EP1604760B1 - Verfahren zur Herstellung eines Körpers mit zellularer Struktur durch Verdichtung von beschichtetem Metallpulver - Google Patents

Verfahren zur Herstellung eines Körpers mit zellularer Struktur durch Verdichtung von beschichtetem Metallpulver Download PDF

Info

Publication number
EP1604760B1
EP1604760B1 EP05252858A EP05252858A EP1604760B1 EP 1604760 B1 EP1604760 B1 EP 1604760B1 EP 05252858 A EP05252858 A EP 05252858A EP 05252858 A EP05252858 A EP 05252858A EP 1604760 B1 EP1604760 B1 EP 1604760B1
Authority
EP
European Patent Office
Prior art keywords
metal particles
metal
particles
component
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05252858A
Other languages
English (en)
French (fr)
Other versions
EP1604760A1 (de
Inventor
Wayne Eric Voice
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of EP1604760A1 publication Critical patent/EP1604760A1/de
Application granted granted Critical
Publication of EP1604760B1 publication Critical patent/EP1604760B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal

Definitions

  • the present invention relates to a method of manufacturing a component by consolidating a metal powder.
  • Near net shape components are manufactured by consolidating metal powder, for example by hot isostatic pressing.
  • a vacuum purge system is used so as to maintain the composition of the metal powder constant throughout the consolidation process.
  • the resulting component thus has a homogeneous composition.
  • the present invention seeks to provide a novel method of manufacturing a component by consolidating a metal powder in which the microstructure of the metal of the component is modified and the component has improved physical and mechanical properties.
  • the present invention provides a method of manufacturing a component by consolidating a metal powder comprising the steps of:-
  • step (b) comprises oxidising the surfaces of the metal particles.
  • step (b) comprises nitriding the surfaces of the metal particles.
  • step (b) comprises vapour depositing a solid solution strengthening element on the surfaces of the metal particles.
  • step (b) comprises coating the surfaces of the metal particles with a second metal having lower melting point than the metal particles.
  • step (b) comprises coating the surfaces of the metal particles with particles of a second metal powder having a lower yield strength than the metal particles.
  • the metal particles have an average size of 100 micrometers.
  • the metal particles have a maximum size of 250 micrometers.
  • the size of the metal particles may be varied to vary the properties of the component.
  • the metal particles may be alloy particles.
  • the second metal may be an alloy.
  • the second metal particles may be alloy particles.
  • the metal particles are titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
  • step a) comprises supplying the titanium alloy particles into a container
  • step b) comprises oxidising the titanium alloy particles
  • step c) comprises sealing the container and applying heat and pressure.
  • step b) comprises heating to a temperature of 450°C and maintaining at 450°C for 8 hours under a partial pressure of 10 -1 torr to oxidise the titanium alloy particles and step c) comprises hot isostatic pressing the container at a temperature of 925°C for 2 hours at a pressure of 150MPa.
  • the container is removed by machining or dissolving in a suitable acid.
  • the container comprises mild steel.
  • the present invention also provides a component comprising consolidated metal powder, the metal powder comprising metal particles diffusion bonded together, the surfaces of the metal particles having a coating having at least one element which has partially diffused into the metal particles to form a cellular structure, the cellular structure comprising a framework of more highly alloyed material located at the boundaries of the diffusion bonded metal particles and the centres of the consolidated metal particles retain their original composition.
  • the coating comprising an oxide or a nitride and the at least one element is oxygen or nitrogen respectively.
  • the coating comprises a solid solution strengthening element on the surfaces of the metal particles.
  • the coating comprises a second metal having lower melting point than the metal particles.
  • the coating comprises a second metal powder having a lower yield strength than the metal particles.
  • the metal particles are titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
  • the component is a gas turbine engine component.
  • the component is a fan blade, a part of a fan blade, a compressor blade or a casing.
  • the present invention uses a metal powder consolidation process to produce a cellular structure into a component 10 or 20 in which the normal alloy composition is held within a framework of interstitial alloy or solid solution strengthened alloy.
  • the method of manufacturing a component 10, or 20, by consolidating a metal powder comprises preparing a metal powder, the metal powder comprising metal particles 30.
  • the metal particles ideally should have a narrow particle size, diameter, range, although this is not essential.
  • the metal particles 30 have an average size of 100 micrometers and the metal particles 30 have a maximum size of 250 micrometers.
  • a coating 32 containing at least one element is deposited on the surfaces 34 of the metal particles 30 of the metal powder. Heat and pressure is then applied to consolidate the metal particles 30 such that the at least one element of the coating 32 on the surfaces 34 of the metal particles 30 partially diffuses into the metal particles 30 and the coated metal particles 30 are diffusion bonded together to form a cellular structure 36.
  • the roughly spherical metal particles 30 are deformed to a polyhedral shape. This results in a framework of more highly alloyed material 38 located at the boundaries of the diffusion bonded metal particles 30, or adjacent the original surfaces 34 of the metal particles 30. Because there is only limited diffusion of the at least one element from the coating 32 into the metal particles 30, the centres 40 of the consolidated metal particles 30 retain their original composition and thus a cellular structure 36 is created.
  • the properties of the cellular structure 36 are dependent on the size, diameter, of the metal particles 30 of the metal powder, e.g. the dimensions of the resulting centres 40, and the at least one element in the coating 32.
  • the size, diameter, of the metal particles 30 may be varied to vary the properties of the cellular structure 36 and hence the physical and mechanical properties of the component 10 or 20.
  • the coating 32 for the metal particles 30 may be varied to vary the properties of the cellular structure 36 and hence the physical and mechanical properties of the component 10 or 20.
  • the coating 32 may comprise an oxide, which is produced by oxidising the surfaces 34 the metal particles 30 in oxygen or air.
  • the coating 32 may comprise a nitride, which is produced by nitriding the surfaces 34 of the metal particles 30.
  • the coating 32 may comprise a solid solution strengthening element, which is produced by vapour depositing on the surfaces 34 of the metal particles 30.
  • the coating 32 may comprise a second metal, having lower melting point than the metal particles 30.
  • the coating 32 comprises a second metal powder having a lower yield strength than the metal particles 30.
  • the metal particles 30 may be alloy particles.
  • the second metal may be an alloy.
  • the second metal particles may be alloy particles.
  • the metal particles may be titanium alloy particles. More preferably the titanium alloy particles comprise 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities.
  • the present invention permits modification of the material structure to enhance physical and mechanical properties according to the laws of cellular structures.
  • the present invention produces a cellular structure within a solid metallic component, the cellular structure improves the impact absorption properties, the ductility and the strength of a conventional alloy. In addition physical properties such as the elastic modulus, Poisson's Ratio, friction and damping characteristics are improved.
  • Titanium alloy particles comprising 6wt% aluminium, 4wt% vanadium and the balance titanium, minor additions and incidental impurities were prepared.
  • the titanium alloy particles were then filtered to the required titanium alloy particle size, 100 micrometers average size and 250 micrometers maximum size.
  • the titanium alloy particles were poured through an inlet tube into and filled a mild steel container, which defines the shape of the component being produced.
  • the container was heated to a temperature of 450°C and maintained at 450°C for 8 hours under a partial air pressure of 10 -1 torr to oxidise the titanium alloy particles.
  • the container was then sealed by welding shut an inlet tube.
  • the container was placed in a HIP vessel and hot isostatically pressed at a temperature of 925°C for 2 hours at a pressure of 150MPa. Then the container was removed from the consolidated metal powder component by machining or dissolving in a suitable acid.
  • a second metal, or second alloy which has a lower melting point the metal particles will result in melting or evaporation of the second metal to produce a coating on the metal particles.
  • the use of a second metal powder having a lower yield strength than the metal particles will result in the second metal powder deforming around the metal particles during consolidation to produce the cellular structure.
  • the present invention may also be used to infill metal powder particles into an existing hollow metal structure, for example a hollow fan blade or hollow compressor blade, and then to produce the cellular structure within the existing hollow metal structure.
  • an existing hollow metal structure for example a hollow fan blade or hollow compressor blade
  • the present invention may also be used to produce a hollow fan blade of a hollow compressor blade.
  • the mild steel container was provided with one or more removable cores in the mild steel container to define one or more chambers in the hollow fan blade, or hollow compressor blade.
  • the titanium alloy particles were poured into the mild steel container to fill the space in the mild steel container around the one or more removable cores.
  • the container was heated to 450°C and maintained at 450°C for 8 hours under a partial air pressure of 10 -1 torr to oxidise the titanium alloy particles.
  • the container was then sealed by welding shut the inlet tube.
  • the container was placed in a HIP vessel and hot isostatically pressed at a temperature of 925°C for 2 hours at a pressure of 150 MPa.
  • the removable cores may comprise an inert metal, for example lead or other metal with large atoms which are too large to diffuse into the titanium particles, having a lower melting point than the titanium alloy particles such that the hollow fan blade, or hollow compressor blade, is heated to a temperature at which the inert metal melts and is run out of the hollow fan blade, or hollow compressor blade. Remnants of the metal, may be removed from the hollow fan blade or hollow compressor blade, using a suitable solvent or a suitable acid.
  • the removable cores may comprise mild steel which may be removed with a suitable acid.
  • the hollow fan blade, or hollow compressor blade may be produced by ensuring that the container defines one or more chambers in the hollow fan blade or hollow compressor blade.
  • the chambers are arranged to be pressurised during the hot isostatic pressing.
  • the present invention may also entail machining a consolidated metal powder solid fan blade or solid compressor blade to final shape.
  • the present invention is also applicable to titanium alloy particles comprising 6wt% aluminium, 2wt% tin, 4wt% zirconium, 2wt% molybdenum and the balance titanium, minor additions or incidental impurities.
  • the oxygen or nitrogen partially diffuses into the metal particles, or alloy particles, to form interstitials in the metal, or alloy and the normal, or original, alloy composition at the centres of the consolidated metal particles, or alloy particles, is arranged within a framework of more highly alloyed, interstitial alloy, material located at the boundaries of the diffusion bonded metal particles, or alloy particles.
  • the present invention has been described with reference to titanium alloys, the invention is equally applicable to aluminium alloys, iron alloys, nickel alloys, cobalt alloys and to intermetallics, for example nickel aluminides, titanium aluminides.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Claims (27)

  1. Verfahren zur Herstellung eines Bauteils (10, 20) durch Verdichtung eines Metallpulvers mit den folgenden Schritten:
    (a) es wird ein Metallpulver vorbereitet, und das Metallpulver weist metallische Partikel (30) auf;
    (b) es wird ein Überzug (32), der wenigstens ein Element enthält, auf den Oberflächen (34) der metallischen Partikel (30) des Metallpulvers abgelagert;
    (c) es werden Hitze und Druck ausgeübt, um die metallischen Partikel (30) derart zu verdichten, dass das wenigstens eine Element des Überzugs (32) auf den Oberflächen (34) der metallischen Partikel (30) teilweise in die metallischen Partikel (30) hinein diffundiert und die überzogenen metallischen Partikel (30) durch Diffusionsverschweißung miteinander verbunden werden, um eine zellulare Struktur (36) zu erzeugen, wobei die zellulare Struktur (36) einen Rahmen (38) aus höher legiertem Material aufweist, der auf den Grenzflächen der durch Diffusion verbundenen metallischen Partikel (30) angeordnet ist, wobei die Mittelabschnitte (40) der verdichteten metallischen Partikel (30) ihre ursprüngliche Zusammensetzung aufrecht erhalten.
  2. Verfahren nach Anspruch 1, bei welchem der Schritt (b) eine Oxidation der Oberflächen (34) der metallischen Partikel (30) umfasst.
  3. Verfahren nach Anspruch 1, bei welchem der Schritt (b) eine Nitrierung der Oberflächen (34) der metallischen Partikel (30) umfasst.
  4. Verfahren nach Anspruch 1, bei welchem der Schritt (b) eine Dampfablagerung eines Verstärkungselementes einer festen Lösung auf den Oberflächen (34) der metallischen Partikel (30) umfasst.
  5. Verfahren nach Anspruch 1, bei welchem der Schritt (b) das Überziehen der Oberflächen (34) der metallischen Partikel (30) mit einem zweiten Metall umfasst, das einen niedrigeren Schmelzpunkt als die metallischen Partikel (30) aufweist.
  6. Verfahren nach Anspruch 1, bei welchem der Schritt (b) das Überziehen der Oberflächen (34) der metallischen Partikel (30) mit Partikeln eines zweiten Metallpulvers umfasst, das eine niedrigere Fließfestigkeit als die metallischen Partikel (30) besitzt.
  7. Verfahren nach den Ansprüchen 1 bis 6, bei welchem die metallischen Partikel (30) Legierungspartikel sind.
  8. Verfahren nach Anspruch 5, bei welchem das zweite Metall eine Legierung ist.
  9. Verfahren nach Anspruch 6, bei welchem die zweiten metallischen Partikel Legierungspartikel sind.
  10. Verfahren nach Anspruch 7, bei welchem die metallischen Partikel (30) Titan-Legierungspartikel sind.
  11. Verfahren nach Anspruch 10, bei welchem die Titan-Legierungspartikel (30) 6 Gewichtsprozent Aluminium, 4 Gewichtsprozent Vanadium und im übrigen Titan, geringe Zusätze und zufällige Verunreinigungen aufweisen.
  12. Verfahren nach Anspruch 11, bei welchem der Schritt (a) die Zuführung der Titan-Legierungspartikel (30) in einen Behälter umfasst, und der Schritt (b) eine Oxidation der Titan-Legierungspartikel (30) umfasst, und im Schritt (c) der Behälter abgedichtet und Hitze und Druck ausgesetzt wird.
  13. Verfahren nach Anspruch 12, bei welchem der Schritt (b) eine Erhitzung auf eine Temperatur von 450°C umfasst, wobei diese Temperatur von 450°C acht Stunden lang unter einem Partialdruck von 10-1 Torr gehalten wird, um die Titan-Legierungspartikel (30) zu oxidieren, und wobei der Schritt (c) ein heißes, isostatisches Pressen des Behälters bei einer Temperatur von 925°C zwei Stunden lang unter einem Druck von 150 MPa umfasst.
  14. Verfahren nach Anspruch 12 oder 13, bei welchem der Behälter durch spanabhebende Bearbeitung oder durch Lösen in einer geeigneten Säure entfernt wird.
  15. Verfahren nach Anspruch 12, Anspruch 13 oder Anspruch 14, bei welchem der Behälter aus einem unlegierten Stahl besteht.
  16. Verfahren nach einem der Ansprüche 1 bis 15, bei welchem die metallischen Partikel (30) eine durchschnittliche Größe von 100 Mikrometer haben.
  17. Verfahren nach einem der Ansprüche 1 bis 16, bei welchem die metallischen Partikel (30) eine maximale Größe von 250 Mikrometer haben.
  18. Verfahren nach einem der Ansprüche 1 bis 15, bei welchem die Größe der metallischen Partikel (30) verändert wird, um die Eigenschaften des Bauteils (10, 20) zu verändern.
  19. Bauteil (10, 20), bestehend aus einem verdichteten Metallpulver, wobei das Metallpulver metallische Partikel (30) aufweist, die durch Diffusion miteinander verschweißt sind, wobei die Oberflächen (34) der metallischen Partikel (30) einen Überzug aufweisen, der wenigstens ein Element hat, das teilweise in die metallischen Partikel (30) diffundiert ist, um eine zellulare Struktur (36) zu bilden, wobei die zellulare Struktur (36) einen Rahmen aus höher legiertem Material (38) umfasst, der an den Grenzflächen der durch Diffusion verschweißten metallischen Partikel (30) angeordnet ist und die Mittelabschnitte (40) der verdichteten metallischen Partikel (30) ihre ursprüngliche Zusammensetzung aufrecht erhalten.
  20. Bauteil nach Anspruch 19, bei welchem der Überzug (34) ein Oxid oder ein Nitrid ist und das wenigstens eine Element Sauerstoff bzw. Stickstoff ist.
  21. Bauteil nach Anspruch 19, bei welchem der Überzug ein Verstärkungselement einer festen Lösung auf den Oberflächen der metallischen Partikel (30) aufweist.
  22. Bauteil nach Anspruch 19, bei welchem der Überzug (34) ein zweites Metall aufweist, das einen niedrigeren Schmelzpunkt als die metallischen Partikel (30) hat.
  23. Bauteil nach Anspruch 19, bei welchem der Überzug (34) ein zweites Metallpulver aufweist, das eine niedrigere Fließfestigkeit hat als die metallischen Partikel (30).
  24. Bauteil nach einem der Ansprüche 19 bis 23, bei welchem die metallischen Partikel (30) Titan-Legierungspartikel sind.
  25. Bauteil nach Anspruch 24, bei welchem die Titan-Legierungspartikel (30) 6 Gewichtsprozent Aluminium, 4 Gewichtsprozent Vanadium und im übrigen Titan, geringe Zusätze und zufällige Verunreinigungen aufweisen.
  26. Bauteil nach einem der Ansprüche 19 bis 25, bei welchem der Bauteil (10, 20) der Bauteil eines Gasturbinentriebwerks ist.
  27. Bauteil nach Anspruch 26, bei welchem der Bauteil eine Fan-Laufschaufel (20), ein Teil einer Fan-Laufschaufel, eine Kompressor-Laufschaufel oder ein Gehäuse (10) ist.
EP05252858A 2004-06-12 2005-05-10 Verfahren zur Herstellung eines Körpers mit zellularer Struktur durch Verdichtung von beschichtetem Metallpulver Expired - Fee Related EP1604760B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0413135.5A GB0413135D0 (en) 2004-06-12 2004-06-12 A method of manufacturing a component by consolidating a metal powder
GB0413135 2004-06-12

Publications (2)

Publication Number Publication Date
EP1604760A1 EP1604760A1 (de) 2005-12-14
EP1604760B1 true EP1604760B1 (de) 2007-02-21

Family

ID=32732386

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05252858A Expired - Fee Related EP1604760B1 (de) 2004-06-12 2005-05-10 Verfahren zur Herstellung eines Körpers mit zellularer Struktur durch Verdichtung von beschichtetem Metallpulver

Country Status (4)

Country Link
US (1) US20050276715A1 (de)
EP (1) EP1604760B1 (de)
DE (1) DE602005000580T2 (de)
GB (1) GB0413135D0 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3096907B1 (de) * 2014-01-24 2021-03-10 United Technologies Corporation Nanopartikelverbesserung für additive fertigung
CN109759594B (zh) * 2019-01-08 2020-09-11 钢铁研究总院 一种组合材料热等静压高通量微制造方法及其包套模具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2273589A (en) * 1940-03-07 1942-02-17 Gen Motors Corp Method of making porous metal bodies
US3963485A (en) * 1972-05-01 1976-06-15 Gould Inc. Method of producing sintered titanium base articles
FR2464112A1 (fr) * 1979-08-27 1981-03-06 Commissariat Energie Atomique Procede de fabrication de pieces en alliage a base de titane par metallurgie des poudres
DE3412565A1 (de) * 1984-04-04 1985-10-24 Sintermetallwerk Krebsöge GmbH, 5608 Radevormwald Verfahren zum herstellen eines zaeh-harten werkstoffes fuer werkzeuge und/oder verschleissteile und nach diesem verfahren hergestellter werkstoff
US4880460A (en) * 1986-02-25 1989-11-14 Crucible Materials Corporation Powder metallurgy high speed tool steel article and method of manufacture
US4981512A (en) * 1990-07-27 1991-01-01 The United States Of America As Represented By The Secretary Of The Army Methods are producing composite materials of metal matrix containing tungsten grain
JP2868889B2 (ja) * 1990-11-20 1999-03-10 大同ほくさん株式会社 アルミニウム粉末加圧成形品の製法
US5614320A (en) * 1991-07-17 1997-03-25 Beane; Alan F. Particles having engineered properties
US6024915A (en) * 1993-08-12 2000-02-15 Agency Of Industrial Science & Technology Coated metal particles, a metal-base sinter and a process for producing same
US6017488A (en) * 1998-05-11 2000-01-25 Sandvik Ab Method for nitriding a titanium-based carbonitride alloy

Also Published As

Publication number Publication date
US20050276715A1 (en) 2005-12-15
DE602005000580T2 (de) 2007-06-21
DE602005000580D1 (de) 2007-04-05
EP1604760A1 (de) 2005-12-14
GB0413135D0 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
US6521173B2 (en) Low oxygen refractory metal powder for powder metallurgy
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
US10458001B2 (en) Method for producing a component from a composite material comprising a metal matrix and incorporated intermetallic phases
US5395699A (en) Component, in particular turbine blade which can be exposed to high temperatures, and method of producing said component
EP1411136B1 (de) HERSTELLUNGSVERFAHREN EINER SINTERLEGIERUNG AUF Ni-BASIS
US4851055A (en) Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
EP0297001B1 (de) Verfahren zum Vermindern der Streuung der charakteristischen mechanischen Werte bei Wolfram-Nickel-Eisen-Legierungen
US10029309B2 (en) Production process for TiAl components
JP2007031836A (ja) タービンエンジン用の粉末金属回転構成部品及びその処理方法
US5409781A (en) High-temperature component, especially a turbine blade, and process for producing this component
US6521059B1 (en) Blade and method for producing the blade
EP1527842B1 (de) Verfahren zur Herstellung eines Artikels aus einem faserverstärktem Verbundmetal
EP1779946B1 (de) Isostatisches Supersolvus-Heisspressen und Ringwalzen von Hohlpulverformen
US11638956B2 (en) Hot isostatic pressing consolidation of powder derived parts
JP5548578B2 (ja) 高強度マグネシウム合金線材及びその製造方法、高強度マグネシウム合金部品、並びに高強度マグネシウム合金ばね
US6939508B2 (en) Method of manufacturing net-shaped bimetallic parts
EP1604760B1 (de) Verfahren zur Herstellung eines Körpers mit zellularer Struktur durch Verdichtung von beschichtetem Metallpulver
JP2007131886A (ja) 耐磨耗性に優れた繊維強化金属の製造方法
JP4133078B2 (ja) 繊維強化金属の製造方法
JP2737498B2 (ja) 高密度粉末焼結用チタン合金
US5333667A (en) Superstrength metal composite material and process for making the same
JP2006342374A (ja) 金属及び合金焼結体の製造方法
JPH05148568A (ja) 高密度粉末焼結用チタン合金
JP7188576B2 (ja) TiAl合金材及びその製造方法、並びにTiAl合金材の熱間鍛造方法
EP3639954B1 (de) Pulvermetallurgisches verfahren zur herstellung eines nicht-molybdän-segregierten artikels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20051028

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005000580

Country of ref document: DE

Date of ref document: 20070405

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120601

Year of fee payment: 8

Ref country code: GB

Payment date: 20120522

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005000580

Country of ref document: DE

Effective date: 20131203

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531