EP1497838B1 - Method for the production of a ptc component - Google Patents
Method for the production of a ptc component Download PDFInfo
- Publication number
- EP1497838B1 EP1497838B1 EP03747078A EP03747078A EP1497838B1 EP 1497838 B1 EP1497838 B1 EP 1497838B1 EP 03747078 A EP03747078 A EP 03747078A EP 03747078 A EP03747078 A EP 03747078A EP 1497838 B1 EP1497838 B1 EP 1497838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxygen content
- sintering
- ceramic
- temperature
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000919 ceramic Substances 0.000 claims description 46
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- 229910052760 oxygen Inorganic materials 0.000 claims description 31
- 238000005245 sintering Methods 0.000 claims description 31
- 239000011230 binding agent Substances 0.000 claims description 11
- 229910052721 tungsten Inorganic materials 0.000 description 16
- 239000010937 tungsten Substances 0.000 description 16
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 15
- 239000002003 electrode paste Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 3
- 150000003658 tungsten compounds Chemical class 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 101100273866 Aedes albopictus CECC1 gene Proteins 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/18—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/021—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient formed as one or more layers or coatings
Definitions
- the invention relates to a method for producing a PTC component.
- PTC elements For ceramic PTC thermistors, i. Components with positive temperature coefficient of resistance, so-called PTC elements, are not commonly used temperature-stable electrodes made of precious metal suitable. These can not establish an ohmic contact between the ceramic and the metallic electrodes. Therefore, PTC elements with noble metal (inner) electrodes have an inadmissibly high resistance. However, the base metal suitable as the electrode material usually does not survive the sintering process required for the construction of multilayer devices.
- a PTC device which is a multilayer component of stacked ceramic layers and which is sintered or post-annealed in an atmosphere with high oxygen content. Debinding and sintering of the layer stack take place in an atmosphere which has a lowered oxygen content compared to air.
- the PTC device contains internal electrodes with tungsten. Although tungsten survives the sintering process.
- a PTC component is to be understood as a component having a base body containing superimposed ceramic layers which are separated from one another by electrode layers, in which the ceramic layers contain a ceramic material which has a positive temperature coefficient at least in a characteristic part of the R / T characteristic.
- the device has laterally mounted collecting electrodes, wherein the electrode layers are contacted alternately with these collecting electrodes.
- the oxygen content during sintering where i. a. higher temperatures than used in debinding, further lowered.
- the method according to the invention allows the production of PTC components having a volume V and an ohmic resistance R measured between the collecting electrodes at a temperature between 0 ° C and 40 ° C, where V ⁇ R ⁇ 600.
- the ceramic starting material is finely ground and homogeneously mixed with a binder material.
- the film is then produced by film drawing or tape casting in a desired thickness.
- FIG. 1 shows such a green sheet 1 in perspective view.
- an electrode paste 2 is applied to the area provided for the electrode.
- a number of particular thick film methods preferably imprints, for example by screen printing are suitable.
- At least in the region of an edge of the green sheet 1, such as in FIG. 1 represented, or only in the region of a corner of the green sheet remains a non-covered by electrode paste and here referred to as passive region 3 surface area. It is also possible not to apply the electrode as a flat layer, but structured, possibly as a perforated pattern.
- the electrode paste 2 consists of metallic, metallic tungsten or a tungsten compound comprising particles for producing the desired conductivity, optionally sinterable ceramic particles to adapt the fading properties of the electrode paste to the ceramic and a burn-out organic binder to a moldability of the ceramic mass or a To ensure cohesion of the green body. It can be used pure tungsten particles, tungsten alloy particles, tungsten compound or mixed particles of tungsten and other metals.
- the electrode layers and thus the electrode paste may also contain other tungsten compounds such as tungsten carbide, tungsten nitride or tungsten oxide (WO). The only point is that the tungsten is present in an oxidation state which is less than +6, so that it can still fulfill its function in the barrier degradation.
- the printed green sheets 9 are stacked in a desired number so as to form a film stack that (green) ceramic layers 1 and electrode layers 2 are arranged alternately one above the other.
- the electrode layers are also connected in alternation on different sides of the component with collecting electrodes in order to connect the individual electrodes in parallel.
- a uniform electrode geometry is selected for this, wherein the first and second green sheets 9 differ in that they are rotated in the film stack against each other by 180 °.
- the binder still formelastische film stack is brought by pressing and optionally cutting into the desired outer shape. Thereafter, the film stack is unbound and sintered, either separately or in one step.
- FIG. 2 shows a finished multilayer component 8 in schematic cross-section.
- ceramic layers 4 and electrode layers 5 are arranged one above the other alternately.
- collecting electrodes 6, 6 ' are generated, which are each in electrical contact with each second electrode layer 5.
- a metallization usually made of silver on the ceramic, for example by electroless deposition.
- This can then be galvanically reinforced, for example by applying a layer sequence Ag / Ni / Sn. This improves the solderability on boards.
- other possibilities of metallization or generation of the collecting electrodes 6, 6 ' for example sputtering, are also suitable.
- That in the FIG. 2 illustrated component 8 has on both main surfaces of ceramic layers as final layers.
- ceramic layers for this purpose, for example, be installed as a top layer of an unprinted green sheet 1 before sintering in the film stack, so that the stack does not end with an electrode layer 2.
- several unprinted green sheets 1 can be installed without an electrode layer and pressed together with the remaining green film stack and sintered.
- FIG. 3 shows a printed with an electrode pattern 2 green sheet, which allows dividing into several components, each with a smaller footprint.
- the passive areas 3 not printed with electrode paste are arranged in such a way that that can be adjusted by alternately stacking first and second green sheets of suitable for contacting alternating displacement of the electrodes in the stack. This can be achieved if the first and second green sheets are each mutually rotated by, for example, 180 °, or if first and second green sheets generally have a staggered electrode pattern.
- the cutting lines 7, along which the green sheet or the layer stack produced therefrom can be singulated into individual components, are identified by dashed lines. However, it is also possible electrode patterns in which the cutting guides can be placed to singulate so that no electrode layer must be severed. Each second electrode layer is then contactable from the stack edge. If appropriate, the stacks after singulation and sintering before the application of the collecting electrodes 6, 6 'are still ground to expose the electrode layers to be contacted.
- FIG. 4 shows a layer stack thus produced in schematic cross section. It can be seen that, when the layer stack is singulated along the cutting lines 7, components are produced which individually have the desired offset of the electrodes 4.
- the division of such a multilayer film stack comprising several component layouts into individual film stacks of the desired component base surface preferably takes place after the film stack has been pressed, for example by cutting or punching. Subsequently, the film stacks are sintered. However, it is also possible first to sinter the multilayer sheet of multilayer film stacks and then to singulate the individual components by sawing the finished sintered ceramic. Finally, collecting electrodes 6 are applied again.
- a PTC device consists of a barium titanate ceramic of the general composition (Ba, Ca, Sr, Pb) TiO 3 doped with donors and / or acceptors, for example with manganese and yttrium.
- the component may comprise, for example, 5 to 20 or even more ceramic layers together with the associated electrode layers, but at least two internal electrode layers.
- the ceramic layers usually each have a thickness of 30 to 200 microns. However, they can also have larger or smaller layer thicknesses.
- the outer dimension of a PTC device may vary, but is typically in the range of a few millimeters for SMD processable devices.
- a suitable size is, for example, the type 2220 known from capacitors. Geometries and component tolerances result from the standard CECC 32101-801 or from other standards. However, the PTC device may be even smaller.
- FIGS. 5 A to D show a temperature / oxygen profile for the debindering or sintering of a layer stack with variable oxygen content.
- FIGS. 5 A to D each show an identical temperature profile, which is combined with different oxygen profiles.
- the temperature profile is indicated by the solid curve G.
- Range I between times 0 and 560 minutes is the range of debindering. The temperature rises evenly from 20 ° C to 500 ° C. In this time range, the oxygen content is 2% by volume.
- Area I is followed by area II, which starts at 560 minutes and ends at 1000 minutes. In this area II, the sintering of the layer stack takes place.
- the temperature is based on the final temperature 500 ° C of debindering further increased up to a temperature of 1200 ° C and then lowered again.
- the oxygen content can be maintained at either 2% by volume, ie at the value of debindering (curve A in FIG. 5 A) or the oxygen content is at the end of the debinder at a lower value such as 1 vol .-% (curve B in Figure 5 A) or 0.5 vol .-% (curve C in FIG. 5 A) lowered.
- FIG. 5C Another possibility is to lower the oxygen content in stages, in opposite directions to the rising temperature (compare curve D in FIG. 5B) , in FIG. 5C a further variant is shown, according to which, according to curve E, the oxygen content during sintering is lowered continuously to a value of 0.5% by volume.
- Curve F shown to lower the oxygen content with increasing temperature and to let rise gradually after exceeding the maximum temperature of 1200 ° C. This has the advantage that at lower temperatures than the maximum sintering temperature again increased oxygen is available for the ceramic, which improves the properties of the ceramic. As a result, the grain boundary active layers of the PTC ceramic can be better assembled.
- an atmosphere is used for the processes debindering or sintering, which is a mixture of nitrogen or noble gas or other inert gas with air or oxygen.
- nitrogen and air may be mixed so as to result in an oxygen content of the atmosphere of 2% by volume.
- the layer stacks are debinded, wherein the sintering takes place in the same atmosphere.
- barium titanate ceramics can be used, the sintering taking place at the usual temperatures.
- Table 1 shows component resistances of PTC components manufactured according to the method of the invention in the form 1210 with 23 electrodes as a function of the oxygen content during sintering and compared with the sintering in air.
- Table 1 Oxygen content in Vol .-% Component resistance in ⁇ 21 (air) 40 7 25 1 9 0.5 2.5
- Table 2 shows PTC component resistances as a function of the volume of the PTC device.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Thermistors And Varistors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Herstellung eines PTC-Bauelementes.The invention relates to a method for producing a PTC component.
Für keramische Kaltleiter, d.h. Bauelemente mit positivem Temperaturkoeffizient des Widerstands, sogenannte PTC-Elemente, sind keine üblicherweise verwendete temperaturstabile Elektroden aus Edelmetall geeignet. Diese können keinen ohmschen Kontakt zwischen der Keramik und den metallischen Elektroden aufbauen. Daher weisen PTC-Elemente mit (Innen-) Elektroden aus Edelmetall einen unzulässig hohen Widerstand auf. Die als Elektrodenmaterial geeigneten unedlen Metalie überstehen jedoch in der Regel nicht den Sinterprozeß, der für den Aufbau von Vielschichtbauelementen erforderlich ist.For ceramic PTC thermistors, i. Components with positive temperature coefficient of resistance, so-called PTC elements, are not commonly used temperature-stable electrodes made of precious metal suitable. These can not establish an ohmic contact between the ceramic and the metallic electrodes. Therefore, PTC elements with noble metal (inner) electrodes have an inadmissibly high resistance. However, the base metal suitable as the electrode material usually does not survive the sintering process required for the construction of multilayer devices.
Aus der Druckschrift
Aus der Druckschrift
Durch die Sinterung beziehungsweise anschließende Temperung bei hohem Sauerstoff-Partialdruck besteht jedoch die Gefahr der Oxidation der Innenelektroden, woraus PTC-Bauelemente mit hohem ohmschen Widerstand resultieren, was unerwünscht ist.By sintering or subsequent annealing at high oxygen partial pressure, however, there is a risk of oxidation of the internal electrodes, resulting in PTC components with high resistance, which is undesirable.
Eine Sinterung an sauerstoffhaltiger Atmosphäre ist andererseits notwendig, um die korngrenzenaktiven Schichten der PTC-Keramik (auf Basis von dotiertem BaTiO3) beim Abkühlen aufzubauen. Es resultiert die Eigenschaft, daß bei einer bestimmten Temperatur, abhängig von der genauen Zusammensetzung der Keramik, der Widerstand der Keramik sprunghaft ansteigt.On the other hand, oxygen-containing sintering is necessary in order to build up the grain boundary-active layers of the PTC ceramic (based on doped BaTiO 3 ) on cooling. The result is the property that at a certain temperature, depending on the exact composition of the ceramic, the resistance of the ceramic increases dramatically.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines PTC-Bauelements anzugeben, das es erlaubt, PTC-Bauelemente mit niedrigem Volumen und gleichzeitig geringem ohmschen Widerstand herzustellen.It is an object of the present invention to provide a method for producing a PTC device, which makes it possible to produce PTC components with low volume and at the same time low ohmic resistance.
Diese Aufgabe wird durch ein Verfahren nach Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind den abhängigen Patentansprüchen 2 bis 10 zu entnehmen.This object is achieved by a method according to
Es wird ein Verfahren zur Herstellung eines PTC-Bauelements angegeben mit den Schritten:
- a) Herstellen eines Schichtstapels aus keramischen Grünfolien mit dazwischenliegenden Elektrodenschichten
- b) Entbindern und Sintern des Schichtstapels in einer Atmosphäre, die gegenüber Luft einen abgesenkten Sauerstoffgehalt aufweist.
- a) producing a layer stack of ceramic green sheets with intermediate electrode layers
- b) Debinding and sintering of the layer stack in an atmosphere having a lowered oxygen content compared to air.
Unter einem PTC-Bauelement ist ein Bauelement zu verstehen mit einem Grundkörper, enthaltend übereinanderliegende Keramikschichten, die durch Elektrodenschichten voneinander getrennt sind, bei dem die Keramikschichten ein Keramikmaterial enthalten, das zumindest in einem Kennlinienteil der R/T-Kennlinie einen positiven Temperaturkoeffizienten aufweist.A PTC component is to be understood as a component having a base body containing superimposed ceramic layers which are separated from one another by electrode layers, in which the ceramic layers contain a ceramic material which has a positive temperature coefficient at least in a characteristic part of the R / T characteristic.
Ferner weist das Bauelement seitlich angebrachte Sammelelektroden auf, wobei die Elektrodenschichten alternierend mit diesen Sammelelektroden kontaktiert sind.Furthermore, the device has laterally mounted collecting electrodes, wherein the electrode layers are contacted alternately with these collecting electrodes.
Dadurch, daß sowohl das Entbindern als auch das Sintern in einer Atmosphäre mit niedrigem Sauerstoffgehalt durchgeführt wird, kann eine Oxidation des in den Innenelektroden enthaltenen Metalls gehemmt werden, was die Herstellung von PTC-Bauelementen mit verbesserten Eigenschaften erlaubt.By performing both debindering and sintering in a low oxygen atmosphere, oxidation of the metal contained in the internal electrodes can be inhibited, allowing the fabrication of PTC devices having improved properties.
Erfindungsgemäß wird der Sauerstoffgehalt während des Sinterns, wo i. a. höhere Temperaturen als beim Entbindern verwendet werden, weiter erniedrigt .According to the invention, the oxygen content during sintering, where i. a. higher temperatures than used in debinding, further lowered.
Insbesondere erlaubt das erfindungsgemäße Verfahren die Herstellung von PTC-Bauelementen, die ein Volumen V und einen ohmschen Widerstand R aufweisen, der zwischen den Sammelelektroden bei einer Temperatur zwischen 0° C und 40° C gemessen wird, wobei gilt: V · R < 600.In particular, the method according to the invention allows the production of PTC components having a volume V and an ohmic resistance R measured between the collecting electrodes at a temperature between 0 ° C and 40 ° C, where V · R <600.
Es gelingt also die Herstellung von PTC-Bauelementen, die bei kleinem Volumen gleichzeitig einen geringen ohmschen Widerstand aufweisen, was im Zuge der fortschreitenden Miniaturisierung von PTC-spezifischen Anwendungen wünschenswert ist.Thus, it is possible to produce PTC components which at the same time have a low ohmic resistance with a small volume, which is desirable in the course of the progressive miniaturization of PTC-specific applications.
Es hat sich gezeigt, daß aus Wolfram bestehende oder wolframhaltige Elektroden den für das keramische Bauelement erforderlichen Sinterprozeß überstehen und dabei einen guten ohmschen Kontakt zur Keramik ausbilden. Beim Sintern werden höchstens geringe Diffusionsprozesse des Wolframs in die Keramik beobachtet, die die keramischen Bauelementeigenschaften beeinträchtigen könnten. Gleichzeitig weist Wolfram eine mit Edelmetallen vergleichbare gute elektrische Leitfähigkeit auf, die für reines Wolfram etwa drei mal so hoch ist wie die von Silber, so daß Elektrodenschichten mit ausreichender elektrischer Tragfähigkeit bereits mit dünneren Wolframschichten erzielt werden können. Außerdem stellt Wolfram ein kostengünstiges Elektrodenmaterial dar, das z.B. wesentlich kostengünstiger ist als Edelmetalle wie Palladium oder Platin.It has been found that consisting of tungsten or tungsten-containing electrodes survive the required for the ceramic component sintering process and thereby form a good ohmic contact with the ceramic. During sintering, at most small diffusion processes of the tungsten into the ceramic are observed, which could impair the ceramic component properties. At the same time, tungsten has a good electrical conductivity comparable to that of noble metals, which for pure tungsten is about three times as high as that of silver, so that electrode layers with sufficient electrical carrying capacity can already be achieved with thinner tungsten layers. In addition, tungsten stops inexpensive electrode material, for example, is much cheaper than precious metals such as palladium or platinum.
Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und der dazugehörigen Figuren näher erläutert. Die Figuren dienen nur der Veranschaulichung der Erfindung und sind nur schematisch und nicht maßstabsgetreu.
Figur 1- zeigt eine mit einer Elektrodenschicht bedruckte keramische Grünfolie in perspektivischer Darstellung
Figur 2- zeigt ein Vielschichtbauelement im schematischen Querschnitt
Figur 3- zeigt eine in mehrere Bauelemente aufteilbare keramische Grünfolie mit aktiven und passiven Bereichen in der Draufsicht
Figur 4- zeigt einen Schichtenstapel keramischer Grünfolie im Querschnitt.
- Figuren 5 A bis D
- zeigen je ein Temperatur-/Sauerstoffprofil für die Entbinderung beziehungsweise Sinterung eines Schichtstapels.
- FIG. 1
- shows a printed with an electrode layer ceramic green sheet in a perspective view
- FIG. 2
- shows a multilayer component in a schematic cross section
- FIG. 3
- shows a divisible into several components ceramic green sheet with active and passive areas in plan view
- FIG. 4
- shows a layer stack of ceramic green sheet in cross section.
- FIGS. 5 A to D
- each show a temperature / oxygen profile for the debinding or sintering of a layer stack.
Zur Herstellung keramischer Grünfolien wird das keramische Ausgangsmaterial fein vermahlen und homogen mit einem Bindermaterial vermischt. Die Folie wird anschließend durch Folienziehen oder Foliengießen in einer gewünschten Dicke hergestellt.To produce ceramic green sheets, the ceramic starting material is finely ground and homogeneously mixed with a binder material. The film is then produced by film drawing or tape casting in a desired thickness.
Die Elektrodenpaste 2 besteht aus metallischen, metallisches Wolfram oder eine Wolframverbindung umfassenden Partikeln zur Herstellung der gewünschten Leitfähigkeit, ggf. sinterfähigen keramischen Partikeln zur Anpassung der Schwundeigenschaften der Elektrodenpaste an die der Keramik und einem ausbrennbaren organischen Binder, um eine Formbarkeit der keramischen Masse bzw. einen Zusammenhalt der Grünkörper zu gewährleisten. Dabei können Partikel aus reinem Wolfram, Partikel aus Wolframlegierung, Wolframverbindung oder gemischte Partikel aus Wolfram und anderen Metallen verwendet werden. Die Elektrodenschichten und damit die Elektrodenpaste können auch weitere Wolframverbindungen wie beispielsweise Wolframcarbid, Wolframnitrid oder auch Wolframoxid (WO) enthalten. Entscheidend ist lediglich, daß das Wolfram in einer Oxidationsstufe vorliegt, die kleiner als + 6 ist, so daß es seine Funktion beim Sperrschichtabbau noch erfüllen kann.The
Bei keramischen Vielschichtbauelementen, die einer nur geringen mechanischen Belastung ausgesetzt sind, ist es auch möglich, in der Elektrodenpaste auf die keramischen Anteile ganz zu verzichten. Der Wolframanteil kann in weiten Bereichen variieren, wobei ggf. die Sinterbedingungen auf die Elektrodenpastenzusammensetzung anzupassen sind. Der Abbau der Sperrschicht bei Kaltleitermaterial wird regelmäßig mit Wolframanteilen von 3 und mehr Gewichtsprozent (bezogen auf die metallischen Partikel) erreicht.In the case of ceramic multilayer components which are exposed to only slight mechanical stress, it is also possible to completely dispense with the ceramic components in the electrode paste. The proportion of tungsten can vary within wide ranges, whereby the sintering conditions may have to be adapted to the electrode paste composition. The degradation of the barrier layer with PTC resistor material is regularly with Wolframanteilen of 3 and more weight percent (based on the metallic particles) achieved.
Anschließend werden die bedruckten Grünfolien 9 in einer gewünschten Anzahl so zu einem Folienstapel übereinandergeschichtet, daß (grüne) Keramikschichten 1 und Elektrodenschichten 2 alternierend übereinander angeordnet sind.Subsequently, the printed green sheets 9 are stacked in a desired number so as to form a film stack that (green)
Bei der späteren Kontaktierung werden die Elektrodenschichten außerdem alternierend auf unterschiedlichen Seiten des Bauelements mit Sammelelektroden verbunden, um die Einzelelektroden parallel zu verschalten. Dazu ist es vorteilhaft, erste und zweite Grünfolien 9 mit unterschiedlicher Orientierung der aufgedruckten Elektrodenschichten 2 so zu stapeln, daß deren passive Bereiche 3 alternierend nach unterschiedlichen Seiten weisen. Vorzugsweise wird dazu eine einheitliche Elektrodengeometrie gewählt, wobei erste und zweite Grünfolie 9 sich dadurch unterscheiden, daß sie im Folienstapel gegeneinander um 180° gedreht sind. Möglich ist es jedoch auch, für das Bauelement einen Grundriß mit höherer Symmetrie auszuwählen, so daß zur Herstellung einer alternierenden Kontaktierung ein Verdrehen um andere Winkel als 180° möglich ist, beispielsweise um 90° bei Vorsehen eines quadratischen Grundrisses. Möglich ist es jedoch auch, bei jeder zweiten Grünfolie 9 das Elektrodenmuster um einen bestimmten Betrag gegen das der ersten Grünfolien so zu versetzen, daß jeder passive Bereich 3 in der jeweils benachbarten Grünfolie über einem mit Elektrodenpaste bedruckten Bereich angeordnet ist.During the subsequent contacting, the electrode layers are also connected in alternation on different sides of the component with collecting electrodes in order to connect the individual electrodes in parallel. For this purpose, it is advantageous to stack first and second green sheets 9 with different orientations of the printed
Anschließend wird der auf Grund des Binders noch formelastische Folienstapel durch Pressen und gegebenenfalls Zuschneiden in die gewünschte äußere Form gebracht. Danach wird der Folienstapel entbindet und gesintert, und zwar entweder getrennt oder in einem Schritt.Subsequently, due to the binder still formelastische film stack is brought by pressing and optionally cutting into the desired outer shape. Thereafter, the film stack is unbound and sintered, either separately or in one step.
Nach der Sinterung entsteht aus den einzelnen Grünfolienschichten ein monolithischer keramischer Bauelementkörper 8, der einen festen Verbund der einzelnen Keramikschichten 4 aufweist. Dieser feste Verbund ist auch an den Verbindungsstellen Keramik/Elektrode/Keramik gegeben.
Das in der
Ein PTC-Bauelement besteht aus einer Bariumtitanat-Keramik der allgemeinen Zusammensetzung (Ba,Ca,Sr,Pb)TiO3, die mit Donatoren und/oder Akzeptoren, beispielsweise mit Mangan und Yttrium dotiert ist.A PTC device consists of a barium titanate ceramic of the general composition (Ba, Ca, Sr, Pb) TiO 3 doped with donors and / or acceptors, for example with manganese and yttrium.
Das Bauelement kann beispielsweise 5 bis 20 oder auch mehr Keramikschichten samt der dazugehörigen Elektrodenschichten, zumindest aber zwei innenliegende Elektrodenschichten umfassen. Die Keramikschichten weisen üblicherweise jeweils eine Dicke von 30 bis 200 µm auf. Sie können jedoch auch größere oder kleinere Schichtdicken besitzen.The component may comprise, for example, 5 to 20 or even more ceramic layers together with the associated electrode layers, but at least two internal electrode layers. The ceramic layers usually each have a thickness of 30 to 200 microns. However, they can also have larger or smaller layer thicknesses.
Die äußere Dimension eines Kaltleiterbauelements kann variieren, liegt jedoch für mit SMD verarbeitbare Bauelemente üblicherweise im Bereich weniger Millimeter. Eine geeignete Größe ist beispielsweise die von Kondensatoren bekannte Bauform 2220. Geometrien und Bauelementetoleranzen ergeben sich dabei aus der Norm CECC 32101-801 oder auch aus anderen Normen. Das Kaltleiterbauelement kann jedoch auch noch kleiner sein.The outer dimension of a PTC device may vary, but is typically in the range of a few millimeters for SMD processable devices. A suitable size is, for example, the type 2220 known from capacitors. Geometries and component tolerances result from the standard CECC 32101-801 or from other standards. However, the PTC device may be even smaller.
Die
Die
An den Bereich I schließt sich der Bereich II an, der bei der Zeit 560 Minuten beginnt und bei der Zeit 1000 Minuten endet. In diesem Bereich II erfolgt die Sinterung des Schichtstapels. Dabei wird die Temperatur ausgehend von der Endtemperatur 500° C der Entbinderung weiter erhöht bis zu einer Temperatur 1200° C und danach wieder abgesenkt.Area I is followed by area II, which starts at 560 minutes and ends at 1000 minutes. In this area II, the sintering of the layer stack takes place. The temperature is based on the final temperature 500 ° C of debindering further increased up to a temperature of 1200 ° C and then lowered again.
Während des Sinterns (Bereich II) kann der Sauerstoffgehalt entweder bei 2 Vol.-%, also bei dem Wert der Entbinderung gehalten werden (Kurve A in
Eine weitere Möglichkeit besteht darin, den Sauerstoffgehalt stufenweise, gegenläufig zur ansteigenden Temperatur abzusenken (vergleiche Kurve D in
Desweiteren kann es von Vorteil sein wie in
Desweiteren ist es vorteilhaft, wenn die Prozesse Entbinderung und Sinterung unmittelbar aufeinanderfolgen, ohne daß zwischendurch die Temperatur auf Raumtemperatur beziehungsweise unterhalb der maximalen Entbinderungstemperatur 500° C abgesenkt wird. Daraus ergibt sich eine Verkürzung der Prozeßzeit sowie eine geringere Oxidation von Wolfram.Furthermore, it is advantageous if the debindering and sintering processes follow one another directly, without the temperature in between being lowered to room temperature or below the maximum debindering temperature 500 ° C. This results in a shortening of the process time and a lower oxidation of tungsten.
Vorzugsweise wird für die Prozesse Entbinderung beziehungsweise Sinterung eine Atmosphäre verwendet, die ein Gemisch aus Stickstoff oder Edelgas oder einem anderen inerten Gas mit Luft oder Sauerstoff darstellt. Beispielsweise kann Stickstoff und Luft so gemischt werden, daß ein Sauerstoffgehalt der Atmosphäre von 2 Vol.-% resultiert. Bis zu einer Temperatur von 500° C werden die Schichtstapel entbindert, wobei die Sinterung in der gleichen Atmosphäre erfolgt. Es können beispielsweise Bariumtitanat-Keramiken verwendet werden, wobei die Sinterung bei den dafür üblichen Temperaturen erfolgt.Preferably, an atmosphere is used for the processes debindering or sintering, which is a mixture of nitrogen or noble gas or other inert gas with air or oxygen. For example, nitrogen and air may be mixed so as to result in an oxygen content of the atmosphere of 2% by volume. Up to a temperature of 500 ° C, the layer stacks are debinded, wherein the sintering takes place in the same atmosphere. For example, barium titanate ceramics can be used, the sintering taking place at the usual temperatures.
In der nachfolgenden Tabelle 1 sind Bauteilwiderstände von nach dem erfindungsgemäßen Verfahren gefertigten PTC-Bauelementen in der Bauform 1210 mit 23 Elektroden in Abhängigkeit vom Sauerstoffgehalt während des Sinterns dargestellt und mit der Sinterung an Luft verglichen.
Es ist deutlich zu erkennen, wie durch Reduktion des Sauerstoffgehalts der Bauteilwiderstand verringert werden kann. Dies ist eine Folge der verringerten Oxidation des in den Innenelektroden enthaltenen metallischen Materials.It can be clearly seen how the component resistance can be reduced by reducing the oxygen content. This is a consequence of the reduced oxidation of the metallic material contained in the internal electrodes.
Durch die Anwendung des erfindungsgemäßen Verfahrens gelingt die Herstellung von PTC-Bauelementen mit kleinem Volumen und gleichzeitig geringem elektrischen Widerstand.The use of the method according to the invention makes it possible to produce PTC components with a small volume and at the same time low electrical resistance.
Die folgende Tabelle 2 zeigt PTC-Bauteilwiderstände in Abhängigkeit von dem Volumen des PTC-Bauelements.
Claims (10)
- Method for the production of a PTC component comprising the steps of:a) producing a stack of layers comprising green ceramic sheets (1) with electrode layers (5) lying in between,b) removing binding agents and sintering the stack of layers in an atmosphere having a lower oxygen content than that of air, characterized in that the oxygen content is lowered further after the removal of the binding agents.
- Method according to Claim 1, the oxygen content of the atmosphere being less than 8% by volume.
- Method according to either of Claims 1 and 2, the removal of binding agents taking place at a temperature < 600°C.
- Method according to one of Claims 1 to 3, the sintering taking place in a temperature interval between 1000°C and 1200°C.
- Method according to one of Claims 1 to 4, the temperature of the stack of layers being kept at a temperature that corresponds at least to the maximum temperature of the removal of binding agents after the removal of binding agents, at least until the sintering is completed.
- Method according to one of Claims 1 to 5, the removal of binding agents being carried out with an oxygen content of between 0.5 and < 8% by volume.
- Method according to one of Claims 1 to 6, the sintering being carried out with an oxygen content of between 0.1 and 5% by volume.
- Method according to one of Claims 1 to 7, the oxygen content being lowered continuously after the removal of binding agents.
- Method according to one of Claims 1 to 7, the oxygen content being lowered with increasing temperature after the removal of binding agents
- Method according to one of Claims 1 to 9, the oxygen content being increased again after a maximum temperature is exceeded during the sintering.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10218154A DE10218154A1 (en) | 2002-04-23 | 2002-04-23 | PTC component and method for its production |
DE10218154 | 2002-04-23 | ||
PCT/DE2003/001264 WO2003092019A1 (en) | 2002-04-23 | 2003-04-14 | Positive temperature coefficient (ptc) component and method for the production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1497838A1 EP1497838A1 (en) | 2005-01-19 |
EP1497838B1 true EP1497838B1 (en) | 2008-07-02 |
Family
ID=29224698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03747078A Expired - Lifetime EP1497838B1 (en) | 2002-04-23 | 2003-04-14 | Method for the production of a ptc component |
Country Status (5)
Country | Link |
---|---|
US (1) | US7633374B2 (en) |
EP (1) | EP1497838B1 (en) |
JP (1) | JP4302054B2 (en) |
DE (2) | DE10218154A1 (en) |
WO (1) | WO2003092019A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10218154A1 (en) | 2002-04-23 | 2003-11-13 | Epcos Ag | PTC component and method for its production |
JP3831363B2 (en) * | 2003-06-24 | 2006-10-11 | Tdk株式会社 | Organic positive temperature coefficient thermistor, manufacturing method thereof, and measuring method of oxygen content thereof |
DE102006017796A1 (en) * | 2006-04-18 | 2007-10-25 | Epcos Ag | Electric PTC thermistor component |
TW200834612A (en) * | 2007-02-05 | 2008-08-16 | Du Pont | Polymeric positive temperature coefficient thermistor and process for preparing the same |
US8568647B2 (en) * | 2007-11-09 | 2013-10-29 | Bae Systems Plc | Methods of fabricating structural elements |
DE102008029426A1 (en) * | 2008-06-23 | 2010-01-07 | Epcos Ag | Method for producing a multilayer component, multilayer component and template |
JP5293971B2 (en) * | 2009-09-30 | 2013-09-18 | 株式会社村田製作所 | Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component |
CN102810372A (en) * | 2012-08-10 | 2012-12-05 | 深圳顺络电子股份有限公司 | Negative-temperature-coefficient thermistor and preparation method thereof |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3533966A (en) * | 1966-02-11 | 1970-10-13 | Westinghouse Electric Corp | Process for making current limiting devices |
GB1186116A (en) | 1966-12-19 | 1970-04-02 | Nippon Telegraph & Telephone | Improvements in or relating to the Production of High Dielectric Ceramics |
JPS5823722B2 (en) | 1978-12-25 | 1983-05-17 | ティーディーケイ株式会社 | Manufacturing method of voltage nonlinear resistor porcelain |
JPS5814044B2 (en) | 1978-12-26 | 1983-03-17 | ティーディーケイ株式会社 | positive characteristic porcelain |
DE3019098C2 (en) | 1980-05-19 | 1983-02-10 | Siemens AG, 1000 Berlin und 8000 München | Ceramic PTC thermistor material and process for its manufacture |
JPS5760802A (en) | 1980-09-30 | 1982-04-13 | Tokyo Shibaura Electric Co | Current limiting resistance element |
JPH01186601A (en) | 1988-01-14 | 1989-07-26 | Murata Mfg Co Ltd | V2o3 ceramics resistor element |
JPH01233702A (en) | 1988-03-14 | 1989-09-19 | Murata Mfg Co Ltd | V2o3 ceramic resistance element |
JPH0547508A (en) | 1991-08-08 | 1993-02-26 | Murata Mfg Co Ltd | Laminated semiconductor porcelain and manufacture thereof |
JPH06302403A (en) | 1993-04-16 | 1994-10-28 | Murata Mfg Co Ltd | Lamination type semiconductor ceramic element |
US5879812A (en) | 1995-06-06 | 1999-03-09 | Murata Manufacturing Co., Ltd. | Monolithic ceramic capacitor and method of producing the same |
DE19719174A1 (en) * | 1997-05-06 | 1998-11-12 | Siemens Matsushita Components | Multilayer ceramic electrical component with sintered monolithic body |
JP2000095562A (en) | 1998-07-24 | 2000-04-04 | Murata Mfg Co Ltd | Raw material composition for positive temperature coefficient thermistor, porcelain for positive temperature coefficient thermistor, and production of its porcelain |
TW487742B (en) * | 1999-05-10 | 2002-05-21 | Matsushita Electric Ind Co Ltd | Electrode for PTC thermistor, manufacture thereof, and PTC thermistor |
JP2001126946A (en) | 1999-10-28 | 2001-05-11 | Murata Mfg Co Ltd | Laminated ceramic electronic component and method for manufacturing the same |
DE10018377C1 (en) | 2000-04-13 | 2001-12-06 | Epcos Ag | Ceramic multilayered component used as a PTC resistance element comprises a stack of PTC ceramic layers with tungsten electrodes on both sides connected to a monolithic body |
JP3636075B2 (en) * | 2001-01-18 | 2005-04-06 | 株式会社村田製作所 | Multilayer PTC thermistor |
DE10120517B4 (en) | 2001-04-26 | 2013-06-06 | Epcos Ag | Electrical multilayer PTC thermistor and method for its production |
CN1319086C (en) | 2001-05-08 | 2007-05-30 | 埃普科斯股份有限公司 | Ceramic multi-layer element and a method for the production thereof |
US20030198892A1 (en) | 2002-04-22 | 2003-10-23 | General Electric Company | Limited play data storage media and method for limiting access to data thereon |
DE10218154A1 (en) | 2002-04-23 | 2003-11-13 | Epcos Ag | PTC component and method for its production |
-
2002
- 2002-04-23 DE DE10218154A patent/DE10218154A1/en not_active Withdrawn
-
2003
- 2003-04-14 EP EP03747078A patent/EP1497838B1/en not_active Expired - Lifetime
- 2003-04-14 JP JP2004500301A patent/JP4302054B2/en not_active Expired - Fee Related
- 2003-04-14 WO PCT/DE2003/001264 patent/WO2003092019A1/en active IP Right Grant
- 2003-04-14 US US10/511,820 patent/US7633374B2/en not_active Expired - Fee Related
- 2003-04-14 DE DE50310068T patent/DE50310068D1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
DE10218154A1 (en) | 2003-11-13 |
WO2003092019A1 (en) | 2003-11-06 |
US7633374B2 (en) | 2009-12-15 |
JP2005524226A (en) | 2005-08-11 |
JP4302054B2 (en) | 2009-07-22 |
DE50310068D1 (en) | 2008-08-14 |
US20060132280A1 (en) | 2006-06-22 |
EP1497838A1 (en) | 2005-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112004000186B4 (en) | Multilayer ceramic electronic components and methods of making the same | |
DE112008000744B4 (en) | Multilayer thermistor with positive temperature coefficient | |
EP3238218B1 (en) | Ceramic multilayer component and method for producing a ceramic multilayer component | |
EP0189087A1 (en) | Voltage-dependent electric resistance (varistor) | |
DE3223736C2 (en) | Ceramic dielectric | |
EP1386335B1 (en) | Electrical multilayer component and method for the production thereof | |
WO2003030187A2 (en) | Electroceramic component comprising a plurality of contact surfaces | |
DE102020107286A1 (en) | Multi-layer ceramic capacitor and method for its manufacture | |
DE10307804B4 (en) | Conductive paste and its use for producing a laminated ceramic electronic component | |
DE69024280T2 (en) | SEMICONDUCTOR CERAMIC CAPACITOR OF THE LAMINATED TYPE WITH INTERMEDIATE GRAIN INSULATION AND METHOD FOR THE PRODUCTION THEREOF | |
EP1497838B1 (en) | Method for the production of a ptc component | |
WO2001082314A1 (en) | Electric component, method for the production thereof and use of the same | |
DE102012202923A1 (en) | Electrode sintered body, multilayer electronic device, internal electrode paste, electrode-sintered body manufacturing method, and multilayer electronic device manufacturing method | |
DE68912365T2 (en) | Multilayer capacitor. | |
DE102007012916B4 (en) | Laminated piezoelectric element and manufacturing method thereof | |
DE10018377C1 (en) | Ceramic multilayered component used as a PTC resistance element comprises a stack of PTC ceramic layers with tungsten electrodes on both sides connected to a monolithic body | |
DE102022134924A1 (en) | ELECTRONIC MULTILAYER CERAMIC DEVICE AND METHOD OF PRODUCTION THEREOF | |
EP1386334A1 (en) | Ceramic multi-layer element and a method for the production thereof | |
DE10039649B4 (en) | Method for producing a ceramic multilayer component and corresponding multilayer component | |
DE102022102775A1 (en) | Ceramic electronic device and method of manufacturing a ceramic electronic device | |
DE102020006903A1 (en) | CERAMIC ELECTRONIC DEVICE AND MANUFACTURING METHOD FOR IT | |
WO2003012808A1 (en) | Electroceramic component, multi-layer capacitor and method for production of the multi-layer capacitor | |
WO2003004436A1 (en) | Ceramic material, ceramic multilayer component and method for producing said component | |
WO2013167368A1 (en) | Method for producing a multi-layered structural element, and a multi-layered structural element produced according to said method | |
DE102020122299B3 (en) | Multilayer varistor and method for producing a multilayer varistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040826 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20050708 |
|
TPAC | Observations by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR THE PRODUCTION OF A PTC COMPONENT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50310068 Country of ref document: DE Date of ref document: 20080814 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090403 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090414 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20091231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090414 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120423 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50310068 Country of ref document: DE Effective date: 20131101 |