EP1581347B1 - Substrat mit einer polaren plasmapolymerisierten schicht - Google Patents

Substrat mit einer polaren plasmapolymerisierten schicht Download PDF

Info

Publication number
EP1581347B1
EP1581347B1 EP20030813057 EP03813057A EP1581347B1 EP 1581347 B1 EP1581347 B1 EP 1581347B1 EP 20030813057 EP20030813057 EP 20030813057 EP 03813057 A EP03813057 A EP 03813057A EP 1581347 B1 EP1581347 B1 EP 1581347B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
coating
oxygen
plasma
polar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030813057
Other languages
English (en)
French (fr)
Other versions
EP1581347A2 (de
Inventor
Eva Maria Moser
Heidi Hopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wipf AG
Original Assignee
Wipf AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wipf AG filed Critical Wipf AG
Publication of EP1581347A2 publication Critical patent/EP1581347A2/de
Application granted granted Critical
Publication of EP1581347B1 publication Critical patent/EP1581347B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the invention relates to a method for coating substrates with a polar plasma-polymerized layer of a thickness in the nanometer range, which has long-term stable, multifunctional properties, wherein the process gas contains at least one each substituted hydrocarbon compound and at least one inorganic gas. Furthermore, the invention relates to a coated substrate produced by this process and its use.
  • an organic substrate and a process having a coating consisting of a sub-layer of a plasma-polymerized alkane, for example methane, and a top layer of a plasma-polymerized polar organic component is known.
  • the coating is characterized by improved wettability and hydrophilicity.
  • anhydrous process gases are used, whereby in this use with at least one each Substituted carbon water compound having up to 8 carbon atoms and an organic gas, a previously unattained long-term stability can be achieved.
  • the plasma coating has an initial surface tension of at least 45 mN / m, which remains approximately unchanged for at least one year.
  • the layer thicknesses are generally below 100 nm, that is in the nanometer range.
  • the US 4980196 discloses a method for improving the corrosion resistance of steel by means of a plasma coating.
  • a steel substrate is coated with a thin organosilane film. This document does not address the issue of coating other substrates, nor does it disclose the preparation of a two-layer coating.
  • Polar plasma layers containing oxygen- and / or nitrogen-containing functional groups can be prepared already at much higher pressures than in low-pressure processes, u. a. because a certain amount of air does not harm the processes, but can even be useful, a pressure range of up to 1000 mbar is possible. Under these conditions, virtually all known plasma coating techniques, for planar or three-dimensional workpieces, can be used.
  • the plasma layer according to the invention can be connected upstream or downstream of virtually any production step, irrespective of whether the workpiece has already been introduced into a vacuum chamber and subsequently z. B. metallization takes place or whether it is an occurring at atmospheric adhesion promoter coating before printing. Furthermore, the workpiece can be used directly as an anti-fog functional layer.
  • the surface of the plasma-coated workpieces may be smoother than that untreated substrate. Smoother surface contours favor surface wetting and thus the essential antifogging effect.
  • the nitrogen-containing process gases of the first zone or stage ensure good anchoring of the plasma layer on the substrate and, on the other hand, depending on the control of the process parameters (power, gas mixture), more or less pronounced smoothing and / or structuring or modulating the surface. For this effect, the corrosive action of aggressive gases, such as nitrous oxide, ammonia and oxygen, is decisive in the first place, especially when these gases are metered in with an increased proportion.
  • XPS X-ray photoelectron spectroscopy
  • the plasma-polymerized layers deposited according to the invention are distinguished by their controllable multifunctionality; by varying parameters, the plasma layer can be adapted to the respective application. All plasma-polymerized layers produced according to the invention have long-term stability in common. Another, usually required property is a permanent high surface tension of the plasma-polymerized polar layers, which are therefore hydrophilic, which also means a good adhesion to emulsion paints. Further examples of the multifunctionality of the polar layers are the mentioned antifogging effect, the formation of a scratch-resistant layer, a barrier layer against additives, gases and liquids, which on the one hand migrate from the substrate to the surface or can be deposited on the surface of the environment, or a flame retardant layer.
  • the plasma-polymerized layers are preferably deposited at a process pressure p between 10 -3 and 1000 mbar, in particular between 0.1 and 500 mbar.
  • the process pressure is significant for the reasons mentioned higher than in comparable conventional methods, in particular as according to the WO 99/39842 , Expediently, the plasma reactor is previously pumped down to a base pressure which is lower than the process pressure, preferably at least approximately ten times lower, and then filled with process gas. After a coating process below 1000 mbar, the plasma reactor is flooded with, for example, air, nitrogen or argon until the normal pressure is reached and the reactor can be opened. Flooding with argon is too expensive for most processes, air is usually sufficient for this.
  • the organic compound in the process gas may be a pure hydrocarbon compound or a hydrocarbon compound having substituted functional groups, especially oxygen- and / or nitrogen-containing polar functional groups.
  • acetylene C 2 H 2 , ethyne
  • the other process gases contribute to the functional groups and can thereby also remove atomic layers from the surface.
  • the hydrocarbons may, as mentioned, be substituted with halogens, such as chlorine and / or fluorine, or with functional polar groups.
  • halogens such as chlorine and / or fluorine
  • functional polar groups are hydroxyl, carbonyl, carboxylic acid, carboxyl ester, amine, imine, amide and / or conjugated nitrile groups.
  • SiO x -containing functional groups are additionally generated in the lower and / or upper layer, thereby increasing the oxygen content. It is also possible in some cases for C atoms to be replaced by Si atoms.
  • the molecules For both substituted and unsubstituted hydrocarbon compounds, it is advantageous if the molecules contain up to a maximum of eight carbon atoms.
  • the inorganic component of the process gases advantageously comprises oxygen, carbon dioxide, carbon monoxide, nitrogen, NOx, ammonia, hydrogen, at least one halogen and / or at least one noble gas, but is preferably anhydrous.
  • the process gases for the deposition of the lower and upper layers differ fundamentally only in terms of nitrogen and / or oxygen content.
  • the inventive two-stage coating is particularly indicated for food packaging. It has been found that nitrogen-containing gases purify the substrate surface to form a CN bond. This also leads to a better anchoring of the functional polar groups, which in turn has a higher chemical resistance. On this lower layer, which can also be very thin, z. B. about 0.3 nm, a nitrogen-free, oxygen-containing upper layer is still deposited, so that the nitrogen-containing layer can not come into contact with food or other nitrogen-sensitive objects.
  • two plasma sources are used.
  • a nitrogen-oxygen-hydrocarbon-containing gas mixture is supplied and a lower layer is deposited on the substrate.
  • the second zone / plasma source is made of a nitrogen-free, oxygen-hydrocarbon Process gas mixture deposited an upper layer on the lower layer.
  • Plasma chambers with two plasma sources, as used herein, are known in the art.
  • a single plasma source can be used and first the nitrogen-hydrocarbon-containing or nitrogen-oxygen-hydrocarbon-containing gas mixture, the oxygen-hydrocarbon-containing process gas mixture can be introduced during the second pass.
  • the object is achieved according to the invention in that a nanometer-scale plasma-polymerized polar layer is applied as a nitrogen-containing underlayer applied to the substrate and a nitrogen-free, oxygen-containing polar upper layer applied thereto.
  • a nanometer-scale plasma-polymerized polar layer is applied as a nitrogen-containing underlayer applied to the substrate and a nitrogen-free, oxygen-containing polar upper layer applied thereto.
  • the nitrogen-containing underlayer preferably has a proportion of 40 to 90% of the total layer thickness, the polar upper layer a proportion of 60 to 10% of the total layer thickness, preferably about 50% each.
  • the total layer thickness is preferably in the range from 1 to 100 nm.
  • the oxygen / carbon ratio is preferably in the range of 0.03 to 0.8, in the lower layer, the ratio of nitrogen / carbon in the same range.
  • the polar upper layer averaged in the uppermost about 2 nm, ie at the surface, preferably has an oxygen / carbon ratio of from 0.2 to 0.6, preferably from 0.3 to 0.5 and a durable surface tension of at least 50 mN / m.
  • the oxygen content-increasing carboxyl groups can be formed on the surface of the upper layer. With the high surface tension in particular a good antifogging effect is ensured especially with a suitable surface topography.
  • the inventive layer can be deposited on all types of substrates, for example on polymeric, glassy, ceramic, metallic or natural surfaces, in particular a polycarbonate, polyethylene terephthalate, polypropylene, polyethylene, polyamide, fluoropolymers, wool, cotton, silk, glass, ceramic or also composite materials or composite materials, all materials (including natural) in the form of films, moldings, containers, textiles, nonwovens, membranes, granules, powders, fibers, lattices and yarns, containers as well as in the form of coated or activated or treated surfaces of materials all kinds.
  • substrates for example on polymeric, glassy, ceramic, metallic or natural surfaces, in particular a polycarbonate, polyethylene terephthalate, polypropylene, polyethylene, polyamide, fluoropolymers, wool, cotton, silk, glass, ceramic or also composite materials or composite materials, all materials (including natural) in the form of films, moldings, containers, textiles, nonwovens, membranes, granules, powder
  • a product according to the invention is determined by means of an in Fig. 1 illustrated schematically layer structure.
  • This figure shows a coated substrate 10 having a substrate 12, a backsheet 14, and a topsheet 16.
  • the two polar plasma polymerized layers 14, 16 herein have a total thickness, d, of about 10 nm herein.
  • the backsheet 14 is nitrogenous, has excellent properties Adhesion to the substrate 12 on.
  • a disadvantage could be a possible amine formation because of the lower layer 14 impact. This disadvantage is prevented by the oxygen-containing, but low-nitrogen to nitrogen-free upper layer 16.
  • a thin underlayer 14 is deposited on a substrate 12 with a 2.45 GHz microwave source using a process gas mixture of ethylene, carbon dioxide, nitrous oxide and argon introduced in the first zone at the plasma source or at the first plasma source.
  • the gas mixture of acetylene, carbon dioxide and argon is introduced to produce the top layer.
  • polyester, polypropylene were used on the substrates and polyethylene surface tensions of 54 to 75 mN / m, which have a polar fraction of 23 to 51 mN / m and are characterized with an oxygen to carbon ratio of 0.3 to 0.5 and a carboxyl to carbonyl groups ratio of 0.2 to 1.2.
  • the surface tension can be controlled by the feed rate.
  • the oxygen to carbon ratio and the ratio of carboxyl to carbonyl groups in the top atomic layers of the deposited layers were determined by surface-sensitive XPS (photoelectron spectroscopy).
  • the same layer properties can also be achieved with all other types of discharge, each with excitation frequencies from zero to 20 GHz and in each case with or without magnetic field support.
  • Exemplary are DBDs (Dielectric Barrier Discharges), low pressure to atmospheric pressure glow discharges, atmospheric pressure non-equilibrium Discharges (APNEDs), surface dicarges, plasma jets and plasma jet burners.
  • DBDs Dielectric Barrier Discharges
  • ANEDs atmospheric pressure non-equilibrium Discharges
  • surface dicarges plasma jets and plasma jet burners.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Chemical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Paints Or Removers (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum Beschichten von Substraten mit einer polaren plasmapolymerisierten Schicht einer Dicke im Nanometerbereich, welche langzeitstabile, multifunktionale Eigenschaften aufweist, wobei das Prozessgas wenigstens je eine auch substituierte Kohlenwasserstoffverbindung und wenigstens ein anorganisches Gas enthält. Weiter betrifft die Erfindung ein nach diesem Verfahren hergestelltes beschichtetes Substrat und dessen Verwendung.
  • Es ist seit einiger Zeit bekannt, Substrate aller Art mit einer dünnen plasmapolymerisierten Schicht zu überziehen. Die ursprünglich schlechte Haftung von Farben, Lack usw. auf dem Substrat und/oder die schlechte Benetzbarkeit des Substrats konnte mit der Einführung von Niederdruckplasma-Verfahren verbessert werden, insbesondere auch bezüglich der Langzeitwerte. Die Beschichtung von Substraten, insbesondere auch von flexiblen polymeren Substraten, erfolgt unter anderem mit Blick auf die Oberflächenbeschaffenheit. Oft ist es auch erforderlich, das Substrat chemisch, physikalisch und/oder mechanisch zu schützen. Wenn die plasmapolymerisierte Schicht mehrere Funktionen gleichzeitig zu übernehmen hat, wird von einer multifunktionalen Schicht gesprochen.
  • Aus der US 4465738 A ist ein organisches Substrat und ein Verfahren mit einer Beschichtung bekannt, die aus einer Unterschicht aus einem plasmapolymerisierten Alkan, beispielsweise Methan, und einer Oberschicht aus einer plasmapolymerisierten polaren organischen Komponente besteht. Die Beschichtung zeichnet sich durch eine verbesserte Benetzbarkeit und Hydrophilie aus.
  • Ein Durchbruch ist mit der WO 99/39842 A1 gelungen. Zur Herstellung einer polaren Beschichtung mittels Plasmapolymerisation werden wasserfreie Prozessgase eingesetzt, wodurch bei diesem Einsatz mit mindestens je einer auch substituierten Kohlenstoffwasserverbindung mit bis zu 8 C-Atomen und einem organischen Gas eine bisher nicht erreichte Langzeitstabilität erreicht werden kann. Die Plasmabeschichtung weist eine initiale Oberflächenspannung von wenigstens 45 mN/m auf, welche während mindestens einem Jahr etwa unverändert bleibt. Die Schichtdicken liegen in der Regel unter 100 nm, sind also im Nanometerbereich. Zur Durchführung des Verfahrens sind gemäss dem die Seiten 5 und 6 der WO 99/39842 A1 überbrückenden Absatz alle Niederdruckplasma-Verfahren geeignet beispielsweise bei einem Druck von 1.6 x 10-2 mbar. Eine Serie von Beispielen ist in Tabelle 1 der WO 99/39842 A1 zusammengefasst. Die Verwendung dieser polaren, langzeitstabilen Schichten ist infolge der Haftvermittlung, d. h. der verbesserten Adhäsion gegenüber polaren Substanzen und Materialien, ausserordentlich vielfältig, besonders zu erwähnen ist die Bedruckbarkeit, der Kratzschutz, eine Antifog-Wirkung und die Verschweissbarkeit.
  • Die US 4980196 offenbart ein Verfahren zur Verbesserung der Korrosionsfestigkeit von Stahl mit Hilfe einer Plasmabeschichtung. Hierbei wird ein Stahlsubstrat mit einem dünnen Organosilanfilm beschichtet. Dieses Dokument geht nicht auf die Frage der Beschichtung anderer Substrate ein, und offenbart ferner nicht die Herstellung einer zweischichtigen Beschichtung.
  • Der vorliegenden Patentanmeldung liegt die Aufgabe zugrunde, ein Verfahren zum Beschichten von Substraten verschiedenster Art mit einer plasmapolymerisierten Schicht und ein Erzeugnis der eingangs genannten Art zu schaffen, welche auch bei erweiterter Substratbasis die Eigenschaften nochmals verbessern, insbesondere die Adhäsion auf der plasmapolymerisierten Schicht und dieser Schicht auf dem Substrat erhöhen.
  • In bezug auf das Verfahren wird die Aufgabe erfindungsgemäss dadurch gelöst, dass
    • in einer ersten Zone oder Stufe mit Prozessgasen, die wenigstens eine Kohlenwasserstoffverbindung, wenigstens eine Kohlenwasserstoffverbindung mit stickstoffhaltigen oder stickstoff- und sauerstoffhaltigen funktionellen Gruppen und/oder wenigstens ein stickstoffhaltiges oder ein stickstoff- und sauerstoffhaltiges anorganisches Gas enthalten,
    • in einer zweiten Zone oder Stufe mit stickstofffreien Prozessgasen, die wenigstens eine Kohlenwasserstoffverbindung, wenigstens eine Kohlenwas-serstoffverbindung mit sauerstoffhaltigen funktionellen Gruppen und/oder wenigstens ein sauerstoffhaltiges anorganisches Gas enthalten,
    beschichtet wird. Spezielle und weiterbildende Ausführungsformen des Verfahrens sind Gegenstand von abhängigen Patentansprüchen.
  • Mit dem erfindungsgemässen Verfahren sind unter Verwendung von effizienten Gasgemischen, welche unabhängig vom Druckbereich und von der Entladungsart anwendbar sind, langzeitstabile, plasmapolymerisierte polare Schutzschichten möglich. Es wird ein Weg für die Kombination von mehreren Schichten für multifunktionale Eigenschaften aufgezeigt. Bei mehr als zwei Schichten ist erfindungswesentlich, dass die direkt auf dem Substrat abgeschiedene Schicht stickstoffhaltig, die oberste Schicht stickstofffrei, aber sauerstoffhaltig ist.
  • Polare Plasmaschichten, welche sauerstoff- und/oder stickstoffhaltige funktionelle Gruppen enthalten, können schon bei weit höheren Drucken als in Niederdruckverfahren üblich hergestellt werden, u. a. weil ein gewisser Anteil von Luft den Prozessen nicht schadet, sondern sogar dienlich sein kann, ist ein Druckbereich bis 1000 mbar möglich. Unter diesen Voraussetzungen können praktisch alle bekannten Plasmabeschichtungstechniken, für planare oder dreidimensionale Werkstücke, eingesetzt werden.
  • Die erfindungsgemässe Plasmaschicht kann nahezu beliebig einem Produktionsschritt vorgeschaltet oder nachgeschaltet werden, gleichgültig ob das Werkstück bereits in einer Vakuumkammer eingeschleust wurde und anschliessend z. B. eine Metallisierung stattfindet oder ob es sich um eine bei Atmosphärendruck stattfindende haftvermittelnde Beschichtung vor einer Bedruckung handelt. Weiter kann das Werkstück direkt als Antifog-Funktionsschicht verwendet werden.
  • Die Oberfläche der plasmabeschichteten Werkstücke kann glatter sein als das unbehandelte Substrat. Sanftere Oberflächenkonturen begünstigen die Oberflächenbenetzung und damit den hier wesentlichen Antifog-Effekt. Die stickstoffhaltigen Prozessgase der ersten Zone oder Stufe bewirken einerseits eine gute Verankerung der Plasmaschicht auf dem Substrat und können andererseits je nach Steuerung der Prozessparameter (Leistung, Gasgemisch) die Oberfläche mehr oder weniger ausgeprägt glätten und/oder strukturieren, bzw. zu modulieren. Für diesen Effekt ist in erster Linie die ätzende Wirkung von aggressiven Gasen, wie z.B. Lachgas, Ammoniak und Sauerstoff massgebend, insbesondere wenn diese Gase mit erhöhtem Anteil zudosiert werden.
  • XPS (Röntgen-Photoelektronen-Spektroskopie)-Messungen belegen, bzw. bestätigen die erwartete Anreicherung mit Sauerstoff und Stickstoff und die Einbindung von Sauerstoff, insbesondere als Hydroxyl-, Carbonyl- oder Carboxyl (Ester) - Gruppen.
  • Die erfindungsgemäss abgeschiedenen plasmapolymerisierten Schichten zeichnen sich durch ihre steuerbare Multifunktionalität aus, durch Variation von Parametern kann die Plasmaschicht der jeweiligen Anwendung angepasst werden. Allen erfindungsgemäss hergestellten plasmapolymerisierten Schichten ist die Langzeitstabilität gemeinsam. Eine weitere, meist erforderliche Eigenschaft ist eine dauerhafte hohe Oberflächenspannung der plasmapolymerisierten polaren Schichten, welche dadurch hydrophil sind, was auch eine gute Haftvermittlung gegenüber Dispersionsfarben bedeutet. Weitere Beispiele für die Multifunktionalität der polaren Schichten sind die erwähnte Antifog-Wirkung, die Ausbildung einer Kratzschutzschicht, einer Barriereschicht gegenüber Additiven, Gasen und Flüssigkeiten, welche einerseits aus dem Substrat an die Oberfläche migrieren oder von der Umgebung an der Oberfläche abgelagert werden können, oder einer Flammschutzschicht.
  • Die plasmapolymerisierten Schichten werden bevorzugt bei einem Prozessdruck p zwischen 10-3 und 1000 mbar, insbesondere zwischen 0,1 und 500 mbar, abgeschieden. Der Prozessdruck liegt aus den erwähnten Gründen bedeutend höher als bei vergleichbaren üblichen Verfahren, insbesondere auch als nach der WO 99/39842 . Zweckmässig wird der Plasmareaktor vorgängig bis zu einem Basisdruck, der tiefer ist als der Prozessdruck liegt, vorzugsweise wenigstens etwa zehnmal tiefer, abgepumpt, anschliessend mit Prozessgas gefüllt. Nach einem Beschichtungsprozess unterhalb 1000 mbar wird der Plasmareaktor mit beispielsweise Luft, Stickstoff oder Argon geflutet, bis der Normaldruck erreicht ist und der Reaktor geöffnet werden kann. Das Fluten mit Argon ist für die meisten Prozesse zu teuer, Luft ist dafür meistens ausreichend.
  • Die organische Verbindung im Prozessgas kann eine reine Kohlenwasserstoffverbindung oder eine Kohlenwasserstoffverbindung mit substituierten funktionellen Gruppen sein, insbesondere sauerstoff- und/oder stickstoffhaltige polare funktionelle Gruppen.
  • Die Kohlenwasserstoffverbindungen selbst können verschiedenster Natur sein:
    • Alkane, beispielsweise Methan, Ethan, Propan
    • Alkene, beispielsweise Ethylen, Propylen
    • Alkine, beispielsweise Acethylen
    • Polyene, d.h. Kohlenwasserstoffe mit mehreren Doppelbindungen
    jeweils in aliphatischer, alicyclischer oder aromatischer Ausbildung, ohne oder mit Verzweigung/en.
  • Als schichtbildendes Prozessgas wird insbesondere Acethylen (C2H2, Ethin) verwendet, die anderen Prozessgase steuern die funktionalen Gruppen bei und können dadurch auch atomare Lagen von der Oberfläche abtragen.
  • Die Kohlenwasserstoffe können, wie erwähnt, mit Halogenen, wie Chlor und/oder Fluor, oder mit funktionellen polaren Gruppen substituiert sein. Beispiele von funktionellen polaren Gruppen sind Hydroxyl-, Carbonyl-, Carboxylsäure-, Carboxylester-, Amin-, Imin-, Amid- und/oder conjugierte Nitrilgruppen.
  • Bei einer Zumischung von siliziumhaltigen Prozessgasen werden in der Unter- und/oder Oberschicht zusätzlich SiOx-haltige funktionelle Gruppen erzeugt und dadurch der Sauerstoffgehalt erhöht. Dabei können auch teilweise C-Atome durch Si-Atome ersetzt werden.
  • Sowohl für substituierte als auch für nicht substituierte Kohlenwasserstoffverbindungen ist es vorteilhaft, wenn die Moleküle bis maximal acht C-Atome enthalten.
  • Die anorganische Komponente der Prozessgase umfasst vorteilhaft Sauerstoff, Kohlenstoffdioxid, Kohlenstoffmonoxid, Stickstoff, NOx, Ammoniak, Wasserstoff, wenigstens ein Halogen und/oder wenigstens ein Edelgas, ist jedoch vorzugsweise wasserfrei.
  • Die Prozessgase für die Abscheidung der Unter- und Oberschicht unterscheiden sich grundsätzlich nur bezüglich des Stickstoff- und/oder Sauerstoffgehalts.
  • Die erfindungsgemässe zweistufige Beschichtung ist insbesondere auch für Lebensmittelverpackungen angezeigt. Es hat sich herausgestellt, dass stickstoffhaltige Gase unter Bildung einer CN-Bindung die Substratoberfläche reinigen. Dies führt zudem zu einer besseren Verankerung der funktionellen polaren Gruppen, was wiederum eine höhere chemische Beständigkeit zur Folge hat. Auf dieser Unterschicht, welche auch sehr dünn sein kann, z. B. etwa 0,3 nm, wird noch eine stickstofffreie, sauerstoffhaltige Oberschicht abgeschieden, damit die stickstoffhaltige Schicht nicht in Kontakt mit Lebensmitteln oder anderen stickstoffempfindlichen Objekten kommen kann.
  • Für das Abscheiden einer Unter- und einer Oberschicht werden vorteilhaft zwei Plasmaquellen eingesetzt. Bei der ersten Zone/Plasmaquelle wird beispielsweise ein stickstoff-sauerstoff-kohlenwasserstoffhaltiges Gasgemisch zugeführt und eine Unterschicht auf das Substrat abgeschieden. Mit der zweiten Zone/Plasmaquelle wird aus einem stickstofffreien, sauerstoff-kohlenwasserstoffhaltigen Prozessgasgemisch eine Oberschicht auf die Unterschicht abgeschieden. Plasmakammern mit zwei Plasmaquellen, wie sie hier verwendet werden, sind dem Fachmann bekannt.
  • Nach einer weiteren Variante kann eine einzige Plasmaquelle eingesetzt und zuerst das stickstoff-kohlenwasserstoffhaltige oder stickstoff-sauerstoff-kohlenwasserstoffhaltige Gasgemisch, beim zweiten Durchlauf das sauerstoff-kohlenwasserstoffhaltige Prozessgasgemisch eingeleitet werden.
  • In Bezug auf das Erzeugnis wird die Aufgabe erfindungsgemäss dadurch gelöst, dass eine plasmapolymerisierte polare Schicht im Nanometerbereich als eine auf das Substrat aufgebrachte stickstoffhaltige Unterschicht und eine darauf aufgebrachte stickstofffreie, sauerstoffhaltige polare Oberschicht aufgetragen ist. Spezielle und weiterbildende Ausführungsformen des Erzeugnisses ergeben sich aus den abhängigen Patentansprüchen.
  • Die stickstoffhaltige Unterschicht hat vorzugsweise einen Anteil von 40 bis 90% der gesamten Schichtdicke, die polare Oberschicht einen Anteil von 60 bis 10% der gesamten Schichtdicke, vorzugsweise je etwa 50%. Die gesamte Schichtdicke liegt bevorzugt im Bereich von 1 bis 100 nm. Die beschichteten Substrate sind miteinander verschweissbar.
  • In einer Schicht, mit einer Unter- und Oberschicht aus Kohlenwasserstoffverbindungen mit sauerstoffhaltigen funktionellen Gruppen liegt das Sauerstoff/Kohlenstoff-Verhältnis vorzugsweise im Bereich von je 0,03 bis 0,8, in der Unterschicht liegt das Verhältnis Stickstoff / Kohlenstoff im gleichen Bereich.
    Die polare Oberschicht hat, gemittelt in den obersten etwa 2 nm, d.h. an der Oberfläche, bevorzugt ein Sauerstoff / Kohlenstoff - Verhältnis von 0,2 bis 0,6, vorzugsweise von 0,3 bis 0,5 und eine dauerhafte Oberflächenspannung von wenigstens 50 mN/m. An der Oberfläche der Oberschicht können den Sauerstoffgehalt heraufsetzende Carboxylgruppen gebildet werden. Mit der hohen Oberflächenspannung ist insbesondere eine gute Antifog-Wirkung gewährleistet, insbesondere mit einer geeigneten Oberflächentopographie.
  • Die erfindungsgemässe Schicht lässt sich auf alle Arten von Substraten abscheiden, beispielsweise auf polymere, glasartige, keramische, metallische oder natürliche Oberflächen, insbesondere auf ein Polycarbonat, Polyethylenterephthalat, Polypropylen, Polyethylen, Polyamid, Fluoropolymere, Wolle, Baumwolle, Seide, Glas, Keramik oder auch Kompositwerkstoffe oder Verbundwerkstoffe, alle Materialien (auch natürliche) in Form von Folien, Formkörpern, Behältern, Textilien, Vliesstoffen, Membranen, Granulatkörnern, Pulver, Fasern, Gittern und Garnen, Behältern sowie auch in Form beschichteten oder aktivierten bzw. behandelten Oberflächen von Materialien aller Art.
  • Ein erfindungsgemässes Erzeugnis wird anhand eines in Fig. 1 schematisch dargestellten Schichtaufbaus näher erläutert. Diese Figur zeigt ein beschichtetes Substrat 10 mit einem Substrat 12, einer Unterschicht 14 und einer Oberschicht 16. Die beiden polaren plasmapolymerisierten Schichten 14, 16 haben vorliegend eine gesamte Dicke d von vorliegend etwa 10 nm. Die Unterschicht 14 ist stickstoffhaltig, sie weist eine ausgezeichnete Adhäsion zum Substrat 12 auf. Nachteilig könnte sich eine mögliche Aminbildung wegen der Unterschicht 14 auswirken. Dieser Nachteil wird durch die sauerstoffhaltige, jedoch stickstoffarme bis stickstofffreie Oberschicht 16 verhindert.
  • Beispiel: Multischichtabscheidung mit einer Miktrowellenentladung
  • Es wird eine dünne Unterschicht 14 auf ein Substrat 12 mit einer Mikrowellenquelle bei 2.45 GHz abgeschieden, unter Verwendung eines Prozessgasgemisches aus Azethylen, Kohlendioxid, Lachgas und Argon, welches in der ersten Zone bei der Plasmaquelle oder bei der ersten Plasmaquelle eingeführt wird. In der zweiten Zone bzw. der zweiten Plasmaquelle wird das Gasgemisch Azethylen, Kohlendioxid und Argon eingeführt, um die Oberschicht zu erzeugen. Mit einem Druckbereich von 0.01 bis 320 mbar und einem Leistungsbereich von 60 bis 2000 Watt wurden so auf den Substraten Polyester, Polypropylen und Polyethylen Oberflächenspannungen von 54 bis 75 mN/m erreicht, welche einen polaren Anteil von 23 bis 51 mN/m aufweisen und mit einem Sauerstoff zu Kohlenstoff Verhältnis von 0.3 bis 0.5 und einem Carboxyl- zu Carbonylgruppen Verhältnis von 0.2 bis 1.2 charakterisiert sind. Die Oberflächenspannung kann unter anderem auch über die Vorschubgeschwindigkeit gesteuert werden. Das Verhältnis Sauerstoff zu Kohlenstoff und das Verhältnis der Carboxyl- zu Carbonyl-Gruppen in den obersten Atomlagen der abgeschiedenen Schichten wurde mit der oberflächenempfindlichen XPS (Photoelektronen Spektroskopie) ermittelt.
  • Die gleichen Schichteigenschaften können auch mit allen anderen Entladungsarten mit jeweils Anregungsfrequenzen von Null bis 20 GHz und jeweils mit oder ohne Magnetfeldunterstützung erreicht werden. Beispielhaft erwähnt werden DBDs (Dielectric Barrier Discharges), Niederdruck bis Atmosphärendruck-Glimmentladungen, APNEDs (Atmospheric Pressure Non-Equilibrium Discharges), Surface Discharges, Plasmadüsen und Plasmabreitstrahlbrenner.

Claims (14)

  1. Verfahren zum Beschichten von Substraten (12) mit einer polaren plasmapolymerisierten Schicht einer Dicke (d) im Nanometerbereich, welche langzeitstabile, multifunktionale Eigenschaften aufweist, wobei das Prozessgas wenigstens je eine auch substituierte Kohlenwasserstoffverbindung und wenigstens ein anorganisches Gas enthält,
    dadurch gekennzeichnet, dass
    - in einer ersten Zone oder Stufe mit Prozessgasen, die wenigstens eine Kohlenwasserstoffverbindung, wenigstens eine Kohlenwasserstoffverbindung mit stickstoffhaltigen oder stickstoff- und sauerstoffhaltigen funktionellen Gruppen und/oder wenigstens ein stickstoffhaltiges oder ein stickstoff- und sauerstoffhaltiges anorganisches Gas enthalten,
    - in einer zweiten Zone oder Stufe mit stickstofffreien Prozessgasen, die wenigstens eine Kohlenwasserstoffverbindung, wenigstens eine Kohlenwasserstoffverbindung mit sauerstoffhaltigen funktionellen Gruppen und/oder wenigstens ein sauerstoffhaltiges anorganisches Gas enthalten,
    beschichtet wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass mit einem Prozessdruck (p) von 10-3 ≤ p ≤ 1000 mbar, vorzugsweise 0,1 ≤ p ≤ 500 mbar, beschichtet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mit Prozessgasen, die als organische Komponenten Kohlenwasserstoffverbindungen mit bis zu maximal acht C-Atomen, und als anorganische Komponenten Sauerstoff, Stickstoff, Wasserstoff, Kohlenstoffdioxid, Kohlenmonoxid, Stickoxide, Ammoniak, wenigstens ein Halogen und/oder wenigstens ein Edelgas enthalten, beschichtet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Unter- und/oder Oberschicht (14, 16) mit zusätzlichen siliziumhaltigen Prozessgasen abgeschieden wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass mit einem Prozessgas, das aliphatische, alicyclische und/oder aromatische Kohlenwasserstoffverbindungen, vorzugsweise mit funktionellen polaren Gruppen, wie Hydroxyl-, Carbonyl-, Carboxylsäure-, Carboxylester-, Amin-, Imin-, Amid- und/oder conjugierten Nitrilgruppen, enthält, beschichtet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die stickstoffhaltige oder stickstoff- und sauerstoffhaltige Unterschicht (14) mit einer ersten Plasmaquelle, die sauerstoffhaltige Oberschicht (16) mit einer zweiten Plasmaquelle, oder die Unterschicht (14) und die Oberschicht (16) aus derselben Plasmaquelle mit an verschiedenen Zonen eingespeisten oder alternierenden Prozessgasen aufgetragen wird.
  7. Beschichtetes Substrat (10) mit wenigstens zwei mittels Plasmapolymerisation abgeschiedenen, multifunktionalen Schichten (14, 16) und aus Kohlenwasserstoffverbindungen,
    dadurch gekennzeichnet, dass
    eine plasmapolymerisierte polare Schicht (14,16) im Nanometerbereich als eine auf das Substrat (12) aufgebrachte stickstoffhaltige Unterschicht (14) und eine darauf aufgebrachte stickstofffreie, sauerstoffhaltige polare Oberschicht (16) aufgetragen ist.
  8. Beschichtetes Substrat (10) nach Anspruch 7, dadurch gekennzeichnet, dass die stickstoffhaltige oder stickstoff- und sauerstoffhaltige Unterschicht (14) einen Anteil von 40 bis 90%, insbesondere etwa 50%, der gesamten Schichtdicke (d) und die Oberschicht (16) einen Anteil von 60 bis 10% insbesondere etwa 50%, der gesamten Schichtdicke (d) hat, wobei die Schichtdicke vorzugsweise 1 bis 100 nm beträgt.
  9. Beschichtetes Substrat (10) nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das in der plasmapolymerisierten polaren Schicht (14,16) aus substituierten Kohlenwasserstoffverbindungen vorliegende Stickstoff/ Kohlenstoff- und/oder das Sauerstoff/Kohlenstoff-Verhältnis im Bereich von je 0,03 bis 0,8 liegt, in der Unterschicht (14) das Stickstoff-/Kohlenstoffverhältnis im gleichen Bereich.
  10. Beschichtetes Substrat (10) nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die polare Oberschicht (16), gemittelt in den obersten etwa 2 nm, ein Kohlenstoff/Sauerstoffverhältnis von 0,2 bis 0,6, vorzugsweise von 0,3 bis 0,5, und eine dauerhafte Oberflächenspannung von vorzugsweise wenigstens 50 mN/m hat.
  11. Beschichtetes Substrat (10) nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass es auch mit plasmapolymerisierter polarer Schicht (14, 16) verschweissbar ist.
  12. Verwendung des beschichteten Substrats (10) nach einem der Ansprüche 7 bis 11 als haftvermittelnde Schicht (14, 16) für ein beliebiges polares Material oder eine beliebige Substanz, als Lebensmittelverpackung oder als Antifog-Schicht.
  13. Verwendung des beschichteten Substrats (10) nach Anspruch 12 für eine Antifog-Schicht, insbesondere im Lebensmittelbereich.
  14. Verwendung des beschichteten Substrats (10) nach Anspruch 12 als Schutzschicht gegen Migrationen an die Oberfläche, als beidseitig wirkende Barriere für Gase, Additive und Flüssigkeiten, als Degradationsschutz und/oder Kratzschutzschicht.
EP20030813057 2002-12-17 2003-12-17 Substrat mit einer polaren plasmapolymerisierten schicht Expired - Lifetime EP1581347B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH21512002 2002-12-17
CH215102 2002-12-17
PCT/CH2003/000822 WO2004054728A2 (de) 2002-12-17 2003-12-17 Substrat mit einer polaren plasmapolymerisierten schicht

Publications (2)

Publication Number Publication Date
EP1581347A2 EP1581347A2 (de) 2005-10-05
EP1581347B1 true EP1581347B1 (de) 2009-02-25

Family

ID=32514241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030813057 Expired - Lifetime EP1581347B1 (de) 2002-12-17 2003-12-17 Substrat mit einer polaren plasmapolymerisierten schicht

Country Status (6)

Country Link
US (1) US20060165975A1 (de)
EP (1) EP1581347B1 (de)
AT (1) ATE423633T1 (de)
AU (1) AU2003303016A1 (de)
DE (1) DE50311232D1 (de)
WO (1) WO2004054728A2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991310B2 (ja) * 2003-12-16 2012-08-01 サン・ケミカル・コーポレーション 放射硬化型コーティングの製造方法とコーティングされた物品
EP1643005A3 (de) * 2004-09-01 2008-03-19 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Abscheiden von organischen und/oder anorganischen Nanoschichten mittels Plasmaentladung
WO2007133378A1 (en) * 2006-05-11 2007-11-22 Dow Global Technologies Inc. Multi-wall plastic sheet having an internal plasma-enhanced chemical vapor deposition coating and process for manufacturing the same
KR101480094B1 (ko) * 2013-01-28 2015-01-07 한국기초과학지원연구원 Ptfe 표면의 친수성 개질 방법
KR102353030B1 (ko) * 2014-01-27 2022-01-19 코닝 인코포레이티드 얇은 시트와 캐리어의 제어된 결합을 위한 물품 및 방법
SG11201608442TA (en) 2014-04-09 2016-11-29 Corning Inc Device modified substrate article and methods for making
KR102573207B1 (ko) 2015-05-19 2023-08-31 코닝 인코포레이티드 시트와 캐리어의 결합을 위한 물품 및 방법
CN117534339A (zh) 2015-06-26 2024-02-09 康宁股份有限公司 包含板材和载体的方法和制品
TW201825623A (zh) 2016-08-30 2018-07-16 美商康寧公司 用於片材接合的矽氧烷電漿聚合物
TWI821867B (zh) 2016-08-31 2023-11-11 美商康寧公司 具以可控制式黏結的薄片之製品及製作其之方法
WO2019036710A1 (en) 2017-08-18 2019-02-21 Corning Incorporated TEMPORARY BINDING USING POLYCATIONIC POLYMERS
JP7431160B2 (ja) 2017-12-15 2024-02-14 コーニング インコーポレイテッド 基板を処理するための方法および結合されたシートを含む物品を製造するための方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1070263A (en) * 1975-06-23 1980-01-22 National Aeronautics And Space Administration Preparation of dielectric coatings of variable dielectric constant by plasma polymerization
US4465738A (en) * 1983-06-15 1984-08-14 Borg-Warner Corporation Wettable coatings for inorganic substrates
US4526806A (en) * 1983-11-22 1985-07-02 Olin Corporation One-step plasma treatment of copper foils to increase their laminate adhesion
US4598022A (en) * 1983-11-22 1986-07-01 Olin Corporation One-step plasma treatment of copper foils to increase their laminate adhesion
US4842941A (en) * 1987-04-06 1989-06-27 General Electric Company Method for forming abrasion-resistant polycarbonate articles, and articles of manufacture produced thereby
DE3908418C2 (de) * 1989-03-15 1999-06-02 Buck Chem Tech Werke Verfahren zum Innenbeschichten von Kunststoff-Behältern und Vorrichtung zum Beschichten
US4980196A (en) * 1990-02-14 1990-12-25 E. I. Du Pont De Nemours And Company Method of coating steel substrate using low temperature plasma processes and priming
EP0739655B1 (de) * 1995-04-28 1999-03-31 INPRO Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH Verfahren zu plasmagestützten Herstellung multifunktionaler Schichten auf Kunststoffteilen
US5763095A (en) * 1995-11-29 1998-06-09 W. R. Grace & Co.-Conn. Breathable film for cheese packaging
DE19704947A1 (de) * 1997-02-10 1998-08-13 Leybold Systems Gmbh Verfahren und Vorrichtung zur Schutzbeschichtung von Verspiegelungsschichten
US6746721B1 (en) * 1998-02-05 2004-06-08 Eidgenossische Materialprufungs-Und Forschungsanstalt Empa Polar polymeric coating
GB2338716B (en) * 1998-06-26 2003-04-02 Mclaughlin James A An apparatus and a method for coating diamond like carbon (DLC) or other vacuum depositable coatings onto a substrate
DE19953667B4 (de) * 1999-11-08 2009-06-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schicht mit selektiv funktionalisierter Oberfläche, Verfahren zur Herstellung sowie deren Verwendung
AU2001226607A1 (en) * 2000-01-27 2001-08-07 Incoat Gmbh Protective and/or diffusion barrier layer
DE10053555C2 (de) * 2000-10-28 2003-03-27 Fresenius Medical Care De Gmbh Verfahren zur Erhöhung der Heißdampfstabilität polymerer Substrate

Also Published As

Publication number Publication date
WO2004054728A2 (de) 2004-07-01
WO2004054728A3 (de) 2004-09-30
AU2003303016A1 (en) 2004-07-09
DE50311232D1 (de) 2009-04-09
US20060165975A1 (en) 2006-07-27
EP1581347A2 (de) 2005-10-05
ATE423633T1 (de) 2009-03-15

Similar Documents

Publication Publication Date Title
EP1581347B1 (de) Substrat mit einer polaren plasmapolymerisierten schicht
DE69713347T2 (de) Flammbehandlungsverfahren
EP0655516B1 (de) Verfahren zur Beschichtung oder Oberflächenbehandlung von Feststoffteilchen mittels einer Plasma-Wirbelschicht
DE19726802C1 (de) Wäßrige Dispersion von Fluorpolymeren unterschiedlicher Teilchengröße
EP1132195B1 (de) Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe mittels eines indirekten atmosphärischen Plasmatrons
DE102005034764B4 (de) Verfahren zur Herstellung von funktionalen Fluor-Kohlenstoff-Polymerschichten mittels Plasmapolymerisation von Perfluorocycloalkanen und damit beschichtete Substrate
DE19548160C1 (de) Verfahren zur Herstellung organisch modifizierter Oxid-, Oxinitrid- oder Nitridschichten durch Vakuumbeschichtung und danach beschichtetes Substrat
DE10011274A1 (de) Plasmabehandelte bahnförmige Werkstoffe
EP0625588B1 (de) Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
DE102006038780A1 (de) Verfahren und Vorrichtung zum Herstellen einer Beschichtung
EP1051266B1 (de) Polare polymerartige beschichtung
EP1230042B1 (de) Schicht mit selektiv funktionalisierter oberfläche
DE69517871T2 (de) Inselbeschichtungssystem mit verringertem Lösungsmittel
DE19543133C2 (de) Verfahren zur Erzeugung stark hydrophober Polymerschichten mittels Plasmapolymerisation
DE4417235A1 (de) Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
WO2010127808A1 (de) Schichtsystem mit barriereeigenschaften und einer strukturierten leitfähigen schicht, verfahren zum herstellen sowie verwendung eines solchen schichtsystems
DE102006045951A1 (de) Verfahren zur chemischen Modifizierung und/oder Aktivierung von Festkörperoberflächen
DE10017846C2 (de) Verfahren zum Abscheiden einer Polymerschicht und Verwendung derselben
DE3716235C2 (de) Herstellung von Polymer-Metallverbindungen durch Abscheidung in Glimmentladungszonen
DE10012516C1 (de) Kunststoffbauteil mit Schutzschicht und Verfahren zu dessen Herstellung
WO2003038141A2 (de) Verfahren zur herstellung einer uv-absorbierenden transparenten abriebschutzschicht
EP1129791B1 (de) Verfahren zur Herstellung von antiadhäsiven Beschichtungen
EP2066827A1 (de) Verfahren und vorrichtung zur abscheidung einer nichtmetallischen beschichtung mittels kaltgas-spritzen
EP2614692A2 (de) Verkapselung und herstellen einer verkapselten bestückten leiterplatte
DE102004017241B4 (de) Verbundmaterial und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050711

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50311232

Country of ref document: DE

Date of ref document: 20090409

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090605

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090525

26N No opposition filed

Effective date: 20091126

BERE Be: lapsed

Owner name: WIPF A.G.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20101220

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20141216

Year of fee payment: 12

Ref country code: GB

Payment date: 20141216

Year of fee payment: 12

Ref country code: SE

Payment date: 20141216

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141215

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151218

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20161222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161219

Year of fee payment: 14

Ref country code: FR

Payment date: 20161221

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161230

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311232

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 423633

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171217

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171217

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231