EP1606581B1 - Procede et dispositif de traitement d'image d'un appareil de mesure geodesique - Google Patents

Procede et dispositif de traitement d'image d'un appareil de mesure geodesique Download PDF

Info

Publication number
EP1606581B1
EP1606581B1 EP04721531.4A EP04721531A EP1606581B1 EP 1606581 B1 EP1606581 B1 EP 1606581B1 EP 04721531 A EP04721531 A EP 04721531A EP 1606581 B1 EP1606581 B1 EP 1606581B1
Authority
EP
European Patent Office
Prior art keywords
template
display
image coordinate
geodetic
display image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04721531.4A
Other languages
German (de)
English (en)
Other versions
EP1606581A1 (fr
EP1606581B8 (fr
Inventor
Bernd Walser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Geosystems AG
Original Assignee
Leica Geosystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Geosystems AG filed Critical Leica Geosystems AG
Priority to EP04721531.4A priority Critical patent/EP1606581B8/fr
Publication of EP1606581A1 publication Critical patent/EP1606581A1/fr
Publication of EP1606581B1 publication Critical patent/EP1606581B1/fr
Application granted granted Critical
Publication of EP1606581B8 publication Critical patent/EP1606581B8/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites
    • G01C1/04Theodolites combined with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/02Means for marking measuring points

Definitions

  • the invention relates to a method and a device for geodetic surveying of an object with the aid of image processing using a geodetic measuring device.
  • a geodetic device with a movable or independently movable screen relative to this device allows ergonomic and metrological advantages to be achieved.
  • the measurements can then be carried out after alignment with various methods, such as by measuring the angular deviation with supplementary distance measurement by triangulation or by laser.
  • JP 02130409 A and JP 03167412 A is the combination of a theodolite with a video camera known to allow fast and accurate three-dimensional measurements.
  • two theodolite video ICamera-IC combinations simultaneously take pictures of the camera and angle measurements with theodolites.
  • the axes of the video camera and the theodolite are parallel, so that the angle measurement of a theodolite is linked to the images taken by the camera of this combination. From at least two images taken at different angles, the three-dimensional positions of the imaged objects can be derived.
  • the measuring device has a movable measuring head with a camera as a target acquisition device and a distance measuring device whose target axes are precisely aligned with each other.
  • One The target point is measured by capturing it with the camera and then aligning the camera axis with the target point. This is also a precise alignment of the distance measuring device connected, so that its axis also points to the point to be measured.
  • a separate handling module can be created, which can also be used independently and remotely from the measuring device and is in communication with the latter via communication means.
  • the use of such a module together with several measuring devices as sensor components allows the design of remote-controlled geodetic surveying systems.
  • a position marker can be moved, can be used to define the parameters of a measuring process and trigger the measuring process.
  • the subsequent measuring process aligns the components of the measuring device required for the measurement to the position determined by the position mark and the measurement is carried out.
  • a geodetic device that captures a target area with a camera and displays it on a screen.
  • range targets can be selected and their distance can be measured by a range finder by aligning the rangefinder as a complete device with its axis on the selected target.
  • Camera and range finder are moved by motors either together or independently.
  • a geodetic measuring device in which a movement of the beam required for the measurement is effected within the detection range of an optics, without requiring an otherwise necessary movement of the entire optics or larger components.
  • This is made possible by the use of optical components of the electronic recording means for emission of the radiation beam.
  • the recording means in this case relate to the imaging devices which are used for a determination of the target point for a measuring point.
  • the necessary for carrying out the measurement detectors can also be installed in other measuring devices, so that, for example, by a measuring device with such an electronic display and control device, a determination and illumination of a target with radiation, but the measurement is performed by one or more other devices ,
  • a further disadvantage is the necessity that each device must have its own directing means to align the axis of the measuring device or the measuring radiation to a target. Even if all targets are always within the detection range of the recording means for a specific surveying task, a pointwise alignment or aiming and subsequent measurement must be carried out for each measuring process.
  • the German patent application DE 199 22 321 A1 shows a method and an arrangement for performing geodetic measurements by means of video tachymeter.
  • a targeted object point can be viewed.
  • a coordinate of the object point viewed on the display can be set by means of Per.
  • This coordinate on the display is assigned a coordinate on the CCD matrix of the video tachymeter.
  • the video tachymeter measures a distance as well as a horizontal angle and a vertical angle to the object and, with these measured data, makes it possible to assign the geometric objects extracted from the image content of the CCD matrix to object points in an object space.
  • One task is thus to enable a semi-automated measurement of non-cooperative but structured goals.
  • Another object is to allow a measurement of non-cooperative targets within a certain range without mechanical adjustment of a component of the meter.
  • Another object is to simplify the construction of a generic geodetic measuring device.
  • Another object is to reduce the time and energy expense when using a generic geodetic instrument.
  • the solution uses the electronic recording of a recorded observation area.
  • This image data are used, which were recorded with a geodetic measuring device, such as a theodolite or tachymeter.
  • a geodetic measuring device such as a theodolite or tachymeter.
  • the entire meter image sensor system must be calibrated.
  • Such a video measuring system can now be used to measure any structured objects.
  • the surveyor no longer relies on active or cooperative targets to perform a semi-automated point determination.
  • Templates in the form of templates that at least partially describe the object to be measured assist the surveyor in selecting the target points of the objects to be measured.
  • the third dimension of the object is, if necessary, determined by means of a reflectorless distance measurement.
  • the term "geodetic measuring device” is to be understood generally as always a measuring instrument which has devices for measuring or checking data with spatial reference. In particular, this relates to the measurement of directions or angles and / or distances to a reference or measuring point.
  • other devices e.g. Components for satellite-based location determination (eg GPS, GLONASS or GALILEO), which can be used for supplementary measurements or data recordings.
  • the term theodolites, so-called total stations as tachymeters with electronic angle measurement and electro-optical rangefinder, and leveling should be understood here under such a geodetic measuring device.
  • the invention is suitable for use in specialized devices of similar functionality, e.g. in military directional circuits or in industrial construction or process monitoring. These systems are also covered by the term "geodetic instrument”.
  • the geodetic measuring device has electronic recording means which detect objects, in particular an object to be measured, in the form of a recording image within a detection strip.
  • the recording means include, for example, a CCD camera, a CMOS camera, a video camera, a residual light amplifier or a thermal imaging camera.
  • the exact angular orientation of the detection strip is determined by preferably determining the orientation of the recording means and / or a lens of the recording means by means of angle encoders of the geodetic measuring device.
  • a captured image or a portion of this image is recorded in the form of a display image Visualization made visible.
  • the presentation means have in particular an LC display, a cathode ray tube, a flat screen, an interface to communication networks and / or an electronic computer with a screen, preferably designed as a notebook or laptop. Subsequently, at least one display image coordinate is determined, for example by positioning a cursor on the display means. Positioning takes place, in particular, via input means, eg in the form of a keypad, a joy stick, a trackball, a computer mouse, a touch-sensitive input field, an interface to communication networks and / or via a unit combined with the presentation means, in particular a touch-sensitive screen or an electronic computer with input device, preferably designed as a notebook, laptop or handheld PC, in particular Palm PC.
  • input means eg in the form of a keypad, a joy stick, a trackball, a computer mouse, a touch-sensitive input field, an interface to communication networks and / or via a unit combined with the presentation means, in particular a touch-sensitive screen or an electronic computer with input device
  • the defined representation image coordinate is assigned directly or indirectly to a recording image coordinate, which in turn is transformed into at least one geodetic measurement variable, in particular a solid angle, preferably a horizontal and a vertical angle.
  • the transformation takes place in consideration of the recording image coordinate, the angular orientation of the detection strip of the recording means, the focus position, the image scale, the optical errors and / or the temperature-dependent shelves.
  • the geodetic measured quantity includes, for example, the coordinates or components of a point in any coordinate system, in particular a polar coordinate system, and relative relations between individual points, in particular distances or angles between object points.
  • the acquisition image coordinate is determined by the surveyor first calling a template in the form of a template which at least partially models the object to be geodetically measured.
  • the template is approximately positioned on the display image by having the surveyor e.g. defines at least one display image coordinate by positioning a cursor on the display means.
  • the approximately positioned template is adapted via matching to the recorded and geodetically to be measured object.
  • a characteristic point of the fitted template such as an end point, vertex, intersection, center, etc.
  • the take-up image coordinate is determined, followed by the above-mentioned transformation.
  • the described method according to the invention is stored, for example, in the form of a computer program product, in particular as software or firmware, and executed by calculation means, in particular a personal computer, a laptop, a notebook, a single-board computer or another electronic computing and control unit.
  • the data and results of the measurement process can be displayed on the display means.
  • This illustration is possible in the form of a superimposed font or in your own viewport.
  • the latter can be implemented as separate parts of the screen, which map, for example, enlarged image sections.
  • the use of a touch-sensitive flat screen also makes it possible to dispense with special input means, so that the presentation and input means can be made compact and modular.
  • Another possibility for the presentation or input means is the connection to devices that can also be used for other applications. For example, can be accessed via an interface for communication networks or the use of a standard computer, in particular a portable laptop or notebook, on additional additional functionalities. By using computers, additional, possibly universally applicable software can be used.
  • recorded measurement data can be immediately stored in the available memories and used after separation from the geodetic instrument in other applications.
  • a meter can be placed in areas that were previously unusable, e.g. in corners or narrow passages.
  • connection to the geodetic measuring device which now consists essentially only of a housing and the components of the lens with sensor elements together with the associated control components can be produced via communication means, such as wire or radio links.
  • communication means such as wire or radio links.
  • wire connections should always be understood to mean all flexible communication connections which serve for the transmission of data, but in particular fiber optic and copper cables.
  • This separation also allows the control of a variety of geodetic instruments as pure sensor units by means of a central control and evaluation.
  • the latter can be protected from the weather, for example in a vehicle.
  • the placement in a vehicle also allows the use of additional additional components that would prohibitively increase its weight when mounted on a single meter.
  • the use of multiple sensor units allows simplified, simultaneous measurements at common or different points, alignment of the geodetic instruments with each other, or even a sweeping mission where only a portion of the sensor units are always used for measurements while the other portion is moved to other locations.
  • the display of the measuring ranges of simultaneously used sensor units can successively on the same screen or at the same time on a screen in their own display areas, for example in window or split-screen technology, take place.
  • Fig. 1 shows the figurative representation of a geodetic measuring device 2 with electronic recording means 3 for detecting a recording image of at least one geodetically object to be measured 1 and with an electronic display and control device 31.
  • the geodetic measuring device 2 has a pivotable about a vertical axis 24 and a tilting axis 25 pivotable optical unit 19 with recording means 3, here as a arranged instead of an eyepiece CCD or CMOS camera, on.
  • the geodetic measuring device 2 also has an external rangefinder 20 for reflectorless distance measurement and / or for focusing the optical unit 19.
  • the geodetic measuring device 2 is a so-called tachymeter.
  • the recording means 3 detect within a certain detection strip 5, which is determined in particular by the characteristics of the optical unit 19, a at least one geodesically to be measured object 1 having scene 23, the Fig. 1 symbolized by the six trees.
  • the Detection strip 5 can be aligned by turning or tilting the optical unit 19 including the receiving means 3 about the standing axis 24 and the tilting axis 25 and, if appropriate, by varying the imaging scale of the optical unit 19 in its size.
  • the orientation of the detection strip 5 thus results from the alignment of the optical unit 19 and is determined by angle encoders (not shown) which are integrated in the geodetic measuring device 2.
  • the recording image 4 is forwarded by means of a signal via a wire connection 22 to the electronic display and control device 31.
  • a radio connection or a transmission over communication networks such as the Internet can be realized.
  • This electronic display and control device 31 comprises electronic calculation means 32, electronic presentation means 33, input means 34 and a template memory 35.
  • the recording image 4 a section, an enlargement or a reduction of the recording image 4 is visualized by the presentation means 33 in the form of a representation image 6 represented, which includes at least the recorded geodetically to be measured object 1a, here the one tree.
  • a coordinate on the display image 6, hereinafter referred to as display image coordinate 8 can be defined via the input means 34, for example by positioning a cursor which can be moved by means of a joystick or a mouse.
  • the input means 34 it is possible, via the input means 34, to input data, such as coordinates, zoom settings, alignment settings of the geodetic measuring device 2 and further data and commands, in particular for the selection of selection aids in the form of templates, into the calculation means 32.
  • data such as coordinates, zoom settings, alignment settings of the geodetic measuring device 2 and further data and commands, in particular for the selection of selection aids in the form of templates.
  • the calculating means 32 execute a program according to a software and / or firmware and are formed, for example, by a CPU.
  • the template memory 35 serves to store at least one template, for example in the form of a graphic template, wherein the template at least partially models the object to be geodetically measured.
  • the function of the template memory 35 will be described in more detail below.
  • a modified Leica total station TCXA110x for recording the image.
  • the eyepiece is replaced by a CCD camera as recording means 3, wherein for a series production a suitable imaging sensor is used.
  • a motor in the telescope, which forms the optical unit 19 an automatic focusing is possible.
  • the focus can be applied to the entire scene 23 as well as to defined sections.
  • a focus on specific objects can also be realized.
  • the user can also focus by hand.
  • Fig. 2 shows a possible, alternative embodiment of the system Fig. 1 in which a geodetic measuring device 2 ' and an electronic display and control device 31 'are formed as a common integrated unit.
  • the geodetic measuring device 2 ' has an optical unit 19', which can be aligned about an upright axis 24 and a tilting axis 25, with recording means 3 'for detecting a scene 23 with an object 1 to be measured geodetically within a detection strip 5.
  • the display and control device 31 ' is arranged directly on or within the same housing of the geodetic measuring device 2' and includes the calculating means 32 ', the displaying means 33', the input means 34 'and the template memory 35' in a single device.
  • the display means 33 ' which reproduce at least a part of the scene within the detection strip 5 in the form of at least the imaged object 1a, are in this embodiment formed as a touch-sensitive TFT / LCD screen and thus also constitute the input means 34', through which Touching the screen either by hand or by means of a pen 36 directly a display image coordinate 8 'in the display image 6' can be fixed.
  • Fig. 3 1 shows the transformation model for transforming a recording image coordinate of the recording image 4 into polar angles of a detected object 1 with an object point Q.
  • the polar angles of an arbitrary object point Q within the detection strip 5 are detected from its position on the recording image 4 detected by the image sensor of the recording means 3 , and thus can be determined on the basis of its recording image coordinate, a mathematical description of the image of the scene 23 on the image 4 must be known.
  • the following is the transformation of points in the recording image coordinate system x, y, z in the object coordinate system X, Y, Z based on Fig. 3 to be discribed.
  • the axis Z points in the direction of Zenits and represents the piercing axis 24, the axis X is formed by the tilting axis 25.
  • the optical axis 42 is defined as the axis through the optical unit 19 and thus substantially that axis which passes through the centers of the lenses.
  • the theodolite axis 43 is defined as the axis with respect to which the angles of rotation about the standing axis 24 and the tilting axis 25 are measured. This means that the point of intersection of the theodolite axis 43 with the image sensor of the recording means 3 in a two-layer measurement points exactly to the object point Q of the object 1 to be measured. This corresponds to the target axis with respect to the crosshairs in optical theodolites.
  • the calculations are limited to the image of an object point Q in a superordinate coordinate system, which is horizontal and originates in the projection center 41, in the image plane of the recording image 4.
  • a conversion to any coordinate system by means of displacement and rotation on the well-known Helmert transform with scale be done one.
  • Fig. 3 outlines the above transformation of the object point r Q from the higher-level coordinate system X, Y, Z into the image coordinate system x, y, z.
  • the horizontal angle H, the vertical angle V and the axis corrections it is possible to image the object point vector r Q into the system of the imaging means 3.
  • the deviation of the optical axis 42 from the theodolite axis 43 and the optical distortions are corrected by means of suitable transformations and calibrations.
  • the temperature calibration is described below.
  • the temperature calibration of the entire system is carried out analogously to the calibration of an optical theodolite.
  • the advantage of an image-assisted system is that the object no longer needs to be manually targeted in both layers, but rather that the system determines the polar angles of the object by means of image analysis.
  • the geodetic measuring device can be aligned very precisely, in the range of a few cc, on the object.
  • the deposit between a crosshair defining the target axis and an object point on the image sensor of the receiving means 3 is determined by means of the above-mentioned model. Uncertainties in the model parameters can be neglected because the shelves are very small.
  • the respectively best focus position of the optical unit 19 is determined for a target within the detection strip 5 at different distances. Based on a mathematical model of the optical design, parameters are determined which it allow to deduce the chamber constant from any focus position.
  • An online method makes it possible to determine the imaging scale of the optical image, which is directly coupled to the chamber constant, during a measurement. Due to the displacement of an object point within the detection strip 5 on the image sensor of the recording means 3 as a result of a movement of the optical unit 19 and the recording means 3, the imaging scale can be determined.
  • the method is based on a very accurate determination of the object in two or more images for different positions of the geodetic measuring device 2. The object determination is performed by means of image matching method.
  • a stationary object is scanned with the geodetic measuring device 2.
  • the geodetic measuring device 2 is positioned so that the object moves over the image sensor of the receiving means 3.
  • the images are taken in both layers of the optical unit, comparable to both theodolite telescope layers.
  • the positions of the object on the image sensor of the recording means 3 are determined by image analysis.
  • a suitable method is the template matching method. From the measured by the geodetic measuring device 2 horizontal and vertical angles and the corresponding object positions on the image sensor of the recording means. 3 the transformation parameters are determined. To increase the reliability of the parameters, multiple objects can be used.
  • the axis errors are directly determined in this calibration with respect to the optical axis.
  • the measurement process is largely automated by image processing, so that the user must aim each target only in the first position.
  • the system learns the goals in this step and then automatically misses them in both positions.
  • the semi-automated measurement is based on a continuous interaction between user and device. This means that the user defines what is to be measured and the measuring system performs the actual measurement without necessarily moving mechanical parts.
  • the measurement process is hierarchical. First, the user selects a template in the form of a template from a menu, which template describes the object to be measured in its form. He now has the opportunity to place the template approximately on the imaged object or select from automatically found objects. By selecting the template, both the global and the local structure of the target can be defined.
  • the measuring system carries out a local matching in the range of a few pixels in order to determine the position and the direction of an object point in the image. After sufficient numbers of such local points have been determined, a global matching is performed, which is the target in its entirety Are defined.
  • the reflectorless distance meter 20 is used.
  • the user can automatically define the positioning of a laser of the distance meter 20 manually or via the image analysis. This is an example by the Fig. 4 to Fig. 8 be clarified.
  • the aim of this exemplary measurement is to determine a door frame or a corner of the door frame.
  • Fig. 4 1 shows a display image 6 "with a recorded object 1a to be measured in the form of a door, which is shown on the display means 33.
  • the display image 6" also shows a selection menu 14 which provides the user with a plurality of selectable menu items 15, which selection templates 13 graphically in the form of different templates.
  • the user sets a display image coordinate 8 "in the corner of the door 1a 'to be measured by shifting the cursor describing the display image coordinate 8" pixel by pixel on the display means 33 by means of the input means 34 ,
  • the calculating means 32 determine from the display image coordinate 8 "thus defined directly a recording image coordinate 7 which results from the image section of the image 6" in relation to the image 4, in particular from the magnification view and the detail.
  • this recording image coordinate 7 is transformed into a polar angle, in particular taking into consideration the angular orientation of the detection strip 5 of the recording means 3, the temperature and the optical error, and the result of
  • a distance measurement is carried out by the distance meter 20 measuring the distance to the object point with the determined polar angle The result of this distance measurement is likewise displayed in the display window 26.
  • the determination of the object point to be measured takes place with the aid of at least one template 10, which at least partially models the object to be measured 1a 'to be measured - here the right upper corner of the door.
  • the user selects from the menu items 15 of the selection menu 14 a suitable selection template 13, in this case a polyline. He now places the selected template 10 by setting a plurality of display image coordinates by means of the input means 34, for example, with the aid of a cursor, roughly on the object to be measured 1a ', ie on the upper right corner of the door, as in Fig. 5 shown.
  • the template 10 is used to determine the object in the image with subpixel accuracy.
  • a local matching is performed by means of the calculation means 32 first.
  • the matching points are in Fig. 6 marked by matching points 17, the direction of the edge by direction vectors 18.
  • Fig. 7 shown, straights 21 fitted.
  • the intersection of the line 21 represents a characteristic point 11 of the template 10, which now with subpixel accuracy of a recording image coordinate 7 and the method described above, a polar coordinate of the object to be measured, here the upper right corner of the door, optionally including the distance, is assigned.
  • the user selects a template which at least partially models the object to be measured by selecting a selection template, whereupon the calculation means 32 search for structures in the recorded image that are similar to the template 10 '.
  • the user selects a corner selection template 13 'as a template 10', whereupon the calculation means 32 automatically searches for matching corner structures in the recorded object 1a '.
  • the template 10 ' is automatically placed on these structures 16 found by the computing means.
  • the characteristic points 11 'in this case are in each case the corner point of the template 10'. After the selection of one of these characteristic points 11 'by the user, as described above, after determining the corresponding recording image coordinate 7, the determination of the polar angles and optionally the distance of the object point takes place.
  • characteristic points 11, 11' it is also possible for a plurality of characteristic points 11, 11' to be made available per template 10, 10 ', for example end points, corner points, center points and intersections.
  • the user has, as shown above, a certain range of selection templates 13, 13 'available. These different selection templates 13, 13 'are stored in a template memory 35.
  • three options for generating the template are available to the user.
  • the third possibility consists in the mathematical description of the object from which the template 10, 10 'can be calculated for any desired image position.
  • templates 10, 10 'in the template memory 35 which can be formed as a known data storage, either as a pixel image, which can be reduced by suitable compression method in scope, or as a mathematical description, the template 10, 10 'calculated online via a suitable algorithm and not permanently stored.
  • the method described can be stored as a program, in particular in the form of a computer program product which can be read and executed by the calculation means 32 as software, for example on a floppy disk, CD or hard disk.
  • the program as firmware, for example on an EPROM, an electronically programmable read-only memory, the calculation means 32.
  • the advantages of the system and method according to the invention are, in particular, that humans are integrated into the measuring process and can control the system directly, whereby an ideal combination of the control by the user and the reliability of algorithms is achieved.
  • the system only measures the relevant points necessary to determine the object. Compared with a scanner that scans all points, an intelligent survey is performed, which also leads to a significant reduction of data. On the other hand, they are localized as many pixels used. This achieves redundancy in the description of the object.
  • the system is also multifunctional in that 3D points as well as three-dimensional objects such as straight lines can be measured via image analysis. Furthermore, it is possible to store image data for documentation purposes. It is also possible to use the images at a later time to determine the horizontal and vertical angles of other points. The 3D determination becomes possible when the plane in which the points lie is known.
  • the invention is suitable for use in a wide variety of applications.
  • the monitoring of certain objects with the system according to the invention can be largely automated without the need to install target marks or prisms in the area to be monitored.
  • the user roughly aims the object to be monitored so that it is visible on the image. For this a diopter or a laser pointer can be used. It then focuses on what can be done manually or automatically.
  • the object is saved as a template.
  • the target can now be measured again and again without the user having to intervene. As soon as a deviation above a predetermined threshold is detected, an alarm is triggered.
  • the advantage over known methods is the extensive automation without the use of artificial targets.
  • the measurement of buildings is today largely carried out manually, since it is not possible to attach a prism at all points to be measured.
  • inventive system can by interaction with the Users are partially automated the survey.
  • the user aims at the object with the geodetic measuring instrument in wide-angle mode and designates all points to be measured in the image.
  • the identification can be done by placing templates.
  • parameters can be specified, for example, that some points lie in a plane or on a line. With this additional information, it is possible to accelerate the measuring process.
  • possible deviations from the ideal position are also indicated.
  • the image-supported system it is also possible to realize a target tracking of non-cooperative objects. For this, the object structure is saved again and then iteratively identified in the image and the position determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)

Claims (26)

  1. Procédé de mesure géodésique d'un objet (1) qui utilise un appareil géodésique (2, 2') avec des moyens d'enregistrement électroniques (3, 3') pour saisir une image enregistrée (4) au moins de l'objet qui doit faire l'objet d'une mesure géodésique (1),
    avec les étapes
    • détermination de l'orientation angulaire d'une bande de détection (5) des moyens d'enregistrement (3, 3'),
    • saisie de l'image enregistrée (4),
    • représentation visuelle au moins d'une zone partielle de l'image enregistrée (4) sous forme d'une image d'affichage (6, 6', 6"),
    • détermination d'une coordonnée de l'image enregistrée (7) en fixant au moins une coordonnée associée de l'image d'affichage (8, 8', 8") et
    • transformation de la coordonnée de l'image enregistrée (7) en au moins une grandeur de mesure géodésique - en particulier un angle spatial ou un angle polaire,
    cependant que la détermination de la coordonnée de l'image enregistrée (7) en fixant la coordonnée de l'image d'affichage qui existe au moins (8, 8') comprend les étapes partielles suivantes :
    • appel d'au moins un modèle (10, 10') qui modélise au moins partiellement l'objet qui doit faire l'objet d'une mesure géodésique (1),
    • positionnement du modèle qui existe au moins (10, 10') sur l'image d'affichage (6, 6', 6"), en particulier en fixant au moins une coordonnée de l'image d'affichage (8, 8', 8"),
    • adaptation du modèle qui existe au moins (10, 10') à l'objet qui a été enregistré (1, 1a') et
    détermination de la coordonnée de l'image enregistrée (7) au moyen d'au moins un point caractéristique (11, 11') du modèle qui existe au moins (10, 10'),
    caractérisé en ce que
    l'adaptation du modèle qui existe au moins (10, 10') à l'objet qui a été enregistré (1, 1a') se fait par matching et comprend les étapes partielles suivantes :
    • matching local du modèle (10, 10') avec l'objet enregistré (1a, 1a') - en particulier par la génération de points d'étalonnage (17) avec des vecteurs directionnels (18) et
    • matching global en utilisant les résultats du matching local - en particulier sur la base des points d'étalonnage (17) avec les vecteurs directionnels (18).
  2. Procédé selon la revendication 1, la détermination de la coordonnée de l'image enregistrée (7) en fixant la coordonnée de l'image d'affichage qui existe au moins (8, 8', 8") comprenant les étapes partielles suivantes :
    • fixation de la coordonnée de l'image d'affichage (8, 8', 8"), de préférence en pas discrets, en particulier pixel par pixel et
    • association de la coordonnée de l'image d'affichage (8, - 8', 8") à la coordonnée de l'image enregistrée correspondante (7).
  3. Procédé selon la revendication 1 ou 2, le modèle qui existe au moins (10, 10' étant configuré comme un fragment de l'image enregistrée (4) ou d'une image enregistrée précédente.
  4. Procédé selon la revendication 1 ou 2, le modèle qui existe au moins (10, 10' étant configuré comme une image pixellisée produite artificiellement et - en particulier - un déplacement du modèle (10, 10') sur l'image d'affichage (6, 6'; 6") de l'ordre du subpixel étant déterminé par interpolation.
  5. Procédé selon la revendication 1 ou 2, le modèle qui existe au moins (10, 10') étant configuré comme une description mathématique d'un objet et - en particulier - le modèle (10, 10') représenté sur l'image d'affichage étant calculé par un algorithme.
  6. Procédé selon la revendication 4 ou 5, le modèle qui existe au moins (10, 10' étant formé par une forme géométrique de base - par exemple une ligne, une polyligne, un point, un cercle ou un rectangle.
  7. Procédé selon l'une des revendications 1 à 6, l'appel du modèle qui existe au moins (10, 10') se faisant par menu à partir d'une sélection de modèles de sélection prédéfinis et/ou prédéfinissables (13, 13').
  8. Procédé selon la revendication 7, l'appel par menu se faisant à l'aide d'un menu de sélection (14) avec plusieurs points de menu (15) qui représentent graphiquement au moins partiellement les modèles de sélection (13, 13').
  9. Procédé selon l'une des revendications 1 à 8, le positionnement du modèle qui existe au moins (10, 10') sur l'image d'affichage (6, 6', 6") se faisant en déplaçant le modèle (10, 10') sur l'image d'affichage (6, 6', 6").
  10. Procédé selon l'une des revendications 1 à 8, le positionnement du modèle (10, 10') sur l'image d'affichage (6, 6', 6") se faisant au moins partiellement automatiquement avec les étapes partielles :
    • recherche d'au moins une structure (16) semblable au modèle (10, 10') sur l'objet enregistré (1, 1a'),
    • positionnement du modèle (10, 10') sur au moins une structure trouvée (16).
  11. Procédé selon la revendication 10, le positionnement du modèle (10, 10') sur au moins une structure trouvée (16) se faisant par sélection d'au moins une structure trouvée offerte.
  12. Procédé selon l'une des revendications 1 à 11, plusieurs modèles (10, 10') étant positionnés l'un après l'autre sur l'image d'affichage (6, 6', 6") et étant, le cas échéant, reliés entre eux.
  13. Procédé selon l'une des revendications 1 à 12, la détermination de la coordonnée de l'image enregistrée (7) au moyen d'au moins un point caractéristique (11, 11') du modèle qui existe au moins (10, 10') comprenant les étapes partielles suivantes :
    • détermination d'au moins un point caractéristique (11, 11') d'au moins un modèle (10, 10'), en particulier d'un point d'intersection, d'un point de centre, d'un point d'extrémité ou d'un centre,
    • sélection d'un point caractéristique (11, 11') et
    • association du point caractéristique (11, 11') à une coordonnée de l'image enregistrée (7).
  14. Procédé selon l'une des revendications 1 à 13, la transformation de la coordonnée de l'image enregistrée (7) en au moins une grandeur de mesure géodésique se faisant au moins en tenant compte de la coordonnée de l'image enregistrée (7) et l'orientation angulaire de la bande de détection (5) des moyens d'enregistrement (3, 3').
  15. Procédé selon la revendication 14, la grandeur de mesure géodésique qui existe au moins étant formée par au moins un angle spatial, en particulier un angle horizontal et/ou un angle vertical.
  16. Procédé selon l'une des revendications 1 à 15, la transformation comprenant l'étape partielle : compensation d'erreurs optiques - en particulier des erreurs de distorsion - de l'image enregistrée (4).
  17. Procédé selon la revendication 16, la compensation des erreurs optiques se faisant au moyen d'un élément de correction des erreurs de représentation déterminées individuellement - en particulier de manière empirique - pour l'appareil de mesure géodésique (2, 2'), en particulier d'une fonction de correction ou d'un tableau de correction.
  18. Procédé selon l'une des revendications 1 à 17, la transformation comprenant l'étape partielle : compensation de déviations de position dépendant de la température dans la coordonnée associée de l'image enregistrée (7) et/ou de l'orientation angulaire déterminée de la bande de détection (5) des moyens d'enregistrement (3, 3') en fonction d'une température mesurée.
  19. Procédé selon la revendication 18, la compensation des déviations de position dépendant de la température se faisant au moyen d'un élément de correction de la température déterminé individuellement - en particulier de manière empirique - pour l'appareil de mesure géodésique (2, 2'), en particulier d'une fonction de correction ou d'un tableau de correction.
  20. Procédé selon l'une des revendications 1 à 19, la transformation se faisant en tenant compte de la position du foyer et/ou de l'échelle de représentation d'une unité optique (19, 19') placée en amont des moyens d'enregistrement électroniques (3, 3').
  21. Procédé selon l'une des revendications 1 à 20, le procédé présentant en outre l'étape : mise à disposition de la grandeur de mesure géodésique qui existe au moins, en particulier de l'angle spatial qui existe au moins.
  22. Procédé selon la revendication 21, la mise à disposition de la grandeur de mesure géodésique qui existe au moins se faisant par représentation visuelle, en particulier par affichage dans l'image d'affichage (6, 6', 6"), par exemple par une fenêtre d'affichage (26).
  23. Procédé selon l'une des revendications 21 à 22, la mise à disposition de la grandeur de mesure géodésique qui existe au moins se faisant par sortie d'au moins un angle spatial sur un télémètre (20) avec les étapes partielles :
    • mesure d'une distance d'un point d'objet (Q) qui est défini par l'angle spatial qui existe au moins et
    • mise à disposition de la distance du point d'objet (Q), en particulier par affichage dans l'image d'affichage (6, 6', 6"), par exemple par une fenêtre d'affichage (26).
  24. Dispositif d'affichage et de commande électronique (31, 31') avec
    • des moyens de calcul électroniques (32, 32'),
    • des moyens de représentation électroniques (33, 33') pour la représentation visuelle d'au moins une zone partielle d'une image enregistrée (4) sous forme d'une image d'affichage (6, 6', 6") et, le cas échéant, pour la représentation visuelle d'au moins une grandeur de mesure géodésique et
    • des moyens d'entrée (34, 34') pour l'entrée de données, en particulier pour l'entrée d'une coordonnée d'image d'affichage (8, 8', 8") - dans les moyens de calcul (32, 32'),
    caractérisé par un micrologiciel avec au moins un programme pour exécuter le procédé selon l'une des revendications 1 à 23.
  25. Appareil de mesure géodésique (2, 2') pour l'utilisation dans un procédé selon l'une des revendications 1 à 23, avec des moyens d'enregistrement électroniques (3, 3') pour saisir une image enregistrée (4) au moins de l'objet qui doit faire l'objet d'une mesure géodésique (1), caractérisé par un dispositif d'affichage et de commande électronique (31, 31') selon la revendication 24.
  26. Produit de programme d'ordinateur avec code de programme qui est mémorisé sur un support qui peut être lu par une machine pour réaliser le procédé selon l'une des revendications 1 à 23.
EP04721531.4A 2003-03-21 2004-03-18 Procede et dispositif de traitement d'image d'un appareil de mesure geodesique Expired - Lifetime EP1606581B8 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04721531.4A EP1606581B8 (fr) 2003-03-21 2004-03-18 Procede et dispositif de traitement d'image d'un appareil de mesure geodesique

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US45637103P 2003-03-21 2003-03-21
US456371P 2003-03-21
EP03011908 2003-05-27
EP03011908A EP1460377A3 (fr) 2003-03-21 2003-05-27 Procédé et dispositif pour traitement d'image dans un appareil de mesure géodésique
EP04721531.4A EP1606581B8 (fr) 2003-03-21 2004-03-18 Procede et dispositif de traitement d'image d'un appareil de mesure geodesique
PCT/EP2004/002800 WO2004083779A1 (fr) 2003-03-21 2004-03-18 Procede et dispositif de traitement d'image d'un appareil de mesure geodesique

Publications (3)

Publication Number Publication Date
EP1606581A1 EP1606581A1 (fr) 2005-12-21
EP1606581B1 true EP1606581B1 (fr) 2014-11-05
EP1606581B8 EP1606581B8 (fr) 2015-01-21

Family

ID=32825463

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03011908A Withdrawn EP1460377A3 (fr) 2003-03-21 2003-05-27 Procédé et dispositif pour traitement d'image dans un appareil de mesure géodésique
EP04721531.4A Expired - Lifetime EP1606581B8 (fr) 2003-03-21 2004-03-18 Procede et dispositif de traitement d'image d'un appareil de mesure geodesique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03011908A Withdrawn EP1460377A3 (fr) 2003-03-21 2003-05-27 Procédé et dispositif pour traitement d'image dans un appareil de mesure géodésique

Country Status (7)

Country Link
US (1) US7633610B2 (fr)
EP (2) EP1460377A3 (fr)
JP (1) JP4607095B2 (fr)
CN (1) CN1761855B (fr)
AU (1) AU2004221661B2 (fr)
CA (1) CA2519431C (fr)
WO (1) WO2004083779A1 (fr)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7800758B1 (en) * 1999-07-23 2010-09-21 Faro Laser Trackers, Llc Laser-based coordinate measuring device and laser-based method for measuring coordinates
EP1515152A1 (fr) * 2003-09-12 2005-03-16 Leica Geosystems AG Procède pour la détermination de la direction d'un objet a mesurer
DE10359415A1 (de) 2003-12-16 2005-07-14 Trimble Jena Gmbh Verfahren zur Kalibrierung eines Vermessungsgeräts
EP1681533A1 (fr) 2005-01-14 2006-07-19 Leica Geosystems AG Procédé et dispositif géodésique pour arpenter aux moins une cible
US7292319B1 (en) * 2005-05-24 2007-11-06 Lockheed Martin Corp. Optical tracking device employing a three-axis gimbal
US7933001B2 (en) * 2005-07-11 2011-04-26 Kabushiki Kaisha Topcon Geographic data collecting system
US8024144B2 (en) * 2005-09-12 2011-09-20 Trimble Jena Gmbh Surveying instrument and method of providing survey data of a target region using a surveying instrument
US8060344B2 (en) * 2006-06-28 2011-11-15 Sam Stathis Method and system for automatically performing a study of a multidimensional space
JP2008014653A (ja) * 2006-07-03 2008-01-24 Pentax Industrial Instruments Co Ltd 測量機
JP5150307B2 (ja) 2008-03-03 2013-02-20 株式会社トプコン 地理データ収集装置
JP5150310B2 (ja) * 2008-03-04 2013-02-20 株式会社トプコン 地理データ収集装置
EP2219011A1 (fr) 2009-02-11 2010-08-18 Leica Geosystems AG Appareil de mesure géodésique
DE202010017889U1 (de) * 2010-03-15 2013-02-26 Ulrich Clauss Anordnung zur Aufnahme geometrischer und photometrischer Objektdaten im Raum
CN102834691B (zh) * 2010-05-10 2015-05-20 莱卡地球系统公开股份有限公司 测绘方法
WO2011141547A1 (fr) * 2010-05-12 2011-11-17 Leica Geosystems Ag Instrument de télémétrie
US9041796B2 (en) 2010-08-01 2015-05-26 Francis Ruben Malka Method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera
JP5698480B2 (ja) 2010-09-02 2015-04-08 株式会社トプコン 測定方法及び測定装置
GB2483721A (en) * 2010-09-20 2012-03-21 Witold Marian Gamski Survey tool for assessing construction or maintenance jobs
CN101975570B (zh) * 2010-09-30 2012-07-04 大连理工大学 一种冲刷地形的三维观测装置
EP2474808A1 (fr) * 2011-01-10 2012-07-11 Leica Geosystems AG Appareil de mesure géodésique doté d'une caméra thermographique
WO2012095160A1 (fr) * 2011-01-10 2012-07-19 Trimble Ab Procédé et système destinés à déterminer la position et l'orientation d'un instrument de mesure
EP2474810A1 (fr) * 2011-01-11 2012-07-11 Leica Geosystems AG Appareil de mesure doté d'une fonctionnalité de pointage dynamique
CN102589523A (zh) * 2011-01-11 2012-07-18 香港理工大学深圳研究院 远距离监测建筑物位移的方法和所用装备
US8539685B2 (en) 2011-01-20 2013-09-24 Trimble Navigation Limited Integrated surveying and leveling
US10965889B2 (en) * 2011-06-20 2021-03-30 Fluke Corporation Thermal imager that analyzes temperature measurement calculation accuracy
EP2543960A1 (fr) 2011-07-05 2013-01-09 Hexagon Technology Center GmbH Procédé de préparation de candidats de points cible pour la sélection d'un point cible
EP2551636A1 (fr) * 2011-07-25 2013-01-30 Leica Geosystems AG Dispositif de mesure pouvant être commandé sans contact et son procédé de commande
EP2557392A1 (fr) * 2011-08-11 2013-02-13 Leica Geosystems AG Dispositif de mesure et procédé doté d'une fonctionnalité de ciblage échelonnable et basée sur l'orientation d'une unité de télécommande
DE102011114115A1 (de) * 2011-09-25 2013-03-28 Zdenko Kurtovic Verfahren und Anordnung zur Bestimmung der Lage eines Meßpunktes im geometrischen Raum
EP2761251B1 (fr) 2011-09-27 2018-05-09 Leica Geosystems AG Système de mesure et procédé de jalonnement d'un point cible connu dans un système de coordonnées
US9222771B2 (en) 2011-10-17 2015-12-29 Kla-Tencor Corp. Acquisition of information for a construction site
US9001205B2 (en) * 2011-10-20 2015-04-07 Trimble Navigation Ltd. System and methods for controlling a surveying device
EP2662705A1 (fr) * 2012-05-07 2013-11-13 Hexagon Technology Center GmbH Appareil de surveillance comportant une caméra de portée
US8937725B2 (en) * 2012-06-14 2015-01-20 Nikon Corporation Measurement assembly including a metrology system and a pointer that directs the metrology system
DE102012217282B4 (de) * 2012-09-25 2023-03-02 Trimble Jena Gmbh Verfahren und Vorrichtung zur Zuordnung von Messpunkten zu einem Satz von Festpunkten
US9057610B2 (en) * 2012-11-03 2015-06-16 Trimble A.B. Robotic laser pointer apparatus and methods
US9560246B2 (en) * 2012-12-14 2017-01-31 The Trustees Of Columbia University In The City Of New York Displacement monitoring system having vibration cancellation capabilities
DE102013016486A1 (de) * 2013-09-13 2015-04-02 Stephan Hörmann Vermessungsverfahren für Gebäudeöffnungen und Gebäudeabschlussherstellverfahren sowie Vorrichtungen zur Durchführung derselben
US9074892B2 (en) 2013-03-15 2015-07-07 Ian Michael Fink System and method of determining a position of a remote object
DE102013205593A1 (de) * 2013-03-28 2014-10-02 Hilti Aktiengesellschaft Verfahren und Vorrichtung zur Anzeige von Objekten und Objektdaten eines Konstruktionsplans
EP2787321B1 (fr) * 2013-04-05 2015-09-16 Leica Geosystems AG Détermination de surface d'objets à l'aide de la détermination d'un seul point précis géodésique et du balayage
EP2787323A1 (fr) 2013-04-05 2014-10-08 Leica Geosystems AG Appareil de mesure doté d'une fonction de calibrage d'une position d'image d'indication d'un réticule à croisillon électronique
CN103217143A (zh) * 2013-04-09 2013-07-24 上海电机学院 雷达装置及目标物体跟踪方法
US9355495B2 (en) * 2013-10-09 2016-05-31 Trimble Navigation Limited Method and system for 3D modeling using feature detection
CN104374538A (zh) * 2014-12-19 2015-02-25 广州大学 一种多维振动测试系统
DE102015214148A1 (de) 2015-07-08 2017-01-12 Robert Bosch Gmbh System mit einem Laser-Messmodul
CN106802146A (zh) * 2016-12-07 2017-06-06 北京唐浩电力工程技术研究有限公司 一种风机位置选址方法
CN110325821B (zh) * 2017-02-14 2021-12-07 天宝公司 利用时间同步的大地测量
US10791275B2 (en) * 2017-09-25 2020-09-29 The Boeing Company Methods for measuring and inspecting structures using cable-suspended platforms
JP6942594B2 (ja) 2017-09-29 2021-09-29 株式会社トプコン スキャン範囲設定方法およびそのための測量システム
KR101836926B1 (ko) * 2017-12-05 2018-04-19 한국지질자원연구원 트렌치 단면 기준선 설정 장치 및 이를 이용한 트렌치 단면 분석 방법
RU2677089C1 (ru) * 2018-04-24 2019-01-15 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Способ горизонтальной соединительной съемки подэтажных горизонтов
US10769813B2 (en) * 2018-08-28 2020-09-08 Bendix Commercial Vehicle Systems, Llc Apparatus and method for calibrating surround-view camera systems
EP3623843B1 (fr) 2018-09-11 2021-01-13 Leica Geosystems AG Appareil de mesure de distance laser portatif
US10708507B1 (en) * 2018-10-11 2020-07-07 Zillow Group, Inc. Automated control of image acquisition via use of acquisition device sensors
WO2020119912A1 (fr) * 2018-12-13 2020-06-18 Leica Geosystems Ag Dispositif de mesure, système de mesure et instruments d'aide à la mesure
JP2022084096A (ja) * 2020-11-26 2022-06-07 株式会社トプコン 測量装置及び測量方法及び測量プログラム
CN113470017B (zh) * 2021-08-31 2021-11-16 海门裕隆光电科技有限公司 基于人工智能的输电线安全预警检测方法、装置及设备
CN116929311B (zh) * 2023-09-19 2024-02-02 中铁第一勘察设计院集团有限公司 变焦成像的断面变形监测方法、装置、系统及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130409A (ja) 1988-11-11 1990-05-18 Taisei Corp テレビ経緯儀による三次元測定方法と装置
JP2686664B2 (ja) 1989-11-27 1997-12-08 大成建設株式会社 三次元測定方法と装置
DE4032657A1 (de) 1990-10-15 1992-04-16 Pietzsch Ibp Gmbh Verfahren und messeinrichtung zur positionsbestimmung von raumpunkten
DE9007731U1 (de) 1990-10-15 1994-11-10 Pietzsch Ibp Gmbh Meßeinrichtung zur Positionsbestimmung opto-elektronisch darstellbarer Raumpunkte
US5481619A (en) * 1992-07-07 1996-01-02 Schwartz; Nira Inspection method using templates images, unique histogram analysis, and multiple gray levels correlated to addresses of template images
JPH0961121A (ja) * 1995-08-25 1997-03-07 Sumitomo Electric Ind Ltd 寸法計測装置及び計測方法
JPH09304053A (ja) * 1996-05-13 1997-11-28 Shimizu Corp 自動測量方法
FR2756399B1 (fr) * 1996-11-28 1999-06-25 Thomson Multimedia Sa Procede et dispositif de compression video pour images de synthese
GB9810405D0 (en) 1998-05-15 1998-07-15 Measurement Devices Ltd Survey apparatus
DE19922321C2 (de) * 1999-05-14 2002-07-18 Zsp Geodaetische Sys Gmbh Verfahren und Anordnung zur Durchführung von geodätischen Messungen mittels Videotachymeter
JP3777922B2 (ja) * 1999-12-09 2006-05-24 コニカミノルタフォトイメージング株式会社 デジタル撮像装置、それを備えた画像処理システム、画像処理装置、デジタル撮像方法および記録媒体
JP2001317938A (ja) * 2000-05-01 2001-11-16 Asahi Optical Co Ltd 光波距離計を有する測量機
US6678404B1 (en) * 2000-10-31 2004-01-13 Shih-Jong J. Lee Automatic referencing for computer vision applications
US7130466B2 (en) * 2000-12-21 2006-10-31 Cobion Ag System and method for compiling images from a database and comparing the compiled images with known images
ATE512348T1 (de) 2002-10-12 2011-06-15 Leica Geosystems Ag Elektronische anzeige- und steuervorrichtung für ein messgerät

Also Published As

Publication number Publication date
CA2519431C (fr) 2013-12-03
EP1606581A1 (fr) 2005-12-21
CA2519431A1 (fr) 2004-09-30
CN1761855B (zh) 2012-01-25
JP4607095B2 (ja) 2011-01-05
CN1761855A (zh) 2006-04-19
WO2004083779A1 (fr) 2004-09-30
EP1460377A2 (fr) 2004-09-22
JP2006520891A (ja) 2006-09-14
EP1460377A3 (fr) 2004-09-29
AU2004221661B2 (en) 2008-09-25
WO2004083779B1 (fr) 2005-01-06
AU2004221661A1 (en) 2004-09-30
US7633610B2 (en) 2009-12-15
US20060192946A1 (en) 2006-08-31
EP1606581B8 (fr) 2015-01-21

Similar Documents

Publication Publication Date Title
EP1606581B1 (fr) Procede et dispositif de traitement d'image d'un appareil de mesure geodesique
EP1549909B1 (fr) Dispositif d'affichage et de commande electronique destine a un appareil de mesure
EP1664674B1 (fr) Méthode et système pour la détermination de la position actuelle d'un appareil de postionement portatif
EP2669707B1 (fr) Procédé et appareil de mesure de distance pouvant être tenu à la main destinés à la mesure d'éloignement indirecte au moyen d'une fonction de détermination d'angle assistée par image
EP2981787B1 (fr) Appareil de mesure doté d'une fonction de calibrage d'une position d'image d'indication d'un réticule à croisillon électronique
EP2787322B1 (fr) Référencement géodésique de nuages de points
EP2707745B1 (fr) Procédé de calibrage pour un appareil doté d'une fonctionnalité de balayage
EP2616770B1 (fr) Système de mesure géodésique comportant un appareil de prise de vues intégré à une unité de télécommande
EP2663835B1 (fr) Appareil de mesure à fonctionnalité de changement de représentation automatique
EP1673589B1 (fr) Procede et dispositif pour determiner la position courante d'un instrument geodesique
EP3660451A1 (fr) Module de stationnement intelligent
DE19528465C2 (de) Verfahren und Vorrichtung zur schnellen Erfassung der Lage einer Zielmarke
DE10308525A1 (de) Vermessungssystem
EP2805180A1 (fr) Suiveur laser présentant une fonctionnalité de production de cible graphique
CH695121A5 (de) Verfahren und Anordnung zur Durchführung von geodätischen Messungen mittels Videotachymeter.
DE10328828A1 (de) Surveying System
DE102005024525A1 (de) Vermessungsinstrument
EP3623843B1 (fr) Appareil de mesure de distance laser portatif
DE102012111345B4 (de) Mobiles Handgerät zur Ausrichtung eines Sensors
EP0841535A2 (fr) Méthode et dispositif pour l'arpentage des terrains et des pièces
DE10329341B4 (de) Vermessungssystem
DE102014205640A1 (de) Vermessung mittels mobilem Gerät
DE102016200877A1 (de) System zum Messen einer dreidimensionalen Position
DE102011089837A1 (de) Optisches System
EP1314960A1 (fr) Dispositif électronique d'affichage et de commande d'un appareil de mesure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110413

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE AG, LI

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 694860

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014757

Country of ref document: DE

Effective date: 20141218

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014757

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 694860

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150318

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200323

Year of fee payment: 17

Ref country code: NL

Payment date: 20200319

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200319

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 20

Ref country code: DE

Payment date: 20220620

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004014757

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240317