EP1589191A1 - Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor - Google Patents

Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor Download PDF

Info

Publication number
EP1589191A1
EP1589191A1 EP05103148A EP05103148A EP1589191A1 EP 1589191 A1 EP1589191 A1 EP 1589191A1 EP 05103148 A EP05103148 A EP 05103148A EP 05103148 A EP05103148 A EP 05103148A EP 1589191 A1 EP1589191 A1 EP 1589191A1
Authority
EP
European Patent Office
Prior art keywords
blades
wheel
frequency
detuning
vanes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05103148A
Other languages
English (en)
French (fr)
Other versions
EP1589191B1 (de
Inventor
Jérôme Dupeux
Christian Dupont
Jean-Pierre Lombard
Eric Seinturier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1589191A1 publication Critical patent/EP1589191A1/de
Application granted granted Critical
Publication of EP1589191B1 publication Critical patent/EP1589191B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/50Vibration damping features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • Y10T29/49774Quantitative measuring or gauging by vibratory or oscillatory movement

Definitions

  • the present invention relates to turbomachine rotors, and in particularly the rotors comprising blades at their periphery which are subject to during the operation of the turbomachine to vibratory phenomena.
  • Turbomachine bladed wheels have a structure with a quasi-symmetry cyclic. They are usually composed of a series of sectors geometrically identical, with a tolerance that is related to the tolerances of manufacture of their various components and their assembly.
  • detuning variations are referred to as detuning and are very difficult to master; in this case the expression of detuning is used. involuntary. These small variations of dawn to dawn frequencies are enough to break the symmetry of the structure. The wheel is said to be out of tune. For the wheel to be detuned, it suffices to vary between the eigenfrequencies of the blades of 0.5% standard deviation or even less.
  • Dawn blade response levels can vary within a factor of 10 and the maximum on the bladed wheel can be double or triple the which would have been obtained on a perfectly symmetrical wheel.
  • the invention aims to introduce a voluntary detuning on the bladed wheel so as to reduce the maximum response on the wheel, and to no longer depend on involuntary disarray, weak, always present.
  • the method according to the invention for introducing a detuning voluntarily in a bladed wheel of a turbomachine, so as to reduce the vibratory levels of the wheel in forced response is characterized by the fact that consists in determining, according to the operating conditions of the wheel to inside said turbomachine, an optimal value of detuning corresponding to a maximum response in the required amplitude of vibration, and disposing on said wheel, at least in part, blades of different frequencies so that the frequency distribution of all the vanes has a standard deviation at least equal to the said detuning value, detuning value being determined by a statistical calculation method.
  • the standard deviation discrepancy introduced is advantageously greater than this optimal value b.
  • the value b depends on the wheel studied, the stiffness of the disc and the value of damping present on the bladed wheel. We can consider that in most cases the value of b is of the order of 1 to 2% of standard deviation frequency. In these cases, the standard deviation of voluntary mismatch introduced is greater than 2%.
  • the Campbell diagram aims to determine the frequency situation of the structure with respect to possible excitations. It includes the frequencies of modes of vibration of the bladed wheel according to the speed of rotation of the wheel on the one hand, and the possible excitation frequencies on the other hand. The crossings between these two types of curves correspond to resonances.
  • the geometrical parameters are determined and the relevant moving wheel so as to move the resonances out of the operating range with a margin of safety.
  • the invention therefore also aims to determine the value of b minimum so that its effect on the vibratory levels is significant while spreading the modes of the structure as little as possible to facilitate their design.
  • the problem that the invention aims to solve consists for a given maximum amplitude value of vibration to be determined the corresponding value of b on the curve.
  • the subject of the invention is also a bladed wheel presenting a voluntary disconnection.
  • a bladed wheel whose voluntary detuning was determined according to method of the invention has different blades of different frequencies, the number of different frequencies, excluding manufacturing tolerances, of not more than 3.
  • the blades are distributed according to patterns with blades of natural frequency f1 and frequency vanes own f2, f2 being different from f1.
  • the successive motifs are identical or with a slight variation from one pattern to another.
  • each pattern comprises (s1 + s2) blades, s1 blades of frequency f1 and s2 blades of frequency f2.
  • each pattern comprises (s1 + s2 +/- 1) vanes with (s1 +/- 1) vanes frequency f1 and (s2 +/- 1) blades of frequency f2.
  • the wheel being subjected to a harmonic excitation n less than the number N of vanes of the wheel divided by two (n ⁇ N / 2) blades are divided into n identical patterns or with a weak variation from one pattern to another.
  • the wheel being subjected to a harmonic excitation n, n being greater than the number N of vanes of the wheel divided by two (n> N / 2), the number of patterns is equal to the number of diameters of the concerned mode.
  • step 10 an initial value ⁇ j of the standard deviation in detuning frequencies is chosen.
  • ⁇ j the average of the differences between the natural frequency of vibration of each blade and the average frequency.
  • a distribution R i is randomly generated numerically. For a predefined value of standard deviation ⁇ j of a bladed wheel, there exists an infinity both of distributions R i of the vanes on the wheel MR i and of eigenfrequencies of the latter satisfying this condition of standard deviation ⁇ j .
  • step 30 for this distribution R i , the determination is made by a known numerical method to calculate the amplitude response to an excitation. For example, it may be for a turbojet compressor the response to distortions in the incident flow resulting from a side wind.
  • the maximum M ⁇ j is extracted from the values R i max ⁇ j . From the set of values R i max, we determine the maximum value of the amplification which will not be statistically exceeded in a percentage of cases higher than a fixed rate, for example 99.99%. This result is achieved by plotting the values on a cumulative probability curve.
  • the cloud of points is advantageously smoothed by a Weibull probability plot which makes it possible to reduce the number of prints required, for example to 150.
  • the detuning reflects an asymmetry of the structure.
  • the approaches classical analysis with cyclic symmetry, which allows us to model only one only sector of the structure and then reconstruct the behavior of the wheel complete are therefore not directly applicable.
  • Steps A) and B) are long enough to calculate but the calculation is not done only once.
  • steps C) and D) are very fast, which allows fast analyzes for different detuning vectors. This method is therefore particularly well suited to statistical approaches.
  • the total aeroelastic "out of tune” effort is obtained by combining the "basic” efforts, according to the same rule of overlap as used in step D). (The representation base is the same).
  • a blade distribution is selected on the wheel whose eigenfrequencies satisfy the standard deviation condition b.
  • all the blades are positioned so symmetrical on the disc notably in terms of angle, step and position axial.
  • the wheel is asymmetrical from the point of view of frequencies only.
  • the number of different blades is limited to two or three types.
  • the nominal frequency of the blades is f0, f1 the natural frequency of the blades with increased frequency compared to f0 and f2 la eigenfrequency of the vanes with reduced frequency.
  • the vanes are distributed according to the pattern: [f1 f1 f2 f2] is a distribution f1f1f2f2 f1 f1 f2 f2 etc .; on the rotor, two blades of frequency f1 are alternately arranged, then two blades of frequency f2, or according to the pattern [f1 f1 f1 f2 f2 f2]; alternation is three blades. etc.
  • a pattern of (s1 + s2) vanes with s1 vanes frequency f1 and s2 blades of frequency f2 that is repeated on the wheel Even more generally the successive patterns vary slightly from one pattern to another, in particular of +/- 1 blades or +/- 2 blades. For example, 36 blades may be distributed in successive patterns: (4f1 4f2) (5f1 5f2) (4f1 4f2) (5f1 5f2) or well according to the patterns (4f1 Sf2) (4f1 Sf2) (5f1 5f2) (4f1 4f2). other solutions are possible.
  • s1 s2 and s1 is at most N / 4.
  • the wheel being subjected to harmonic excitation n, either n perturbations per revolution, n being smaller than the number N of vanes of the divided wheel by two (n ⁇ N / 2)
  • the blades are arranged in a distribution that tends to have the same order of symmetry as the excitation on the wheel. They are divided into n identical or distribution groups that vary little from one group to another.
  • the average frequency is f0 or close to f0.
  • the blades are arranged according to patterns nearly identical: 4 groups of 7 blades and a group of 8 blades such as example (4f1 3f2) (3f1 4f2) (4f1 3f2) (3f1 4f2) and (4f1 4f2). Other distributions are possible.
  • n being greater than the number N of vanes of the wheel divided by two (n> N / 2)
  • n being greater than the number N of vanes of the wheel divided by two (n> N / 2)
  • the frequency can be modified by acting on the material constituting dawn. This solution makes it possible to produce the identical blades geometrically to manufacturing tolerances and not to change the flow stationary aerodynamics. For example, for metal blades dawn from materials with Young's Modules or different densities.
  • the frequencies being linked to the stiffness ratio on mass, the simple change of material has an impact on the frequencies.
  • the texture of the zone composite is affected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
EP05103148A 2004-04-20 2005-04-19 Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor Active EP1589191B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404130A FR2869069B1 (fr) 2004-04-20 2004-04-20 Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine roue aubagee presentant un desaccordage volontaire
FR0404130 2004-04-20

Publications (2)

Publication Number Publication Date
EP1589191A1 true EP1589191A1 (de) 2005-10-26
EP1589191B1 EP1589191B1 (de) 2010-09-08

Family

ID=34939389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05103148A Active EP1589191B1 (de) 2004-04-20 2005-04-19 Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor

Country Status (7)

Country Link
US (1) US7500299B2 (de)
EP (1) EP1589191B1 (de)
CA (1) CA2503659C (de)
DE (1) DE602005023373D1 (de)
ES (1) ES2351507T3 (de)
FR (1) FR2869069B1 (de)
RU (1) RU2372492C2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913074A1 (fr) * 2007-02-27 2008-08-29 Snecma Sa Methode de reduction des niveaux vibratoires d'une roue aubagee de turbomachine.
EP1988391A2 (de) * 2007-04-03 2008-11-05 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise
EP2762678A1 (de) * 2013-02-05 2014-08-06 Siemens Aktiengesellschaft Verfahren zum Verstimmen eines Laufschaufelgitters
CN108254144A (zh) * 2017-12-25 2018-07-06 中国航发四川燃气涡轮研究院 一种用于高周疲劳极限测量的分体式叶片降频结构
EP3572620A1 (de) * 2018-05-25 2019-11-27 Rolls-Royce plc Rotorblattanordnung
US10954794B2 (en) 2018-05-25 2021-03-23 Rolls-Royce Plc Rotor blade arrangement
US11111816B2 (en) 2018-05-25 2021-09-07 Rolls-Royce Plc Rotor blade arrangement

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601837D0 (en) 2006-01-31 2006-03-08 Rolls Royce Plc An aerofoil assembly and a method of manufacturing an aerofoil assembly
DE102007059155A1 (de) * 2007-12-06 2009-06-10 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung von in Integralbauweise ausgebildeten Laufrädern für Verdichter und Turbinen
US8167540B2 (en) * 2008-01-30 2012-05-01 Hamilton Sundstrand Corporation System for reducing compressor noise
FR2930590B1 (fr) 2008-04-23 2013-05-31 Snecma Carter de turbomachine comportant un dispositif empechant une instabilite lors d'un contact entre le carter et le rotor
FR2935350B1 (fr) * 2008-08-27 2011-05-20 Snecma Methode de reduction des niveaux vibratoires d'une helice de turbomoteur.
WO2010022739A2 (en) * 2008-08-29 2010-03-04 Vestas Wind Systems A/S A wind turbine generator comprising a rotor with vibration damping properties
US8043063B2 (en) * 2009-03-26 2011-10-25 Pratt & Whitney Canada Corp. Intentionally mistuned integrally bladed rotor
FR2944050B1 (fr) * 2009-04-02 2014-07-11 Turbomeca Roue de turbine a pales desaccordees comportant un dispositif d'amortissement
US8172511B2 (en) * 2009-05-04 2012-05-08 Hamilton Sunstrand Corporation Radial compressor with blades decoupled and tuned at anti-nodes
US8172510B2 (en) * 2009-05-04 2012-05-08 Hamilton Sundstrand Corporation Radial compressor of asymmetric cyclic sector with coupled blades tuned at anti-nodes
US8419370B2 (en) 2009-06-25 2013-04-16 Rolls-Royce Corporation Retaining and sealing ring assembly
DE102009033618A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Verfahren zur Frequenzverstimmung eines Rotorkörpers einer Gasturbine und ein Rotor einer Gasturbine
US8469670B2 (en) * 2009-08-27 2013-06-25 Rolls-Royce Corporation Fan assembly
US8435006B2 (en) * 2009-09-30 2013-05-07 Rolls-Royce Corporation Fan
DE102009053247A1 (de) * 2009-11-13 2011-05-19 Mtu Aero Engines Gmbh Verfahren zum Verändern einer Eigenfrequenz einer Schaufel für eine Strömungsmaschine
US20110274537A1 (en) * 2010-05-09 2011-11-10 Loc Quang Duong Blade excitation reduction method and arrangement
DE102011076790B4 (de) * 2011-05-31 2023-07-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
US8834098B2 (en) 2011-12-02 2014-09-16 United Technologies Corporation Detuned vane airfoil assembly
US9097125B2 (en) 2012-08-17 2015-08-04 Mapna Group Intentionally frequency mistuned turbine blades
EP2986822B8 (de) * 2013-04-16 2021-04-07 Raytheon Technologies Corporation Rotoren mit schaufeln mit dejustiertem elastizitätsmodul
WO2015057544A1 (en) 2013-10-16 2015-04-23 United Technologies Corporation Auxiliary power unit impeller blade
US10400606B2 (en) 2014-01-15 2019-09-03 United Technologies Corporation Mistuned airfoil assemblies
EP2942481B1 (de) 2014-05-07 2019-03-27 Rolls-Royce Corporation Rotor für einen gasturbinenmotor
EP3073052B1 (de) 2015-02-17 2018-01-24 Rolls-Royce Corporation Bläserbaugruppe
US11041388B2 (en) 2015-03-30 2021-06-22 Pratt & Whitney Canada Corp. Blade cutback distribution in rotor for noise reduction
FR3043131B1 (fr) * 2015-10-28 2017-11-03 Snecma Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine
EP3176369B1 (de) * 2015-12-04 2019-05-29 MTU Aero Engines GmbH Gasturbinen-verdichter
FR3052804B1 (fr) 2016-06-16 2018-05-25 Safran Aircraft Engines Roue aubagee volontairement desaccordee
US10837287B2 (en) * 2017-01-20 2020-11-17 Pratt & Whitney Canada Corp. Mistuned bladed rotor and associated manufacturing method
GB201702698D0 (en) * 2017-02-20 2017-04-05 Rolls Royce Plc Fan
US11255345B2 (en) 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
JP2019108822A (ja) * 2017-12-15 2019-07-04 三菱日立パワーシステムズ株式会社 回転機械
US11220913B2 (en) 2019-10-23 2022-01-11 Rolls-Royce Corporation Gas turbine engine blades with airfoil plugs for selected tuning
FR3119642B1 (fr) * 2021-02-10 2024-03-01 Safran Aircraft Engines Rotor de turbomachine présentant un comportement vibratoire amélioré

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036966A1 (en) * 1997-02-21 1998-08-27 California Institute Of Technology Rotors with mistuned blades
EP1211382A2 (de) * 2000-11-30 2002-06-05 United Technologies Corporation Turbomaschinenrotor mit Schaufeln unterschiedlicher Eigenfrequenz

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097192A (en) * 1977-01-06 1978-06-27 Curtiss-Wright Corporation Turbine rotor and blade configuration
US6428278B1 (en) * 2000-12-04 2002-08-06 United Technologies Corporation Mistuned rotor blade array for passive flutter control
US6854959B2 (en) * 2003-04-16 2005-02-15 General Electric Company Mixed tuned hybrid bucket and related method
US7082371B2 (en) * 2003-05-29 2006-07-25 Carnegie Mellon University Fundamental mistuning model for determining system properties and predicting vibratory response of bladed disks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036966A1 (en) * 1997-02-21 1998-08-27 California Institute Of Technology Rotors with mistuned blades
US5993161A (en) * 1997-02-21 1999-11-30 California Institute Of Technology Rotors with mistuned blades
EP1211382A2 (de) * 2000-11-30 2002-06-05 United Technologies Corporation Turbomaschinenrotor mit Schaufeln unterschiedlicher Eigenfrequenz

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913074A1 (fr) * 2007-02-27 2008-08-29 Snecma Sa Methode de reduction des niveaux vibratoires d'une roue aubagee de turbomachine.
EP1965024A1 (de) * 2007-02-27 2008-09-03 Snecma Verfahren zur Reduzierung der Schwingungsniveaus eines Schaufelrads eines Turbotriebwerks
US8286347B2 (en) 2007-02-27 2012-10-16 Snecma Method for reducing vibration levels of a bladed wheel in a turbomachine
EP1988391A2 (de) * 2007-04-03 2008-11-05 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise
EP1988391A3 (de) * 2007-04-03 2013-10-09 Rolls-Royce Deutschland Ltd & Co KG Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise
WO2014122028A1 (de) 2013-02-05 2014-08-14 Siemens Aktiengesellschaft Verfahren zum verstimmen eines laufschaufelgitters
EP2762678A1 (de) * 2013-02-05 2014-08-06 Siemens Aktiengesellschaft Verfahren zum Verstimmen eines Laufschaufelgitters
CN104968894A (zh) * 2013-02-05 2015-10-07 西门子公司 用于解谐工作叶栅的方法
CN104968894B (zh) * 2013-02-05 2016-11-09 西门子公司 用于解谐工作叶栅的方法
US9835034B2 (en) 2013-02-05 2017-12-05 Siemens Aktiengesellschaft Method for detuning a rotor-blade cascade
CN108254144A (zh) * 2017-12-25 2018-07-06 中国航发四川燃气涡轮研究院 一种用于高周疲劳极限测量的分体式叶片降频结构
EP3572620A1 (de) * 2018-05-25 2019-11-27 Rolls-Royce plc Rotorblattanordnung
US10954794B2 (en) 2018-05-25 2021-03-23 Rolls-Royce Plc Rotor blade arrangement
US10989227B2 (en) 2018-05-25 2021-04-27 Rolls-Royce Plc Rotor blade arrangement
US11111816B2 (en) 2018-05-25 2021-09-07 Rolls-Royce Plc Rotor blade arrangement

Also Published As

Publication number Publication date
CA2503659A1 (fr) 2005-10-20
FR2869069B1 (fr) 2008-11-21
RU2372492C2 (ru) 2009-11-10
EP1589191B1 (de) 2010-09-08
FR2869069A1 (fr) 2005-10-21
DE602005023373D1 (de) 2010-10-21
CA2503659C (fr) 2013-01-29
US20050249586A1 (en) 2005-11-10
US7500299B2 (en) 2009-03-10
RU2005111685A (ru) 2006-10-27
ES2351507T3 (es) 2011-02-07

Similar Documents

Publication Publication Date Title
EP1589191B1 (de) Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor
CA2446590C (fr) Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
EP1726938B1 (de) Verfahren zur Masskalibrierung von Werkstücken zur Montage auf der Peripherie eines Rotors
US10801519B2 (en) Blade disk arrangement for blade frequency tuning
EP3055506B1 (de) Turbomaschinenteil mit nicht-axialsymmetrischer oberfläche
CA2647051C (fr) Procede de conception d'une turbine multi-etages de turbomachine
EP2112326B1 (de) Gehäuse eines Turbotriebwerks mit einer Vorrichtung zum Schutz vor Instabilität bei Kontakt zwischen dem Gehäuse und dem Rotor
FR2533977A1 (fr) Roue centrifuge a plusieurs etages
CA2919155A1 (fr) Procede de modelisation d'une pale d'une helice non-carenee
FR2971540A1 (fr) Ensemble pale-plateforme pour ecoulement supersonique
FR2935350A1 (fr) Methode de reduction des niveaux vibratoires d'une helice de turbomoteur.
CA2621839C (fr) Methode de reduction des niveaux vibratoires d'une roue aubagee de turbomachine
WO2016177961A1 (fr) Dispositif de piège vibratoire a résonateurs distribues
FR3025247A1 (fr) Roue aubagee a calages variables
EP3084133B1 (de) Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche
EP3368748B1 (de) Verfahren zum absichtlichen verstimmen einer beschaufelten scheibe einer turbomaschine
FR3052182A1 (fr) Roue aubagee de turbomachine a comportement vibratoire ameliore
FR3126639A1 (fr) Aube comprenant une structure en matériau composite et procédé de fabrication associé
FR2935427A1 (fr) Methode de reduction des niveaux vibratoires d'un doublet et roues aubagees contrarotatives de turbomachine.
WO2019197750A1 (fr) Turbomachine comportant un dispositif d'amelioration du refroidissement de disques de rotor par un flux d'air
EP3208470B1 (de) Verfahren zur verbesserung der lärmqualität einer umlaufenden maschine, die ein fluid bewegt
BE1027709B1 (fr) Etage de compresseur de turbomachine
EP4291755A1 (de) Turbomaschinenrotor mit verbessertem vibrationsverhalten
WO2020229058A1 (fr) Procede de parametrage d'un filtre numerique pour l'attenuation d'une frequence associee a un mode de torsion d'une ligne de transmission de puissance d'un turbomoteur
WO2022034083A1 (fr) Méthode et système de régulation de poussée d'une turbomachine d'aéronef

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20080605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005023373

Country of ref document: DE

Date of ref document: 20101021

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005023373

Country of ref document: DE

Effective date: 20110609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230327

Year of fee payment: 19

Ref country code: IT

Payment date: 20230322

Year of fee payment: 19

Ref country code: GB

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 19