EP1590617A1 - Device and method for diagnosing obstructions in channels of a micro heat exchanger - Google Patents

Device and method for diagnosing obstructions in channels of a micro heat exchanger

Info

Publication number
EP1590617A1
EP1590617A1 EP04703780A EP04703780A EP1590617A1 EP 1590617 A1 EP1590617 A1 EP 1590617A1 EP 04703780 A EP04703780 A EP 04703780A EP 04703780 A EP04703780 A EP 04703780A EP 1590617 A1 EP1590617 A1 EP 1590617A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
channels
micro heat
diagnosing
changes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04703780A
Other languages
German (de)
French (fr)
Inventor
Herbert Grieb
Astrid Lohf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1590617A1 publication Critical patent/EP1590617A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the fluids are evenly distributed over these microchannels due to their relatively high flow resistance. If individual microchannels are now blocked, the heat transfer area and thus the efficiency of the heat transfer decrease.
  • the efficiency is calculated from the capacity flows (mass flow x specific heat capacity) of the fluids involved in the heat exchange and their temperatures as they enter and exit the heat exchanger.
  • the fluid temperatures cannot be recorded directly in the microchannels because the temperature sensors currently available are so large that they would block at least a large part of the channel cross-section and that even if there is little contact with the channel wall, falsification due to heat conduction can be expected ,
  • the invention is therefore based on the object of enabling a simple diagnosis of blockages in channels of a microwave heat exchanger.
  • the object is achieved by the arrangement for diagnosing blockages in channels of a micro heat exchanger, at least one temperature sensor being arranged on the outside of the micro heat exchanger and being connected to an evaluation device which is based on changes in the measured temperature if the entry parameters of the fluids involved in the heat exchange remain unchanged, a blockage is diagnosed.
  • the object is achieved by a corresponding method specified in claim 4.
  • the axial heat conduction in the duct wall plays a major role in micro heat exchangers in contrast to conventional heat exchangers, since the ratio of wall cross-sectional area to duct cross-sectional area is greatly increased. This results in greatly reduced efficiencies compared to conventional heat exchangers, especially with materials that conduct heat well.
  • NTUs Numberer of Transfer Units
  • the efficiency decreases with falling NTU, while it remains constant in the area of large NTUs.
  • a laminar-creeping flow always prevails in the microchannels, so that the heat transfer coefficient is independent of the flow velocity. Now clog some
  • the invention now makes use of the fact that, due to the high heat conduction, the temperature of the micro heat exchanger wall with unchanged entry parameters of the fluids involved in the heat exchange, that is to say with constant mass flows and constant fluid inlet temperatures, and with sufficiently small NTU (approximately> 5) a measure for the efficiency of heat Transmitter.
  • the temperature also due to the high heat conduction in the wall, is relatively homogeneous in micro heat exchangers, so that the temperature of the micro heat exchanger can be used to draw conclusions about the efficiency, which in turn can be detected much more easily, since the temperature sensor is mounted on the outside of the micro heat exchanger is unproblematic.
  • Another advantage is that the temperature sensor does not come into contact with the fluids, so that there is no need to pay attention to the chemical resistance or the catalytic effect of the temperature sensor. With very large micro heat exchangers, the temperature can be measured with several temperature sensors at several points.
  • the blockages are not diagnosed on the basis of changes in the measured temperature; instead, a control device is connected to the temperature sensor, which regulates the mass flow of one of the fluids involved in the heat exchange in the sense of keeping the measured temperature constant, a blockage being diagnosed due to changes in the mass flow.
  • micro heat exchanger If the micro heat exchanger is used as a residence for chemical reactions, then the reaction heat to be added or removed must also be taken into account, which can be done by a more complex evaluation (fuzzy, neural networks).
  • Figure 1 shows a first embodiment
  • FIG. 1 shows a micro heat exchanger 1 with a feed line 2 and a discharge line 3 for a fluid 4 to be cooled and a feed line 5 and a discharge line 6 for a cooling fluid 7.
  • Inside the microwave heat exchanger 1 there are 2 and 3 or 5 between the feed and discharge lines and 6 each have parallel microchannels 8 with a channel diameter ⁇ 1 mm.
  • a temperature sensor 9 is arranged on the outside of the heat exchanger 1 and measures the temperature on the micro heat exchanger wall and is connected to an evaluation device 10. This detects a reduction in the efficiency of the heat exchanger 1 when the measured temperature changes with constant mass flows and constant fluid inlet temperatures.
  • the exemplary embodiment of the microwave heat exchanger according to the invention shown in FIG. 2 differs from that according to FIG. 1 in that instead of the evaluation device 10, a control device 11 is provided which, via an actuator 12, maintains the mass flow of the cooling fluid 7 in the sense of keeping the temperature sensor 8 constant regulates the measured temperature of the micro heat exchanger 1.

Abstract

In order to diagnose obstructions in channels (8) of a micro heat exchanger (1), at least one temperature sensor (9) is externally placed on the micro heat exchanger (1) and an evaluating device (10) is connected to this sensor. Said evaluating device diagnoses an obstruction based on changes in the measured temperature in the event of unchanged entry parameters of the fluids (4, 7) involved in the heat exchange.

Description

Beschreibungdescription
Anordnung und Verfahren zur Diagnose von Verstopfungen in Kanälen eines MikrowarmeubertragersArrangement and method for diagnosing blockages in channels of a micro heat exchanger
Es ist bekannt, dass Ablagerungen (sog. Fouling) in Wärmeübertragern (Wärmetauschern) die Effektivität des Wärmeübergangs zwischen den am Wärmeaustausch beteiligten Fluiden stören. In Mikrowärmeübertragern mit Mikrokanälen, deren Durch- esser < 1 mm ist, sind die gleichen Effekte zu beobachten, nur dass diese dort zur Blockade einzelner oder aller Mikro- kanäle führen. Berücksichtigt man, dass Mikroreaktoren insbesondere auch für extrem exotherme Reaktionen, explosive Gemische oder toxische Chemikalien eingesetzt werden, so wird verständlich, dass frühzeitig erkannt werden muss, ob eine sichere Temperierung aufgrund der Verstopfung von Wärmeübertragern, die unter anderem als Verweilzeitstrecken genutzt werden, nicht mehr gewährleistet werden kann. Zur Durchsatzerhöhung sind in Mikrowärmeübertragern häufig Mikrokanäle pa- rallel geschaltet. Eine Gleichverteilung der Fluide auf diese Mikrokanäle wird durch deren relativ hohen Strömungswiderstand erreicht. Werden nun einzelne Mikrokanäle blockiert, so sinkt die Wärmeübertragungsfläche und damit die Effizienz der Wärmeübertragung. Die Effizienz berechnet sich aus den Kapa- zitätsströmen (Massenstrom x spezifische Wärmekapazität) der am Wärmeaustausch beteiligten Fluide sowie deren Temperaturen bei Ein- und Austritt in bzw. aus dem Wärmetauscher. Die Fluidtemperaturen lassen sich jedoch nicht direkt in den Mikrokanälen erfassen, da die derzeit verfügbaren Temperatur- fühler so groß sind, dass sie zumindest einen großen Teil des Kanalquerschnitts blockieren würden und dass schon bei geringem Kontakt mit der Kanalwand eine Verfälschung aufgrund von Wärmeleitung zu rechnen ist.It is known that deposits (so-called fouling) in heat exchangers (heat exchangers) interfere with the effectiveness of the heat transfer between the fluids involved in the heat exchange. The same effects can be observed in micro heat exchangers with microchannels, whose diameter is <1 mm, except that they lead to blockage of individual or all microchannels there. If one takes into account that microreactors are also used in particular for extremely exothermic reactions, explosive mixtures or toxic chemicals, it is understandable that it must be recognized at an early stage whether safe tempering is no longer possible due to the blockage of heat exchangers, which are used, among other things, as dwell times can be guaranteed. In order to increase the throughput, microchannels are often connected in parallel in micro heat exchangers. The fluids are evenly distributed over these microchannels due to their relatively high flow resistance. If individual microchannels are now blocked, the heat transfer area and thus the efficiency of the heat transfer decrease. The efficiency is calculated from the capacity flows (mass flow x specific heat capacity) of the fluids involved in the heat exchange and their temperatures as they enter and exit the heat exchanger. However, the fluid temperatures cannot be recorded directly in the microchannels because the temperature sensors currently available are so large that they would block at least a large part of the channel cross-section and that even if there is little contact with the channel wall, falsification due to heat conduction can be expected ,
Der Erfindung liegt daher die Aufgabe zugrunde, eine einfache Diagnose von Verstopfungen in Kanälen eines Mikrowarmeubertragers zu ermöglichen. Gemäß der Erfindung wird die Aufgabe durch die in Anspruch 1 angegebene Anordnung zur Diagnose von Verstopfungen in Kanälen eines Mikrowarmeubertragers gelöst, wobei außen an dem Mikrowärmeübertrager mindestens ein Temperatursensor angeord- net ist, und daran eine Auswerteeinrichtung angeschlossen ist, die aufgrund von Änderungen der gemessenen Temperatur bei unveränderten Eintrittsparametern der am Wärmeaustausch beteiligten Fluide eine Verstopfung diagnostiziert. Ferner wird die Aufgabe durch ein entsprechendes in Anspruch 4 an- gegebenes Verfahren gelöst.The invention is therefore based on the object of enabling a simple diagnosis of blockages in channels of a microwave heat exchanger. According to the invention, the object is achieved by the arrangement for diagnosing blockages in channels of a micro heat exchanger, at least one temperature sensor being arranged on the outside of the micro heat exchanger and being connected to an evaluation device which is based on changes in the measured temperature if the entry parameters of the fluids involved in the heat exchange remain unchanged, a blockage is diagnosed. Furthermore, the object is achieved by a corresponding method specified in claim 4.
Die axiale Wärmeleitung in der Kanalwand spielt bei Mikrowärmeübertragern im Gegensatz zu konventionellen Wärmeübertragern eine große Rolle, da das Verhältnis von Wandquer- schnittsfläche zu Kanalquerschnittsfläche stark erhöht ist. Die Folge sind besonders bei gut wärmeleitenden Materialien stark geminderte Effizienzen gegenüber konventionellen Wärmeübertragern. Im Bereich kleiner NTUs (Number of Transfer Units) , d. h. für kleine Verhältnisse des Produkts aus Wär e- Übertragungsfläche und Wärmeübertragungskoeffizient zum Wär- mekapazitätsεtrom sinkt die Effizienz mit fallender NTU, während sie im Bereich großer NTUs konstant bleibt. In den Mikrokanälen herrscht immer eine laminar-schleichende Strömung, so dass der Wärmeübergangskoeffizient unabhängig von der Strömungsgeschwindigkeit ist. Verstopfen nun einigeThe axial heat conduction in the duct wall plays a major role in micro heat exchangers in contrast to conventional heat exchangers, since the ratio of wall cross-sectional area to duct cross-sectional area is greatly increased. This results in greatly reduced efficiencies compared to conventional heat exchangers, especially with materials that conduct heat well. In the area of small NTUs (Number of Transfer Units), i.e. H. for small ratios of the product of heat transfer surface and heat transfer coefficient to the heat capacity flow, the efficiency decreases with falling NTU, while it remains constant in the area of large NTUs. A laminar-creeping flow always prevails in the microchannels, so that the heat transfer coefficient is independent of the flow velocity. Now clog some
Mikrokanäle, so erhöht sich zwar in den anderen Kanälen die Strömungsgeschwindigkeit; der Wärmeübertragungskoeffizient bleibt aber konstant und die übertragene Wärmemenge sinkt aufgrund der verminderten Wärmeübertragungsfläche ab. Da der Wärmekapazitätsstrom konstant bleibt, sinkt die Effizienz.Microchannels, the flow velocity increases in the other channels; however, the heat transfer coefficient remains constant and the amount of heat transferred drops due to the reduced heat transfer area. Since the heat capacity flow remains constant, the efficiency drops.
Die Erfindung nutzt nun die Tatsache, dass aufgrund der hohen Wärmeleitung die Temperatur der Mikrowärmeübertragerwand bei unveränderten Eintrittsparametern der am Wärmeaustausch be- teiligten Fluide, das heißt bei konstanten Massenströmen und konstanten Fluideingangste peraturen, und bei ausreichend kleinen NTU (etwa > 5) ein Maß für die Effizienz des Wärme- Übertragers ist. Gleichzeitig ist die Temperatur, ebenfalls aufgrund der hohen Wärmeleitung in der Wand, in Mikrowärmeübertragern relativ homogen, so dass anhand der Temperatur des Mikrowarmeubertragers auf die Effizienz zurückgeschlossen werden kann, die sich wiederum wesentlich einfacher erfassen lässt, da die Montage des Temperatursensors außen an dem Mikrowärmeübertrager unproblematisch ist. Ein weiterer Vorteil besteht darin, dass der Temperatursensor nicht mit den Fluiden in Berührung kommt, so dass nicht auf die chemische Beständigkeit oder die katalytische Wirkung des Temperatursensors geachtet werden muss. Bei sehr großen Mikrowärmeübertragern, kann die Temperaturmessung mit mehreren Temperatursensoren an mehreren Stellen erfolgen.The invention now makes use of the fact that, due to the high heat conduction, the temperature of the micro heat exchanger wall with unchanged entry parameters of the fluids involved in the heat exchange, that is to say with constant mass flows and constant fluid inlet temperatures, and with sufficiently small NTU (approximately> 5) a measure for the efficiency of heat Transmitter. At the same time, the temperature, also due to the high heat conduction in the wall, is relatively homogeneous in micro heat exchangers, so that the temperature of the micro heat exchanger can be used to draw conclusions about the efficiency, which in turn can be detected much more easily, since the temperature sensor is mounted on the outside of the micro heat exchanger is unproblematic. Another advantage is that the temperature sensor does not come into contact with the fluids, so that there is no need to pay attention to the chemical resistance or the catalytic effect of the temperature sensor. With very large micro heat exchangers, the temperature can be measured with several temperature sensors at several points.
Bei einer alternativen Anordnung zur Diagnose von Verstopfungen in Kanälen eines Mikrowarmeubertragers werden die Verstopfungen nicht aufgrund von Änderungen der gemessenen Temperatur diagnostiziert; statt dessen ist an dem Temperatursensor eine Regeleinrichtung angeschlossen, die den Massen- ström eines der am Wärmeaustausch beteiligten Fluide im Sinne einer Konstanthaltung der gemessenen Temperatur regelt, wobei aufgrund von Änderungen des Massenstroms eine Verstopfung diagnostiziert wird.In an alternative arrangement for diagnosing blockages in channels of a microwave heat exchanger, the blockages are not diagnosed on the basis of changes in the measured temperature; instead, a control device is connected to the temperature sensor, which regulates the mass flow of one of the fluids involved in the heat exchange in the sense of keeping the measured temperature constant, a blockage being diagnosed due to changes in the mass flow.
Wird der Mikrowärmeübertrager als Verweiler für chemische Reaktionen verwendet, so muss zusätzlich die zu- oder abzuführende Reaktionswärme berücksichtigt werden, was durch eine aufwendigere Auswertung (Fuzzy, neuronale Netze) erfolgen kann.If the micro heat exchanger is used as a residence for chemical reactions, then the reaction heat to be added or removed must also be taken into account, which can be done by a more complex evaluation (fuzzy, neural networks).
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen, im Einzelnen zeigenTo further explain the invention, reference is made below to the figures of the drawing, showing in detail
Figur 1 ein erstes Ausführungsbeispiel undFigure 1 shows a first embodiment and
Figur 2 ein zweites Ausführungsbeispiel des erfindungsgemäßen Mikrowarmeubertragers . Figur 1 zeigt einen Mikrowärmeübertrager 1 mit einer Zuleitung 2 und einer Ableitung 3 für ein zu kühlendes Fluid 4 und einer Zuleitung 5 und einer Ableitung 6 für ein Kühlfluid 7. Innerhalb des Mikrowarmeubertragers 1 sind zwischen den Zu- und Ableitungen 2 und 3 bzw. 5 und 6 jeweils parallele Mikrokanäle 8 mit einem Kanaldurchmesser < 1 mm ausgebildet. Außen an dem Wärmeübertrager 1 ist ein Temperatursensor 9 angeordnet, der die Temperatur an der Mikrowärmeübertragerwand misst und an einer Auswerteeinrichtung 10 angeschlossen ist. Diese detektiert eine Verringerung der Effizienz des Wärmeübertragers 1, wenn sich die gemessene Temperatur bei konstanten Massenströmen und konstanten Fluideingangstemperaturen ändert .Figure 2 shows a second embodiment of the micro heat exchanger according to the invention. FIG. 1 shows a micro heat exchanger 1 with a feed line 2 and a discharge line 3 for a fluid 4 to be cooled and a feed line 5 and a discharge line 6 for a cooling fluid 7. Inside the microwave heat exchanger 1 there are 2 and 3 or 5 between the feed and discharge lines and 6 each have parallel microchannels 8 with a channel diameter <1 mm. A temperature sensor 9 is arranged on the outside of the heat exchanger 1 and measures the temperature on the micro heat exchanger wall and is connected to an evaluation device 10. This detects a reduction in the efficiency of the heat exchanger 1 when the measured temperature changes with constant mass flows and constant fluid inlet temperatures.
Das in Figur 2 gezeigte Ausführungsbeispiel des erfindungsgemäßen Mikrowarmeubertragers unterscheidet sich von dem nach Figur 1 dadurch, dass anstelle der Auswerteeinrichtung 10 eine Regeleinrichtung 11 vorgesehen ist, die über ein Stellglied 12 den Massenstrom des Kühlfluids 7 im Sinne einer Kon- stanthaltung der mit dem Temperatursensor 8 gemessenen Temperatur des Mikrowarmeubertragers 1 regelt. The exemplary embodiment of the microwave heat exchanger according to the invention shown in FIG. 2 differs from that according to FIG. 1 in that instead of the evaluation device 10, a control device 11 is provided which, via an actuator 12, maintains the mass flow of the cooling fluid 7 in the sense of keeping the temperature sensor 8 constant regulates the measured temperature of the micro heat exchanger 1.

Claims

Patentansprüche claims
1. Anordnung zur Diagnose von Verstopfungen in Kanälen (8) eines Mikrowarmeubertragers (1) mit mindestens einem außen an dem Mikrowärmeübertrager (1) angeordneten Temperatursensor (9) und einer daran angeschlossenen Auswerteeinrichtung (10), die aufgrund von Änderungen der gemessenen Temperatur bei unveränderten Eintrittsparametern der am Wärmeaustausch beteiligten Fluide (4, 7) eine Verstopfung diagnostiziert.1. Arrangement for diagnosing blockages in channels (8) of a micro heat exchanger (1) with at least one temperature sensor (9) arranged on the outside of the micro heat exchanger (1) and an evaluation device (10) connected to it, which changes due to changes in the measured temperature with no changes Entry parameters of the fluids (4, 7) involved in the heat exchange diagnosed constipation.
2. Anordnung zur Diagnose von Verstopfungen in Kanälen (8) eines Mikrowärmeübertrager (1) mit mindestens einem außen an dem Mikrowärmeübertrager (1) angeordneten Temperatursensor (9) und einer daran angeschlossenen Regeleinrichtung (11), die den Massenstrom eines der am Wärmeaustausch beteiligten Fluide (4, 7) im Sinne einer Konstanthaltung der gemessenen Temperatur regelt und aufgrund von Änderungen des Massenstroms eine Verstopfung diagnostiziert.2. Arrangement for diagnosing blockages in channels (8) of a micro heat exchanger (1) with at least one temperature sensor (9) arranged on the outside of the micro heat exchanger (1) and a control device (11) connected to it, which measures the mass flow of one of the fluids involved in the heat exchange (4, 7) regulates in the sense of keeping the measured temperature constant and diagnoses constipation due to changes in the mass flow.
3. Verfahren zur Diagnose von Verstopfungen in Kanälen (8) eines Mikrowarmeubertragers (1) , wobei außen an mindestens einer Stelle des Mikrowärmeübertrager (1) dessen Temperatur gemessen wird und aufgrund von Änderungen der gemessenen Temperatur bei unveränderten Eintrittsparametern der am Wärme- austausch beteiligten Fluide (4, 7) eine Verstopfung diagnostiziert wird.3. Method for diagnosing blockages in channels (8) of a micro heat exchanger (1), the temperature of which is measured on the outside of at least one point of the micro heat exchanger (1) and on the basis of changes in the measured temperature with unchanged entry parameters of the fluids involved in the heat exchange (4, 7) constipation is diagnosed.
4. Verfahren zur Diagnose von Verstopfungen in Kanälen (8) eines Mikrowarmeubertragers (1), wobei außen an mindestens einer Stelle des Mikrowarmeubertragers (1) dessen Temperatur gemessen wird und der Massenstrom eines der am Wärmeaustausch beteiligten Fluide (4, 7) im Sinne einer Konstanthaltung der gemessenen Temperatur geregelt wird, wobei aufgrund von Änderungen des Massenstroms eine Verstopfung diagnostiziert wird. 4. A method for diagnosing blockages in channels (8) of a microwave heat exchanger (1), the temperature of which is measured on at least one point of the microwave heat exchanger (1) and the mass flow of one of the fluids (4, 7) involved in the heat exchange in the sense of a Keeping the measured temperature constant is regulated, with constipation being diagnosed due to changes in the mass flow.
EP04703780A 2003-01-21 2004-01-21 Device and method for diagnosing obstructions in channels of a micro heat exchanger Withdrawn EP1590617A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10302156A DE10302156A1 (en) 2003-01-21 2003-01-21 Arrangement and method for diagnosing blockages in channels of a micro heat exchanger
DE10302156 2003-01-21
PCT/EP2004/000464 WO2004065885A1 (en) 2003-01-21 2004-01-21 Device and method for diagnosing obstructions in channels of a micro heat exchanger

Publications (1)

Publication Number Publication Date
EP1590617A1 true EP1590617A1 (en) 2005-11-02

Family

ID=32667703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04703780A Withdrawn EP1590617A1 (en) 2003-01-21 2004-01-21 Device and method for diagnosing obstructions in channels of a micro heat exchanger

Country Status (4)

Country Link
US (1) US20060225864A1 (en)
EP (1) EP1590617A1 (en)
DE (1) DE10302156A1 (en)
WO (1) WO2004065885A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011017450A2 (en) * 2009-08-04 2011-02-10 Sol Xorce, Llc. Heat pump with integral solar collector
US9689790B2 (en) 2012-07-05 2017-06-27 Honeywell International Inc. Environmental control systems and techniques for monitoring heat exchanger fouling
JP6361723B2 (en) * 2016-12-02 2018-07-25 株式会社富士通ゼネラル Microchannel heat exchanger
DE102017116834A1 (en) 2017-07-25 2019-01-31 Samson Ag Method for diagnosing a heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890001890B1 (en) * 1984-03-23 1989-05-30 더 뱁콕 앤드 윌콕스 컴퍼니 Heat exchanger performance monita
US5005351A (en) * 1990-02-26 1991-04-09 Westinghouse Electric Corp. Power plant condenser control system
US5615733A (en) * 1996-05-01 1997-04-01 Helio-Compatic Corporation On-line monitoring system of a simulated heat-exchanger
US6001231A (en) * 1997-07-15 1999-12-14 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
US6537506B1 (en) * 2000-02-03 2003-03-25 Cellular Process Chemistry, Inc. Miniaturized reaction apparatus
US7134486B2 (en) * 2001-09-28 2006-11-14 The Board Of Trustees Of The Leeland Stanford Junior University Control of electrolysis gases in electroosmotic pump systems
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US7201012B2 (en) * 2003-01-31 2007-04-10 Cooligy, Inc. Remedies to prevent cracking in a liquid system
US7591302B1 (en) * 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004065885A1 *

Also Published As

Publication number Publication date
DE10302156A1 (en) 2004-08-05
WO2004065885A1 (en) 2004-08-05
US20060225864A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
EP0433222B1 (en) Reactor including a catalyst body for performing a heterogeneous reaction
DE602005003216T2 (en) DEVICE FOR PROCESSING HIGHLY CORROSIVE MEANS
DE10346268B4 (en) Korn fluidized bed device
EP0811803A2 (en) Grate element and grate with liquid-cooling
WO2006072569A1 (en) Method for treating catalysts
EP0074570A2 (en) Temperable static mixer and reactor
EP1663434A1 (en) Multi-phase fluid distributor for a bundled-tube reactor
DE1942157A1 (en) Air-cooled condenser
CH655997A5 (en) Exchanger.
WO2004065885A1 (en) Device and method for diagnosing obstructions in channels of a micro heat exchanger
EP2452147B1 (en) Tube register for indirect heat exchange
DE3432864A1 (en) Heat exchanger for the physical and/or chemical treatment of a liquid
EP2299227B1 (en) Tubular heat exchanger
DE102006039571B4 (en) Honeycomb body and honeycomb body assembly each with sensor-receiving channel
EP2665980B1 (en) Latent heat accumulator
DE2230880A1 (en) METHOD AND DEVICE FOR INDIRECT HEAT TRANSFER
DE112018000081B4 (en) FLOW METER
DE19855769B4 (en) Catalytically heated component for a chemical reactor
DE102018219626A1 (en) Heat exchanger
DE102016014966B4 (en) Exhaust aftertreatment device for a motor vehicle
DE102005044224A1 (en) Material exchange column with reverse-flow plate type exchange plate(s), useful e.g. for distillation or scrubbing, includes multiple liquid flow direction changing partitions to improve effectiveness
DE202009011215U1 (en) water vortex
EP1332794B1 (en) Packing elements for packed columns
DE10206708B4 (en) Microchannel system
EP3737904B1 (en) Tubular heat exchanger having corrosion protection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: LOHF, ASTRID

Inventor name: GRIEB, HERBERT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110701