EP1586099A1 - Method for producing an electronic component - Google Patents

Method for producing an electronic component

Info

Publication number
EP1586099A1
EP1586099A1 EP03815532A EP03815532A EP1586099A1 EP 1586099 A1 EP1586099 A1 EP 1586099A1 EP 03815532 A EP03815532 A EP 03815532A EP 03815532 A EP03815532 A EP 03815532A EP 1586099 A1 EP1586099 A1 EP 1586099A1
Authority
EP
European Patent Office
Prior art keywords
base body
resistance
etching
component
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03815532A
Other languages
German (de)
French (fr)
Other versions
EP1586099B1 (en
Inventor
Christian Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1586099A1 publication Critical patent/EP1586099A1/en
Application granted granted Critical
Publication of EP1586099B1 publication Critical patent/EP1586099B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/2416Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by chemical etching

Definitions

  • the invention relates to a method for producing an electrical component which has a base body and two opposite outer electrodes.
  • Electro-ceramic components for example NTC thermistors, are required in large quantities with a very narrow tolerance of the ohmic resistance. Methods for producing such components are known in which a large number of such components are produced with a wide variety of resistance values. The components lying within a predetermined resistance tolerance are determined by electrical measurement and then separated from the entirety of the components.
  • This method has the disadvantage that a relatively large reject of the components has to be accepted.
  • NTC thermistors In order to reduce this scrap, it is also known to manufacture NTC thermistors by mechanically removing parts of the ceramic base body and possibly also the outer electrodes to match the components to a desired resistance.
  • this method has the disadvantage that it is not possible or only possible with very great effort in the case of very small designs, for example in the 0402 design with the dimensions 1 mm 0.5 mm ⁇ 0.5 mm.
  • a method for producing a component which comprises the following steps:
  • the method described has the advantage that without mechanical processing methods, for example without grinding, rasping or planing, a simple method which can be carried out with little effort in terms of apparatus for producing the component with a predetermined desired value for the electrical resistance is provided.
  • the method mentioned also has the advantage that it is particularly suitable for the production of components with a very small volume, where mechanical processing of the base body would require a very high outlay in terms of time and equipment.
  • the current path available for the current flow between the opposite outer electrodes is narrowed, as a result of which the electrical resistance of the base body increases.
  • the base bodies produced in method step a) have an actual resistance which is below the target resistance. Only in this case can the actual resistance be matched to the target resistance by etching away parts of the base body.
  • a base body is used that contains a ceramic material. This has the advantage that the electro-ceramic components, surface-mountable NTC thermistors or similar components required in a large number of applications can be produced simply and cheaply.
  • a ceramic material can also be used, the resistance of which has a negative temperature coefficient. This enables NTC thermistors to be manufactured.
  • NTC thermistors for example, nickel-manganese spinels of the formula Ni 1 - 1 -] __ z [Mn 11 ⁇ M 11 ⁇ O4, where: O ⁇ z ⁇ 0.4.
  • the method can be carried out particularly advantageously by immersing the base body in a liquid that etches the material of the base body.
  • This procedure has the advantage that the material of the base body is removed substantially uniformly, so that massive damage at one or a few special points can be avoided.
  • the procedure described has the further advantage that several base bodies can be treated simultaneously in a single process step.
  • the etching can also be carried out by dry etching.
  • the actual value of the resistance can be measured before step b).
  • This procedure has the advantage that a control mechanism for etching away can be provided. Conclusions about the etching process can be drawn from the deviation between the target value and the actual value of the resistor.
  • a duration for the etching process for example in an etching liquid, by determining the difference between the target value of the resistor and the actual value of the resistor.
  • experiments are used to measure relationships between the etching time and the resulting increase in resistance for a component type.
  • a previously determined etching duration can be determined on the basis of the measurement of the actual resistance and the resulting difference to the target resistance.
  • the resistance of the component After etching the base body for the previously determined etching time, the resistance of the component will be close to the target value with sufficient accuracy. Measuring the resistance before initiating step b) of the method can be advantageous in order to determine whether the resistance can be matched at all with the aid of the etching. This would not be the case, for example, if tolerances so great occur during the manufacture of the base body that the resistance of the component is greater than the desired value even during manufacture. In this case, by etching the base body, no further adjustment to the target value could take place, since by etching the base body the resistance can only be increased, but not reduced.
  • the method can also be provided to measure the resistance of the component or the base body during the etching, as a result of which the etching process can be checked directly. The etching process is then stopped as soon as the resistance of the base body has reached the desired value.
  • FIG. 1 shows an electrical component in a schematic cross section before the etching and after the etching.
  • FIG. 2 shows the relationship between the etching time and the increase in resistance that can be achieved as a result for an NTC termistor
  • FIG. 1 shows an NTC thermistor with a base body 1, which consists of the ceramic material NiMn spinel or another similarly suitable material. External contacts 21, 22 are attached to opposite side surfaces of the base body 1. By etching away parts of the base body 1, the current path between the external contacts 21, 22 can be narrowed, as is shown by the dashed lines. This increases the resistance of the component. It is thus possible to increase the resistance of the component by etching the base body 1 in such a way that a target resistance is achieved with sufficient accuracy.
  • the component from FIG. 1 corresponds to design 0603, which means that the component has the following dimensions: 1.6 mm ⁇ 0.8 mm ⁇ 0.8 mm. The smallest dimension d in the example of FIG.
  • the base body 1 is the height of the base body 1 and is 0.8 mm.
  • the smallest dimensions of components are the length, the depth, the width or the diameter of a component. It is special ders advantageous to use components for the method described here, the smallest dimension is less than 3 mm.
  • the measurement of the resistance can be dispensed with during the etching, in that the relationship between the resistance of the component and the etching duration is determined by means of a calibration measurement. Then it is sufficient to determine the actual resistance of the component and to determine the difference between the actual resistance and the target resistance. The etching time can then be calculated from this resistance difference using the calibration curve.
  • the external contacts (21, 22) consist of a material that is not attacked by the etching solution or is attacked significantly less than the ceramic material, so that the solderability remains.
  • the external contacts (21, 22) consist of a material that is not attacked by the etching solution or is attacked significantly less than the ceramic material, so that the solderability remains.
  • FIG. 2 shows such a calibration curve for a component of type 0603 with a resistance R25, measured at 25 ° C., of 6000 ⁇ .
  • R25 measured at 25 ° C.
  • FIG. 2 it is the resistance R25, measured in ⁇ , plotted over the etching time t, measured in minutes.
  • a 10% sulfuric acid was used as the etching solution.
  • Figure 2 shows measuring points at the measuring times 0, 1, 5 and 10 minutes. It can be clearly seen that the resistance R25 increases with increasing etching time.
  • the present invention is not limited to NTC thermistors, but can be used for any electrical component, the resistance of which depends on the geometric dimensions of its base body. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermistors And Varistors (AREA)

Abstract

The invention relates to a method for producing an electronic component consisting in a) forming a base body (1) comprising two external opposite electrodes and in b) aligning the resistance of said base body (1), which is measured between the external electrodes, to a predetermined specified value by chemical etching of the parts of the base body (1). The inventive method makes it possible to avoid machining of the base body, thereby making it possible to process small-sized components.

Description

Beschreibungdescription
VERFAHREN ZUR HERSTELLUNG EINES ELEKTRONISCHEN BAUELEMENTSMETHOD FOR PRODUCING AN ELECTRONIC COMPONENT
Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Bauelements, das einen Grundkörper sowie zwei gegenüberliegende Außenelektroden aufweist.The invention relates to a method for producing an electrical component which has a base body and two opposite outer electrodes.
Elektrokeramische Bauelemente, beispielsweise NTC- Thermistoren werden in großen Stückzahlen mit einer sehr engen Toleranz des ohmschen Widerstandes benötigt. Es sind Verfahren zur Herstellung solcher Bauelemente bekannt, bei denen eine Vielzahl solcher Bauelemente mit unterschiedlichsten Widerstandswerten hergestellt werden. Die innerhalb einer vor- gegebenen Widerstandstoleranz liegenden Bauelemente werden durch elektrische Messung ermittelt und anschließend aus der Ganzheit der Bauelemente abgesondert.Electro-ceramic components, for example NTC thermistors, are required in large quantities with a very narrow tolerance of the ohmic resistance. Methods for producing such components are known in which a large number of such components are produced with a wide variety of resistance values. The components lying within a predetermined resistance tolerance are determined by electrical measurement and then separated from the entirety of the components.
Dieses Verfahren hat den Nachteil, daß ein relativ großer Ausschuß der Bauelemente in Kauf genommen werden muß.This method has the disadvantage that a relatively large reject of the components has to be accepted.
Um diesen Ausschuß zu vermindern, ist es desweiteren bekannt, NTC-Thermistoren herzustellen, indem durch mechanisches Abtragen von Teilen des keramischen Grundkörpers sowie ggf. noch der Außenelektroden die Bauelemente auf einen Sollwiderstand hin abgeglichen werden. Dieses Verfahren hat jedoch den Nachteil, daß es bei sehr kleinen Bauformen, beispielsweise bei der Bauform 0402 mit den Abmessungen 1 mm 0,5 mm x 0,5 mm nicht oder nur mit sehr großem Aufwand möglich ist.In order to reduce this scrap, it is also known to manufacture NTC thermistors by mechanically removing parts of the ceramic base body and possibly also the outer electrodes to match the components to a desired resistance. However, this method has the disadvantage that it is not possible or only possible with very great effort in the case of very small designs, for example in the 0402 design with the dimensions 1 mm 0.5 mm × 0.5 mm.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von Bauelementen anzugeben, bei dem das Einhalten einer vorgegebenen Toleranz für den elektrischen Widerstand auch für kleinvolumige Bauelemente möglich ist. Diese Aufgabe wird gelöst durch ein Verfahren nach Patentanspruch 1. Vorteilhafte Ausgestaltungen des Verfahrens sind den weiteren Patentansprüchen zu entnehmen.It is an object of the present invention to provide a method for producing components in which compliance with a predetermined tolerance for the electrical resistance is also possible for small-volume components. This object is achieved by a method according to claim 1. Advantageous refinements of the method can be found in the further patent claims.
Es wird ein Verfahren zur Herstellung eines Bauelements angegeben, das die folgenden Schritte umfaßt:A method for producing a component is specified, which comprises the following steps:
a) Bilden eines Grundkörpers mit zwei gegenüberliegenden Außenelektroden b) Angleichen des zwischen den Außenelektroden zu messenden Widerstandes des Grundkorpers an einen vorgegebenen Sollwert durch chemisches Wegätzen von Teilen des Grundkörpers .a) Forming a base body with two opposite outer electrodes b) Adjusting the resistance of the base body to be measured between the outer electrodes to a predetermined target value by chemical etching away of parts of the base body.
Das beschriebene Verfahren hat den Vorteil, daß unter Verzicht auf mechanische Bearbeitungsverfahren, beispielsweise unter Verzicht auf Schleifen, Raspeln oder Hobeln eine einfache und apparativ mit geringem Aufwand durchzuführende Methode zur Herstellung des Bauelements mit einem vorgegebenen Sollwert für den elektrischen Widerstand bereitgestellt wird. Das genannte Verfahren hat zudem den Vorteil, daß es insbesondere geeignet ist zur Herstellung von Bauelementen mit sehr kleinem Volumen, wo eine mechanische Bearbeitung des Grundkorpers einen sehr hohen zeitlichen und apparativen Auf- wand erfordern würde.The method described has the advantage that without mechanical processing methods, for example without grinding, rasping or planing, a simple method which can be carried out with little effort in terms of apparatus for producing the component with a predetermined desired value for the electrical resistance is provided. The method mentioned also has the advantage that it is particularly suitable for the production of components with a very small volume, where mechanical processing of the base body would require a very high outlay in terms of time and equipment.
Durch das chemische Wegätzen von Teilen des Grundkörpers wird der für den Stromfluß zwischen den gegenüberliegenden Außenelektroden zur Verfügung stehende Strompfad eingeengt, wo- durch der elektrische Widerstand des Grundkörpers ansteigt.By chemically etching away parts of the base body, the current path available for the current flow between the opposite outer electrodes is narrowed, as a result of which the electrical resistance of the base body increases.
Entsprechend diesem Verfahren ist es vorteilhaft, wenn die im Verfahrensschritt a) hergestellten Grundkörper einen Ist- Widerstand aufweisen, der unterhalb des Sollwiderstandes liegt. Nur in diesem Fall gelingt es, durch Wegätzen von Teilen des Grundkörpers eine Anpassung des Ist-Widerstandes an den Soll-Widerstand zu erreichen. In einer Ausführungsform des Verfahrens wird ein Grundkörper verwendet, der ein Keramikmaterial enthält. Dies hat den Vorteil, daß die in einer Vielzahl von Applikationen benötigten elektrokeramischen Bauelemente, oberflächenmontierbare NTC- Thermistoren oder ähnliche Bauelemente, einfach und billig hergestellt werden können.According to this method, it is advantageous if the base bodies produced in method step a) have an actual resistance which is below the target resistance. Only in this case can the actual resistance be matched to the target resistance by etching away parts of the base body. In one embodiment of the method, a base body is used that contains a ceramic material. This has the advantage that the electro-ceramic components, surface-mountable NTC thermistors or similar components required in a large number of applications can be produced simply and cheaply.
In einer anderen Ausführungsform des Verfahrens kann auch ein Keramikmaterial verwendet werden, dessen Widerstand einen negativen Temperaturkoeffizienten aufweist. Dadurch gelingt die Herstellung von NTC-Thermistoren.In another embodiment of the method, a ceramic material can also be used, the resistance of which has a negative temperature coefficient. This enables NTC thermistors to be manufactured.
Beispielsweise können für NTC-Thermistoren als Material Nik- kel-Mangan-Spinelle der Formel Ni-1--1-]__ z [Mn11^ M 11^ O4, wobei gilt: O≤ z ≤0,4.For NTC thermistors, for example, nickel-manganese spinels of the formula Ni 1 - 1 -] __ z [Mn 11 ^ M 11 ^ O4, where: O≤ z ≤0.4.
Es ist darüber hinaus vorteilhaft, das Verfahren mit Grund- kδrpern durchzuführen, deren kleinste Abmessung unter 3 mm liegt. Diese Ausführungsform des Verfahrens hat den Vorteil, daß es die Bearbeitung bzw. die Anpassung des Widerstandswertes für sehr kleine Bauelemente ermöglicht, wo eine mechanische Bearbeitung nur unter einem großen Aufwand möglich wäre.It is also advantageous to carry out the method with basic bodies, the smallest dimension of which is less than 3 mm. This embodiment of the method has the advantage that it enables the processing or adaptation of the resistance value for very small components, where mechanical processing would only be possible with great effort.
Besonders vorteilhaft kann das Verfahren ausgeführt werden, indem der Grundkörper in eine das Material des Grundkörpers ätzende Flüssigkeit eingetaucht wird. Diese Vorgehensweise hat den Vorteil, daß der Abtrag des Materials des Grundkörpers im wesentlichen gleichmäßig erfolgt, so daß eine massive Schädigung an einer oder wenigen speziellen Stellen vermieden werden kann. Darüber hinaus hat die beschriebene Vorgehensweise den weiteren Vorteil, daß mehrere Grundkörper gleichzeitig in einem einzigen Verfahrensschritt behandelt werden können .The method can be carried out particularly advantageously by immersing the base body in a liquid that etches the material of the base body. This procedure has the advantage that the material of the base body is removed substantially uniformly, so that massive damage at one or a few special points can be avoided. In addition, the procedure described has the further advantage that several base bodies can be treated simultaneously in a single process step.
Als ätzende Flüssigkeit kann beispielsweise Schwefelsäure verwendet werden. In einer anderen Ausführungsform der Erfindung kann das Ätzen auch durch Trockenätzen erfolgen.For example, sulfuric acid can be used as the caustic liquid. In another embodiment of the invention, the etching can also be carried out by dry etching.
In einer weiteren Ausgestaltung des Verfahrens kann vor dem Schritt b) der Istwert des Widerstandes gemessen werden. Diese Vorgehensweise hat den Vorteil, daß ein Steuerungsmechanismus für das Wegätzen zur Verfügung gestellt werden kann. Aus der Abweichung zwischen dem Sollwert und dem Istwert des Widerstandes können nämlich Rückschlüsse auf den Ätzvorgang gezogen werden.In a further embodiment of the method, the actual value of the resistance can be measured before step b). This procedure has the advantage that a control mechanism for etching away can be provided. Conclusions about the etching process can be drawn from the deviation between the target value and the actual value of the resistor.
Beispielsweise ist es möglich, durch Ermittlung der Differenz zwischen dem Sollwert des Widerstandes und dem Istwert des Widerstandes eine Dauer für den Ätzvorgang, beispielsweise in einer ätzenden Flüssigkeit festzulegen. Hierzu werden durch Versuche Zusammenhänge zwischen der Ätzdauer und dem dadurch erzielten Widerstandsanstieg für einen Bauelementtyp gemessen. Anhand der so erhaltenen Daten kann aufgrund der Messung des Ist-Widerstandes und der sich daraus ergebenden Differenz zum Soll-Widerstand eine vorher festgesetzte Ätzdauer festgelegt werden.For example, it is possible to determine a duration for the etching process, for example in an etching liquid, by determining the difference between the target value of the resistor and the actual value of the resistor. For this purpose, experiments are used to measure relationships between the etching time and the resulting increase in resistance for a component type. On the basis of the data obtained in this way, a previously determined etching duration can be determined on the basis of the measurement of the actual resistance and the resulting difference to the target resistance.
Nach Ätzen des Grundkörpers für die vorher festgesetzte Ätz- dauer wird dann der Widerstand des Bauelementes mit ausreichender Genauigkeit in der Nähe des Soll-Wertes liegen. Das Messen des Widerstandes vor Einleiten des Schrittes b) des Verfahrens kann vorteilhaft sein, um festzustellen, ob mit Hilfe des Ätzens überhaupt eine Angleichung des Wider- Standes erfolgen kann. Dies wäre beispielsweise nicht gegeben, wenn bei der Herstellung des Grundkörpers so große Toleranzen auftreten, daß schon bei der Herstellung der Widerstand des Bauelementes größer ist als der Sollwert. Durch Ätzen des Grundkörpers könnte in diesem Fall keine weitere An- passung an den Sollwert erfolgen, da durch Ätzen des Grundkörpers der Widerstand nur erhöht, nicht jedoch erniedrigt werden kann. In einer anderen Ausführungsform des Verfahrens kann es auch vorgesehen sein, während des Ätzens den Widerstand des Bauelementes bzw. des Grundkörpers zu messen, wodurch eine di- rekte Kontrolle des Ätzvorgangs erfolgen kann. Der Ätzvorgang wird dann abgebrochen, sobald der Widerstand des Grundkörpers den Soll-Wert erreicht hat.After etching the base body for the previously determined etching time, the resistance of the component will be close to the target value with sufficient accuracy. Measuring the resistance before initiating step b) of the method can be advantageous in order to determine whether the resistance can be matched at all with the aid of the etching. This would not be the case, for example, if tolerances so great occur during the manufacture of the base body that the resistance of the component is greater than the desired value even during manufacture. In this case, by etching the base body, no further adjustment to the target value could take place, since by etching the base body the resistance can only be increased, but not reduced. In another embodiment of the method it can also be provided to measure the resistance of the component or the base body during the etching, as a result of which the etching process can be checked directly. The etching process is then stopped as soon as the resistance of the base body has reached the desired value.
Im folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazugehörigen Figuren näher erläutert.The invention is explained in more detail below with reference to exemplary embodiments and the associated figures.
Figur 1 zeigt ein elektrisches Bauelement in einem schematischen Querschnitt vor dem Ätzen und nach dem Ätzen.FIG. 1 shows an electrical component in a schematic cross section before the etching and after the etching.
Figur 2 zeigt für einen NTC-Termistor den Zusammenhang zwischen der Ätzdauer und dem dadurch erzielbaren WiderStandsanstiegFIG. 2 shows the relationship between the etching time and the increase in resistance that can be achieved as a result for an NTC termistor
Figur 1 zeigt einen NTC-Thermistor mit einem Grundkörper 1, der aus dem Keramikmaterial NiMn-Spinell oder auch einem anderen ähnlich geeigneten Material besteht. An gegenüberliegenden Seitenflächen des Grundkörpers 1 sind Außenkontakte 21, 22 angebracht. Durch Wegätzen von Teilen des Grundkörpers 1 kann der Strompfad zwischen den Außenkontakten 21, 22 verschmälert werden, so wie es durch die gestrichelten Linien dargestellt ist. Dadurch steigt der Widerstand des Bauelementes an. Es ist somit möglich, durch Ätzen des Grundkörpers 1 den Widerstand des Bauelements so zu erhöhen, daß mit ausrei- chender Genauigkeit ein Soll-Widerstand erreicht wird. Das Bauelement aus Figur 1 entspricht der Bauform 0603, was bedeutet, daß das Bauelement folgende Abmessungen aufweist: 1,6 mm x 0,8 mm x 0,8 mm. Dabei ist die kleinste Abmessung d in dem Beispiel von Figur 1 die Höhe des Grundkörpers 1 und be- trägt 0,8 mm. Als kleinste Abmessungen von Bauelementen kommen jedoch auch die Länge, die Tiefe, die Breite oder auch der Durchmesser eines Bauelements in Betracht. Es ist beson- ders vorteilhaft, für das hier beschriebene Verfahren Bauelemente zu verwenden, deren kleinste Abmessung kleiner als 3 mm is .FIG. 1 shows an NTC thermistor with a base body 1, which consists of the ceramic material NiMn spinel or another similarly suitable material. External contacts 21, 22 are attached to opposite side surfaces of the base body 1. By etching away parts of the base body 1, the current path between the external contacts 21, 22 can be narrowed, as is shown by the dashed lines. This increases the resistance of the component. It is thus possible to increase the resistance of the component by etching the base body 1 in such a way that a target resistance is achieved with sufficient accuracy. The component from FIG. 1 corresponds to design 0603, which means that the component has the following dimensions: 1.6 mm × 0.8 mm × 0.8 mm. The smallest dimension d in the example of FIG. 1 is the height of the base body 1 and is 0.8 mm. However, the smallest dimensions of components are the length, the depth, the width or the diameter of a component. It is special ders advantageous to use components for the method described here, the smallest dimension is less than 3 mm.
Es kann während des Ätzens auf die Messung des Widerstandes verzichtet werden, indem durch eine Eichmessung der Zusammenhang zwischen dem Widerstand des Bauelements und der Ätzdauer festgelegt wird. Dann genügt die Feststellung des Ist-Widerstandes des Bauelementes und die Feststellung der Differenz zwischen dem Ist-Widerstand und dem Soll-Widerstand. Aus dieser Widerstandsdifferenz kann dann die Ätzdauer anhand der Eichkurve berechnet werden.The measurement of the resistance can be dispensed with during the etching, in that the relationship between the resistance of the component and the etching duration is determined by means of a calibration measurement. Then it is sufficient to determine the actual resistance of the component and to determine the difference between the actual resistance and the target resistance. The etching time can then be calculated from this resistance difference using the calibration curve.
Es ist vorteilhaft, wenn die Außenkontakte (21, 22) aus einem Material bestehen, das nicht durch die Ätzlösung angegriffen bzw. deutlich weniger als das Keramikmaterial angegriffen wird, so daß die Lötbarkeit gegeben bleibt. Es kommt beispielsweise in Betracht, eine 3 -Schicht-Metallisierung mit einer Ag/Ni/Sn-Schichtenfolge oder mit einer Sil- ber/Palladium-Metallisierung zu verwenden.It is advantageous if the external contacts (21, 22) consist of a material that is not attacked by the etching solution or is attacked significantly less than the ceramic material, so that the solderability remains. For example, it is possible to use a 3-layer metallization with an Ag / Ni / Sn layer sequence or with a silver / palladium metallization.
Figur 2 zeigt eine solche Eichkurve für ein Bauelement der Bauform 0603 mit einem Widerstand R25, gemessen bei 25° C, von 6000 Ω. Es ist in Figur 2 der Widerstand R25, gemessen in Ω, aufgetragen über der Ätzdauer t, gemessen in Minuten. Als Ätzlösung wurde eine 10 %ige Schwefelsäure verwendet. Figur 2 zeigt Meßpunkte bei den Meßzeiten 0, 1, 5 und 10 Minuten. Es ist deutlich zu erkennen, daß der Widerstand R25 mit zunehmender Ätzdauer ansteigt.FIG. 2 shows such a calibration curve for a component of type 0603 with a resistance R25, measured at 25 ° C., of 6000 Ω. In FIG. 2 it is the resistance R25, measured in Ω, plotted over the etching time t, measured in minutes. A 10% sulfuric acid was used as the etching solution. Figure 2 shows measuring points at the measuring times 0, 1, 5 and 10 minutes. It can be clearly seen that the resistance R25 increases with increasing etching time.
Die vorliegende Erfindung beschränkt sich nicht auf NTC- Thermistoren, sondern kann für jedes beliebige elektrische Bauelement angewendet werden, dessen Widerstand von den geometrischen Abmessungen seines Grundkörpers abhängig ist. BezugszeichenlisteThe present invention is not limited to NTC thermistors, but can be used for any electrical component, the resistance of which depends on the geometric dimensions of its base body. LIST OF REFERENCE NUMBERS
1 Grundkörper1 basic body
21, 22 Außenkontakte R25 Widerstand gemessen bei 25° C t Zeit d kleinste Abmessung 21, 22 external contacts R25 resistance measured at 25 ° C t time d smallest dimension

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Bauelements mit folgenden Schritten: a) Bilden eines Grundkörpers (1) mit zwei gegenüberliegenden Außenelektroden, b) Angleichen des zwischen den Außenelektroden zu messenden Widerstandes des Grundkörpers (1) an einen vorgegebenen Sollwert durch chemisches Ätzen von Teilen des Grundkör- pers (1) .1. A method for producing a component comprising the following steps: a) forming a base body (1) with two opposite outer electrodes, b) adjusting the resistance of the base body (1) to be measured between the outer electrodes to a predetermined target value by chemical etching of parts of the base body - pers (1).
2. Verfahren nach Anspruch 1 , wobei ein Grundkörper (1) verwendet wird, der ein Keramikmaterial enthält .2. The method according to claim 1, wherein a base body (1) is used which contains a ceramic material.
3. Verfahren nach einem der Ansprüche 1 oder 2, wobei ein Grundkörper (1) verwendet wird, dessen ohmscher Widerstand einen negativen Temperaturkoeffizienten aufweist.3. The method according to any one of claims 1 or 2, wherein a base body (1) is used, the ohmic resistance has a negative temperature coefficient.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei ein Grundkörper (1) verwendet wird, dessen kleinste Abmessung (d) kleiner als 3 mm ist.4. The method according to any one of claims 1 to 3, wherein a base body (1) is used, the smallest dimension (d) is less than 3 mm.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das Ätzen durch Eintauchen des Grundkörpers (1) in eine das Material des Grundkörpers (1) ätzende Flüssigkeit erfolgt .5. The method according to any one of claims 1 to 4, wherein the etching is carried out by immersing the base body (1) in a liquid etching the material of the base body (1).
6. Verfahren nach Anspruch 5 , wobei als ätzende Flüssigkeit Schwefelsäure verwendet wird.6. The method according to claim 5, wherein sulfuric acid is used as the caustic liquid.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei vor dem Schritt b) der Istwert des Widerstandes des Grundkörpers (1) gemessen wird.7. The method according to any one of claims 1 to 6, wherein the actual value of the resistance of the base body (1) is measured before step b).
8. Verfahren nach Anspruch 7 , wobei während des Ätzens der Widerstand (R25) des Grundkörpers (1) gemessen wird.8. The method according to claim 7, wherein the resistance (R25) of the base body (1) is measured during the etching.
9. Verfahren nach einem der Ansprüche 1 bis 8, - wobei vor dem Schritt b) die Differenz zwischen dem Sollwert und dem Istwert des Widerstandes (R25) ermittelt wird und daraus eine Zeitdauer (t) für den Ätzvorgang bestimmt wird und - wobei in Schritt b) mit der so bestimmten Zeitdauer (t) ge- ätzt wird. 9. The method according to any one of claims 1 to 8, - wherein before step b), the difference between the setpoint and the actual value of the resistor (R25) is determined and from this a time period (t) is determined for the etching process and - wherein in step b) is etched with the time period (t) determined in this way.
EP03815532.1A 2003-01-24 2003-12-23 Method for producing an electronic component Expired - Lifetime EP1586099B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10302800 2003-01-24
DE10302800A DE10302800A1 (en) 2003-01-24 2003-01-24 Method of manufacturing a component
PCT/DE2003/004289 WO2004068508A1 (en) 2003-01-24 2003-12-23 Method for producing an electronic component

Publications (2)

Publication Number Publication Date
EP1586099A1 true EP1586099A1 (en) 2005-10-19
EP1586099B1 EP1586099B1 (en) 2016-02-24

Family

ID=32694955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03815532.1A Expired - Lifetime EP1586099B1 (en) 2003-01-24 2003-12-23 Method for producing an electronic component

Country Status (5)

Country Link
US (1) US7887713B2 (en)
EP (1) EP1586099B1 (en)
CN (1) CN1742348A (en)
DE (1) DE10302800A1 (en)
WO (1) WO2004068508A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020081630A2 (en) 2018-10-17 2020-04-23 Petoi, Llc Robotic animal puzzle
US12021038B2 (en) 2021-06-11 2024-06-25 Macom Technology Solutions Holdings, Inc. Solderable and wire bondable part marking

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337552B1 (en) 1999-01-20 2002-01-08 Sony Corporation Robot apparatus
SE354143B (en) 1972-02-15 1973-02-26 Ericsson Telefon Ab L M
US3839110A (en) * 1973-02-20 1974-10-01 Bell Telephone Labor Inc Chemical etchant for palladium
DE2908361C2 (en) 1979-03-03 1985-05-15 Dynamit Nobel Ag, 5210 Troisdorf Method for increasing the resistance of electrical ignition elements
DD241326A1 (en) 1985-09-25 1986-12-03 Hermsdorf Keramik Veb METHOD FOR COMPENSATING THE RESISTANT RESISTANCE OF DYED FILM FUNCTIONAL LAYERS
DD257895A1 (en) 1987-02-27 1988-06-29 Elektronische Bauelemente Veb METHOD FOR DEFINED ELECTROLYTIC ADJUSTMENT OF RESISTANCE ELEMENTS BASED ON CUNI ALLOYS (FILMS)
DE3708832A1 (en) * 1987-03-18 1988-09-29 Siemens Ag Wet-chemical patterning of hafnium boride layers
DE3813627C2 (en) * 1988-04-22 1997-03-27 Bosch Gmbh Robert Method for comparing the functions of an electronic circuit
JP3039224B2 (en) 1993-09-29 2000-05-08 松下電器産業株式会社 Varistor manufacturing method
JP3226014B2 (en) 1996-02-27 2001-11-05 三菱マテリアル株式会社 Manufacturing method of chip type thermistor
DE19640127A1 (en) 1996-09-28 1998-04-02 Dynamit Nobel Ag Method for matching sheet resistances with excimer laser radiation
GB9623945D0 (en) * 1996-11-15 1997-01-08 Geco Prakla Uk Ltd Detection of ground roll cone
JPH10199707A (en) 1997-01-13 1998-07-31 Chichibu Onoda Cement Corp Manufacture of chip type thermistor
CN1279552C (en) 1997-06-16 2006-10-11 松下电器产业株式会社 Resistance wiring board and its mfg. method
US6172592B1 (en) * 1997-10-24 2001-01-09 Murata Manufacturing Co., Ltd. Thermistor with comb-shaped electrodes
DE19800196C2 (en) * 1998-01-07 1999-10-28 Guenter Nimtz Process for the production of surface resistance layers
JP3624395B2 (en) * 1999-02-15 2005-03-02 株式会社村田製作所 Manufacturing method of chip type thermistor
TW487742B (en) * 1999-05-10 2002-05-21 Matsushita Electric Ind Co Ltd Electrode for PTC thermistor, manufacture thereof, and PTC thermistor
CN1093159C (en) 1999-05-24 2002-10-23 中国科学院新疆物理研究所 Room temperature solid-phase reaction of thermosensitive powder with negative temperature coefficient
KR100674692B1 (en) * 1999-06-03 2007-01-26 마쯔시다덴기산교 가부시키가이샤 Thin film thermistor element and method for the fabrication of thin film thermistor element
JP4557386B2 (en) * 2000-07-10 2010-10-06 キヤノン株式会社 Manufacturing method for recording head substrate
US6475400B2 (en) 2001-02-26 2002-11-05 Trw Inc. Method for controlling the sheet resistance of thin film resistors
US7218506B2 (en) * 2004-03-31 2007-05-15 Tdk Corporation Electrolytic capacitor and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004068508A1 *

Also Published As

Publication number Publication date
US7887713B2 (en) 2011-02-15
WO2004068508A1 (en) 2004-08-12
US20060131274A1 (en) 2006-06-22
DE10302800A1 (en) 2004-08-12
CN1742348A (en) 2006-03-01
EP1586099B1 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
DE112004000186B4 (en) Multilayer ceramic electronic components and methods of making the same
DE19806296B4 (en) NTC thermistor
DE19904727B4 (en) Resistance elements and methods of making same
CH631569A5 (en) METHOD FOR ADJUSTING THE RESISTANCE OF A THERMIST.
EP1774603B1 (en) Multi-layered component and method for the production thereof
DE3145585A1 (en) METHOD FOR PRODUCING ELECTRICALLY CONDUCTIVE AREAS
EP1277215B1 (en) Electric component, method for the production thereof and use of the same
DE3930623A1 (en) METHOD FOR PRODUCING A MONOLITICAL CERAMIC CONDENSER
DE19523984C2 (en) Piezoelectric element and method of manufacturing the same
EP1774543B1 (en) Electric component and method for the production of an electric component
DE10005800B4 (en) Method for producing thermistor chips
EP1586099B1 (en) Method for producing an electronic component
EP1497838B1 (en) Method for the production of a ptc component
DE102004014157A1 (en) Laminate type thermistor with positive temperature coefficient
DE3924777A1 (en) Ceramic heating plug using embedded ceramic resistor - has improved resistance to thermal cycling as result of material selection and dimensions
CH689501A5 (en) Cermet thick film resistor element and method for its production.
WO2006056314A1 (en) Coupling conductors for a yig filter or yig oscillator and method for producing said conductors
DE2554464C3 (en) Electrical resistance
DE4130390A1 (en) RESISTANCE ELEMENT
DE69427208T2 (en) Planar inductance with operational calibration in an RF system
DE102020133783A1 (en) Method and device for determining the quality of a sintering paste layer
WO2020144012A1 (en) Thermistor and method for producing said thermistor
DE10057084A1 (en) Surface-mounted-type ceramic chip-thermistor, includes pair of inner electrodes lying opposite one another with thermistor ceramic material between them
DE2327750C3 (en) Method for producing a sheet resistor with the lowest possible inductance
DE2504550C3 (en) Piezoelectric resonator and method for its manufacture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080625

R17C First examination report despatched (corrected)

Effective date: 20081008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HESSE, CHRISTIAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315416

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315416

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315416

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315416

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315416

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221219

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50315416

Country of ref document: DE