumferential groove from slipping in the radial direction and by the radial groove from slipping and / or twisting perpendicular to the radial direction.
  • the Induktorkernlamellen on their outer axial sections led out radial section extensions of the radial sections.
  • This shape of the inductor core lamellae enables effective removal of the magnetic field from the region of the inductor core into electrically conductive parts of the godet. These parts can be heated up very quickly and effectively.
  • a position fixation of a sleeve provided with coil windings on the Induktorkernlamellen may result.
  • the terminators are preferably screwed together with axially extending, preferably in intermediate spaces between the Induktorkernlamellen, screws. Such screwing allows a stable fixation of the inductor core lamellae in the axial direction of the inductor core.
  • the terminators and the inductor core lamellae are held together axially.
  • the screws themselves additionally amplify a generated magnetic field when passed between the inductor core laminations.
  • the terminators are preferably made of non-magnetic material, e.g. made of aluminum. A field gain in the axial direction out of the region of the inductor core is thereby avoided.
  • An inductor according to the invention comprises, in addition to an inductor core according to the invention, coil windings, wherein the coil windings are wound onto the inductor core.
  • the coil windings can also be wound onto a sleeve enclosing the inductor core.
  • the bobbin i. the coil windings on the sleeve, can then be prefabricated.
  • the Induktorkern can be inserted into the bobbin or the Induktorkernlamellen are individually inserted into the sleeve for mounting the inductor and subsequently the end plates are added, wherein the fixing means, i.
  • the locking be positioned appropriately and optionally subsequently the inductor core is screwed axially.
  • a heatable godet according to the invention has a cylindrical basic shape, wherein an inductor according to the invention is arranged in the godet.
  • FIG. 1 shows an inductor core 10 according to the invention.
  • the inductor core 10 has a plurality of star-shaped radially arranged inductor core fins 11 with radial sections 12 and in each case an outer axial section 13 and an inner axial section.
  • the inductor core 10 comprises two termination plates 19, 20, preferably made of a non-magnetic material, eg aluminum, each having a surface 21 complementary to the radial sections 12 and fixing means 22.
  • the inductor core lamellae 11 are arranged between the termination plates 19, 20.
  • the fixing means 22 are arranged, the Induktorkernlamellen 11 at the radial portions 12th to fix the termination plates 19, 20.
  • the Induktorkernlamellen 11 have on the outer axial sections 13 led out Radialabsacrificingsverinrungen 14 of the radial sections 12.
  • An end plate 19 is shown folded away to illustrate the complementary surface 21 and thus the fixing means 22 in Figure 1a.
  • the fixing means 22 are formed as arranged radially on the Abschlußstellern 19, 20 and the radial portions 12 notches 23.
  • the latches are formed from the regions of the inductor core lamellae 11 adjoining the radial sections 12 and radial grooves 28 in the termination plates 19, 20.
  • the radial grooves 28 are slots in the termination plates 19, 20 which correspond in length and width to the radial sections 12 of the inductor core lamellae 11.
  • the inductor core fins 11 are arranged around an inner pipe 25 such that the inner axial portions of the inductor core fins 11 adjoin the inner pipe 25.
  • FIG. 2 shows a preferred embodiment of an inductor core according to the invention with inductor core lamellae 11 formed as plates which are substantially cuboid-shaped packets 31.
  • inductor core lamellae 11 formed as plates which are substantially cuboid-shaped packets 31.
  • eight packets 31, are provided for the radial grooves 28 in the strictlytellern 19, 20, arranged in a star shape.
  • the Induktorkernlamellen 11, including the individual sheets from which the Induktorkernlamellen are joined together, have over the outer axial sections 13 led out Radialabsacrificingsverinronne 14 of the radial sections 12.
  • the latches are each a circumferential groove 26 for radially fixing the Induktorkernlamellen 11 in the complicattellern 19, 20 and complementary elevations 27 on the radial sections 12 of the Induktorkernlamellen 11, and to the radial sections 12 of the Induktorkernlamellen 11 complementary radial grooves 28 in the conspiracytellern 19th , 20 trained.
  • the termination plates 19, 20 are screwed together with axially extending, guided in intermediate spaces between the Induktorkernlamellen 11 screws 30.
  • the sheets from which the Induktorkernlamellen are assembled, may be formed as stamped parts. The individual sheets may also be insulated from each other with an electrically insulating layer.
  • FIG. 3 one is shown as a package 31 of inductor core laminations 11 as used to construct an inductor core as shown in FIG.
  • the package 31 comprises six sheets.
  • the individual inductor core lamella 11 has a radial section 12, wherein a radial section extension 14 is led out beyond the outer axial section 13 of the inductor core lamella 11.
  • the inductor core lamella 11 has elevations 27. These elevations 27 are suitable, as a package 31 of Induktorkernlamellen 11, as shown in Figure 2, according to a tongue and groove connection, in circumferential grooves in the surfaces ofußtellern to lock with the motiftellern.
  • the individual sheets of the package 31 have one of the described form of Induktorkernlamelle 11 corresponding shape.
  • FIG. 4 shows an inductively heatable godet according to the invention in cross-section, with only an upper half of the godet being illustrated above the axis of rotation of the godet.
  • the inductor core 10, the coil windings 32, the godet casing 37 of the cylinder forming the basic shape of the godet, and the termination plates 19, 20 are shown.
  • the godet casing 37 forms a short-circuit ring for the magnetic field lines 34 of the magnetic field induced by the inductor core 10. About an example copper ring 33, the induced current is amplified.
  • the invention is not limited to the embodiments given above. Rather, a number of variants are conceivable, which make use of the features of the invention even with fundamentally different type of execution.
  • an inductor core 10 for a heated godet with a plurality of star-shaped radially arranged Induktorkernlamellen 11 with radial sections 12 and each having an outer axial section 13 and an inner axial section.
  • the inductor core 10 has termination plates 19, 20 each with a surface 21 complementary to the radial sections 12 and fixing means 22, wherein the inductor core lamellae 11 are arranged between the termination plates 19, 20 and wherein the fixing means 22 are arranged are to fix the Induktorkernlamellen 11 at the radial portions 12 to thennentellern 19, 20 or alternatively and / or on the outer surface of an inner tube.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

  • Die Erfindung betrifft einen Induktorkern für eine induktiv beheizbare Galette sowie einen Induktor und eine induktiv beheizbare Galette. Der Induktorkern umfasst mehrere sternförmig radial angeordnete Induktorkernlamellen mit Radialabschnitten und jeweils einem äußeren und einem inneren Axialabschnitt. Bei dem Induktor ist eine Hülse um die Induktorkernlamellen herum angeordnet, wobei die äußeren Axialabschnitte der Induktorkernlamellen an die Hülse angrenzen. Derartige Galetten werden an Spinnmaschinen oder an Maschinen zur Herstellung von Fasern, z.B. Garnen, als Leit- und Abzugsrollen für die zu verarbeitenden Fasern eingesetzt.
  • Induktiv beheizbare Galetten sind im Stand der Technik bekannt. Derartige Galetten weisen einen magnetischen Induktorkern auf, der mit Spulenwicklungen umwickelt ist, wobei die Spulenwicklungen mit einem elektrischen Wechselstrom beaufschlagbar sind. Die Spulenwicklungen bilden zusammen mit dem Induktorkern einen Induktor, der eine induktive Heizung der Galette ermöglicht. Der Induktorkern bewirkt dabei eine Bündelung und Verstärkung des von den stromdurchflossenen Spulenwicklungen erzeugten magnetischen Feldes. Durch das vom Induktor induzierte magnetische Feld werden in elektrisch leitenden Teilen der Galette elektrische Wirbelströme induziert, die die elektrisch leitenden Teile und damit die Galette aufheizen.
  • Es sind Induktorkerne aus Grauguss bekannt. Induktorkerne aus Grauguss sind zwar preiswert herstellbar, die Induktorkerne gehen jedoch bereits bei geringen magnetischen Feldstärken, d.h. bei ca. 1100 VA in magnetische Sättigung über, was ein Eindringen des, vom in den Spulenwicklungen fließenden elektrischen Strom erzeugten, magnetischen Feldes in den Induktorkern erschwert. Hohe Heizleistungen, die es ermöglichen, die mit den zu verarbeitenden Fasern in Berührung kommenden Oberflächen der Galette auf eine, bei verschiedenen Bearbeitungsverfahren von Fasern notwendige, Temperatur von 240°C und darüber zu erhitzen, sind daher mit Induktorkernen aus Grauguss nur schwer erreichbar. Außerdem werden in derartigen Induktorkernen ebenfalls elektrische Wirbelströme induziert. Dies führt zu einer Aufheizung des Induktorkerns selbst, was eine rasche Steuerung der Galettentemperatur erschwert.
  • Mit einer Leistungsaufnahme der Galette von 1100 VA lassen sich Temperaturen von 240°C erreichen, jedoch nur bei geringen Umdrehungsgeschwindigkeiten der Galette. Die meiste Leistung wird aufgebracht, um Wärmeverluste der schnell rotierenden Galette an die Umgebung auszugleichen. Mit steigender Umdrehungsgeschwindigkeit nimmt dieser Wärmeverlust quadratisch zu. 1100 VA stellt eine Leistungsgrenze für eine Galette der Baugröße von 90 mm Länge und 100 mm Durchmesser dar. Größere Galetten lassen auch mit einem Graugussinduktorkern höhere Heizleistungen zu. Eine Vergrößerung der Galette führt jedoch zu einer größeren Galettenoberfläche, wodurch der zu dieser Oberfläche proportionale Heizenergieverlust zunimmt. Dadurch wird ein großer Anteil der durch die Vergrößerung der Galette gewonnenen Heizleistung kompensiert.
  • Weiter sind Induktoren mit lamellierten Induktorkernen bekannt. Bei derartigen Induktorkernen sind sternförmig radial abstehend angeordnete Induktorkernlamellen mit Radialabschnitten und jeweils einem äußeren und einem inneren Axialabschnitt um ein Innenrohr herum derart angeordnet, dass die Induktorkernlamellen mit deren innerem Axialabschnitt jeweils an die Außenoberfläche des Innenrohres angrenzen. Die Induktorkernlamellen sind dabei mit deren inneren Axialabschnitt jeweils an die Außenoberfläche des Innenrohres angeschweißt. Die Induktorkernlamellen sind dabei aus Transformatorenblech hergestellt. Der Induktorkern ist mit Spulenwicklungen umwickelt. Beim Umwickeln muss daruf geachtet werden, dass eine Isolierung des Drahtes, aus dem die Spulenwicklungen aufgebaut sind, nicht beschädigt wird. Lamellierte Induktorkerne verhindern, entsprechend einem lamellierten Transformatorkern, das Ausbilden von Wirbelströmen im Induktorkern. Ist die Hülse aus einem elektrisch leitfähigen Material, z.B. aus Stahl, gefertigt, so werden in der Hülse Wirbelströme induziert, die zu einem Aufheizen der Hülse und damit der Galette, in die der Induktorkern eingeschoben ist, führen. Der Induktorkern selbst heizt sich durch das Lamellieren des Induktorkerns nicht wesentlich auf. Es wird eine lokale Aufheizung nahe an der Oberfläche der Galette erreicht. Lamellierte Induktorkerne weisen aufgrund des für die Herstellung der Lamellen verwendeten Materials deutlich höhere magnetische Sättigungsgrenzen als Induktorkerne aus Grauguss auf, wodurch wesentlich höhere magnetische Felder mittels der Induktoren erzeugt werden können. Nachteilig bei den bekannten lamellierten Induktorkernen ist es, dass die Induktorkernlamellen einzeln mit dem Innenrohr verschweißt werden müssen. Weiter ist es aufwändig, die Induktorkernlamellen sternförmig, d.h. am äußeren Durchmesser gegeneinander beabstandet, anzuordnen. Die Bleche, aus denen die Induktorkernlamellen gefertigt sind, werden dazu an deren äußeren Bereichen mit einer Nase als Abstandshalter versehen. Beim Zusammenbau des Induktorkerns werden die Bleche dann einzeln angeordnet. Zur besseren Fixierung können die Bleche mit einer Schweissnaht an einer Hülse fixiert werden, wodurch nachteilige Wirbelströme beim Betrieb einer mit einem derartigen Induktorkern ausgestatteten Galette entstehen.
  • Mit lamellierten Induktorkernen sind zwar hohe Heizleistungen erreichbar, sie sind jedoch aufwändig in der Fertigung und daher kostenintensiv.
  • Die Druckschriften DE 19 57 110 A1 und CH 467 363 A offenbaren jeweils eine beheizbare Gallette mit einem Induktorkern, der mehrere sternförmig radial angeordnete Induktorkernlamellen umfasst, wobei als Verrastungen ausgebildete Fixierungsmittel vorgesehen sind. Die Verrastungen sind an Abschlusstellern umlaufend ausgebildet, so dass die Induktorkernlamellen gegen ein Verrutschen in radialer Richtung gesichert sind.
  • Die Druckschrift US 3 448 233 offenbart eine beheizbare Gallette mit einem Induktorkern, der mehrere sternförmig radial angeordnete Induktorkernlamellen aufweist, die als quaderförmige Pakete aus Blechen gebildet sind.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Induktorkern und einen Induktor für eine induktiv beheizbare Galette sowie eine induktiv beheizbare Galette bereitzustellen, welche die Nachteile des Standes der Technik vermeiden und insbesondere einfach herzustellen sind und eine hohe Heizleistung ermöglichen.
  • Diese Aufgabe wird durch den Induktorkern nach Anspruch 1, den Induktor nach Anspruch 9 und die Galette nach Anspruch 10 gelöst. Die abhängigen Ansprüche stellen bevorzugte Ausführungsformen der Erfindung dar.
  • Die Aufgabe hinsichtlich des Induktorkerns wird durch einen Induktorkern für eine beheizbare Galette mit mehreren sternförmig radial angeordneten Induktorkernlamellen mit Radialabschnitten und jeweils einem äußeren und einem inneren Axialabschnitt gelöst. Der Induktorkern weist als Verrastungen ausgebildete Fixierungsmittel auf, wobei die Fixierungsmittel eingerichtet sind, die Induktorkernlamellen an deren Radialabschnitten an Abschlusstellern mit jeweils einer zu den Radialabschnitten komplementären Oberfläche zu fixieren. Die Induktorkernlamellen sind dabei zwischen den Abschlusstellern angeordnet. Die als Verrastungen ausgebildeten Fixierungsmittel sind als radial nach außenverlaufende an den Abschlusstellern und an den Radialabschnitten angeordnete Nut- und Feder-Verrastungen ausgebildet. Die Verrastungen sind gemäß Nut- und Feder-Steckverbindungen ausgeführt, wobei bevorzugt die Radialabschnitte der Induktorkernlamellen als Feder in dazu passende komplementäre Nuten in den Abschlusstellern eingesteckt, also verrastet, werden. Hierbei handelt es sich um eine besonders leicht zu fertigende Ausführungsform der Fixierungsmittel.
  • Zusätzlich können die Fixierungsmittel eingerichtet sein, die Induktorkernlamellen mit deren inneren Axialabschnitten an einer Außenoberfläche eines Innenrohrs mit dem Innenrohr zu verrasten. Der Induktorkern weist also Abschlussteller mit jeweils einer zu den Radialabschnitten komplementären Oberfläche auf. Die Induktorkernlamellen sind zwischen den Abschlusstellern angeordnet und die Fixierungsmittel sind eingerichtet, die Induktorkernlamellen an deren Radialabschnitten an den Abschlusstellern zu fixieren. Die komplementären Oberflächen der Abschlussteller weisen in Richtung der Radialabschnitte der Induktorkernlamellen. Die Oberflächen weisen eine Formgebung auf, die die Radialabschnitte abformt. Im einfachsten Fall handelt es sich bei den Radialabschnitten und/oder den Axialabschnitten um gerade Kanten von, bevorzugt ausgestanzten, Blechen. Die Abformung auf den Oberflächen der Abschlussteller sind als radial von einem Mittelpunkt des jeweiligen Tellers nach außen verlaufende Nuten, in die jeweils ein Radialabschnitt der Induktokernlamellen eingesteckt werden kann, ausgebildet. Dies führt zu einer Lagefixierung der Induktorkernlamellen relativ zu den Abschlusstellern.
  • Zur Herstellung des erfindungsgemäßen Induktorkerns sind keine Schweißvorgänge notwendig. Die Induktorkernlamellen werden durch einfaches Zusammensetzen und/oder Zusammenstecken an den Abschlusstellern oder dem Innenrohr lagefixiert. Es wird ein lamellierter Induktorkern bereitgestellt, der die Vorteile von bekannten lamellierten Induktorkernen mit einer einfachen und kostengünstigen Herstellbarkeit verbindet. Mit dem erfindungsgemäßen Induktorkern sind Heizleistungen von 1000 Watt und mehr erreichbar, wodurch die mit zu bearbeitenden Fasern in Kontakt kommenden Oberflächen einer Galette auf über 240°C aufgeheizt werden können. Es ist eine präzise Aufheizung mit raschen Temperaturveränderungen möglich. Weiter ist eine Veränderung der Induktorkernlänge sehr einfach über eine Variation der Länge der Induktorkernlamellen möglich, ohne dass zusätzlicher Aufwand bei der Montage des Induktorkerns anfällt.
  • Besonders bevorzugt sind die Induktorkernlamellen als quaderförmige Pakete aus Blechen, bevorzugt mit angeformten Abstandshaltern, gebildet. Quaderförmige Blechpakete lassen sich wie bei Transformatoren sehr günstig aus gestanzten Blechteilen fertigen. Die Anordnung von mehreren quaderförmigen Blechpaketen erleichtert die Montage des erfindungsgemäßen Induktorkerns gegenüber einer Ausführungsform mit vielen einzelnen Blechen als Induktorkernlamellen, wobei die magnetischen Eigenschaften gleiche Werte haben können. Die Abstandshalter verhindern, dass die Bleche großflächig elektrisch leitend verbunden sein können, wodurch die Ausbildung von Wirbelströmen zusätzlich erschwert wird. Außerdem wird ein regelmäßiger Abstand zwischen den Blechen erreicht, wodurch ein symmetrisches magnetisches Feld erzeugt und damit eine gleichmäßige Aufheizung der Galette erreicht werden kann.
  • Die Bleche sind bevorzugt als Stanzteile ausgebildet. Dies ermöglicht eine einfache und rasche Fertigung der Induktorkernlamellen. Die Induktorkernlamellen können bevorzugt aus Transformatorenblech gefertigt, z.B. ausgestanzt werden.
  • Die Verrastungen umfassen besonders bevorzugt jeweils eine umlaufende Nut in den Abschlusstellern und dazu komplementären Erhebungen auf den Radialabschnitten und zu den Radialabschnitten komplementäre radiale Nuten in den Abschlusstellern. Diese Ausführungsform der Verrastungen eignet sich insbesondere für die Lagefixierung von als Paket von Blechen ausgeführten Induktorkernlamellen. Die Pakete werden dabei durch die umlaufende Nut an einem Verrutschen in radialer Richtung und durch die radiale Nut an einem Verrutschen und/oder Verdrehen senkrecht zur radialen Richtung gehindert.
  • Besonders vorteilhaft weisen die Induktorkernlamellen über deren äußere Axialabschnitten herausgeführte Radialabschnittsverlängerungen der Radialabschnitte auf. Diese Form der Induktorkernlamellen ermöglicht ein effektives Herausführen des magnetischen Feldes aus dem Bereich des Induktorkerns in elektrisch leitende Teile der Galette. Diese Teile können dadurch besonders rasch und effektiv aufgeheizt werden. Zusätzlich kann sich eine Lagefixierung einer mit Spulenwicklungen versehenen Hülse auf den Induktorkernlamellen ergeben.
  • Die Abschlussteller sind bevorzugt mit axial verlaufenden, bevorzugt in Zwischenräumen zwischen den Induktorkernlamellen geführten, Schrauben miteinander verschraubt. Die derartige Verschraubung ermöglicht eine stabile Fixierung der Induktorkernlamellen in axialer Richtung des Induktorkerns. Die Abschlussteller und die Induktorkern lamellen werden axial fest zusammengehalten. Die Schrauben selbst verstärken ein erzeugtes magnetisches Feld zusätzlich, wenn sie zwischen den Induktorkernlamellen geführt sind.
  • Die Abschlussteller sind bevorzugt aus nicht magnetischem Material, z.B. aus Aluminium, gefertigt. Eine Feldverstärkung in axialer Richtung aus dem Bereich des Induktorkerns heraus wird dadurch vermieden. Ein erfindungsgemäßer Induktor umfasst zusätzlich zu einem erfindungsgemäßen Induktorkern Spulenwicklungen, wobei die Spulenwicklungen auf den Induktorkern aufgewickelt sind. Die Spulenwicklungen können auch auf eine den Induktorkern umschließende Hülse aufgewickelt sein. Der Spulenkörper, d.h. die Spulenwicklungen auf der Hülse, kann dann vorgefertigt werden. Dabei kann der Induktorkern in den Spulenkörper eingeschoben werden oder die Induktorkernlamellen werden zur Montage des Induktors einzeln in die Hülse eingefügt und nachfolgend werden die Abschlussplatten angefügt, wobei die Fixierungsmittel, d.h. bevorzugt die Verrastungen, passend positioniert werden und gegebenenfalls nachfolgend der Induktorkern axial verschraubt wird.
  • Eine erfindungsgemäße beheizbare Galette hat eine zylindrische Grundform, wobei in der Galette ein erfindungsgemäßer Induktor angeordnet ist.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
    • Figur 1 zeigt einen erfindungsgemäßen Induktorkern, wobei ein Abschlussteller zur Illustration der komplementären Oberfläche und damit der Fixierungsmittel in Figur 1a weggeklappt dargestellt ist.
    • Figur 2 zeigt eine bevorzugte Ausführungsform eines erfindungsgemäßen Induktorkerns mit als quaderförmige Pakete aus Blechen ausgebildeten Induktorkernlamellen.
    • Figur 3 zeigt eine als ein Paket von Blechen ausgebildete Induktorkernlamelle, wie diese zum Aufbau eines Induktorkerns gemäß der Darstellung in Figur 2 verwendet ist.
    • Figur 4 zeigt eine erfindungsgemäße induktiv beheizbare Galette im Querschnitt.
  • Die Figuren der Zeichnungen zeigen den erfindungsgemäßen Gegenstand stark schematisiert und sind nicht maßstäblich zu verstehen. Die einzelnen Bestandteile des erfindungsgemäßen Gegenstandes sind so dargestellt, dass ihr Aufbau gut gezeigt werden kann.
  • In Figur 1 ist ein erfindungsgemäßer Induktorkern 10 dargestellt. Der Induktorkern 10 weist mehrere sternförmig radial angeordnete Induktorkernlamellen 11 mit Radialabschnitten 12 und jeweils einem äußeren Axialabschnitt 13 und einem inneren Axialabschnitt auf. Der Induktorkern 10 umfasst zwei, bevorzugt aus einem nichtmagnetischen Material, z.B. Aluminium, gefertigte Abschlussteller 19, 20 mit jeweils einer zu den Radialabschnitten 12 komplementären Oberfläche 21 und Fixierungsmittel 22. Die Induktorkernlamellen 11 sind zwischen den Abschlusstellern 19, 20 angeordnet. Die Fixierungsmittel 22 sind eingerichtet, die Induktorkernlamellen 11 an deren Radialabschnitten 12 an den Abschlusstellern 19, 20 zu fixieren. Die Induktorkernlamellen 11 weisen über deren äußeren Axialabschnitten 13 herausgeführte Radialabschnittsverlängerungen 14 der Radialabschnitte 12 auf. Ein Abschlussteller 19 ist zur Illustration der komplementären Oberfläche 21 und damit der Fixierungsmittel 22 in Figur 1a weggeklappt dargestellt. Die Fixierungsmittel 22 sind als radial an den Abschlusstellern 19, 20 und an den Radialabschnitten 12 angeordnete Verrastungen 23 ausgebildet. Die Verrastungen werden aus den Bereichen der Induktorkernlamellen 11, die an die Radialabschnitte 12 angrenzen, und radialen Nuten 28 in den Abschlusstellern 19, 20 gebildet. Im einfachsten Fall handelt es sich bei den radialen Nuten 28 um Schlitze in den Abschlusstellern 19, 20, die in Länge und Breite den Radialabschnitten 12 der Induktorkernlamellen 11 entsprechen. Die Induktorkernlamellen 11 sind um ein Innenrohr 25 herum derart angeordnet, dass die inneren Axialabschnitte der Induktorkernlamellen 11 an das Innenrohr 25 angrenzen.
  • Ein Verrutschen der Induktorkernlamellen in radialer Richtung nach innen wird dadurch verhindert. Es ist jedoch auch ein Verzicht auf ein Innenrohr möglich, da die Induktorkernlamellen in radialer Richtung durch entsprechende Ausbildung der Fixierungsmittel an den Abschlusstellern 19, 20 lagefixiert werden können.
  • In Figur 2 ist eine bevorzugte Ausführungsform eines erfindungsgemäßen Induktorkerns mit als nahezu quaderförmige Pakete 31 aus Blechen ausgebildeten Induktorkernlamellen 11 gezeigt. Z.B. können acht Pakete 31, für die radiale Nuten 28 in den Abschlusstellern 19, 20 vorgesehen sind, sternförmig angeordnet sein. Die Induktorkernlamellen 11, also auch die einzelnen Bleche, aus denen die Induktorkernlamellen zusammengefügt sind, weisen über deren äußere Axialabschnitte 13 herausgeführte Radialabschnittsverlängerungen 14 der Radialabschnitte 12 auf. Die Verrastungen sind als jeweils eine umlaufende Nut 26 zur radialen Fixierung der Induktorkernlamellen 11 in den Abschlusstellern 19, 20 und dazu komplementäre Erhebungen 27 auf den Radialabschnitten 12 der Induktorkernlamellen 11, und zu den Radialabschnitten 12 der Induktorkernlamellen 11 komplementäre radiale Nuten 28 in den Abschlusstellern 19, 20 ausgebildet. Die Abschlussteller 19, 20 sind mit axial verlaufenden, in Zwischenräumen zwischen den Induktorkernlamellen 11 geführten Schrauben 30 miteinander verschraubt. Die Bleche, aus denen die Induktorkernlamellen zusammengefügt sind, können als Stanzteile ausgebildet sein. Die einzelnen Bleche können ferner gegeneinander mit einer elektrisch isolierenden Schicht isoliert sein.
  • In Figur 3 ist eine als ein Paket 31 von Induktorkernlamellen 11, wie diese zum Aufbau eines Induktorkerns gemäß der Darstellung in Figur 2 verwendet ist, dargestellt. Das Paket 31 umfasst sechs Bleche. Die einzelne Induktorkernlamelle 11 weist einen Radialabschnitt 12 auf, wobei eine Radialabschnittsverlängerung 14 über den äußeren Axialabschnitt 13 der Induktorkernlamelle 11 heraus geführt sind. An den Radialabschnitten 12, im Bereich der Radialabschnittsverlängerung 14, weist die Induktorkernlamelle 11 Erhebungen 27 auf. Diese Erhebungen 27 sind geeignet, die als Paket 31 von Induktorkernlamellen 11, gemäß der Darstellung in Figur 2, entsprechend einer Nut- und Feder-Verbindung, in umlaufenden Nuten in den Oberflächen von Abschlusstellern, mit den Abschlusstellern zu verrasten. Die einzelnen Bleche des Paketes 31 weisen eine der beschriebenen Form der Induktorkernlamelle 11 entsprechende Form auf.
  • In Figur 4 ist eine erfindungsgemäße induktiv beheizbare Galette im Querschnitt gezeigt, wobei nur eine obere Hälfte der Galette über der Rotationsachse der Galette dargestellt ist. Es sind der Induktorkern 10, die Spulenwicklungen 32, der Galettenmantel 37 des die Grundform der Galette bildenden Zylinders und die Abschlussteller 19, 20 gezeigt. Der Galettenmantel 37 bildet einen Kurzschlussring für die magnetischen Feldlinien 34 des vom Induktorkern 10 induzierten magnetischen Feldes. Über einen beispielsweise Kupferring 33 wird der induzierte Strom verstärkt.
  • Die Erfindung beschränkt sich nicht auf die vorstehend angegebenen Ausführungsbeispiele. Vielmehr ist eine Anzahl von Varianten denkbar, welche auch bei grundsätzlich anders gearteter Ausführung von den Merkmalen der Erfindung Gebrauch machen.
  • Vorgeschlagen wird ein Induktorkern 10 für eine beheizbare Galette mit mehreren sternförmig radial angeordneten Induktorkernlamellen 11 mit Radialabschnitten 12 und jeweils einem äußeren Axialabschnitt 13 und einem inneren Axialabschnitt.
  • Der Induktorkern 10 weist Abschlussteller 19, 20 mit jeweils einer zu den Radialabschnitten 12 komplementären Oberfläche 21 und Fixierungsmittel 22 auf, wobei die Induktorkernlamellen 11 zwischen den Abschlusstellern 19, 20 angeordnet sind und wobei die Fixierungsmittel 22 eingerichtet sind, die Induktorkernlamellen 11 an deren Radialabschnitten 12 an den Abschlusstellern 19, 20 zu fixieren bzw. alternativ und/oder auf der Außenoberfläche eines Innenrohres.

Claims (10)

  1. Induktorkern (10) für eine beheizbare Galette (35) mit mehreren sternförmig radial angeordneten Induktorkernlamellen (11) mit Radialabschnitten (12) und jeweils einem äußeren Axialabschnitt (13) und einem inneren Axialabschnitt, wobei der Induktorkern (10) als Verrastungen (23) ausgebildete Fixierungsmittel (22) aufweist, wobei die Fixierungsmittel (22) eingerichtet sind, die Induktorkernlamellen (11) an deren Radialabschnitten (12) an Abschlusstellern (19, 20) mit jeweils einer zu den Radialabschnitten (12) komplementären Oberfläche (21) zu fixieren, derart, dass die Induktorkernlamellen (11) zwischen den Abschlusstellern (19, 20) angeordnet sind, dadurch gekennzeichnet, dass die Verrastungen (23) als radial nach außen verlaufende an den Abschlusstellern und an den Radialabschnitten angeordnete Nut- und Feder- Verrastungen (23) ausgebildet sind.
  2. Induktorkern für eine beheizbare Galette (35) nach Anspruch 1, dadurch gekennzeichnet, dass die Induktorkernlamellen (11) als nahezu quaderförmige Pakete (31) aus Blechen gebildet sind.
  3. Induktorkern für eine beheizbare Galette (35) nach Anspruch 2, dadurch gekennzeichnet, dass die Bleche als Stanzteile ausgebildet sind.
  4. Induktorkern (10) für eine beheizbare Galette (35) nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fixierungsmittel (22) eingerichtet sind, die Induktorkernlamellen (11) mit deren inneren Axialabschnitten an einer Außenoberfläche eines Innenrohrs mit dem Innenrohr zu verrasten.
  5. Induktorkern für eine beheizbare Galette (35) nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verrastungen jeweils eine umlaufende Nut (26) in den Abschlusstellern (19, 20) und dazu komplementären Erhebungen (27) auf den Radialabschnitten (12) und zu den Radialabschnitten (12) komplementäre radiale Nuten (28) in den Abschlusstellern (19, 20) umfassen.
  6. Induktorkern für eine beheizbare Galette (35) nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Induktorkernlamellen (11) über deren äußere Axialabschnitte (13) herausgeführte Radialabschnittsverlängerungen (14) der Radialabschnitte (12) aufweisen.
  7. Induktorkern für eine beheizbare Galette (35) nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Abschlussteller (19, 20) mit axial verlaufenden, bevorzugt in Zwischenräumen zwischen den Induktorkernlamellen (11) geführten, Schrauben (30) miteinander verschraubt sind.
  8. Induktorkern für eine beheizbare Galette (35) nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Abschlussteller (19, 20) aus nicht magnetischem Material, bevorzugt aus Aluminium, gefertigt sind.
  9. Induktor für eine beheizbare Galette (35) mit einem Induktorkern (10) nach mindestens einem der Ansprüche 1 bis 8 und Spulenwicklungen (32), wobei die Spulenwicklungen (32) um die Induktorkernlamellen (11) herum aufgewickelt sind.
  10. Beheizbare Galette (35) mit einer zylindrischen Grundform und einem in der Galette (35) angeordneten Induktor nach Anspruch 9.
EP04015841A 2004-07-06 2004-07-06 Induktorkern für beheizbare Galette Not-in-force EP1614783B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP04015841A EP1614783B1 (de) 2004-07-06 2004-07-06 Induktorkern für beheizbare Galette
DE502004005205T DE502004005205D1 (de) 2004-07-06 2004-07-06 Induktorkern für beheizbare Galette
US11/172,183 US7170386B2 (en) 2004-07-06 2005-06-30 Inductor core for heatable godet roll
KR1020050059254A KR100698658B1 (ko) 2004-07-06 2005-07-01 가열가능한 고데 롤용 인덕터 코어
TW094122755A TWI294929B (en) 2004-07-06 2005-07-05 Inductor core for heatable godet roll, inductor for heatable godet roll, and heatable godet roll
CNB2005100825170A CN100518417C (zh) 2004-07-06 2005-07-06 用于可加热导丝辊的感应芯
JP2005197464A JP4039638B2 (ja) 2004-07-06 2005-07-06 加熱可能なゴデットロールの誘導鉄心ならびに誘導子及び誘導加熱可能なゴデットロール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04015841A EP1614783B1 (de) 2004-07-06 2004-07-06 Induktorkern für beheizbare Galette

Publications (2)

Publication Number Publication Date
EP1614783A1 EP1614783A1 (de) 2006-01-11
EP1614783B1 true EP1614783B1 (de) 2007-10-10

Family

ID=34925631

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04015841A Not-in-force EP1614783B1 (de) 2004-07-06 2004-07-06 Induktorkern für beheizbare Galette

Country Status (7)

Country Link
US (1) US7170386B2 (de)
EP (1) EP1614783B1 (de)
JP (1) JP4039638B2 (de)
KR (1) KR100698658B1 (de)
CN (1) CN100518417C (de)
DE (1) DE502004005205D1 (de)
TW (1) TWI294929B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017126837A1 (de) * 2016-11-23 2018-05-24 Ritter Elektronik Gmbh Elektrisch beheizbare Galette und Verfahren zum elektrischen Beheizen einer Galette

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH467363A (de) * 1967-08-16 1969-01-15 Barmag Barmer Maschf Induktiv beheizbare Galette
US3448233A (en) * 1967-09-26 1969-06-03 Pillar Corp Induction heating assembly
CH477578A (de) * 1968-11-13 1969-08-31 Rieter Ag Maschf Streckrolle
US3562472A (en) * 1969-08-20 1971-02-09 Gen Electric Induction heater for rotating godet
DE2647540C2 (de) * 1976-10-21 1978-10-12 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Induktiv-beheizbare Galette
CN2191871Y (zh) * 1994-06-16 1995-03-15 北京纺科新技术开发公司 电感直接加热式热牵伸辊
KR100446346B1 (ko) * 1996-06-18 2004-10-14 바마크 악티엔게젤샤프트 진행하는 합성 필라멘트 사의 가열용 고데트
DE19980953D2 (de) * 1998-05-28 2000-07-13 Barmag Barmer Maschf Galette zum Führen, Erwärmen und Fördern eines Fadens

Also Published As

Publication number Publication date
KR20060049766A (ko) 2006-05-19
JP4039638B2 (ja) 2008-01-30
US20060006978A1 (en) 2006-01-12
EP1614783A1 (de) 2006-01-11
DE502004005205D1 (de) 2007-11-22
JP2006054169A (ja) 2006-02-23
US7170386B2 (en) 2007-01-30
TW200615411A (en) 2006-05-16
TWI294929B (en) 2008-03-21
CN100518417C (zh) 2009-07-22
KR100698658B1 (ko) 2007-03-23
CN1719950A (zh) 2006-01-11

Similar Documents

Publication Publication Date Title
EP3433919B1 (de) Rotorsegment einer elektrischen maschine
EP2642636B1 (de) Hohlzylindrische eisenlose Wicklung
EP1629590B1 (de) Transversalflussmaschine
EP2148410A1 (de) Elektrische Maschine mit stufenförmigem Wicklungsaufbau
DE102019215015A1 (de) Transversalflussmaschine
EP3439147B1 (de) Rotor für eine elektrische maschine
DE112017002040T5 (de) Gemeinsame Blechkomponente zur Aufnahme von mehrfachen Leitungsgeometrien in einer elektrischen Maschine
DE102017207659B4 (de) Elektrische Maschine sowie Verfahren zum Herstellen einer elektrischen Maschine
DE102011083128A1 (de) Elektromotor
WO2015024563A2 (de) Statorkern für einen elektronisch kommutierten gleichstrommotor und verfahren zur herstellung eines stators
DE112019003783T5 (de) Kühlsystem für eine elektrorotationsmaschine
WO2021110197A1 (de) Axialflussmaschine mit mechanisch fixierten statorkernen mit radial verlaufenden blechsegmenten
DE102013201861B3 (de) Polelement für einen Rotor eines Synchrongenerators
EP1614783B1 (de) Induktorkern für beheizbare Galette
EP2658095A1 (de) Elektrische Maschine mit geschlitzter Rotorwelle
WO2017008833A1 (de) Magnetkern sowie drossel bzw. transformator mit einem solchen magnetkern
WO2015135765A1 (de) Rotor einer rotierenden elektrischen maschine
DE102018109565A1 (de) Spulenanordnung
DE102014208715A1 (de) Flussleitelement für eine elektrische Maschine, Maschinenkomponente, elektrische Maschine und Verfahren zum Aufbau einer elektrischen Maschine
EP2330603A1 (de) Transformator mit Bandwicklung
EP3145275B1 (de) Induktionsheizspule
EP2885854B1 (de) Radialmagnetlager und verfahren zur herstellung eines radialmagnetlagers
WO2022243018A1 (de) Spulenanordnung
WO2022214146A1 (de) Stator einer elektrischen axialflussmaschine und axialflussmaschine
DE102022208737A1 (de) Elektronisch kommutierter Elektromotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060318

AKX Designation fees paid

Designated state(s): CH DE IT LI TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SSM SCHAERER SCHWEITER METTLER AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

REF Corresponds to:

Ref document number: 502004005205

Country of ref document: DE

Date of ref document: 20071122

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100726

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100723

Year of fee payment: 7

Ref country code: IT

Payment date: 20100726

Year of fee payment: 7

Ref country code: TR

Payment date: 20100705

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005205

Country of ref document: DE

Effective date: 20120201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110706