EP3084133B1 - Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche - Google Patents

Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche Download PDF

Info

Publication number
EP3084133B1
EP3084133B1 EP14828221.3A EP14828221A EP3084133B1 EP 3084133 B1 EP3084133 B1 EP 3084133B1 EP 14828221 A EP14828221 A EP 14828221A EP 3084133 B1 EP3084133 B1 EP 3084133B1
Authority
EP
European Patent Office
Prior art keywords
curve
control point
intrados
extrados
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14828221.3A
Other languages
English (en)
French (fr)
Other versions
EP3084133A1 (de
Inventor
Benjamin LUKOWSKI
Esteban BERNARDOS-CHAMAGNE
Matthieu Jean Luc VOLLEBREGT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Safran Aircraft Engines SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines SAS filed Critical Safran Aircraft Engines SAS
Publication of EP3084133A1 publication Critical patent/EP3084133A1/de
Application granted granted Critical
Publication of EP3084133B1 publication Critical patent/EP3084133B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • F04D29/329Details of the hub
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • F01D5/142Shape, i.e. outer, aerodynamic form of the blades of successive rotor or stator blade-rows
    • F01D5/143Contour of the outer or inner working fluid flow path wall, i.e. shroud or hub contour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps

Definitions

  • the present invention relates to a turbomachine part comprising blades and a platform having a non-axisymmetric surface.
  • a blower (or “fan”) is a rotating part of large diameter at the inlet of a turbofan engine formed of a substantially conical hub (the “spinner”) on which are fixed radially extending blades, such that visible on the left of the figure 1 (reference 1).
  • the blower compresses a large mass of cold air, partially injected into the compressor, the remainder forming a cylindrical flow enveloping the engine and directed rearwardly to create thrust.
  • the optimization of the performance and performance of a blower passes in particular by increasing the mass flow through the blades.
  • the parameters of the fan blade or to modify the walls of the vein that is to say the set of channels between the blades for the flow of fluid (in other words the inter-blade sections), in particular at the level of the hub ("fan foot”, that is to say the part of the fan which is in front of the primary, the first wheel of the booster, in in other words the part of the fan blade that will directly supply the low-pressure air compressor and which is therefore the first mobile wheel thereof).
  • axisymmetric geometries an example of which is represented by the figure 2a
  • the search for an aeromechanical geometric optimum on the "feet of fan "(that is to say at the base of the blades, at the junction with the hub) leads today to obtain parts having a locally non-axisymmetric wall (that is to say that a section along a plane perpendicular to the axis of rotation is not circular) at the level of the vein, in view of the particular conditions that prevail there.
  • the non-axisymmetric vein defines a generally annular surface of a three-dimensional space (a "slice" of the turbomachine).
  • the patent application EP1126132 proposes a non-axisymmetric vein geometry (see figure 2b ) in which the wall of a blade platform (in other words the local surface of the fan hub at which the blade is fixed) has in particular a hollow extending along the blades.
  • Another non-axisymmetric vein geometry is proposed in the patent application EP2085630 .
  • this non-axisymmetric vein degraded the performance of the flow through the fan. Indeed, starting from a "healthy" situation of the flow with an axisymmetric vein, the establishment of the non-axisymmetric vein has shown after calculations of the Navier-Stockes 3D type of the important aerodynamic detachments in foot of fan at the trailing edge of the blades. Due to this negative aerodynamic effect, the fan's performance was degraded and this aerodynamic detachment was very restrictive for the fan's operability (performance, compression ratio and power supply of the booster in particular).
  • the invention relates to a turbomachine comprising a part or set of parts according to the first aspect.
  • the present part 1 (or set of parts if it is not monoblock) turbomachine has at least two consecutive blades 3E, 3I and a platform 2 to which part extend the blades 3E, 3I.
  • the term platform is here interpreted in the broad sense and refers generally to any element of a turbomachine on which blades 3E, 3I are able to be mounted (extending radially) and having a wall against which the air flows.
  • the platform 2 may be one-piece or formed of a plurality of elementary members each supporting a single blade 3E, 3I (a "foot” of the blade) so as to constitute a blade of the type of those represented by the figure 3a .
  • these are “reported” platforms, that is to say separate blades (they are independent parts).
  • integrated platforms (which will be mentioned again later) for which each blade is linked to a "half” platform, and the junction between two neighboring platforms is then in the middle of the vein. It will be understood that the present invention is not limited to any particular structure of platform 2.
  • the platform 2 delimits a radially inner wall of the part 1 (the air passes around) by defining a hub.
  • the piece 1 or set of parts is advantageously a fan.
  • the present part 1 is distinguished by a particular geometry (non-axisymmetric) of a surface S of a platform 2 of the part 1, of which we observe an example of advantageous modeling on the figures 3a and 3b .
  • the surface S extends between two blades 3E, 3I (represented on the figure 3a but not on the figure 3b to better observe the surface S.
  • the surface S is indeed part of a larger surface defining a substantially toroidal shape around the part 1, which is here as explained the fan.
  • the wall consists of a plurality duplicate identical surfaces between each pair of blades 3E, 3I.
  • the surfaces S ' also visible on the figure 3a and 3b are thus a duplication of the surface S.
  • This structure corresponds to an embodiment of the "integrated platforms" type mentioned above, in which the platform 2 is composed of a plurality of elementary members. Each of these elementary members forms the vein at the foot of the blade Fan. The vane at the foot of blade Fan thus extends on both sides of the blade 3E, 3I, hence the fact that the surface S comprises juxtaposed surfaces associated with two distinct blade roots.
  • Piece 1 is then a set of at least two vanes (blade / vein assembly at the bottom of the blade) juxtaposed. As already indicated, it will be understood that the present invention is not limited to any particular structure of platform 2.
  • the surface S is limited upstream by a first extremal plane, the "separation plane” PS and downstream by a second extremal plane, the "plane of connection” PR, which each define an axisymmetric, continuous and continuous derivative contour (the curve corresponding to the intersection between each of the planes PR and PS and the surface of the part 1 as a whole is closed and forms a loop).
  • the surface S has substantially the shape of a "parallelogram" which has two curved sides, and extends axially (along the motor axis) between the two end planes PS, PR, and tangentially between the two blades 3E, 3I of a couple of consecutive blades. One of the blades of this pair of blades is the first blade 3I, or blade of intrados.
  • Each “second blade” 3E is the “first blade” 3I of a neighboring surface such as the surface S 'in the figure 2 (Since each blade 3E, 3I has a lower surface and an upper surface).
  • Surface S is defined by building curves, also called "Construction Plans”. At least two, advantageously three or even four, and preferably five (or even more) PC-1, PC-2, PC-3, PC-4 and PC-5 construction curves are required to obtain the geometry of the present invention. In the remainder of the present description we will take the preferred example of five curves (including four "upstream” curves (a first PC-1 drive curve, a second PC-2 drive curve, a first curve). PC-3 central and a second PC-4 central curve), and a "downstream” curve PC-5), but it will be understood that only one upstream curve among the curves PC-1, PC-2, PC-3, PC-2 4 and a PC-5 downstream curve (see below) are essential for the definition of the non-axisymmetric S surface.
  • each construction curve is a curve of class C 1 representing the value of a radius of said surface S (value of this variable radius, by definition of a non-axisymmetric platform) as a function of a position between the intrados of the first blade 3I and the extrados of the second blade 3E in a plane parallel to the extremal planes PS, PR.
  • radius means the distance between a point of the surface and the axis of the piece 1, as can be seen for example on the figure 4 , which represents an example of a construction curve which will be described in more detail later.
  • An axisymmetric surface thus has a constant radius, by definition
  • the non-axisymmetric fan foot geometries (both the present geometry and those known from the state of the art) define a "digging" of the platform.
  • its construction curves have a "U” shape, with 3 parts: 2 "flanks” (intrados and extrados) and the "bottom” of the non-axisymmetric vein, which is the most hollow part of the vein. This geometry is visible on the figure 4 .
  • the inventors have discovered that the problems of separation of the known geometries were due to very strong "slopes" at the flanks, in particular near the trailing edge of the extrados blade.
  • the present geometry therefore has a reduced slope at this location.
  • the construction curves are arranged on substantially parallel planes, which form "axial" planes since they are orthogonal to the axis of the part 1.
  • the first or the first curves PC-1, PC-2, PC-3, PC-4 are "upstream” curves because disposed near the leading edge BA of the blades 3E, 3I between which it extends (even if this set includes both attack curves (located very close to the edge of the blade). BA attack) that central curves located in the intermediate portion of the blades 3I, 3E).
  • the last curve PC-5 is a curve "Downstream” or “leakage” curve, as arranged near the trailing edge of the blades 3E FF 3I between which it extends.
  • each construction curve PC-1, PC-2, PC-3, PC-4, PC-5 is in particular defined by an axial position along a rope of a blade 3E , 3I extending from the leading edge BA to the trailing edge BF of the blade 3E, 3I.
  • downstream curve PC-5 is associated with an axial position between 50% and 80% in relative length of blade rope 3E, 3I.
  • the PC-1, PC-2, PC-3, PC-4 upstream curve or curves are associated with a position located at a relative length of blade rope 3E, 3I smaller than that of the PC-5 downstream curve.
  • all the building curves are associated with axial positions arranged at regular intervals along the blade rope 3E, 3I, for example every 25% in the case of four curves, or 20% in the case of five curves. , so that you can draw the flank shapes desired by the designer of the platform (too few construction curves limit the possible shapes)
  • the first PC-1 drive curve is associated with an axial position located at 0% relative length of blade rope 3E, 3I
  • the second PC-2 drive curve is associated with an axial position located at about 20% relative length of blade rope 3E, 3I
  • the first central curve PC-3 is associated with an axial position located at about 40% relative length of blade rope 3E, 3I
  • the second central curve PC-4 is associated with an axial position located at about 60% relative length of blade rope 3E, 3I
  • the downstream curve PC-5 is associated with an axial position located at about 80% relative length of blade rope 3.
  • the PC-1, PC-2, PC-3, PC-4 upstream curves can be arranged anywhere on the front part of the vein.
  • each curve has a specific geometry designed to limit the slope at the trailing edge BF, in particular the PC-5 downstream curve.
  • Each construction curve PC-1, PC-2, PC-3, PC-4, PC-5 is typically a spline consisting of 3 parts: the 2 sides and the bottom of the vein, as previously mentioned.
  • the points ⁇ P 0 , P 1 ... P N ⁇ are called "implicit" control points of the curve and are the variables by which a construction curve can be parameterized.
  • Each construction curve PC-1, PC-2, PC-3, PC-4, PC-5 is thus defined by at least one extremal intrados control point and an extremal extrados control point, respectively on each of the first and second blades 3I, 3E between which said surface S extends.
  • each construction curve PC-1, PC-2, PC-3, PC-4, PC-5 is further advantageously defined by an intermediate control point of intrados and a point of de intermediate upper surface control, respectively close to the first and second blades 3I, 3E between which said surface S extends, and each located between the extreme control points of the PC-1, PC-2, PC-1 construction curve 3, PC-4, PC-5.
  • This definition of a curve by four points makes it possible to generate the geometries in U that we see in the figures, and in particular the figure 4 .
  • the parameter or parameters defining a control point are thus chosen from an abscissa of the point, an ordinate of the point, a tangent orientation to the curve at the point and a point (in the case of an extremal control point, one does not can take into account that half-tangent in the field of definition of the curve, left or right following the point) or two (in the case of an intermediate control point) voltage coefficients each associated with a half tangent to the curve at the point.
  • At least one PC-1, PC-2, PC-3, PC-4 upstream curve has tangents at its extremal control points inclined by at least 20 °. In the case of four upstream curves, it is the second PC-2 attack curve (which has the highest inclinations of all the building curves).
  • any tangent to an upstream curve PC1, PC-2, PC-3, PC-4 at the extreme pressure intrados control point is more inclined than the tangent to the PC-5 downstream curve at the control point extremal of intrados.
  • the inclination of intrados can be decreasing by traversing the vein (whereas it is known that it is increasing), or increasing and then decreasing.
  • At least two PC-1, PC-2, PC-3, PC-4 upstream curves are such that the inclination of the tangents to each construction curve PC-1, PC-2, PC-3 , PC-4, PC-5 at the endal control point of the intrados then decreases while traversing the PC-1, PC-2, PC-3, PC-4, PC-5 construction curves of the leading edge (BA) at the edge leakage of the blade 3I, 3E.
  • the maximum inclination of the tangent at the end-point control point is reached for a curve other than the first PC-1 drive curve and the PC-5 downstream curve. In practice this maximum is reached at the level of the second PC-2 attack curve (see below).
  • each construction curve PC-1, PC-2, PC-3, PC-4, PC-5 is defined by eight parameters among all the parameters mentioned before.
  • the last four parameters are the voltage coefficient of a half-tangent left to the curve at the upper extrados control point, the voltage coefficient of a half-tangent right to the curve at the extremal control point of extrados, the voltage coefficient of a half-tangent left to the curve at the extreme pressure point of intrados, and the coefficient of tension of a half tangent to the curve at the intermediate control point d soffit.
  • All voltage coefficients associated with a half-tangent at a control point can be equal across all PC-1, PC-2, PC-3, PC-4, PC-5 construction curves.
  • Some parameters of the extremal or intermediate control points for example the inclination intervals of the tangents, are fixed so as to respect the desired slope conditions.
  • criteria can be chosen as criteria to be optimized when modeling each curve.
  • it is possible to try to maximize mechanical properties such as resistance to mechanical stresses, frequency responses, movements of blades 3E, 3I, aerodynamic properties such as yield, pressure rise, capacity flow rate or pumping margin, etc.
  • optimization consists in varying (generally randomly) these various parameters under stress, until they determine their optimal values for a predetermined criterion.
  • a “smoothed" curve is then obtained by interpolation from the determined crossing points.
  • the number of calculations required is then directly related to the number of input parameters of the problem. Indeed, most often the number of calculation for a correct answer surface is two power the number of parameters
  • connection curve (visible for example at the figure 2b ), which can be the subject of a specific modeling, notably also via the use of splines and user control points.
  • Negative axial velocity analysis tests (characteristics of detachment phenomena) along the 3E extrados blade were made for three geometries: axisymmetric geometry ( figure 5a ), non-axisymmetric geometry according to the state of the art ( figure 5b ) and the present non-axisymmetric geometry ( figure 5c ).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (15)

  1. Turbomaschinenkomponente (1) oder -komponentenbaugruppe, die mindestens erste und zweite Schaufeln (31, 3E) und eine Plattform (2) umfasst, von der aus sich die Schaufeln (31, 3E) erstrecken,
    dadurch gekennzeichnet, dass die Plattform (2) eine nicht achsensymmetrische Oberfläche (S) aufweist, die durch eine erste und eine zweite Extremalebene (PS, PR) begrenzt ist und durch mindestens zwei Konstruktionskurven (PC-1, PC-2, PC-3, PC-4, PC-5) der Klasse C1 definiert ist, die jeweils den Wert eines Radius der Oberfläche (S) in Abhängigkeit von einer Position zwischen der Druckseite der ersten Schaufel (31) und der Saugseite der zweiten Schaufel (3E) gemäß einer Ebene darstellen, die im Wesentlichen parallel zu den Extremalebenen (PS, PR) sind, darunter:
    - mindestens eine vorgelagerte Kurve (PC-1, PC-2, PC-3, PC-4);
    - eine nachgelagerte Kurve (PC-5), die zwischen der ersten Kurve (PC-1, PC-2, PC-3, PC-4) und einer Hinterkante (BF) der ersten und zweiten Schaufeln (31, 3E) angeordnet ist und einer axialen Position zugehörig ist, die sich zwischen 50% und 80% entsprechender Länge einer Sehne der Schaufel (31, 3E) befindet, die sich von der Vorderkante (BA) zur Hinterkante der Schaufel (3E, 3E) erstreckt;
    wobei jede Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) durch mindestens einen Druckseiten-Extremalkontrollpunkt und einen Saugseiten-Extremalkontrollpunkt jeweils auf jeder von den ersten und den zweiten Schaufeln (31, 3E) definiert ist, zwischen denen die Oberfläche (S) sich erstreckt, derart dass:
    - die Tangente zur nachgelagerten Kurve (PC-5) am Saugseiten-Extremalkontrollpunkt um höchstens 5° in Bezug zu einer achsensymmetrischen Geometrie geneigt ist;
    - die Tangente zur nachgelagerten Kurve (PC- 5) am Druckseiten-Extremalkontrollpunkt um höchstens 10° in Bezug zu einer achsensymmetrischen Geometrie geneigt ist;
    - die gesamte Tangente zu einer vorgelagerten Konstruktionskurve (PC-1, PC-2, PC-3, PC-4) an einem Extremalkontrollpunkt um mindestens 5° in Bezug zu einer achsensymmetrischen Geometrie geneigt ist.
  2. Komponente oder Komponentenbaugruppe nach Anspruch 1, wobei die Tangente zur nachgelagerten Kurve (PC-5) am Saugseiten-Extremalkontrollpunkt um höchstens 2° in Bezug zu einer achsensymmetrischen Geometrie geneigt ist und die Tangente zur nachgelagerten Kurve (PC-5) am Druckseiten-Extremalkontrollpunkt um mindestens 5° in Bezug zu einer achsensymmetrischen Geometrie geneigt ist.
  3. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 1 und 2, wobei jede vorgelagerte Kurve einer axialen Position entlang der Sehne der Schaufel (31, 3E) zugehörig ist, derart dass die Konstruktionskurven (PC-1, PC-2, PC-3, PC-4, PC-5) hinsichtlich der entsprechenden Länge der Sehne der Schaufel (31, 3E) in regelmäßigen Intervallen angeordnet sind.
  4. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 1 bis 3, wobei jede Tangente zu einer vorgelagerten Kurve (PC-1, PC-2, PC-3, PC-4) am Druckseiten-Extremalkontrollpunkt mehr geneigt ist als die Tangente zur nachgelagerten Kurve (PC-5) am Druckseiten-Extremalkontrollpunkt.
  5. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 1 bis 4, wobei die Oberfläche (S) durch mindestens zwei vorgelagerte Kurven (PC-1, PC-2, PC-3, PC-4) definiert ist, derart dass die Neigung der Tangenten zu jeder Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) am Saugseiten-Extremalkontrollpunkt im Verlauf der Konstruktionskurven (PC-1, PC-2, PC-3, PC-4, PC-5) von der Vorderkante (BA) zur Hinterkante der Schaufel (31, 3E) zunimmt und dann abnimmt.
  6. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 1 bis 5, wobei die Oberfläche (S) durch mindestens zwei vorgelagerte Kurven (PC-1, PC-2, PC-3, PC-4) definiert ist, derart dass die Neigung der Tangenten zu jeder Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) am Druckseiten-Extremalkontrollpunkt im Verlauf der Konstruktionskurven (PC-1, PC-2, PC-3, PC-4, PC-5) von der Vorderkante (BA) zur Hinterkante der Schaufel (31, 3E) zunimmt und dann abnimmt.
  7. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 1 bis 6, wobei die Oberfläche (S) durch vier vorgelagerte Kurven (PC-1, PC-2, PC-3, PC-4), darunter eine erste Vorderkurve (PC-1), eine zweite Vorderkurve (PC-2), eine erste mittlere Kurve (PC-3) und eine zweite mittlere Kurve (PC-4), definiert ist.
  8. Komponente oder Komponentenbaugruppe nach Anspruch 7, wobei die Tangenten zu den Konstruktionskurven an den Extremalkontrollpunkten Neigungen in Bezug zu einer achsensymmetrischen Geometrie aufweisen:
    - zwischen 5° und 20° für die erste Vorderkurve (PC-1);
    - zwischen 10° und 30° für die zweite Vorderkurve (PC-2);
    - zwischen 10° und 25° für die erste mittlere Kurve (PC-3);
    - zwischen 5° und 20° am Druckseiten-Extremalkontrollpunkt und zwischen 5° und 15° am Saugseiten-Extremalkontrollpunkt für die zweite mittlere Kurve (PC-4);
    - zwischen 5° und 10° am Druckseiten-Extremalkontrollpunkt für die nachgelagerte Kurve (PC-5).
  9. Komponente oder Komponentenbaugruppe nach Anspruch 8, wobei die Tangenten zu den Konstruktionskurven an den Extremalkontrollpunkten Neigungen in Bezug zu einer achsensymmetrischen Geometrie aufweisen:
    - zwischen 10° und 15° für die erste Vorderkurve (PC-1);
    - zwischen 20° und 25° für die zweite Vorderkurve (PC-2);
    - zwischen 15° und 20° für die erste mittlere Kurve (PC-3);
    - zwischen 10° und 15° am Druckseiten-Extremalkontrollpunkt und zwischen 5° und 10° am Saugseiten-Extremalkontrollpunkt für die zweite mittlere Kurve (PC-4);
    - zwischen 5° und 10° am Druckseiten-Extremalkontrollpunkt für die nachgelagerte Kurve (PC-5).
  10. Komponente oder Komponentenbaugruppe nach einem der vorhergehenden Ansprüche, wobei jede Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) ferner durch einen Druckseiten-Zwischenkontrollpunkt und einen Saugseiten-Zwischenkontrollpunkt in der Nähe der ersten beziehungsweise zweiten Schaufeln (31, 3E) definiert ist, zwischen denen die Oberfläche (S) sich erstreckt, und die sich jeweils zwischen den Extremalkontrollpunkten der Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) befinden, derart dass:
    - die Saugseiten-Extremal- und Zwischenkontrollpunkte der nachgelagerten Kurve (PC-5) eine Abszissendifferenz von mindestens 15 mm aufweisen;
    - alle anderen Saugseiten- oder Druckseiten-Extremal- und Zwischenkontrollpunkte einer Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) eine Abszissendifferenz von höchstens 20 mm aufweisen.
  11. Komponente oder Komponentenbaugruppe nach Anspruch 10, wobei:
    - alle Saugseiten- oder Druckseiten-Extremal-und Zwischenkontrollpunkte einer vorgelagerten Kurve (PC-1, PC-2, PC-3, PC-4) eine Abszissendifferenz aufweisen, die zwischen 5 und 15 mm enthalten ist;
    - die Saugseiten-Extremal- und Zwischenkontrollpunkte der nachgelagerten Kurve (PC-5) eine Abszissendifferenz aufweisen, die zwischen 15 und 30 mm enthalten ist;
    - die Druckseiten-Extremal- und Zwischenkontrollpunkte der nachgelagerten Kurve (PC-5) eine Abszissendifferenz aufweisen, die zwischen 5 und 15 mm enthalten ist.
  12. Komponente oder Komponentenbaugruppe nach einem der Ansprüche 10 und 11, wobei jede Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) vollständig durch acht Parameter bestimmt ist, darunter:
    - die Neigung der Tangente zur Kurve am Saugseiten-Extremalkontrollpunkt;
    - die Neigung der Tangente zur Kurve am Druckseiten-Extremalkontrollpunkt;
    - die Abszissendifferenz zwischen den Saugseiten-Extremal- und Zwischenkontrollpunkten der Kurve;
    - die Abszissendifferenz zwischen den Druckseiten-Extremal- und Zwischenkontrollpunkten der Kurve;
    - ein Spannungskoeffizient einer linken Halbtangente zu der Kurve am Saugseiten-Zwischenkontrollpunkt;
    - ein Spannungskoeffizient einer rechten Halbtangente zu der Kurve am Sauseiten-Zwischenkontrollpunkt oder am Saugseiten-Extremalkontrollpunkt;
    - ein Spannungskoeffizient einer linken Halbtangente zu der Kurve am Druckseiten-Zwischenkontrollpunkt oder am Druckseiten-Extremalkontrollpunkt;
    - ein Spannungskoeffizient einer rechten Halbtangente zu der Kurve am Druckseiten-Zwischenkontrollpunkt.
  13. Komponente oder Komponentenbaugruppe nach einem der vorhergehenden Ansprüche, für die jede Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) über die Durchführung der folgenden Schritte mittels Datenverarbeitungsmitteln modelliert wurde:
    (a) Parametrisierung der Konstruktionskurve (PC-1, PC-2, PC-3, PC-4, PC-5) als Kurve der Klasse C1, die den Wert des Radius der Oberfläche (S) in Abhängigkeit von einer Position zwischen der Druckseite der ersten Schaufel (3I) und der Saugseite der zweiten Schaufel (3E) darstellt, wobei die Kurve durch Folgendes definiert ist:
    - zwei Extremalkontrollpunkte jeweils auf jeder der zwei Schaufeln (31, 3E), zwischen denen sich die Oberfläche (S) erstreckt;
    - mindestens einen Spline;
    wobei die Parametrisierung gemäß einem oder mehreren Parametern durchgeführt wird, die mindestens einen der Extremalkontrollpunkte definieren;
    (b) Bestimmung von optimierten Werten der Parameter der Kurve.
  14. Komponente oder Komponentenbaugruppe nach einem der vorhergehenden Ansprüche, die ein Gebläse für eine Zweistrom-Turbomaschine ist.
  15. Turbomaschine, die eine Komponente (1) oder Komponentenbaugruppe nach einem der vorhergehenden Ansprüche umfasst.
EP14828221.3A 2013-12-19 2014-12-16 Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche Active EP3084133B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1363061A FR3015552B1 (fr) 2013-12-19 2013-12-19 Piece de turbomachine a surface non-axisymetrique
PCT/FR2014/053373 WO2015092263A1 (fr) 2013-12-19 2014-12-16 Pièce de turbomachine à surface non-axisymétrique

Publications (2)

Publication Number Publication Date
EP3084133A1 EP3084133A1 (de) 2016-10-26
EP3084133B1 true EP3084133B1 (de) 2019-04-17

Family

ID=50729555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14828221.3A Active EP3084133B1 (de) 2013-12-19 2014-12-16 Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche

Country Status (9)

Country Link
US (1) US10344771B2 (de)
EP (1) EP3084133B1 (de)
JP (1) JP6576927B2 (de)
CN (1) CN106414903B (de)
BR (1) BR112016013823B1 (de)
CA (1) CA2933776C (de)
FR (1) FR3015552B1 (de)
RU (1) RU2672990C1 (de)
WO (1) WO2015092263A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6708995B2 (ja) * 2017-04-17 2020-06-10 株式会社Ihi 軸流流体機械の翼の設計方法及び翼
CN111435399B (zh) 2018-12-25 2023-05-23 中国航发商用航空发动机有限责任公司 风扇组件的造型方法
US11480073B2 (en) * 2020-11-24 2022-10-25 Rolls-Royce Plc Gas turbine engine nacelle and method of designing same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE631188A (de) 1963-04-17
JPS57167203U (de) * 1981-04-17 1982-10-21
US6561761B1 (en) 2000-02-18 2003-05-13 General Electric Company Fluted compressor flowpath
US6478545B2 (en) 2001-03-07 2002-11-12 General Electric Company Fluted blisk
KR101095126B1 (ko) * 2003-04-21 2011-12-16 지멘스 프로덕트 라이프사이클 매니지먼트 소프트웨어 인크. 곡률 연속성을 가지는 다면 매칭 시스템 및 방법
GB0518628D0 (en) * 2005-09-13 2005-10-19 Rolls Royce Plc Axial compressor blading
JP4616781B2 (ja) 2006-03-16 2011-01-19 三菱重工業株式会社 タービン翼列エンドウォール
FR2926856B1 (fr) * 2008-01-30 2013-03-29 Snecma Compresseur de turboreacteur
FR2940172B1 (fr) * 2008-12-18 2011-01-21 Snecma Procede de fabrication d'une aube de turbomachine
GB0903404D0 (en) * 2009-03-02 2009-04-08 Rolls Royce Plc Surface profile evaluation
FR2950942B1 (fr) * 2009-10-02 2013-08-02 Snecma Rotor d'un compresseur de turbomachine a paroi d'extremite interne optimisee
FR2971540B1 (fr) * 2011-02-10 2013-03-08 Snecma Ensemble pale-plateforme pour ecoulement supersonique
US8807930B2 (en) * 2011-11-01 2014-08-19 United Technologies Corporation Non axis-symmetric stator vane endwall contour
FR3011888B1 (fr) * 2013-10-11 2018-04-20 Snecma Piece de turbomachine a surface non-axisymetrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10344771B2 (en) 2019-07-09
CN106414903B (zh) 2018-01-02
CA2933776A1 (fr) 2015-06-25
RU2672990C1 (ru) 2018-11-21
FR3015552A1 (fr) 2015-06-26
JP2017505399A (ja) 2017-02-16
BR112016013823B1 (pt) 2022-03-15
CN106414903A (zh) 2017-02-15
CA2933776C (fr) 2022-04-05
EP3084133A1 (de) 2016-10-26
JP6576927B2 (ja) 2019-09-18
WO2015092263A1 (fr) 2015-06-25
US20170023003A1 (en) 2017-01-26
BR112016013823A2 (de) 2017-08-08
RU2016129369A (ru) 2018-01-24
FR3015552B1 (fr) 2018-12-07

Similar Documents

Publication Publication Date Title
EP3084134B1 (de) Strömungsmaschinenbauteil oder -bauteilgruppe und zugehörige strömungsmaschine
CA2926003C (fr) Piece de turbomachine a surface non-axisymetrique
WO2014170612A1 (fr) Procédé de modélisation d'une pièce, en particulier un aubage
CA2647051C (fr) Procede de conception d'une turbine multi-etages de turbomachine
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
CA2917225C (fr) Procede de modelisation d'une surface non-axisymetrique
CA2873942C (fr) Aube de soufflante pour turboreacteur d'avion a profil cambre en sections de pied
FR3009104A1 (fr) Procede de modelisation d'une pale d'une helice non-carenee
EP3084133B1 (de) Turbomaschinenkomponente mit nicht achsensymmetrischer oberfläche
FR3027133A1 (fr) Procede de modelisation d'une pale d'une helice non-carenee
EP3253970B1 (de) Ventilatorschaufel
WO2016055744A1 (fr) Procédé de modélisation d'une pale d'une hélice non-carénée
FR3034820B1 (fr) Piece de turbomachine a surface non-axisymetrique
FR3028299B1 (fr) Ventilateur pour automobile a pales optimisees pour les forts debits
FR3049013A1 (fr) Aube de redresseur
WO2016050304A1 (fr) Ventilateur pour automobile á pales optimisées pour l'acoustique et l'aérodynamique
FR3045709A1 (fr) Aube de soufflante
FR3010747A1 (fr) Ventilateur pour automobile a pales optimisees pour l'acoustique et l'aerodynamique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180309

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN AIRCRAFT ENGINES

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014045038

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1121768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190718

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1121768

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014045038

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

26N No opposition filed

Effective date: 20200120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141216

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190417

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231121

Year of fee payment: 10

Ref country code: FR

Payment date: 20231122

Year of fee payment: 10

Ref country code: DE

Payment date: 20231121

Year of fee payment: 10