EP1589191B1 - Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor - Google Patents
Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor Download PDFInfo
- Publication number
- EP1589191B1 EP1589191B1 EP05103148A EP05103148A EP1589191B1 EP 1589191 B1 EP1589191 B1 EP 1589191B1 EP 05103148 A EP05103148 A EP 05103148A EP 05103148 A EP05103148 A EP 05103148A EP 1589191 B1 EP1589191 B1 EP 1589191B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- vanes
- wheel
- frequency
- value
- mistuning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 230000004044 response Effects 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 23
- 230000005284 excitation Effects 0.000 claims description 17
- 230000004048 modification Effects 0.000 claims description 15
- 238000012986 modification Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 14
- 238000013016 damping Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000013459 approach Methods 0.000 description 5
- 230000002747 voluntary effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 241000272165 Charadriidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000940835 Pales Species 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/10—Anti- vibration means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/04—Antivibration arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/16—Form or construction for counteracting blade vibration
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S416/00—Fluid reaction surfaces, i.e. impellers
- Y10S416/50—Vibration damping features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/49318—Repairing or disassembling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
- Y10T29/49321—Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49764—Method of mechanical manufacture with testing or indicating
- Y10T29/49771—Quantitative measuring or gauging
- Y10T29/49774—Quantitative measuring or gauging by vibratory or oscillatory movement
Definitions
- the present invention relates to turbomachine rotors, and in particular the rotors comprising vanes at their periphery which are subjected during the operation of the turbomachine to vibratory phenomena.
- the turbomachine bladed wheels have a structure with a quasi-cyclic symmetry. They are generally composed of a series of geometrically identical sectors, with a tolerance that is related to the manufacturing tolerances of their various components and their assembly.
- the vibratory energy is located on one or a few vanes instead of spreading over the entire wheel.
- This expression denotes the vibratory response to an external excitation.
- the external excitation finds its origin most often in a dissymmetry in the aerodynamic flow. It can be due for example to the upstream stators or downstream stator, distortion, air intake in the compressor, reintroductions of air, the combustion chamber or the structural arms.
- the vane blade response levels can vary by a factor of 10 and the maximum on the bladed wheel can be double or triple what would have been achieved on a perfectly symmetrical wheel.
- the evolution of the response to an excitation source as a function of the detuning follows a curve as represented on the figure 1 . It represents the maximum response in amplitude of vibration of the bladed wheel determined for different values of standard deviation of the eigenfrequencies of the vanes distributed on the wheel. For a discrepancy of 0%, the response is standardized to 1.
- the standard deviation standard deviation that is encountered on wheels in use is of the order of 0.5%. It is generally found on this graph that it corresponds to the most unfavorable case. Trying to reduce it to get closer to the symmetry is very expensive because it implies in particular a reduction in manufacturing tolerances.
- This graph also shows that from a certain level of detuning b, the effect on the dynamics of the bladed wheel fades and the maximum levels observed on the wheel decrease.
- the object of the invention is to introduce a voluntary detuning on the bladed wheel so as to reduce the maximum response on the wheel, and to no longer depend on the involuntary, weak, always present detuning.
- EP 1 211 382 describes a rotor of the turbomachine whose blades have eigenfrequencies of different vibration so as to reduce the vibratory levels in forced response.
- the standard deviation discrepancy introduced is advantageously greater than this optimal value b.
- the value b depends on the wheel studied, the stiffness of the disc and the value of the damping present on the bladed wheel. It can be considered that in most cases the value of b is of the order of 1 to 2% of standard deviation in frequency. In these cases, the standard deviation discrepancy introduced is greater than 2%.
- the Campbell diagram aims to determine the frequency situation of the structure with respect to possible excitations. It includes the frequencies of the vibration modes of the bladed wheel as a function of the speed of rotation of the wheel on the one hand, and the possible excitation frequencies on the other hand. The crossings between these two types of curves correspond to the resonances.
- ⁇ is the rotation frequency of the rotor.
- the geometric and structural parameters of the mobile wheel concerned are determined so as to move the resonances out of the operating range with a margin of safety.
- the invention therefore also aims to determine the minimum value of b so that its effect on vibration levels is significant while spreading the least possible modes of the structure to facilitate design.
- the problem that the invention aims to solve consists for a given maximum amplitude of vibration value to determine the corresponding value of b on the curve.
- said detuning value is determined by a statistical calculation method.
- the invention also relates to a bladed wheel with a voluntary detuning.
- a bladed wheel whose deliberate detuning has been determined according to the method of the invention has blades of different natural frequencies, the number of different frequencies, excluding manufacturing tolerances, being at most 3.
- the vanes are distributed in patterns with vanes of natural frequency f1 and vanes of natural frequency f2, f2 being different from f1.
- the successive patterns are identical or with a slight variation from one pattern to another.
- each pattern comprises (s1 + s2) blades, s1 blades of frequency f1 and s2 blades of frequency f2.
- each pattern comprises (s1 + s2 +/- 1) vanes with (s1 +/- 1) frequency vanes f1 and (s2 +/- 1) blades of frequency f2.
- the wheel being subjected to a harmonic excitation n smaller than the number N of vanes of the wheel divided by two (n ⁇ N / 2) the vanes are distributed in n identical patterns or with a small variation from one pattern to another.
- the wheel being subjected to a harmonic excitation n, n being greater than the number N of blades of the wheel divided by two (n> N / 2), the number of patterns is equal to the number of diameters of the mode concerned.
- step 10 an initial value ⁇ j of the standard deviation in detuning frequencies is chosen.
- ⁇ j the average of the differences between the natural frequency of vibration of each blade and the average frequency.
- a distribution R i is randomly generated numerically. For a predefined value of standard deviation ⁇ j of a bladed wheel, there exists an infinity both of distributions R i of the vanes on the wheel MR i and of eigenfrequencies of the latter satisfying this condition of standard deviation ⁇ j .
- step 30 for this distribution R i , the determination is made by a known numerical method to calculate the amplitude response to an excitation. For example, it may be for a turbojet compressor the response to distortions in the incident flow resulting from a side wind.
- the maximum M ⁇ j is extracted from the values R i max ⁇ j . From the set of values R i max, we determine the maximum value of the amplification which will not be statistically exceeded in a percentage of cases higher than a fixed rate, for example 99.99%. This result is achieved by plotting the values on a cumulative probability curve.
- the cloud of points is advantageously smoothed by a route of Weibull probability which makes it possible to reduce the number of necessary prints, for example to 150.
- the introduction of a voluntary detuning improves the aeroelastic stability of the wheel.
- the average of the damping coefficients corresponding to each possible phase angle between the blades is calculated, and it is verified that the mode concerned by the floating is lower than said average.
- the detuning is optimized to minimize the forced response on a resonance, making sure that the impact on stability and the Campbell diagram (for the other resonances) is acceptable or the detuning is optimized with respect to stability by ensuring that the impact on the Campbell diagram is acceptable.
- the detuning reflects an asymmetry of the structure.
- the classical cyclic symmetry analysis approaches which allow to model only one sector of the structure and then reconstruct the behavior of the complete wheel, are therefore not directly applicable.
- Steps A) and B) are long enough to calculate but the calculation is done only once.
- steps C) and D) are very fast, which allows rapid analyzes for different detuning vectors. This method is therefore particularly suitable for statistical approaches.
- the total “disconnected” aeroelastic effort is obtained by combining the “basic” efforts, according to the same superposition rule as that used in step D). (The representation base is the same).
- the stability calculation therefore requires a large number of unsteady aerodynamic calculations that are quite expensive.
- the detuned analyzes are very fast.
- this detuning is advantageously carried out in one of the following ways.
- a blade distribution is selected on the wheel whose eigenfrequencies satisfy the standard deviation condition b.
- all the blades are positioned symmetrically on the disk in particular in terms of angle, pitch and axial position.
- the wheel is asymmetrical from the point of view of frequencies only.
- the number of different blades is limited to two or three types.
- the nominal frequency of the blades is f0, f1 the eigenfrequency of the blades with increased frequency with respect to f0 and f2 the natural frequency of the vanes with reduced frequency.
- the vanes are distributed according to the pattern: [f1 f1 f2 f2] is a distribution f1f1f2f2 f1 f1 f2 f2 etc .; on the rotor alternatively has two blades of frequency f1 then two blades of frequency f2, or according to the pattern [f1 f1 f1 f2 f2 f2]; alternation is three blades. etc.
- a pattern of (s1 + s2) vanes with s1 vanes of frequency f1 and s2 vanes of frequency f2 which is repeated on the wheel is defined.
- the successive patterns vary slightly from one pattern to another, in particular of +/- 1 blades or +/- 2 blades.
- 36 vanes may be distributed in successive patterns: (4f1 4f2) (5f1 5f2) (4f1 4f2) (5f1 5f2) or according to the patterns (4f1 Sf2) (4f1 Sf2) (5f1 5f2) (4f1 4f2). other solutions are possible.
- s1 s2 and s1 is at most N / 4.
- the wheel being subjected to a harmonic excitation n, ie n perturbations per revolution, n being smaller than the number N of vanes of the wheel divided by two (n ⁇ N / 2), the vanes are arranged in a distribution which tends to have the same order of symmetry as the excitation on the wheel. They are divided into n identical or distribution groups that vary little from one group to another.
- the average frequency is f0 or close to f0.
- the blades are arranged in approximately identical patterns: 4 groups of 7 blades and a group of 8 blades such as for example (4f1 3f2) (3f1 4f2) (4f1) 3f2) (3f1 4f2) and (4f1 4f2). Other distributions are possible.
- the vanes are distributed according to a number of repeating units equal to the number of diameters of the mode concerned. For example 24 excitations per turn on a moving wheel of 32 blades involve a dynamic response of the so-called 8-diameter bladed wheel. We therefore use a detuning distribution with 8 repetitive patterns.
- the frequency can be modified by acting on the material constituting the blade.
- This solution makes it possible to make the vanes geometrically identical to the manufacturing tolerances and not to modify the stationary aerodynamic flow.
- the blade is made from materials having different Young's moduli or densities.
- the frequencies being related to the ratio stiffness on mass, the simple change of material thus has an impact on the frequencies.
- the texture of the zone composite is affected.
- Another range of solutions consists in modifying the foot of the blade without affecting the blade; we can change the length or the thickness of the stilt, the shape of the bottom of the platform its thickness. In particular a punctual addition of masses under the platform makes it possible to shift the frequencies of the first modes of vibration.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Claims (16)
- Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen in einem beschaufelten Rotor einer bestimmten Turbomaschine, um die Vibrationsniveaus des Rotors mit gezwungener Response zu reduzieren, gemäß dem auf dem Rotor mindestens teilweise Schaufeln mit verschiedenen Eigenfrequenzen mit einer Frequenzverteilung gemäß einer Standardabweichung zur Verfügung stehen, die mindestens gleich einem gewählten Wert ist, dadurch gekennzeichnet, dass es darin besteht, je nach den Betriebsbedingungen des Rotors im Inneren der Turbomaschine einen optimalen Wert der Standardabweichung der unterschiedlichen Eigenfrequenzen hinsichtlich der maximalen Response der Vibrationsamplitude, die auf dem Rotor gewünscht wird, festzulegen, wobei die Schaufeln mit unterschiedlichen Eigenfrequenzen so verteilt sind, dass die Frequenzen der gesamten Schaufeln eine Standardabweichung aufweisen, die mindestens gleich dem Wert der unterschiedlichen Eigenfrequenzen ist, wobei der Wert der falschen Abstimmung statistisch festgelegt ist.
- Verfahren nach dem vorhergehenden Anspruch, in dem■ sein erster Wert σj der Standardabweichung der unterschiedlichen Eigenfrequenzen definiert wird,■ eine Anzahl R mit statistischer Relevanz der zufälligen Verteilungen der unterschiedlichen Eigenfrequenzen in dieser Abweichung Typ σj erzeugt wird,■ für jede der R zufälligen Verteilungen die gezwungene Response, je nach den Betriebsbedingungen des Rotors im Inneren der Turbomaschine mit unterschiedlichen Eigenfrequenzen, berechnet wird,■ der maximale Wert extrahiert wird,■ ein anderer Wert σj gewählt und die vorhergehende Berechung wiederholt wird, wobei die Anzahl der Wiederholungen ausreichend ist, um eine Nachverfolgung der Responsewerte je nach den Werten σj durchzuführen.
- Verfahren nach einem der vorhergehenden Ansprüche, nach dem im Voraus festgelegt wird, ob das Einstellen von gezielten unterschiedlichen Eigenfrequenzen die aeroelastische Stabilität verbessert, indem der Mittelwert des Abschwächungskoeffizienten, die jedem möglichen Phasenwinkel zwischen den Schaufeln entsprechen, berechnet wird und überprüft wird, ob die aeroelastische Abschwächung des Modus, der von der Schwingung betroffen ist, geringer als der Mittelwert ist.
- Verfahren nach einem der Ansprüche 1 bis 2, wobei die Anzahl der Eigenfrequenzen der verschiedenen Schaufeln außerhalb der Fabrikationstoleranzen höchstens 3 beträgt.
- Verfahren nach Anspruch 4, wobei die Schaufeln nach Mustern mit Schaufeln mit der Eigenfrequenz f1 und Schaufeln mit der Eigenfrequenz f2 verteilt sind, wobei f2 verschieden von f1 ist.
- Verfahren nach Anspruch 5, wobei die aufeinander folgenden Muster identisch oder mit einer geringfügigen Variation von einem Muster zum anderen sind.
- Verfahren nach dem vorhergehenden Anspruch, wobei jedes Muster (s1+s2) Schaufeln umfasst, s1 Schaufeln mit der Frequenz f1 und s2 Schaufeln mit der Frequenz f2.
- Verfahren nach dem vorhergehenden Anspruch, wobei s1 = s2 und s1 höchstens gleich der gesamten Anzahl N der Schaufeln der Turbine, geteilt durch 4, ist.
- Verfahren nach Anspruch 6, wobei jedes Muster (s1 +s2 +/-2) Schaufeln mit (s1 +/-1) Schaufeln der Frequenz f1 und (s2+/-1) Schaufeln der Frequenz f2 umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei der Rotor einer harmonischen Oberschwingung n kleiner der Anzahl N der Schaufeln des Rotors, geteilt durch zwei (n < N/2) unterzogen wird, und wobei die Schaufeln in n Mustern verteilt sind, die identisch sind oder von Muster zu Muster eine geringfügige Variation aufweisen.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei der Rotor einer harmonischen Oberschwingung n unterzogen wird, wobei n größer als die Anzahl N der Schaufeln des Rotors, geteilt durch zwei (n > N/2) ist, und wobei die Anzahl der Muster gleich der Anzahl der Durchmesser des betroffenen Modus ist.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Resonanzfrequenz der Schaufeln insbesondere durch eine geometrische Veränderung ihres Blatts geändert wird.
- Verfahren nach einem der vorhergehenden Ansprüche, wobei die Resonanzfrequenzen der Schaufeln insbesondere durch eine geometrische Veränderung ihres Fußes geändert werden, wobei das Blatt nicht geändert wird, um seine Steifheit zu ändern.
- Verfahren nach einem der Ansprüche 4 bis 11, wobei die Resonanzfrequenzen der Schaufeln durch Veränderung der Masse oder des Materials, aus dem die Schaufeln hergestellt sind, verändert werden.
- Verfahren nach dem vorhergehenden Anspruch, wobei die Schaufeln hohl oder ausgespart sind, wobei die Veränderung durch Füllen eines Teils der Hohlräume mit einem Material mit angepasstem Volumen erzeugt wird.
- Verfahren nach einem der Ansprüche 12 bis 15, wobei die Übergangszone zwischen dem Blatt und dem Nabenstück von einem Blatt zum anderen verändert ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0404130 | 2004-04-20 | ||
FR0404130A FR2869069B1 (fr) | 2004-04-20 | 2004-04-20 | Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine roue aubagee presentant un desaccordage volontaire |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1589191A1 EP1589191A1 (de) | 2005-10-26 |
EP1589191B1 true EP1589191B1 (de) | 2010-09-08 |
Family
ID=34939389
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05103148A Active EP1589191B1 (de) | 2004-04-20 | 2005-04-19 | Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor |
Country Status (7)
Country | Link |
---|---|
US (1) | US7500299B2 (de) |
EP (1) | EP1589191B1 (de) |
CA (1) | CA2503659C (de) |
DE (1) | DE602005023373D1 (de) |
ES (1) | ES2351507T3 (de) |
FR (1) | FR2869069B1 (de) |
RU (1) | RU2372492C2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2447293C2 (ru) * | 2007-02-27 | 2012-04-10 | Снекма | Способ снижения уровней вибраций лопаточного колеса газотурбинного двигателя |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0601837D0 (en) | 2006-01-31 | 2006-03-08 | Rolls Royce Plc | An aerofoil assembly and a method of manufacturing an aerofoil assembly |
DE102007016369A1 (de) * | 2007-04-03 | 2008-10-09 | Rolls-Royce Deutschland Ltd & Co Kg | Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise |
DE102007059155A1 (de) * | 2007-12-06 | 2009-06-10 | Rolls-Royce Deutschland Ltd & Co Kg | Verfahren zur Herstellung von in Integralbauweise ausgebildeten Laufrädern für Verdichter und Turbinen |
US8167540B2 (en) * | 2008-01-30 | 2012-05-01 | Hamilton Sundstrand Corporation | System for reducing compressor noise |
FR2930590B1 (fr) | 2008-04-23 | 2013-05-31 | Snecma | Carter de turbomachine comportant un dispositif empechant une instabilite lors d'un contact entre le carter et le rotor |
FR2935350B1 (fr) * | 2008-08-27 | 2011-05-20 | Snecma | Methode de reduction des niveaux vibratoires d'une helice de turbomoteur. |
WO2010022739A2 (en) * | 2008-08-29 | 2010-03-04 | Vestas Wind Systems A/S | A wind turbine generator comprising a rotor with vibration damping properties |
US8043063B2 (en) * | 2009-03-26 | 2011-10-25 | Pratt & Whitney Canada Corp. | Intentionally mistuned integrally bladed rotor |
FR2944050B1 (fr) * | 2009-04-02 | 2014-07-11 | Turbomeca | Roue de turbine a pales desaccordees comportant un dispositif d'amortissement |
US8172510B2 (en) * | 2009-05-04 | 2012-05-08 | Hamilton Sundstrand Corporation | Radial compressor of asymmetric cyclic sector with coupled blades tuned at anti-nodes |
US8172511B2 (en) * | 2009-05-04 | 2012-05-08 | Hamilton Sunstrand Corporation | Radial compressor with blades decoupled and tuned at anti-nodes |
US8419370B2 (en) | 2009-06-25 | 2013-04-16 | Rolls-Royce Corporation | Retaining and sealing ring assembly |
DE102009033618A1 (de) * | 2009-07-17 | 2011-01-20 | Mtu Aero Engines Gmbh | Verfahren zur Frequenzverstimmung eines Rotorkörpers einer Gasturbine und ein Rotor einer Gasturbine |
US8469670B2 (en) * | 2009-08-27 | 2013-06-25 | Rolls-Royce Corporation | Fan assembly |
US8435006B2 (en) * | 2009-09-30 | 2013-05-07 | Rolls-Royce Corporation | Fan |
DE102009053247A1 (de) * | 2009-11-13 | 2011-05-19 | Mtu Aero Engines Gmbh | Verfahren zum Verändern einer Eigenfrequenz einer Schaufel für eine Strömungsmaschine |
US20110274537A1 (en) * | 2010-05-09 | 2011-11-10 | Loc Quang Duong | Blade excitation reduction method and arrangement |
DE102011076790B4 (de) * | 2011-05-31 | 2023-07-13 | Zf Friedrichshafen Ag | Antriebssystem für ein Fahrzeug |
US8834098B2 (en) * | 2011-12-02 | 2014-09-16 | United Technologies Corporation | Detuned vane airfoil assembly |
US9097125B2 (en) | 2012-08-17 | 2015-08-04 | Mapna Group | Intentionally frequency mistuned turbine blades |
EP2762678A1 (de) * | 2013-02-05 | 2014-08-06 | Siemens Aktiengesellschaft | Verfahren zum Verstimmen eines Laufschaufelgitters |
WO2014197119A2 (en) * | 2013-04-16 | 2014-12-11 | United Technologies Corporation | Rotors with modulus mistuned airfoils |
US10151321B2 (en) | 2013-10-16 | 2018-12-11 | United Technologies Corporation | Auxiliary power unit impeller blade |
US10400606B2 (en) | 2014-01-15 | 2019-09-03 | United Technologies Corporation | Mistuned airfoil assemblies |
EP2942481B1 (de) | 2014-05-07 | 2019-03-27 | Rolls-Royce Corporation | Rotor für einen gasturbinenmotor |
EP3073052B1 (de) | 2015-02-17 | 2018-01-24 | Rolls-Royce Corporation | Bläserbaugruppe |
US11041388B2 (en) | 2015-03-30 | 2021-06-22 | Pratt & Whitney Canada Corp. | Blade cutback distribution in rotor for noise reduction |
FR3043131B1 (fr) * | 2015-10-28 | 2017-11-03 | Snecma | Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine |
EP3176369B1 (de) | 2015-12-04 | 2019-05-29 | MTU Aero Engines GmbH | Gasturbinen-verdichter |
FR3052804B1 (fr) | 2016-06-16 | 2018-05-25 | Safran Aircraft Engines | Roue aubagee volontairement desaccordee |
US10837287B2 (en) * | 2017-01-20 | 2020-11-17 | Pratt & Whitney Canada Corp. | Mistuned bladed rotor and associated manufacturing method |
GB201702698D0 (en) * | 2017-02-20 | 2017-04-05 | Rolls Royce Plc | Fan |
US11255345B2 (en) | 2017-03-03 | 2022-02-22 | Elliott Company | Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes |
JP2019108822A (ja) * | 2017-12-15 | 2019-07-04 | 三菱日立パワーシステムズ株式会社 | 回転機械 |
CN108254144A (zh) * | 2017-12-25 | 2018-07-06 | 中国航发四川燃气涡轮研究院 | 一种用于高周疲劳极限测量的分体式叶片降频结构 |
GB201808646D0 (en) | 2018-05-25 | 2018-07-11 | Rolls Royce Plc | Rotor Blade Arrangement |
GB201808651D0 (en) | 2018-05-25 | 2018-07-11 | Rolls Royce Plc | Rotor blade arrangement |
GB201808650D0 (en) | 2018-05-25 | 2018-07-11 | Rolls Royce Plc | Rotor Blade Arrangement |
US11220913B2 (en) | 2019-10-23 | 2022-01-11 | Rolls-Royce Corporation | Gas turbine engine blades with airfoil plugs for selected tuning |
FR3119642B1 (fr) * | 2021-02-10 | 2024-03-01 | Safran Aircraft Engines | Rotor de turbomachine présentant un comportement vibratoire amélioré |
US12012865B2 (en) | 2021-12-29 | 2024-06-18 | Rolls-Royce North American Technologies Inc. | Tailored material property tuning for turbine engine fan blades |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097192A (en) * | 1977-01-06 | 1978-06-27 | Curtiss-Wright Corporation | Turbine rotor and blade configuration |
WO1998036966A1 (en) * | 1997-02-21 | 1998-08-27 | California Institute Of Technology | Rotors with mistuned blades |
US6471482B2 (en) * | 2000-11-30 | 2002-10-29 | United Technologies Corporation | Frequency-mistuned light-weight turbomachinery blade rows for increased flutter stability |
US6428278B1 (en) * | 2000-12-04 | 2002-08-06 | United Technologies Corporation | Mistuned rotor blade array for passive flutter control |
US6854959B2 (en) * | 2003-04-16 | 2005-02-15 | General Electric Company | Mixed tuned hybrid bucket and related method |
US7082371B2 (en) * | 2003-05-29 | 2006-07-25 | Carnegie Mellon University | Fundamental mistuning model for determining system properties and predicting vibratory response of bladed disks |
-
2004
- 2004-04-20 FR FR0404130A patent/FR2869069B1/fr not_active Expired - Fee Related
-
2005
- 2005-04-18 CA CA2503659A patent/CA2503659C/fr active Active
- 2005-04-18 US US11/107,877 patent/US7500299B2/en active Active
- 2005-04-19 RU RU2005111685/06A patent/RU2372492C2/ru active
- 2005-04-19 DE DE602005023373T patent/DE602005023373D1/de active Active
- 2005-04-19 EP EP05103148A patent/EP1589191B1/de active Active
- 2005-04-19 ES ES05103148T patent/ES2351507T3/es active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2447293C2 (ru) * | 2007-02-27 | 2012-04-10 | Снекма | Способ снижения уровней вибраций лопаточного колеса газотурбинного двигателя |
Also Published As
Publication number | Publication date |
---|---|
RU2372492C2 (ru) | 2009-11-10 |
FR2869069A1 (fr) | 2005-10-21 |
RU2005111685A (ru) | 2006-10-27 |
US20050249586A1 (en) | 2005-11-10 |
US7500299B2 (en) | 2009-03-10 |
FR2869069B1 (fr) | 2008-11-21 |
CA2503659A1 (fr) | 2005-10-20 |
ES2351507T3 (es) | 2011-02-07 |
DE602005023373D1 (de) | 2010-10-21 |
EP1589191A1 (de) | 2005-10-26 |
CA2503659C (fr) | 2013-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1589191B1 (de) | Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor | |
CA2446590C (fr) | Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure | |
EP1726938B1 (de) | Verfahren zur Masskalibrierung von Werkstücken zur Montage auf der Peripherie eines Rotors | |
US10801519B2 (en) | Blade disk arrangement for blade frequency tuning | |
EP2112326B1 (de) | Gehäuse eines Turbotriebwerks mit einer Vorrichtung zum Schutz vor Instabilität bei Kontakt zwischen dem Gehäuse und dem Rotor | |
EP2071127B1 (de) | Entwurfsverfahren einer Mehrstufenturbine eines Turbotriebwerks | |
EP4115053B1 (de) | Fanschaufel mit einem einsatz aus steifen fasern | |
FR2971540A1 (fr) | Ensemble pale-plateforme pour ecoulement supersonique | |
FR3087701A1 (fr) | Hybridation des fibres du renfort fibreux d'une aube de soufflante | |
FR2935350A1 (fr) | Methode de reduction des niveaux vibratoires d'une helice de turbomoteur. | |
CA2621839C (fr) | Methode de reduction des niveaux vibratoires d'une roue aubagee de turbomachine | |
EP3292320A1 (de) | Vibrationsfalle mit verteilten resonatoren | |
EP3084133B1 (de) | Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche | |
FR3052182A1 (fr) | Roue aubagee de turbomachine a comportement vibratoire ameliore | |
EP4022173B1 (de) | Hybridisierung der fasern der faserverstärkung einer gebläseschaufel | |
EP4256194A1 (de) | Hybridisierung der fasern der faserverstärkung einer gebläseschaufel | |
FR3126639A1 (fr) | Aube comprenant une structure en matériau composite et procédé de fabrication associé | |
WO2019197750A1 (fr) | Turbomachine comportant un dispositif d'amelioration du refroidissement de disques de rotor par un flux d'air | |
EP3208470B1 (de) | Verfahren zur verbesserung der lärmqualität einer umlaufenden maschine, die ein fluid bewegt | |
EP4237664B1 (de) | Verkleidungselement zum umschliessen eines hindernisses in einem fluidstrom | |
FR3128484A1 (fr) | Aube comprenant une structure en matériau composite et procédé de fabrication associé | |
FR3096159A1 (fr) | Procédé de paramétrage d’un filtre numérique pour l’atténuation d’une fréquence associée à un mode de torsion d’une ligne de transmission de puissance d’un turbomoteur | |
FR3131754A1 (fr) | Aube pour turbomachine d’aeronef | |
WO2022269174A1 (fr) | Procede de fabrication d'une aube composite de turbomachine, l'aube comprenant un bouclier de renfort permettant un équilibrage | |
BE1027709A1 (fr) | Etage de compresseur de turbomachine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
AKX | Designation fees paid |
Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 20080605 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 602005023373 Country of ref document: DE Date of ref document: 20101021 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110126 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005023373 Country of ref document: DE Effective date: 20110609 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120410 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130420 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: SAFRAN AIRCRAFT ENGINES, FR Effective date: 20170719 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240320 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240320 Year of fee payment: 20 Ref country code: IT Payment date: 20240320 Year of fee payment: 20 Ref country code: FR Payment date: 20240320 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 20 |