EP1580496A2 - Pompe à chaleur - Google Patents
Pompe à chaleur Download PDFInfo
- Publication number
- EP1580496A2 EP1580496A2 EP04103085A EP04103085A EP1580496A2 EP 1580496 A2 EP1580496 A2 EP 1580496A2 EP 04103085 A EP04103085 A EP 04103085A EP 04103085 A EP04103085 A EP 04103085A EP 1580496 A2 EP1580496 A2 EP 1580496A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- expansion device
- refrigerant
- flow path
- refrigerating compartment
- heat pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B5/00—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
- F25B5/04—Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/04—Refrigeration circuit bypassing means
- F25B2400/0409—Refrigeration circuit bypassing means for the evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2511—Evaporator distribution valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2117—Temperatures of an evaporator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/12—Sensors measuring the inside temperature
- F25D2700/122—Sensors measuring the inside temperature of freezer compartments
Definitions
- the present invention relates to heat pump for cooling first and second spaces to respectively higher and lower temperatures.
- the independent cooling system is used because the freezing compartment needs to be cooled significantly more than the refrigerating compartment.
- the evaporators of the freezing and refrigerating compartments must have different evaporation temperatures.
- expansion (pressure reduction) of a refrigerant at the upstream sides of each evaporator must be carried out in such a manner that the expansion degrees are different. Accordingly, separate expansion devices are installed for the evaporators.
- the different evaporation temperatures of the evaporators for the freezing and refrigerating compartments means different refrigerant pressures in the evaporators.
- Such a refrigerant pressure difference causes the refrigerant to flow through one of the evaporators in a larger quantity so that the refrigerant may not flow smoothly through the other evaporator when the refrigerant flow path is changed.
- Holding the valve means in state (c) improves the refrigerant flow when the valve means is changing from states (a) to (b).
- the time during which state (c) is held may be predetermined.
- the first segment preferably includes a first expansion device followed by a first evaporator followed by a second expansion device.
- the second segment preferably includes a second evaporator.
- the refrigerant circuit preferably includes a compressor and condenser connected in series between the second segment and the valve means.
- the 3-way valve 310 is operated to open the refrigerating compartment valve 310a and close the freezing compartment valve 310b.
- the refrigerant emerging from the condenser 302 is fed into the refrigerating compartment evaporator 205 and then into the freezing compartment evaporator 207 via the refrigerating compartment capillary tube 304 and a connecting capillary tube 306.
- the state of the 3-way valve 310 is controlled by a stepping motor (not shown). That is, a refrigerant flow path, which communicates with at least one of the refrigerating compartment evaporator 205 and freezing compartment evaporator 207, is set by operation of the stepping motor.
- a further rotation of the stepping motor to about 154° opens the refrigerating compartment valve 310b as well.
- the stepping motor further rotates to about 195°, the freezing compartment valve 310b is closed while the refrigerating compartment valve 310a remains open. In this state, a refrigerant flow path is established only through the refrigerating compartment evaporator 205 via the refrigerating compartment capillary tube 304.
- a further rotation of the stepping motor to 215° closes the refrigerating compartment valve 310a as well. As a result, there is no refrigerant flow paths.
- the refrigerant flows toward the freezing compartment evaporator 207 in a larger quantity because the pressure of the freezing compartment evaporator 207 is relatively higher than that of the refrigerating compartment evaporator 205.
- the operation mode of the refrigerator is changed from a mode for cooling the refrigerating compartment to a mode for cooling the freezing compartment alone (that is, the angular position of the stepping motor is changed from 195° to 95° via an angular position of about 154°)
- the refrigerant concentrated to the freezing compartment evaporator 207 cannot be sufficiently supplied through the refrigerant flow path communicating with the refrigerating compartment evaporator 205.
- the simultaneous opening stage t0 corresponding to the position of about 154°, is maintained for a relatively long period of time.
- both the refrigerating compartment valve 310a and the freezing compartment valve 310b are open for a sufficient period of time to allow the refrigerant concentrated to the freezing compartment evaporator 207 to be sufficiently and smoothly supplied through the refrigerant flow path communicating with the refrigerating compartment evaporator 205.
- the refrigerator includes the control system shown in Figure 3.
- an input unit 354 and a temperature detecting unit 356 are connected to an input of a control unit 352 for controlling the operation of the refrigerator.
- the input unit 354 allows the user to set a desired target cooling temperature, a desired cooling mode and other operating conditions.
- the temperature detecting unit 356 detects the temperatures of the refrigerating compartment 210, the freezing compartment 220, the refrigerating compartment evaporator 205 and the freezing compartment evaporator 207 and other temperatures and informs the control unit 352 of the detected temperatures. Based on the detected temperatures, the control unit 352 controls the cooling operation of the refrigerator.
- the 3-way valve 310 is electrically connected to an output of the control unit 352, along with a compressor 201.
- the 3-way valve 310 and compressor 201 are controlled by the control unit 352 to implement a cooling mode and achieve a target cooling temperature set by the user.
- the operation of the control unit 352 will now be described with reference to Figures 4 and 5.
- Step 402 After completion of the cooling of the refrigerating compartment 210, the control unit 352 determines whether or not the freezing compartment 220 needs cooling. Based on this determination, the control unit 352 determines whether or not the refrigerant flow path needs to be changed from the refrigerating compartment 210 to the freezing compartment 220 (Step 404).
- Step 406 the control unit 352 changes the angular position of the stepping motor from 195° to 154°.
- This procedure is an intermediate procedure involved in a procedure in which the stepping motor is rotated to 95°.
- both the refrigerating compartment valve 310a and the freezing compartment valve 310b are open.
- the stepping motor is rotated to the 95° position without any delay in the intermediate procedure, thereby closing the refrigerating compartment valve 310a while opening only the freezing compartment valve 310b to cool only the freezing compartment 220 (Step 408).
- the time, for which both of the valves 310a, 310b are open is minimized during the change of the refrigerant flow path from the refrigerating compartment 210 to the freezing compartment 220. Accordingly, it is possible to reduce the degree of concentration of the refrigerant from the refrigerating compartment evaporator 205 to the freezing compartment evaporator 207.
- Step 502 After completion of the cooling of the freezing compartment 220, it is determined whether or not the refrigerating compartment 210 needs to be cooled. Based on this determination, it is then determined whether or not the refrigerant flow path needs to be changed from the freezing compartment 220 to the refrigerating compartment 210 (Step 504).
- Step 506 When it is necessary to change the refrigerant flow path from the freezing compartment 220 to the refrigerating compartment 210, the angular position of the stepping motor is changed from 95° to 154° (Step 506).
- This procedure is an intermediate procedure involved in a procedure in which the stepping motor is rotated to 195°.
- a simultaneous opening stage in which both the refrigerating compartment valve 310a and the freezing compartment valve 310b are both open, is established. Where the refrigerant flow path is to be changed from the freezing compartment 220 to the refrigerating compartment 210, the simultaneous opening stage established in the intermediate procedure is continued for a predetermined time (for example, 10 seconds).
- both the refrigerating compartment valve 310a and the freezing compartment valve 310b are open for the predetermined time (Step 508).
- both of the valves 310a and 310b are open for the predetermined time during the change of the refrigerant flow path from the freezing compartment 220 to the refrigerating compartment 210, as described above, the refrigerant concentrated to the freezing compartment evaporator 220 can sufficiently flow toward the refrigerating compartment evaporator 210.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Electrically Driven Valve-Operating Means (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20040019700 | 2004-03-23 | ||
KR2004019700 | 2004-03-23 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1580496A2 true EP1580496A2 (fr) | 2005-09-28 |
EP1580496A3 EP1580496A3 (fr) | 2005-11-23 |
EP1580496B1 EP1580496B1 (fr) | 2008-01-09 |
Family
ID=34858876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04103085A Expired - Lifetime EP1580496B1 (fr) | 2004-03-23 | 2004-06-30 | Pompe à chaleur |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050210898A1 (fr) |
EP (1) | EP1580496B1 (fr) |
KR (1) | KR100648943B1 (fr) |
CN (1) | CN1673653A (fr) |
DE (1) | DE602004011180T2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2218986A3 (fr) * | 2009-02-16 | 2016-01-06 | BSH Hausgeräte GmbH | Appareil frigorifique doté de plusieurs compartiments |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080190123A1 (en) * | 2004-08-19 | 2008-08-14 | Hisense Group Co. Ltd. | Refrigerator Having Multi-Cycle Refrigeration System And Control Method Thereof |
JP2007183020A (ja) * | 2006-01-05 | 2007-07-19 | Matsushita Electric Ind Co Ltd | 能力可変式空気調和機 |
KR100863041B1 (ko) * | 2006-11-10 | 2008-10-13 | 엘지전자 주식회사 | 냉장고 제어방법 |
KR100909865B1 (ko) * | 2008-01-10 | 2009-08-14 | 주식회사 성영루디스 | 냉장고의 냉장 냉동 사이클 제어방법 |
KR101666428B1 (ko) * | 2009-12-22 | 2016-10-17 | 삼성전자주식회사 | 냉장고 및 그 운전제어방법 |
KR101705528B1 (ko) * | 2010-07-29 | 2017-02-22 | 엘지전자 주식회사 | 냉장고 및 냉장고 제어 방법 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999042771A1 (fr) * | 1998-02-20 | 1999-08-26 | Matsushita Refrigeration Company | Refrigerateur |
JP2002213626A (ja) * | 2001-01-23 | 2002-07-31 | Saginomiya Seisakusho Inc | 電動式切換弁および冷凍・冷蔵庫用の冷凍サイクル装置 |
EP1233219A1 (fr) * | 2000-08-11 | 2002-08-21 | Kabushiki Kaisha Saginomiya Seisakusho | Clapet selecteur motorise et dispositif a cycle frigorifique pour combine refrigerateur-congelateur |
EP1394481A2 (fr) * | 2002-08-31 | 2004-03-03 | Samsung Electronics Co., Ltd. | Réfrigérateur |
EP1426711A2 (fr) * | 2002-12-04 | 2004-06-09 | Samsung Electronics Co., Ltd. | Appareil de refroidissement et son procédé de commande |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200265115Y1 (ko) * | 1996-04-23 | 2002-11-13 | 엘지전자주식회사 | 냉장고의냉동싸이클장치 |
JPH11311473A (ja) * | 1998-04-28 | 1999-11-09 | Toshiba Corp | 冷蔵庫の制御方法 |
JP3462156B2 (ja) * | 1999-11-30 | 2003-11-05 | 株式会社東芝 | 冷蔵庫 |
US6672089B2 (en) * | 2000-10-12 | 2004-01-06 | Lg Electronics Inc. | Apparatus and method for controlling refrigerating cycle of refrigerator |
-
2004
- 2004-04-01 US US10/814,799 patent/US20050210898A1/en not_active Abandoned
- 2004-06-16 CN CNA2004100495528A patent/CN1673653A/zh active Pending
- 2004-06-30 DE DE602004011180T patent/DE602004011180T2/de not_active Expired - Lifetime
- 2004-06-30 EP EP04103085A patent/EP1580496B1/fr not_active Expired - Lifetime
-
2005
- 2005-03-16 KR KR1020050021920A patent/KR100648943B1/ko not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999042771A1 (fr) * | 1998-02-20 | 1999-08-26 | Matsushita Refrigeration Company | Refrigerateur |
EP1233219A1 (fr) * | 2000-08-11 | 2002-08-21 | Kabushiki Kaisha Saginomiya Seisakusho | Clapet selecteur motorise et dispositif a cycle frigorifique pour combine refrigerateur-congelateur |
JP2002213626A (ja) * | 2001-01-23 | 2002-07-31 | Saginomiya Seisakusho Inc | 電動式切換弁および冷凍・冷蔵庫用の冷凍サイクル装置 |
EP1394481A2 (fr) * | 2002-08-31 | 2004-03-03 | Samsung Electronics Co., Ltd. | Réfrigérateur |
EP1426711A2 (fr) * | 2002-12-04 | 2004-06-09 | Samsung Electronics Co., Ltd. | Appareil de refroidissement et son procédé de commande |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 11, 6 November 2002 (2002-11-06) -& JP 2002 213626 A (SAGINOMIYA SEISAKUSHO INC), 31 July 2002 (2002-07-31) * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2218986A3 (fr) * | 2009-02-16 | 2016-01-06 | BSH Hausgeräte GmbH | Appareil frigorifique doté de plusieurs compartiments |
Also Published As
Publication number | Publication date |
---|---|
EP1580496A3 (fr) | 2005-11-23 |
EP1580496B1 (fr) | 2008-01-09 |
KR20060043709A (ko) | 2006-05-15 |
DE602004011180D1 (de) | 2008-02-21 |
KR100648943B1 (ko) | 2006-11-27 |
DE602004011180T2 (de) | 2008-12-24 |
US20050210898A1 (en) | 2005-09-29 |
CN1673653A (zh) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7441413B2 (en) | Refrigerator and control method thereof | |
US6931870B2 (en) | Time division multi-cycle type cooling apparatus and method for controlling the same | |
EP1394481B1 (fr) | Réfrigérateur | |
US20070068193A1 (en) | Refrigerator and method for controlling operation of the same | |
KR100648943B1 (ko) | 냉장고 및 그 제어 방법 | |
KR100638103B1 (ko) | 냉각 장치 | |
US20200263916A1 (en) | Refrigeration machine | |
KR102617277B1 (ko) | 냉장고 및 그의 제어방법 | |
JP4333586B2 (ja) | 冷凍サイクル装置およびその制御方法 | |
JP2000304397A (ja) | 冷温蔵装置 | |
JPS6350628B2 (fr) | ||
JPH09264649A (ja) | 冷蔵庫の制御方法 | |
KR100863041B1 (ko) | 냉장고 제어방법 | |
AU2005201546B2 (en) | Refrigerator and control method thereof | |
KR100390437B1 (ko) | 2개의 증발기가 설치된 냉장고의 운전 제어 방법 | |
JP2003139459A (ja) | 冷蔵庫 | |
JP2002031459A (ja) | 冷蔵庫 | |
KR20070068932A (ko) | 냉장고의 제어방법 | |
KR100366449B1 (ko) | 3방향밸브의 제어장치 및 제어방법 | |
KR100531365B1 (ko) | 2개의 증발기가 구비된 냉각시스템의 운전제어방법 | |
KR20080048818A (ko) | 냉장고 및 그 제어방법 | |
JPH09159292A (ja) | 空気調和機の制御装置 | |
JPH11182945A (ja) | 冷凍装置 | |
JPS6350630B2 (fr) | ||
JPS6350629B2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060201 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SAMSUNG ELECTRONICS CO., LTD. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BAE, HAK GYUN Inventor name: SEO, EUNG RYEOL |
|
REF | Corresponds to: |
Ref document number: 602004011180 Country of ref document: DE Date of ref document: 20080221 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20081010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080616 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20080429 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170522 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602004011180 Country of ref document: DE Representative=s name: WUNDERLICH & HEIM PATENTANWAELTE PARTNERSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004011180 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190101 |