EP1589191B1 - Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor - Google Patents

Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor Download PDF

Info

Publication number
EP1589191B1
EP1589191B1 EP05103148A EP05103148A EP1589191B1 EP 1589191 B1 EP1589191 B1 EP 1589191B1 EP 05103148 A EP05103148 A EP 05103148A EP 05103148 A EP05103148 A EP 05103148A EP 1589191 B1 EP1589191 B1 EP 1589191B1
Authority
EP
European Patent Office
Prior art keywords
vanes
wheel
frequency
value
mistuning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05103148A
Other languages
English (en)
French (fr)
Other versions
EP1589191A1 (de
Inventor
Jérôme Dupeux
Christian Dupont
Jean-Pierre Lombard
Eric Seinturier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1589191A1 publication Critical patent/EP1589191A1/de
Application granted granted Critical
Publication of EP1589191B1 publication Critical patent/EP1589191B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/04Antivibration arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/50Vibration damping features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • Y10T29/49774Quantitative measuring or gauging by vibratory or oscillatory movement

Definitions

  • the present invention relates to turbomachine rotors, and in particular the rotors comprising vanes at their periphery which are subjected during the operation of the turbomachine to vibratory phenomena.
  • the turbomachine bladed wheels have a structure with a quasi-cyclic symmetry. They are generally composed of a series of geometrically identical sectors, with a tolerance that is related to the manufacturing tolerances of their various components and their assembly.
  • the vibratory energy is located on one or a few vanes instead of spreading over the entire wheel.
  • This expression denotes the vibratory response to an external excitation.
  • the external excitation finds its origin most often in a dissymmetry in the aerodynamic flow. It can be due for example to the upstream stators or downstream stator, distortion, air intake in the compressor, reintroductions of air, the combustion chamber or the structural arms.
  • the vane blade response levels can vary by a factor of 10 and the maximum on the bladed wheel can be double or triple what would have been achieved on a perfectly symmetrical wheel.
  • the evolution of the response to an excitation source as a function of the detuning follows a curve as represented on the figure 1 . It represents the maximum response in amplitude of vibration of the bladed wheel determined for different values of standard deviation of the eigenfrequencies of the vanes distributed on the wheel. For a discrepancy of 0%, the response is standardized to 1.
  • the standard deviation standard deviation that is encountered on wheels in use is of the order of 0.5%. It is generally found on this graph that it corresponds to the most unfavorable case. Trying to reduce it to get closer to the symmetry is very expensive because it implies in particular a reduction in manufacturing tolerances.
  • This graph also shows that from a certain level of detuning b, the effect on the dynamics of the bladed wheel fades and the maximum levels observed on the wheel decrease.
  • the object of the invention is to introduce a voluntary detuning on the bladed wheel so as to reduce the maximum response on the wheel, and to no longer depend on the involuntary, weak, always present detuning.
  • EP 1 211 382 describes a rotor of the turbomachine whose blades have eigenfrequencies of different vibration so as to reduce the vibratory levels in forced response.
  • the standard deviation discrepancy introduced is advantageously greater than this optimal value b.
  • the value b depends on the wheel studied, the stiffness of the disc and the value of the damping present on the bladed wheel. It can be considered that in most cases the value of b is of the order of 1 to 2% of standard deviation in frequency. In these cases, the standard deviation discrepancy introduced is greater than 2%.
  • the Campbell diagram aims to determine the frequency situation of the structure with respect to possible excitations. It includes the frequencies of the vibration modes of the bladed wheel as a function of the speed of rotation of the wheel on the one hand, and the possible excitation frequencies on the other hand. The crossings between these two types of curves correspond to the resonances.
  • is the rotation frequency of the rotor.
  • the geometric and structural parameters of the mobile wheel concerned are determined so as to move the resonances out of the operating range with a margin of safety.
  • the invention therefore also aims to determine the minimum value of b so that its effect on vibration levels is significant while spreading the least possible modes of the structure to facilitate design.
  • the problem that the invention aims to solve consists for a given maximum amplitude of vibration value to determine the corresponding value of b on the curve.
  • said detuning value is determined by a statistical calculation method.
  • the invention also relates to a bladed wheel with a voluntary detuning.
  • a bladed wheel whose deliberate detuning has been determined according to the method of the invention has blades of different natural frequencies, the number of different frequencies, excluding manufacturing tolerances, being at most 3.
  • the vanes are distributed in patterns with vanes of natural frequency f1 and vanes of natural frequency f2, f2 being different from f1.
  • the successive patterns are identical or with a slight variation from one pattern to another.
  • each pattern comprises (s1 + s2) blades, s1 blades of frequency f1 and s2 blades of frequency f2.
  • each pattern comprises (s1 + s2 +/- 1) vanes with (s1 +/- 1) frequency vanes f1 and (s2 +/- 1) blades of frequency f2.
  • the wheel being subjected to a harmonic excitation n smaller than the number N of vanes of the wheel divided by two (n ⁇ N / 2) the vanes are distributed in n identical patterns or with a small variation from one pattern to another.
  • the wheel being subjected to a harmonic excitation n, n being greater than the number N of blades of the wheel divided by two (n> N / 2), the number of patterns is equal to the number of diameters of the mode concerned.
  • step 10 an initial value ⁇ j of the standard deviation in detuning frequencies is chosen.
  • ⁇ j the average of the differences between the natural frequency of vibration of each blade and the average frequency.
  • a distribution R i is randomly generated numerically. For a predefined value of standard deviation ⁇ j of a bladed wheel, there exists an infinity both of distributions R i of the vanes on the wheel MR i and of eigenfrequencies of the latter satisfying this condition of standard deviation ⁇ j .
  • step 30 for this distribution R i , the determination is made by a known numerical method to calculate the amplitude response to an excitation. For example, it may be for a turbojet compressor the response to distortions in the incident flow resulting from a side wind.
  • the maximum M ⁇ j is extracted from the values R i max ⁇ j . From the set of values R i max, we determine the maximum value of the amplification which will not be statistically exceeded in a percentage of cases higher than a fixed rate, for example 99.99%. This result is achieved by plotting the values on a cumulative probability curve.
  • the cloud of points is advantageously smoothed by a route of Weibull probability which makes it possible to reduce the number of necessary prints, for example to 150.
  • the introduction of a voluntary detuning improves the aeroelastic stability of the wheel.
  • the average of the damping coefficients corresponding to each possible phase angle between the blades is calculated, and it is verified that the mode concerned by the floating is lower than said average.
  • the detuning is optimized to minimize the forced response on a resonance, making sure that the impact on stability and the Campbell diagram (for the other resonances) is acceptable or the detuning is optimized with respect to stability by ensuring that the impact on the Campbell diagram is acceptable.
  • the detuning reflects an asymmetry of the structure.
  • the classical cyclic symmetry analysis approaches which allow to model only one sector of the structure and then reconstruct the behavior of the complete wheel, are therefore not directly applicable.
  • Steps A) and B) are long enough to calculate but the calculation is done only once.
  • steps C) and D) are very fast, which allows rapid analyzes for different detuning vectors. This method is therefore particularly suitable for statistical approaches.
  • the total “disconnected” aeroelastic effort is obtained by combining the “basic” efforts, according to the same superposition rule as that used in step D). (The representation base is the same).
  • the stability calculation therefore requires a large number of unsteady aerodynamic calculations that are quite expensive.
  • the detuned analyzes are very fast.
  • this detuning is advantageously carried out in one of the following ways.
  • a blade distribution is selected on the wheel whose eigenfrequencies satisfy the standard deviation condition b.
  • all the blades are positioned symmetrically on the disk in particular in terms of angle, pitch and axial position.
  • the wheel is asymmetrical from the point of view of frequencies only.
  • the number of different blades is limited to two or three types.
  • the nominal frequency of the blades is f0, f1 the eigenfrequency of the blades with increased frequency with respect to f0 and f2 the natural frequency of the vanes with reduced frequency.
  • the vanes are distributed according to the pattern: [f1 f1 f2 f2] is a distribution f1f1f2f2 f1 f1 f2 f2 etc .; on the rotor alternatively has two blades of frequency f1 then two blades of frequency f2, or according to the pattern [f1 f1 f1 f2 f2 f2]; alternation is three blades. etc.
  • a pattern of (s1 + s2) vanes with s1 vanes of frequency f1 and s2 vanes of frequency f2 which is repeated on the wheel is defined.
  • the successive patterns vary slightly from one pattern to another, in particular of +/- 1 blades or +/- 2 blades.
  • 36 vanes may be distributed in successive patterns: (4f1 4f2) (5f1 5f2) (4f1 4f2) (5f1 5f2) or according to the patterns (4f1 Sf2) (4f1 Sf2) (5f1 5f2) (4f1 4f2). other solutions are possible.
  • s1 s2 and s1 is at most N / 4.
  • the wheel being subjected to a harmonic excitation n, ie n perturbations per revolution, n being smaller than the number N of vanes of the wheel divided by two (n ⁇ N / 2), the vanes are arranged in a distribution which tends to have the same order of symmetry as the excitation on the wheel. They are divided into n identical or distribution groups that vary little from one group to another.
  • the average frequency is f0 or close to f0.
  • the blades are arranged in approximately identical patterns: 4 groups of 7 blades and a group of 8 blades such as for example (4f1 3f2) (3f1 4f2) (4f1) 3f2) (3f1 4f2) and (4f1 4f2). Other distributions are possible.
  • the vanes are distributed according to a number of repeating units equal to the number of diameters of the mode concerned. For example 24 excitations per turn on a moving wheel of 32 blades involve a dynamic response of the so-called 8-diameter bladed wheel. We therefore use a detuning distribution with 8 repetitive patterns.
  • the frequency can be modified by acting on the material constituting the blade.
  • This solution makes it possible to make the vanes geometrically identical to the manufacturing tolerances and not to modify the stationary aerodynamic flow.
  • the blade is made from materials having different Young's moduli or densities.
  • the frequencies being related to the ratio stiffness on mass, the simple change of material thus has an impact on the frequencies.
  • the texture of the zone composite is affected.
  • Another range of solutions consists in modifying the foot of the blade without affecting the blade; we can change the length or the thickness of the stilt, the shape of the bottom of the platform its thickness. In particular a punctual addition of masses under the platform makes it possible to shift the frequencies of the first modes of vibration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (16)

  1. Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen in einem beschaufelten Rotor einer bestimmten Turbomaschine, um die Vibrationsniveaus des Rotors mit gezwungener Response zu reduzieren, gemäß dem auf dem Rotor mindestens teilweise Schaufeln mit verschiedenen Eigenfrequenzen mit einer Frequenzverteilung gemäß einer Standardabweichung zur Verfügung stehen, die mindestens gleich einem gewählten Wert ist, dadurch gekennzeichnet, dass es darin besteht, je nach den Betriebsbedingungen des Rotors im Inneren der Turbomaschine einen optimalen Wert der Standardabweichung der unterschiedlichen Eigenfrequenzen hinsichtlich der maximalen Response der Vibrationsamplitude, die auf dem Rotor gewünscht wird, festzulegen, wobei die Schaufeln mit unterschiedlichen Eigenfrequenzen so verteilt sind, dass die Frequenzen der gesamten Schaufeln eine Standardabweichung aufweisen, die mindestens gleich dem Wert der unterschiedlichen Eigenfrequenzen ist, wobei der Wert der falschen Abstimmung statistisch festgelegt ist.
  2. Verfahren nach dem vorhergehenden Anspruch, in dem
    ■ sein erster Wert σj der Standardabweichung der unterschiedlichen Eigenfrequenzen definiert wird,
    ■ eine Anzahl R mit statistischer Relevanz der zufälligen Verteilungen der unterschiedlichen Eigenfrequenzen in dieser Abweichung Typ σj erzeugt wird,
    ■ für jede der R zufälligen Verteilungen die gezwungene Response, je nach den Betriebsbedingungen des Rotors im Inneren der Turbomaschine mit unterschiedlichen Eigenfrequenzen, berechnet wird,
    ■ der maximale Wert extrahiert wird,
    ■ ein anderer Wert σj gewählt und die vorhergehende Berechung wiederholt wird, wobei die Anzahl der Wiederholungen ausreichend ist, um eine Nachverfolgung der Responsewerte je nach den Werten σj durchzuführen.
  3. Verfahren nach einem der vorhergehenden Ansprüche, nach dem im Voraus festgelegt wird, ob das Einstellen von gezielten unterschiedlichen Eigenfrequenzen die aeroelastische Stabilität verbessert, indem der Mittelwert des Abschwächungskoeffizienten, die jedem möglichen Phasenwinkel zwischen den Schaufeln entsprechen, berechnet wird und überprüft wird, ob die aeroelastische Abschwächung des Modus, der von der Schwingung betroffen ist, geringer als der Mittelwert ist.
  4. Verfahren nach einem der Ansprüche 1 bis 2, wobei die Anzahl der Eigenfrequenzen der verschiedenen Schaufeln außerhalb der Fabrikationstoleranzen höchstens 3 beträgt.
  5. Verfahren nach Anspruch 4, wobei die Schaufeln nach Mustern mit Schaufeln mit der Eigenfrequenz f1 und Schaufeln mit der Eigenfrequenz f2 verteilt sind, wobei f2 verschieden von f1 ist.
  6. Verfahren nach Anspruch 5, wobei die aufeinander folgenden Muster identisch oder mit einer geringfügigen Variation von einem Muster zum anderen sind.
  7. Verfahren nach dem vorhergehenden Anspruch, wobei jedes Muster (s1+s2) Schaufeln umfasst, s1 Schaufeln mit der Frequenz f1 und s2 Schaufeln mit der Frequenz f2.
  8. Verfahren nach dem vorhergehenden Anspruch, wobei s1 = s2 und s1 höchstens gleich der gesamten Anzahl N der Schaufeln der Turbine, geteilt durch 4, ist.
  9. Verfahren nach Anspruch 6, wobei jedes Muster (s1 +s2 +/-2) Schaufeln mit (s1 +/-1) Schaufeln der Frequenz f1 und (s2+/-1) Schaufeln der Frequenz f2 umfasst.
  10. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Rotor einer harmonischen Oberschwingung n kleiner der Anzahl N der Schaufeln des Rotors, geteilt durch zwei (n < N/2) unterzogen wird, und wobei die Schaufeln in n Mustern verteilt sind, die identisch sind oder von Muster zu Muster eine geringfügige Variation aufweisen.
  11. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Rotor einer harmonischen Oberschwingung n unterzogen wird, wobei n größer als die Anzahl N der Schaufeln des Rotors, geteilt durch zwei (n > N/2) ist, und wobei die Anzahl der Muster gleich der Anzahl der Durchmesser des betroffenen Modus ist.
  12. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Resonanzfrequenz der Schaufeln insbesondere durch eine geometrische Veränderung ihres Blatts geändert wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Resonanzfrequenzen der Schaufeln insbesondere durch eine geometrische Veränderung ihres Fußes geändert werden, wobei das Blatt nicht geändert wird, um seine Steifheit zu ändern.
  14. Verfahren nach einem der Ansprüche 4 bis 11, wobei die Resonanzfrequenzen der Schaufeln durch Veränderung der Masse oder des Materials, aus dem die Schaufeln hergestellt sind, verändert werden.
  15. Verfahren nach dem vorhergehenden Anspruch, wobei die Schaufeln hohl oder ausgespart sind, wobei die Veränderung durch Füllen eines Teils der Hohlräume mit einem Material mit angepasstem Volumen erzeugt wird.
  16. Verfahren nach einem der Ansprüche 12 bis 15, wobei die Übergangszone zwischen dem Blatt und dem Nabenstück von einem Blatt zum anderen verändert ist.
EP05103148A 2004-04-20 2005-04-19 Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor Active EP1589191B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0404130 2004-04-20
FR0404130A FR2869069B1 (fr) 2004-04-20 2004-04-20 Procede pour introduire un desaccordage volontaire sur une roue aubagee de turbomachine roue aubagee presentant un desaccordage volontaire

Publications (2)

Publication Number Publication Date
EP1589191A1 EP1589191A1 (de) 2005-10-26
EP1589191B1 true EP1589191B1 (de) 2010-09-08

Family

ID=34939389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05103148A Active EP1589191B1 (de) 2004-04-20 2005-04-19 Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor

Country Status (7)

Country Link
US (1) US7500299B2 (de)
EP (1) EP1589191B1 (de)
CA (1) CA2503659C (de)
DE (1) DE602005023373D1 (de)
ES (1) ES2351507T3 (de)
FR (1) FR2869069B1 (de)
RU (1) RU2372492C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447293C2 (ru) * 2007-02-27 2012-04-10 Снекма Способ снижения уровней вибраций лопаточного колеса газотурбинного двигателя

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0601837D0 (en) 2006-01-31 2006-03-08 Rolls Royce Plc An aerofoil assembly and a method of manufacturing an aerofoil assembly
DE102007016369A1 (de) * 2007-04-03 2008-10-09 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Ermittlung der Schaufelverstimmung bei Laufrädern in Integralbauweise
DE102007059155A1 (de) * 2007-12-06 2009-06-10 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung von in Integralbauweise ausgebildeten Laufrädern für Verdichter und Turbinen
US8167540B2 (en) * 2008-01-30 2012-05-01 Hamilton Sundstrand Corporation System for reducing compressor noise
FR2930590B1 (fr) 2008-04-23 2013-05-31 Snecma Carter de turbomachine comportant un dispositif empechant une instabilite lors d'un contact entre le carter et le rotor
FR2935350B1 (fr) * 2008-08-27 2011-05-20 Snecma Methode de reduction des niveaux vibratoires d'une helice de turbomoteur.
WO2010022739A2 (en) * 2008-08-29 2010-03-04 Vestas Wind Systems A/S A wind turbine generator comprising a rotor with vibration damping properties
US8043063B2 (en) * 2009-03-26 2011-10-25 Pratt & Whitney Canada Corp. Intentionally mistuned integrally bladed rotor
FR2944050B1 (fr) * 2009-04-02 2014-07-11 Turbomeca Roue de turbine a pales desaccordees comportant un dispositif d'amortissement
US8172510B2 (en) * 2009-05-04 2012-05-08 Hamilton Sundstrand Corporation Radial compressor of asymmetric cyclic sector with coupled blades tuned at anti-nodes
US8172511B2 (en) * 2009-05-04 2012-05-08 Hamilton Sunstrand Corporation Radial compressor with blades decoupled and tuned at anti-nodes
US8419370B2 (en) 2009-06-25 2013-04-16 Rolls-Royce Corporation Retaining and sealing ring assembly
DE102009033618A1 (de) * 2009-07-17 2011-01-20 Mtu Aero Engines Gmbh Verfahren zur Frequenzverstimmung eines Rotorkörpers einer Gasturbine und ein Rotor einer Gasturbine
US8469670B2 (en) * 2009-08-27 2013-06-25 Rolls-Royce Corporation Fan assembly
US8435006B2 (en) * 2009-09-30 2013-05-07 Rolls-Royce Corporation Fan
DE102009053247A1 (de) * 2009-11-13 2011-05-19 Mtu Aero Engines Gmbh Verfahren zum Verändern einer Eigenfrequenz einer Schaufel für eine Strömungsmaschine
US20110274537A1 (en) * 2010-05-09 2011-11-10 Loc Quang Duong Blade excitation reduction method and arrangement
DE102011076790B4 (de) * 2011-05-31 2023-07-13 Zf Friedrichshafen Ag Antriebssystem für ein Fahrzeug
US8834098B2 (en) * 2011-12-02 2014-09-16 United Technologies Corporation Detuned vane airfoil assembly
US9097125B2 (en) 2012-08-17 2015-08-04 Mapna Group Intentionally frequency mistuned turbine blades
EP2762678A1 (de) * 2013-02-05 2014-08-06 Siemens Aktiengesellschaft Verfahren zum Verstimmen eines Laufschaufelgitters
WO2014197119A2 (en) * 2013-04-16 2014-12-11 United Technologies Corporation Rotors with modulus mistuned airfoils
US10151321B2 (en) 2013-10-16 2018-12-11 United Technologies Corporation Auxiliary power unit impeller blade
US10400606B2 (en) 2014-01-15 2019-09-03 United Technologies Corporation Mistuned airfoil assemblies
EP2942481B1 (de) 2014-05-07 2019-03-27 Rolls-Royce Corporation Rotor für einen gasturbinenmotor
EP3073052B1 (de) 2015-02-17 2018-01-24 Rolls-Royce Corporation Bläserbaugruppe
US11041388B2 (en) 2015-03-30 2021-06-22 Pratt & Whitney Canada Corp. Blade cutback distribution in rotor for noise reduction
FR3043131B1 (fr) * 2015-10-28 2017-11-03 Snecma Procede pour introduire un desaccordage volontaire dans une roue aubagee de turbomachine
EP3176369B1 (de) 2015-12-04 2019-05-29 MTU Aero Engines GmbH Gasturbinen-verdichter
FR3052804B1 (fr) 2016-06-16 2018-05-25 Safran Aircraft Engines Roue aubagee volontairement desaccordee
US10837287B2 (en) * 2017-01-20 2020-11-17 Pratt & Whitney Canada Corp. Mistuned bladed rotor and associated manufacturing method
GB201702698D0 (en) * 2017-02-20 2017-04-05 Rolls Royce Plc Fan
US11255345B2 (en) 2017-03-03 2022-02-22 Elliott Company Method and arrangement to minimize noise and excitation of structures due to cavity acoustic modes
JP2019108822A (ja) * 2017-12-15 2019-07-04 三菱日立パワーシステムズ株式会社 回転機械
CN108254144A (zh) * 2017-12-25 2018-07-06 中国航发四川燃气涡轮研究院 一种用于高周疲劳极限测量的分体式叶片降频结构
GB201808646D0 (en) 2018-05-25 2018-07-11 Rolls Royce Plc Rotor Blade Arrangement
GB201808651D0 (en) 2018-05-25 2018-07-11 Rolls Royce Plc Rotor blade arrangement
GB201808650D0 (en) 2018-05-25 2018-07-11 Rolls Royce Plc Rotor Blade Arrangement
US11220913B2 (en) 2019-10-23 2022-01-11 Rolls-Royce Corporation Gas turbine engine blades with airfoil plugs for selected tuning
FR3119642B1 (fr) * 2021-02-10 2024-03-01 Safran Aircraft Engines Rotor de turbomachine présentant un comportement vibratoire amélioré
US12012865B2 (en) 2021-12-29 2024-06-18 Rolls-Royce North American Technologies Inc. Tailored material property tuning for turbine engine fan blades

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097192A (en) * 1977-01-06 1978-06-27 Curtiss-Wright Corporation Turbine rotor and blade configuration
WO1998036966A1 (en) * 1997-02-21 1998-08-27 California Institute Of Technology Rotors with mistuned blades
US6471482B2 (en) * 2000-11-30 2002-10-29 United Technologies Corporation Frequency-mistuned light-weight turbomachinery blade rows for increased flutter stability
US6428278B1 (en) * 2000-12-04 2002-08-06 United Technologies Corporation Mistuned rotor blade array for passive flutter control
US6854959B2 (en) * 2003-04-16 2005-02-15 General Electric Company Mixed tuned hybrid bucket and related method
US7082371B2 (en) * 2003-05-29 2006-07-25 Carnegie Mellon University Fundamental mistuning model for determining system properties and predicting vibratory response of bladed disks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447293C2 (ru) * 2007-02-27 2012-04-10 Снекма Способ снижения уровней вибраций лопаточного колеса газотурбинного двигателя

Also Published As

Publication number Publication date
RU2372492C2 (ru) 2009-11-10
FR2869069A1 (fr) 2005-10-21
RU2005111685A (ru) 2006-10-27
US20050249586A1 (en) 2005-11-10
US7500299B2 (en) 2009-03-10
FR2869069B1 (fr) 2008-11-21
CA2503659A1 (fr) 2005-10-20
ES2351507T3 (es) 2011-02-07
DE602005023373D1 (de) 2010-10-21
EP1589191A1 (de) 2005-10-26
CA2503659C (fr) 2013-01-29

Similar Documents

Publication Publication Date Title
EP1589191B1 (de) Verfahren zum Einstellen gezielter unterschiedlicher Eigenfrequenzen eines beschaufelten Rotors einer Turbomachine sowie Rotor
CA2446590C (fr) Structure comprenant un rotor et des sources de perturbations fixes et procede de reduction de vibrations dans cette structure
EP1726938B1 (de) Verfahren zur Masskalibrierung von Werkstücken zur Montage auf der Peripherie eines Rotors
US10801519B2 (en) Blade disk arrangement for blade frequency tuning
EP2112326B1 (de) Gehäuse eines Turbotriebwerks mit einer Vorrichtung zum Schutz vor Instabilität bei Kontakt zwischen dem Gehäuse und dem Rotor
EP2071127B1 (de) Entwurfsverfahren einer Mehrstufenturbine eines Turbotriebwerks
EP4115053B1 (de) Fanschaufel mit einem einsatz aus steifen fasern
FR2971540A1 (fr) Ensemble pale-plateforme pour ecoulement supersonique
FR3087701A1 (fr) Hybridation des fibres du renfort fibreux d&#39;une aube de soufflante
FR2935350A1 (fr) Methode de reduction des niveaux vibratoires d&#39;une helice de turbomoteur.
CA2621839C (fr) Methode de reduction des niveaux vibratoires d&#39;une roue aubagee de turbomachine
EP3292320A1 (de) Vibrationsfalle mit verteilten resonatoren
EP3084133B1 (de) Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche
FR3052182A1 (fr) Roue aubagee de turbomachine a comportement vibratoire ameliore
EP4022173B1 (de) Hybridisierung der fasern der faserverstärkung einer gebläseschaufel
EP4256194A1 (de) Hybridisierung der fasern der faserverstärkung einer gebläseschaufel
FR3126639A1 (fr) Aube comprenant une structure en matériau composite et procédé de fabrication associé
WO2019197750A1 (fr) Turbomachine comportant un dispositif d&#39;amelioration du refroidissement de disques de rotor par un flux d&#39;air
EP3208470B1 (de) Verfahren zur verbesserung der lärmqualität einer umlaufenden maschine, die ein fluid bewegt
EP4237664B1 (de) Verkleidungselement zum umschliessen eines hindernisses in einem fluidstrom
FR3128484A1 (fr) Aube comprenant une structure en matériau composite et procédé de fabrication associé
FR3096159A1 (fr) Procédé de paramétrage d’un filtre numérique pour l’atténuation d’une fréquence associée à un mode de torsion d’une ligne de transmission de puissance d’un turbomoteur
FR3131754A1 (fr) Aube pour turbomachine d’aeronef
WO2022269174A1 (fr) Procede de fabrication d&#39;une aube composite de turbomachine, l&#39;aube comprenant un bouclier de renfort permettant un équilibrage
BE1027709A1 (fr) Etage de compresseur de turbomachine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050419

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20080605

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602005023373

Country of ref document: DE

Date of ref document: 20101021

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110609

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005023373

Country of ref document: DE

Effective date: 20110609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120410

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130420

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 20

Ref country code: IT

Payment date: 20240320

Year of fee payment: 20

Ref country code: FR

Payment date: 20240320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 20