EP1593171A1 - Systeme de reformatage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre - Google Patents

Systeme de reformatage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre

Info

Publication number
EP1593171A1
EP1593171A1 EP03799673A EP03799673A EP1593171A1 EP 1593171 A1 EP1593171 A1 EP 1593171A1 EP 03799673 A EP03799673 A EP 03799673A EP 03799673 A EP03799673 A EP 03799673A EP 1593171 A1 EP1593171 A1 EP 1593171A1
Authority
EP
European Patent Office
Prior art keywords
reformate
hydrogen
reformer
fuel cell
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03799673A
Other languages
German (de)
English (en)
Inventor
Fabien Boudjemaa
Gilles Dewaele
Fahri Keretli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1593171A1 publication Critical patent/EP1593171A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/30Preventing theft during charging
    • B60L2270/36Preventing theft during charging of vehicles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0294Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing three or more CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/145At least two purification steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • Fuel reforming system for the supply of a fuel cell of a motor vehicle and method of implementation.
  • the present invention relates to the supply of hydrogen to a fuel cell, in particular intended for a motor vehicle fitted with an electric traction motor, the fuel cell being supplied with hydrogen obtained by reforming a hydrocarbon fuel.
  • the fuel cell constitutes an electrochemical generator supplied with both hydrogen and oxygen contained in the air.
  • Such a fuel cell can be used to power an electric traction chain in a motor vehicle. It is thus possible to obtain an operation comparable to that of a conventional vehicle provided with an internal combustion engine supplied with fuel while considerably reducing the emissions of carbon dioxide and of polluting gases.
  • hydrocarbon fuel for the production of the hydrogen necessary to supply the fuel cell requires the installation in the vehicle of a reforming system capable of extracting the hydrogen from the fuel which can be gasoline, methanol or any other hydrocarbon fuel.
  • a reforming system essentially comprises three main components.
  • the reforming system firstly comprises a reforming device or reformer proper which produces, from the primary fuel, by a catalytic reforming process, a gaseous mixture rich in hydrogen.
  • a reforming device or reformer proper which produces, from the primary fuel, by a catalytic reforming process, a gaseous mixture rich in hydrogen.
  • Different types of reformers are known.
  • thermally self-sufficient reformers in continuous regime generally called ATR (Auto Thermal Reformer).
  • the reforming system also comprises a device for enriching the reformate from the reformer with hydrogen, by a reaction involving steam at high temperature. In practice, this enrichment device often consists of two parts, one at high temperature (HTS), the other at lower temperature (LTS).
  • the reformer system also comprises a device for purifying the reformate by reacting carbon monoxide, so as to eliminate this gas from the hydrogen-rich gas mixture coming from the reformer device, before feeding into the fuel cell.
  • the optimum temperatures are of the order of 800 ° C for the reformer of the ATR type, 400 ° C for the hydrogen enrichment device, and 150 ° C for the carbon monoxide purification device.
  • a burner is generally used which is integrated into the reforming system and supplied with fuel.
  • the present invention therefore relates to a system for supplying hydrogen to a motor vehicle fuel cell by reforming fuel which allows fuel consumption to be saved, in particular in the case of urban journeys at low speed.
  • the invention also relates to such a system, making it possible to offer the driver in a simple manner a possibility of varying the available power.
  • the fuel reforming system according to the invention for supplying hydrogen to a fuel cell, in particular intended for a motor vehicle, comprises a reformer device, a device for enriching the reformate from the reformer with hydrogen, and a device for purifying the reformate by reacting carbon monoxide.
  • At least two separate channels are provided, each comprising at least one of the aforementioned devices and a control means for choosing one of the channels or all of the channels at the same time. In this way, the driver of the vehicle can easily choose the power suitable for each driving situation.
  • each of the separate channels comprises a reformer device, a device for enriching the reformate from the reformate with hydrogen, and a device for purifying the reformate by reaction of carbon monoxide.
  • each of the separate channels comprises a reformer device, the separate channels joining together in a single channel comprising a common device for enriching the reformate from the reformers of the different channels with hydrogen, and a common device for purifying the reformate by reaction of carbon monoxide.
  • each of the separate channels comprises a reformer device, a device for enriching the reformate from the reformer with hydrogen, the separate channels joining up in a single channel comprising a common device for purifying the reformate by reaction of the monoxide of carbon.
  • each of the separate paths may comprise a reformer device and a high-temperature part of a device for enriching the reformate from the reformer with hydrogen, the separate paths joining up in a single path comprising a common part at a lower temperature.
  • the reformat hydrogen enrichment device from the reformer and a common reformate purification device by reaction of carbon monoxide may comprise a reformer device and a high-temperature part of a device for enriching the reformate from the reformer with hydrogen, the separate paths joining up in a single path comprising a common part at a lower temperature.
  • each of the separate paths is adapted to provide a different flow of hydrogen corresponding to a different power of the fuel cell.
  • the driver can then easily choose the path that corresponds to the desired power.
  • control means is also suitable for controlling the flow of fuel supplying the system, as a function of the chosen route or routes.
  • the method for supplying hydrogen to a motor vehicle fuel cell uses a fuel reforming process with hydrogen enrichment of the reformate and purification of the reformate by reaction of carbon monoxide. carbon. Furthermore, the flow of hydrogen supplied to the fuel cell is controlled, as a function of the desired power, by using one or more individual reforming paths.
  • FIG. 1 shows the main elements of a traction chain of a motor vehicle, comprising a fuel reforming system and a fuel cell;
  • FIG. 2 shows a first embodiment of a reforming system according to the invention, with two separate complete channels;
  • FIG. 3 illustrates a second embodiment of a reforming system according to the invention, with two partial paths joining in a single path;
  • FIG. 4 illustrates a third embodiment of a reforming system according to the invention, with two partial channels joining in a single channel;
  • FIG. 5 illustrates a variant of the embodiment of FIG. 4.
  • a reforming system 1 supplies hydrogen to a fuel cell 2 through the pipe 3.
  • the electric current produced by the fuel cell 2 is supplied to a converter 4 connected to the fuel cell 2 by the electrical connection 5.
  • An electrical connection 6 connects the converter 4 to the power battery 7 which equips the vehicle.
  • the electric current from the converter 4 is brought by the electrical connection 8 to the electric motor 9 of the vehicle, connected by the shaft 10 to the transmission and to the wheels of the vehicles shown diagrammatically by the block 11.
  • a fuel tank 12 is equipped with a pump 13 capable of supplying fuel via the line 14 to the reforming system 1.
  • the air is supplied by the line 15 to a compressor 16 before being led by the lines 17 and 18, respectively in the fuel cell 2 and in the reforming system 1.
  • An electronic control unit 19 is capable of sending control signals to the fuel pump 13 by the connection 20 and to the reforming system 1 by the connection 21, so as to control the latter, as will be seen below. .
  • a power indicator device 22 receives via the connection 23 a signal from the electronic control unit 19, so as to warn the driver of the power available for the traction motor. Also shown in Figure 1 is a mode selection button 24 connected by connection 25 to the electronic control unit 19, and an anti-theft contactor device 26, also connected by connection 27 to the electronic control unit . It will be understood, of course, that other means could be provided, the means described being so only by way of example.
  • the control unit In operation, when the electronic control unit has received a signal from the anti-theft switch 26 and from the mode selection button 24, the control unit is able to control the pump 13 to supply the reforming system 1.
  • This ci suitably heated by means which are not shown in FIG. 1, and supplied with compressed air by the compressor 16, produces a reformate rich in hydrogen, suitably purified, as will be seen below, so as to supply the battery fuel 2.
  • An excess part of the hydrogen returns to the reforming system 1 via line 28.
  • the vehicle equipped with these different means must be capable, as is the case with a vehicle fitted with a heat engine, of adapting as well to urban use where the average power consumed by the traction chain is low, than for road or motorway use where the average power consumed is on the contrary high.
  • the object of the present invention is to allow these two types of use by reducing consumption, so as to ensure operation comparable to that of a conventional vehicle but with the advantages which are attached to electric traction.
  • FIG. 2 illustrates a first embodiment of the invention, in which the reforming system 1 comprises two channels, each comprising the same components.
  • the two channels, a and b, are placed in parallel.
  • Each of them comprises a reformer device 29a, 29b, a high temperature hydrogen enrichment device 30a, 30b, a second lower temperature hydrogen enrichment device 31a, 31b, and a purification device 32a, 32b, reaction of carbon monoxide in the reformate produced.
  • the optimal operating temperature of each of these devices is ensured by heat exchangers referenced 33a, 33b, 34a, 34b, 35a, 35b.
  • a burner 36 produces heat energy which is brought to a heat exchanger 37 receiving air coming from the pipe 18.
  • the hot air leaving the exchanger 37 passes through the reactors 29, 30, 31 and 32, thus allowing to heat them. Gases from combustion from the burner 36 also pass through the various heat exchangers 33, 34 and 35, after having passed through the heat exchanger 37.
  • the double supply of heat reduces the heating time of the installation.
  • the exchanger 37 is used to vaporize the fuel supplied by the line 14 and the water supplied by the line 38.
  • the fuel and the water vaporized in the heat exchanger 37 can be brought into the one or the other of the channels a, b, or in the two channels simultaneously, depending on the position of a valve 39 controlled by a signal from the electronic control unit 19, visible in FIG. 1.
  • the two paths a and b meet at the inlet of the fuel cell 2, the gaseous mixture rich in hydrogen being brought to the appropriate temperature by passage through a heat exchanger 40.
  • the different components of the devices of one of the channels will be chosen, for example channel a, so as to provide a power, for example of the order of 60 kW, while the components of the devices of channel b will be chosen, so as to provide a lower power, for example of the order of 20 kW.
  • the driver When starting the vehicle, the driver then has a choice between two operating modes:
  • the driver can privilege consumption, by only putting into action at start-up that channel b of a lower power, of the order of 20 kW. The amount of fuel consumed to warm up the reforming system is then reduced.
  • the driver can favor the performance of the vehicle, by then activating the two tracks a and b, simultaneously, from the start of the vehicle. it however, requires heating all the devices of the two channels a and b simultaneously, which results in a significant increase in the consumption of the vehicle. However, the driver then has, at the end of the warm-up, all of the power installed in the vehicle.
  • the interface allowing the driver to choose the operating modes can be, as in the example illustrated, a simple mode selection button, referenced 24 in FIG. 1.
  • the power indicator 22 controlled by the electronic control unit 19, signals to the driver the channels which are operational, so that the driver can adapt his driving to the available power.
  • the operating logic of this embodiment is as follows:
  • the electronic control unit continuously scans the position of the anti-theft switch 26 or of the powertrain start button. As soon as the anti-theft switch 26 or the start button takes the "start" position, the electronic control unit tests the position of the mode selection button 24.
  • the electronic control unit activates the burner 36 and adapts the fuel flow by acting on the pump 13 to supply the burner 36 in order to heat the path b of the reforming system, c ' that is to say the path of smaller power.
  • the electronic control unit activates the burner and adapts the fuel flow supplying the burner 36, so as to allow the heating of the two channels a and b.
  • the electronic control unit ensures the generation of electrical power by the fuel cell as a function of the driver's request, for example as a function of the position of the accelerator.
  • the total electrical power available depends, in addition to the mode selected by the driver, on the energy management adopted for the vehicle which can be programmed in the electronic control unit.
  • only channel b of the reforming system produces hydrogen which supplies the fuel cell 2.
  • the power supplied by the battery is added to the power generated by the fuel cell 2, at provided that the vehicle speed does not exceed the speed which can be reached with the power supplied only by battery 2 supplied with hydrogen by channel b, this speed being less than the maximum vehicle speed which can be reached when the battery is supplied with H 2 by the two channels a and b.
  • Such energy management makes it possible to have, for accelerations, the power of the battery in addition to the power of the cell supplied with hydrogen only by one of the channels.
  • the power supplied by the battery is not continuously used, since the speed of the vehicle is limited to that which can be achieved with the production of H 2 from the single channel b.
  • the electronic control unit is then capable of activating the burner 36 and of adjusting the fuel flow by acting on the pump 13, so as to supply the burner to heat the second channel a of the reforming system, while the first channel b is already at the optimum operating temperature.
  • the power indicator 22 informs the driver of the available power.
  • the power indicator 22 informs the driver that only the battery is able to supply power. If the mode favoring low consumption is chosen, the indicator informs the driver, as soon as channel b is hot, that only the battery and one of the reformer's channels are available. If the mode favoring performance is chosen, the indicator informs the driver as soon as the two lanes of the reformer are at operating temperature, that the full power of the vehicle is available.
  • FIG. 3 illustrates another embodiment, in which the same elements have the same references and / or only the reformer device is duplicated.
  • the two channels a and b which each include a reformer device 29a and 29b.
  • the two channels a and b join in a single channel at the output of the reformer devices 29a and 29b.
  • the single channel then comprises a single hydrogen enrichment device at high temperature, referenced 30, a single hydrogen enrichment device at low temperature, referenced 31, and a single purification device 32.
  • the same exchangers 33 are found, 34, 35 and 40 as in the embodiment illustrated in FIG. 2.
  • the channels a and b each comprise a reformer device 29a, 29b, a high temperature enrichment device 30a, 30b, and a low temperature enrichment device 31a, 31b, the heat exchangers 33a, 33b, 34a, 34b allowing the optimal heating of the various components.
  • the two channels a and b meet in a single channel at the outlet of the enrichment device 31a, 31b.
  • the purification device 32 is therefore common to the two channels a and b.
  • the low temperature enrichment device 31 is also common to the two channels a and b, which each include a reformer device 29a,
  • the present invention allows the driver to choose for city driving, operation of the vehicle with reduced consumption in return for a temporary reduction in vehicle performance.
  • the choice of the vehicle's operating mode remains under the driver's control, who can at any time switch from an economic mode with low consumption to a mode promoting performance and corresponding to the totality of the power installed on board the vehicle.

Abstract

Système de reformage (1) de carburant pour l'alimentation en hydrogène d'une pile à combustible (2), en particulier destiné à un véhicule automobile, du type comprenant un dispositif reformeur (29), un dispositif d'enrichissement en hydrogène (33, 34) du reformat issu du reformeur, et un dispositif de purification (32) du reformat par réaction du monoxyde de carbone, caractérisé par le fait qu'il comprend au moins deux voies séparées (a, b) comportant chacune au moins un des dispositifs précités et un moyen de commande (39) pour choisir l'une des voies ou toutes les voies à la fois.

Description

Système de reformage de carburant pour l'alimentation d'une pile à combustible de véhicule automobile et procédé de mise en œuvre.
La présente invention concerne l' alimentation en hydrogène d'une pile à combustible, en particulier destinée à un véhicule automobile muni d'un moteur électrique de traction, la pile à combustible étant alimentée en hydrogène obtenu par reformage d'un carburant hydrocarboné. La pile à combustible constitue un générateur électrochimique alimenté à la fois en hydrogène et en oxygène contenu dans l' air. Une telle pile à combustible peut être utilisée pour alimenter une chaîne de traction électrique dans un véhicule automobile. On peut ainsi obtenir un fonctionnement comparable à celui d' un véhicule conventionnel muni d'un moteur thermique alimenté en carburant tout en réduisant considérablement les émissions de dioxyde de carbone et de gaz polluants.
L'utilisation d'un carburant hydrocarboné pour la production de l'hydrogène nécessaire à l'alimentation de la pile à combustible, nécessite l'implantation dans le véhicule d'un système de reformage capable d'extraire l'hydrogène du carburant qui peut être de l' essence, du méthanol ou tout autre carburant hydrocarboné.
D'une manière générale, un système de reformage comprend essentiellement trois composants principaux. Le système de reformage comprend tout d' abord un dispositif de reformage ou reformeur proprement dit qui produit, à partir du carburant primaire, par un processus de reformage catalytique, un mélange gazeux riche en hydrogène. On connaît différents types de reformeurs. Dans la présente description, on évoquera essentiellement les reformeurs thermiquement autosuffisants en régime continu, généralement appelés ATR (Auto Thermal Reformer). On comprendra, bien entendu, que l'invention pourrait s' appliquer dans les mêmes conditions à des reformeurs d'une technologie différente. Le système de reformage comprend en outre un dispositif d' enrichissement en hydrogène du reformat issu du dispositif reformeur, par une réaction faisant intervenir la vapeur .d'eau à température élevée. En pratique, ce dispositif d'enrichissement est souvent constitué de deux parties, l'une à haute température (HTS), l' autre à température moins importante (LTS).
Enfin, le système reformeur comprend également un dispositif de purification du reformat par réaction du monoxyde de carbone, de façon à éliminer ce gaz du mélange gazeux riche en hydrogène issu du dispositif reformeur, avant l' alimentation dans la pile à combustible.
Ces trois dispositifs doivent être portés à leur température optimale de fonctionnement pour être pleinement opérationnels. Par exemple, dans le cas d'un reformage d'essence, les températures optimales sont de l' ordre de 800°C pour le reformeur du type ATR, de 400°C pour le dispositif d' enrichissement en hydrogène, et de 150°C pour le dispositif de purification en monoxyde de carbone.
Pour atteindre ces températures, on utilise généralement un brûleur intégré au système de reformage et alimenté en carburant.
L'inertie thermique relativement importante des composants du système de reformage nécessite la combustion d'une certaine quantité de carburant, entraînant une augmentation de consommation. Si cette augmentation de consommation peut être considérée comme faible dans le cas de trajets longs à haute vitesse du véhicule, il n' en n'est pas de même dans le cas de trajets courts et à faible vitesse impliquant plusieurs démarrages à froid dans une période de temps limitée. C'est le cas en particulier lors d'un usage urbain d'un véhicule équipé d'une pile à combustible. La demande de brevet WO 0031816 décrit un reformeur miniaturisé pour véhicule automobile regroupant en un seul réacteur les étapes de reformage et de purification. La possibilité de prévoir plusieurs modules connectés en série ou en parallèle est évoquée dans ce document, sans toutefois qu'un avantage en terme de consommation et de conduite du véhicule soit mentionné.
La présente invention a donc pour objet un système d'alimentation en hydrogène d'une pile à combustible de véhicule automobile par reformage de carburant qui permet une économie de consommation en carburant, en particulier dans le cas de parcours urbains à faible vitesse.
L'invention a également pour objet un tel système, permettant d'offrir au conducteur d'une manière simple une possibilité de variation de la puissance disponible. Le système de reformage de carburant selon l' invention, pour l'alimentation en hydrogène d'une pile à combustible, en particulier destiné à un véhicule automobile, comprend un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, et un dispositif de purification du reformat par réaction du monoxyde de carbone. Au moins deux voies séparées sont prévues, chacune comportant au moins un des dispositifs précités et un moyen de commande pour choisir l'une des voies ou toutes les voies à la fois. De cette manière, le conducteur du véhicule peut facilement choisir la puissance adaptée à chaque situation de conduite. Dans un mode de réalisation, chacune des voies séparées comporte un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, et un dispositif de purification du reformat par réaction du monoxyde de carbone. Les deux voies montées en parallèle, dupliquent ainsi chaque dispositif. Dans un autre mode de réalisation, chacune des voies séparées comporte un dispositif reformeur, les voies séparées se rejoignant en une voie unique comportant un dispositif commun d'enrichissement en hydrogène du reformat issu des reformeurs des différentes voies, et un dispositif commun de purification du reformat par réaction du monoxyde de carbone.
Dans un autre mode réalisation, chacune des voies séparées comporte un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, les voies séparées se rejoignant en une voie unique comportant un dispositif commun de purification du reformat par réaction du monoxyde de carbone.
En variante, chacune des voies séparées peut comporter un dispositif reformeur et une partie à haute température d'un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, les voies séparées se rejoignant en une voie unique comportant une partie commune à température moins élevée du dispositif d'enrichissement en hydrogène du reformat issu du reformeur et un dispositif commun de purification du reformat par réaction du monoxyde de carbone.
De préférence, chacune des voies séparées est adaptée pour fournir un débit d'hydrogène différent correspondant à une puissance différente de la pile à combustible. Le conducteur peut alors facilement choisir la voie qui correspond à la puissance désirée.
Avantageusement, le moyen de commande est également adapté pour commander le débit de carburant alimentant le système, en fonction de la ou des voies choisies.
Le procédé d'alimentation en hydrogène d'une pile à combustible de véhicule automobile selon l'invention utilise un processus de reformage de carburant avec enrichissement en hydrogène du reformat et purification du reformat par réaction du monoxyde de carbone. On commande en outre le débit d'hydrogène alimentant la pile à combustible, en fonction de la puissance désirée, en utilisant une ou plusieurs voies individuelles de reformage.
L'invention sera mieux comprise à l'étude de quelques modes de réalisation pris à titre d'exemples nullement limitatifs, et illustrés par les dessins annexés, sur lesquels :
- la figure 1 montre les principaux éléments d'une chaîne de traction d'un véhicule automobile, comportant un système de reformage de carburant et une pile à combustible ; - la figure 2 montre un premier mode de réalisation d'un système de reformage selon l'invention, à deux voies complètes distinctes ;
- la figure 3 illustre un deuxième mode de réalisation d'un système de reformage selon l'invention, avec deux voies partielles se rejoignant en une voie unique ;
- la figure 4 illustre un troisième mode de réalisation d'un système de reformage selon l'invention, avec deux voies partielles se rejoignant en une voie unique ; et
- la figure 5 illustre une variante du mode de réalisation de la figure 4.
Tel qu'illustré sur la figure 1, un système de reformage 1 alimente en hydrogène une pile à combustible 2 par la canalisation 3. Le courant électrique produit par la pile à combustible 2 est amené à un convertisseur 4 relié à la pile à combustible 2 par la connexion électrique 5. Une connexion électrique 6 relie le convertisseur 4 à la batterie de puissance 7 qui équipe le véhicule. Le courant électrique issu du convertisseur 4 est amené par la connexion électrique 8 au moteur électrique 9 du véhicule, connecté par l'arbre 10 à la transmission et aux roues du véhicules schématisées par le bloc 11. Un réservoir de carburant 12 est équipé d'une pompe 13 capable d' amener du carburant par la canalisation 14 au système de reformage 1.
L' air est amené par la canalisation 15 à un compresseur 16 avant d'être conduit par les canalisations 17 et 18, respectivement dans la pile à combustible 2 et dans le système de reformage 1.
Une unité de commande électronique 19 est capable d'envoyer des signaux de commande à la pompe à carburant 13 par la connexion 20 et au système de reformage 1 par la connexion 21 , de façon à commander celui-ci, comme on le verra plus loin.
Un dispositif indicateur de puissance 22 reçoit par la connexion 23 un signal de l'unité de commande électronique 19, de façon à avertir le conducteur de la puissance disponible pour le moteur de traction. On a également fait figurer sur la figure 1 un bouton de sélection de mode 24 relié par la connexion 25 à l'unité de commande électronique 19, et un dispositif contacteur antivol 26, également relié par la connexion 27 à l'unité de commande électronique. On comprendra, bien entendu, que d'autres moyens pourraient être prévus, les moyens décrits ne l' étant qu' à titre d'exemple.
En fonctionnement, lorsque l'unité de commande électronique a reçu un signal du contacteur antivol 26 et du bouton de sélection de mode 24, l'unité de commande est à même de piloter la pompe 13 pour alimenter le système de reformage 1. Celui-ci, convenablement chauffé par des moyens qui ne sont pas représentés sur la figure 1, et alimenté en air comprimé par le compresseur 16, produit un reformat riche en hydrogène, convenablement purifié, comme on le verra plus loin, de façon à alimenter la pile à combustible 2. Une partie excédentaire de l'hydrogène revient dans le système de reformage 1 par la conduite 28. Le véhicule équipé de ces différents moyens doit être capable, comme c'est le cas pour un véhicule muni d'un moteur thermique, de s' adapter aussi bien à un usage urbain où la puissance moyenne consommée par la chaîne de traction est faible, qu' à un usage routier ou autoroutier où la puissance moyenne consommée est au contraire élevée.
La présente invention a pour objet de permettre ces deux types d'utilisation en réduisant la consommation, de façon à assurer un fonctionnement comparable à celui d'un véhicule conventionnel mais avec les avantages qui s'attachent à la traction électrique.
La solution proposée, selon la présente invention, consiste à implanter dans le système de reformage au moins deux voies séparées, qui peuvent être choisies individuellement ou ensemble, par le conducteur, selon la puissance désirée. La figure 2 illustre un premier mode de réalisation de l'invention, dans lequel le système de reformage 1 comprend deux voies, chacune comportant les mêmes composants. Les deux voies, a et b, sont placées en parallèle. Chacune d'entre elles comporte un dispositif reformeur 29a, 29b, un dispositif d'enrichissement en hydrogène à haute température 30a, 30b, un deuxième dispositif d'enrichissement en hydrogène à température moins élevée 31a, 31b, et un dispositif de purification 32a, 32b, à réaction du monoxyde de carbone dans le reformat produit. La température de fonctionnement optimale de chacun de ces dispositifs est assurée par des échangeurs de chaleur référencés 33a, 33b, 34a, 34b, 35a, 35b.
Un brûleur 36 produit une énergie calorifique qui est amenée à un echangeur de chaleur 37 recevant de l' air provenant de la canalisation 18. L' air chaud sortant de l'échangeur 37 traverse les réacteurs 29, 30, 31 et 32, permettant ainsi de les chauffer. Les gaz de combustion issus du brûleur 36 traversent également les différents échangeurs de chaleur 33, 34 et 35, après avoir traversé l'échangeur de chaleur 37. Le double apport de chaleur diminue le temps de chauffage de l'installation. Dans une seconde étape, l'échangeur 37 est utilisé pour vaporiser le carburant amené par la canalisation 14 et l'eau amenée par la canalisation 38. Le carburant et l'eau vaporisés dans l' échangeur de chaleur 37 peuvent être amenés dans l'une ou l' autre des voies a, b, ou dans les deux voies simultanément, selon la position d'une vanne 39 pilotée par un signal provenant de l'unité de commande électronique 19, visible sur la figure 1.
Les deux voies a et b se rejoignent à l'entrée de la pile à combustible 2, le mélange gazeux riche en hydrogène étant amené à la température appropriée par passage dans un echangeur de chaleur 40.
Dans un tel mode de réalisation utilisant deux voies dupliquées, on choisira les différents composants des dispositifs de l'une des voies, par exemple la voie a, de façon à fournir une puissance, par exemple de l'ordre de 60 kW, tandis que l' on choisira les composants des dispositifs de la voie b, de façon à fournir une puissance inférieure, par exemple de l'ordre de 20 kW. Lors du démarrage du véhicule, le conducteur dispose alors d'un choix entre deux modes de fonctionnement :
Selon un premier mode de fonctionnement, le conducteur peut privilégier la consommation, en ne mettant alors en action au démarrage que la voie b d'une puissance inférieure, de l' ordre de 20 kW. La quantité de carburant consommé pour la mise en température du système de reformage est alors réduite.
Selon un deuxième mode de fonctionnement, le conducteur peut privilégier les performances du véhicule, en mettant alors en action les deux voies a et b, simultanément, dès le démarrage du véhicule. Cela nécessite cependant de chauffer tous les dispositifs des deux voies a et b, simultanément, ce qui entraîne un augmentation notable de la consommation du véhicule. Toutefois, le conducteur dispose alors, dès la fin de la mise en température, de la totalité de la puissance installée dans le véhicule.
Il est également possible au conducteur de sélectionner un mode de fonctionnement particulier, lors du roulage du véhicule.
L'interface permettant au conducteur le choix des modes de fonctionnement, peut être, comme dans l'exemple illustré, un simple bouton de sélection de mode, référencé 24 sur la figure 1.
On notera que l'indicateur de puissance 22, piloté par l'unité de commande électronique 19, signale au conducteur les voies qui sont opérationnelles, afin que le conducteur puisse adapter sa conduite à la puissance disponible. La logique de fonctionnement de ce mode de réalisation est la suivante :
L'unité de commande électronique scrute en permanence la position du contacteur antivol 26 ou du bouton de démarrage du groupe motopropulseur. Dès que le contacteur antivol 26 ou le bouton de démarrage prend la position « démarrage », l'unité de commande électronique teste la position du bouton de sélection de mode 24.
Si le mode « faible consommation » est sélectionné, l'unité de commande électronique active le brûleur 36 et adapte le débit de carburant en agissant sur la pompe 13 pour alimenter le brûleur 36 afin de chauffer la voie b du système de reformage, c'est-à-dire la voie de plus petite puissance.
Si, au contraire, le mode « performance » est sélectionné par le conducteur, l'unité de commande électronique active le brûleur et adapte le débit de carburant alimentant le brûleur 36, de façon à permettre le chauffage des deux voies a et b.
Dans les deux cas, l'alimentation de la pile à combustible est possible dès que la température de fonctionnement des réacteurs est atteinte. Dès ce moment, l'unité de commande électronique assure la génération de puissance électrique par la pile à combustible en fonction de la demande du conducteur, par exemple en fonction de la position de l' accélérateur. La puissance électrique totale disponible dépend, en plus du mode sélectionné par le conducteur, de la gestion d'énergie adoptée pour le véhicule qui peut être programmée dans l'unité de commande électronique.
Dans le mode de fonctionnement à faible consommation, seule la voie b du système de reformage produit de l'hydrogène qui alimente la pile à combustible 2. La puissance fournie par la batterie est additionnée à la puissance générée par la pile à combustible 2, à condition que la vitesse du véhicule ne dépasse pas la vitesse qui peut être atteinte avec la puissance fournie uniquement par la pile 2 alimentée en hydrogène par la voie b, cette vitesse étant inférieure à la vitesse maximum du véhicule qui peut être atteinte quand la pile est alimentée en H2 par les deux voies a et b. Une telle gestion d'énergie permet de disposer, pour les accélérations, de la puissance de la batterie en plus de la puissance de la pile alimentée en hydrogène uniquement par l'une des voies. On ne fait pas appel en continu à la puissance fournie par la batterie, étant donné que la vitesse du véhicule est limitée à celle qu'on peut atteindre avec la production d'H2 de la seule voie b. Cela évite de décharger la batterie par une demande continue de puissance. Grâce à la batterie, les accélérations du véhicule ne sont pas affectées par le fait que seule la voie b du reformeur est en fonctionnement. Dans le mode de fonctionnement privilégiant la performance, les deux voies du système de reformage produisent de l'hydrogène qui alimente la pile à combustible 2. La puissance fournie par la batterie 7 est également ajoutée à la puissance générée par la pile à combustible 2, à condition que la puissance totale ainsi obtenue ne dépasse pas la puissance maximale du système de pile à combustible 2. Une telle gestion d'énergie permet de disposer de la puissance de la batterie pour compenser le temps de réponse du système de pile à combustible lors d'une augmentation de la puissance demandée par la chaîne de traction. Cela permet d'obtenir d'excellentes accélérations sans entraîner un risque de dégradation des performances du véhicule par décharge de la batterie, puisque la puissance maximale fournie au moteur électrique ne dépasse pas la puissance maximale du système de pile à combustible. Si le conducteur passe du mode de faible consommation au mode privilégiant la performance durant le roulage du véhicule, l'unité de commande électronique est alors capable d' activer le brûleur 36 et d' adapter le débit de carburant en agissant sur la pompe 13, de façon à alimenter le brûleur pour chauffer la deuxième voie a du système de reformage, alors que la première voie b est déjà à la température optimale de fonctionnement.
L'indicateur de puissance 22 informe le conducteur de la puissance disponible. Au démarrage du véhicule, l'indicateur de puissance 22 informe le conducteur que seule la batterie est en mesure de fournir de la puissance. Si le mode privilégiant la faible consommation est choisi, l'indicateur informe le conducteur, dès que la voie b est chaude, que seule la batterie et l'une des voies du reformeur sont disponibles. Si le mode privilégiant la performance est choisi, l'indicateur informe le conducteur dès que les deux voies du reformeur sont à la température de fonctionnement, que la totalité de la puissance du véhicule est disponible.
La figure 3 illustre un autre mode de réalisation, dans lequel les mêmes éléments portent les mêmes références et/ou seul le dispositif reformeur est dupliqué. On retrouve donc les deux voies a et b, qui comportent chacune un dispositif reformeur 29a et 29b. Les deux voies a et b se rejoignent cependant en une voie unique à la sortie des dispositifs reformeurs 29a et 29b. La voie unique comprend alors un seul dispositif d' enrichissement en hydrogène à haute température, référencé 30, un seul dispositif d'enrichissement en hydrogène à basse température, référencé 31 , et un seul dispositif de purification 32. On retrouve les mêmes échangeurs 33, 34, 35 et 40 que dans le mode de réalisation illustré sur la figure 2.
Dans le mode de réalisation illustré sur la figure 4, les voies a et b comprennent chacune un dispositif reformeur 29a, 29b, un dispositif d'enrichissement à haute température 30a, 30b, et un dispositif d' enrichissement à basse température 31a, 31b, les échangeurs de chaleur 33a, 33b, 34a, 34b permettant la mise en température optimale des différents composants. Les deux voies a et b se rejoignent en une voie unique à la sortie du dispositif d'enrichissement 31a, 31b. Le dispositif de purification 32 est donc commun aux deux voies a et b.
Dans la variante illustrée sur la figure 5, le dispositif d'enrichissement à basse température 31 est également commun aux deux voies a et b, qui comportent chacune un dispositif reformeur 29a,
29b, et un dispositif d'enrichissement à haute température 30, 30b.
On comprendra, bien entendu, que d' autres architectures pourraient être imaginées. On pourrait, en particulier, utiliser un nombre plus important de voies que les deux voies illustrées à titre d' exemples dans la présente description, de façon à permettre d' augmenter la palette de choix du conducteur.
La présente invention permet au conducteur de choisir pour une conduite en ville, un fonctionnement du véhicule à consommation réduite en contrepartie d'une réduction temporaire des performances du véhicule. Le choix du mode de fonctionnement du véhicule reste sous le contrôle du conducteur, qui peut à tout moment basculer d'un mode économique à faible consommation à un mode favorisant la performance et correspondant à la totalité de la puissance installée à bord du véhicule.

Claims

REVENDICATIONS
1-Système de reformage de carburant pour l' alimentation en hydrogène d'une pile à combustible, en particulier destiné à un véhicule automobile, du type comprenant un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, et un dispositif de purification du reformat par réaction du monoxyde de carbone, caractérisé par le fait qu'il comprend au moins deux voies séparées (a, b) comportant chacune au moins un des dispositifs précités et un moyen de commande (19, 39) pour choisir l'une des voies ou toutes les voies à la fois.
2-Système de reformage selon la revendication 1, caractérisé par le fait que chacune des voies séparées comporte un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, et un dispositif de purification du reformat par réaction du monoxyde de carbone.
3-Système de reformage selon la revendication 1, caractérisé par le fait que chacune des voies séparées comporte un dispositif reformeur, les voies séparées se rejoignant en une voie unique comportant un dispositif commun d'enrichissement en hydrogène du reformat issu des reformeurs des différentes voies, et un dispositif commun de purification du reformat par réaction du monoxyde de carbone.
4-Système de re formage selon la revendication 1, caractérisé par le fait que chacune des voies séparées comporte un dispositif reformeur, un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, les voies séparées se rejoignant en une voie unique comportant un dispositif commun de purification du reformat par réaction du monoxyde de carbone. 5-Système de reformage selon la revendication 1, caractérisé par le fait que chacune des voies séparées comporte un dispositif reformeur et une partie à haute température d'un dispositif d'enrichissement en hydrogène du reformat issu du reformeur, les voies séparées se rejoignant en une voie unique comportant une partie commune à température moins élevée du dispositif d' enrichissement en hydrogène du reformat issu du reformeur et un dispositif commun de purification du reformat par réaction du monoxyde de carbone.
6-Système de re formage selon l'une des revendications précédentes, caractérisé par le fait que chacune des voies séparées est adaptée pour fournir un débit d'hydrogène différent correspondant à une puissance différente de la pile à combustible.
7-Système de re formage selon l'une quelconque des revendications précédentes, caractérisé par le fait que le moyen de commande est également adapté pour commander le débit de carburant alimentant le système, en fonction de la ou des voies choisies.
8-Procédé de commande de la puissance électrique alimentant un organe de propulsion électrique d'un véhicule automobile équipé d'une batterie et d'une pile à combustible alimentée en hydrogène produit au moyen d'un reformage de carburant, caractérisé par le fait que l'on commande le débit d'hydrogène alimentant la pile à combustible, en fonction de la puissance désirée, en utilisant une ou plusieurs voies individuelles de reformage.
9-Procédé selon la revendication 8, caractérisé par le fait que l' on utilise une seule voie de reformage et que la puissance fournie par la batterie est ajoutée à la puissance fournie par la pile à combustible tant que la vitesse du véhicule reste inférieure à la vitesse qui pourrait être atteinte sans la batterie.
10-Procédé selon la revendication 8, caractérisé par le fait que l'on utilise simultanément toutes les voies de reformage et que la puissance fournie par la batterie est ajoutée à la puissance fournie par la pile à combustible tant que la puissance totale est inférieure à la puissance maximale fournie par la pile à combustible.
EP03799673A 2002-12-24 2003-12-19 Systeme de reformatage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre Withdrawn EP1593171A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0216600A FR2849278B1 (fr) 2002-12-24 2002-12-24 Systeme de reformage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre
FR0216600 2002-12-24
PCT/FR2003/003848 WO2004059769A1 (fr) 2002-12-24 2003-12-19 Systeme de reformatage de carburant pour l’alimentation d’une pile a combustible de vehicule automobile et procede de mise en oeuvre

Publications (1)

Publication Number Publication Date
EP1593171A1 true EP1593171A1 (fr) 2005-11-09

Family

ID=32406471

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799673A Withdrawn EP1593171A1 (fr) 2002-12-24 2003-12-19 Systeme de reformatage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre

Country Status (6)

Country Link
US (1) US20060147768A1 (fr)
EP (1) EP1593171A1 (fr)
JP (1) JP2006512725A (fr)
CA (1) CA2508071A1 (fr)
FR (1) FR2849278B1 (fr)
WO (1) WO2004059769A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879026B1 (fr) * 2004-12-08 2007-03-30 Renault Sas Systeme de generation d'energie electrique embarque sur un vehicule automobile equipe d'une pile a combustible et procede associe
JP2006210100A (ja) * 2005-01-27 2006-08-10 Toyota Motor Corp 電源装置
JP5060024B2 (ja) * 2005-04-12 2012-10-31 トヨタ自動車株式会社 燃料電池車両
DE102006039527A1 (de) * 2006-08-23 2008-02-28 Enerday Gmbh Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
EP2086875A2 (fr) * 2006-11-30 2009-08-12 Shell Internationale Research Maatschappij B.V. Systèmes et procédés pour produire de l'hydrogène et du dioxyde de carbone
ES2398554B1 (es) * 2011-02-22 2014-01-21 Universitat Politècnica De Catalunya Vehículo eléctrico radiocontrol.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098960A (en) * 1976-12-27 1978-07-04 United Technologies Corporation Fuel cell fuel control system
MXPA02000712A (es) * 1999-07-27 2002-07-22 Idatech Llc Controlador de sistema de celda de combustible.
DE10025667B4 (de) * 2000-05-24 2005-04-14 Ballard Power Systems Ag Verfahren zum Betreiben einer Gaserzeugungsvorrichtung in einem Brennstoffzellensystem
DE10044786A1 (de) * 2000-09-11 2002-04-04 Emitec Emissionstechnologie Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004059769A1 *

Also Published As

Publication number Publication date
US20060147768A1 (en) 2006-07-06
CA2508071A1 (fr) 2004-07-15
FR2849278B1 (fr) 2008-09-12
WO2004059769A1 (fr) 2004-07-15
JP2006512725A (ja) 2006-04-13
FR2849278A1 (fr) 2004-06-25

Similar Documents

Publication Publication Date Title
US6311650B1 (en) Vehicle having a driving internal-combustion engine and having a fuel cell system for the power supply to electric consuming devices of the vehicle and method for operating such a vehicle
WO2011151560A1 (fr) Moteur a combustion interne alimente en carburant muni d'un circuit de recirculation des gaz d'echappement a basse pression et d'un systeme de production d'hydrogene supplementaire
FR2852446A1 (fr) Moteur a combustion interne avec une pile a combustible dans un systeme d'echappement
FR3063181A1 (fr) Procede pour demarrer un ensemble de pile a combustible, et ensemble correspondant
EP1593171A1 (fr) Systeme de reformatage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre
FR2806533A1 (fr) Dispositif de recuperation de l'eau pour un systeme a piles a combustible de generation de courant a bord d'un vehicule
FR2820341A1 (fr) Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne comportant un catalyseur accumulateur
EP1733446B1 (fr) Dispositif et procede de refroidissement d'un module de puissance d'une pile a combustible
EP1733447B1 (fr) Dispositif et procede de refroidissement d'un ensemble de generation d'electricite comprenant une pile a combustible.
FR2896917A1 (fr) Vehicule automobile comprenant une pile a combustible et utilisation d'une telle pile
WO2006061533A2 (fr) Systeme de generation d'energie electrique embarque sur un vehicule automobile equipe d'une pile a combustible et procede associe
FR2815302A1 (fr) Systeme et procede de commande d'une pile a combustible montee dans un vehicule a traction electrique
FR2839583A1 (fr) Installation de piles a combustible et vehicule equipe d'une telle installation
FR2886765A1 (fr) Systeme de pile a combustible, et procede associe
FR2861220A1 (fr) Dispositif et procede de prechauffage d'un systeme pile a combustible
WO2005107001A2 (fr) Agencement de piles a combustible
WO2006040490A1 (fr) Generateur d'electricite pour vehicule automobile
FR2863107A1 (fr) Dispositif de gestion des alimentations en air d'un systeme pile a combustible
FR2860923A1 (fr) Dispositif et procede d'alimentation energetique d'un systeme auxiliaire pile a combustible
EP1417997A1 (fr) Dispositif de dépollution catalytique pour un moteur de véhicule automobile et procédé de production hydrogène associé
FR2862435A1 (fr) Dispositif d'humidification cathodique et de gestion thermique d'un systeme pile a combustible
FR2821118A1 (fr) Procede et dispositif de rechauffage et de maintien en temperature d'un pot catalytique d'une ligne d'echappement d'un vehicule automobile
FR2861221A1 (fr) Dispositif et procede d'alimentation en air d'un systeme auxiliaire pile a combustible
WO2004001887A2 (fr) Procede de demarrage de pile a combustible, systeme de pile a combustible, et vehicule ainsi equipe
FR2915319A1 (fr) Dispositif et procede de mise en temperature lors du demarrage d'un systeme de pile a combustible embarque a bord d'un vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DEWAELE, GILLES

Inventor name: KERETLI, FAHRI

Inventor name: BOUDJEMAA, FABIEN

17Q First examination report despatched

Effective date: 20070322

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100320