EP1576669A1 - Integrierte leistungsschaltkreise - Google Patents

Integrierte leistungsschaltkreise

Info

Publication number
EP1576669A1
EP1576669A1 EP03780365A EP03780365A EP1576669A1 EP 1576669 A1 EP1576669 A1 EP 1576669A1 EP 03780365 A EP03780365 A EP 03780365A EP 03780365 A EP03780365 A EP 03780365A EP 1576669 A1 EP1576669 A1 EP 1576669A1
Authority
EP
European Patent Office
Prior art keywords
trench
wafer
high voltage
insulating material
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03780365A
Other languages
English (en)
French (fr)
Inventor
Philip Mawby
Peter Igic
Paul Holland
Thomas Starke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Electronics Design Centre
Original Assignee
Power Electronics Design Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0228755A external-priority patent/GB0228755D0/en
Priority claimed from GB0228754A external-priority patent/GB0228754D0/en
Application filed by Power Electronics Design Centre filed Critical Power Electronics Design Centre
Publication of EP1576669A1 publication Critical patent/EP1576669A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76283Lateral isolation by refilling of trenches with dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • This invention relates to semiconductor devices and technology and, more precisely, to power integrated circuit technology.
  • PICs Power Integrated Circuits
  • LDMOSFET Lateral Doubled Diffused power MOSFET transistors or the lateral IGBT are typically used.
  • bipolar - CMOS-DMOS allow the integration of a single DMOS transistor with low- voltage control functionality.
  • the DMOS is a vertical device with a drain contact on the backside of the wafer. This technology is extensively used at higher voltages, but at lower voltages or where several devices are needed alternatives such as the JI- LDMOS solution are sought.
  • the vertical power devices have bottom contacts (drain - VDMOSFET, Anode - IGBT), these making integration of the more than one device impossible using existing isolation techniques.
  • Some designers use very deep sinkers to bring those contacts on the wafer top surface, the manufacture of those deep sinkers being a limiting factor.
  • an integrated circuit comprising a semiconductor wafer having a front or upper surface and an opposing rear or bottom surface, the circuit further comprising a first trench in the rear or bottom surface of the wafer which defines a membrane in or on which one or more low voltage circuits or components are provided, said first, trench being at least partially covered or filled with an insulating material, a second trench in the front or upper surface of the wafer, said second trench being in communication with said insulating material, and at least one high voltage circuit or device provided in or on said semiconductor wafer, said second trench being provided between said membrane and said high voltage circuit or device so as to isolate them from each other.
  • a method of fabricating an integrated circuit comprising the steps of providing a semiconductor wafer having a front or upper surface and an opposing rear or bottom surface, forming a first trench in said rear or bottom surface of said wafer which defines a membrane, providing one or more low voltage circuits or components in or on said membrane, at least partially covering or filling said first trench with an insulating material, and providing at least one high voltage circuit or device in or on said wafer, forming a second trench in said front or upper surface of said wafer between said membrane and said high voltage circuit or device such that said second trench is in communication with said first trench and isolates said one or more low voltage circuits or components and said high voltage circuit or device from each other.
  • a method of isolating a high voltage power device and a low voltage circuit provided on a semiconductor wafer from each other comprising the steps of forming a first trench in a rear or bottom surface of said wafer so as to define a membrane in or on which said low voltage circuit or component is provided, at least partially covering or filling said first trench with an insulating material, and forming a second trench in a front or upper surface of the wafer between said high voltage power device and said low voltage circuit or component such that said second trench is in communication with said first trench and said high voltage power device and said low voltage circuit or component are isolated from each other.
  • an integrated circuit comprising a semiconductor wafer having a front or upper surface and an opposing rear or bottom surface, the circuit further comprising a first trench in the rear or bottom surface of the wafer on either side of which is provided a respective first and second high voltage power devices, said first trench being at least partially covered or filled with an insulating material, a second trench in the front or upper surface of the wafer, said second trench being located between said first and second high voltage power devices and in communication with said insulating material, so as to dielectrically isolate said first and second high voltage power devices from each other.
  • a method of fabricating an integrated circuit comprising the steps of providing a semiconductor wafer having a front or upper surface and an opposing rear or bottom surface, forming a first trench in said rear or bottom surface of said wafer, providing respective first or second high voltage power devices on either side of said first trench, at least partially covering or filling said first trench with an insulating material, forming a second trench in said front or upper surface of said wafer between said first and second high voltage high voltage power devices such that said second trench is in communication with said first trench and isolates said first and second high voltage power devices from each other.
  • a method of isolating first and second high voltage power devices provided on a semiconductor wafer from each other comprising the steps of forming a first trench in a rear or bottom surface of said wafer, said first and second high voltage power devices being provided on either side of said first trench, at least partially covering or filling said first trench with an insulating material, and forming a second trench in a front or upper surface of the wafer between said first and second high voltage power devices such that said second trench is in communication with said first trench and said first and second high voltage power devices are isolated from each other.
  • the method of isolation enabling dielectric isolation of the high voltage power devices from the low voltage control and protection circuitry (typically comprised of CMOS or BiCMOS devices) and from adjacent devices (i.e. each other), and also enabling the multiple power devices and the low voltage control logic to be fabricated simultaneously to form a monolithic integrated circuit, and all of this at an acceptably low processing cost.
  • the low voltage control and protection circuitry typically comprised of CMOS or BiCMOS devices
  • adjacent devices i.e. each other
  • the first trench is relatively significantly deeper than the second trench, and is preferably substantially completely covered and/or filled with an insulating material. It will be appreciated that the first trench may be etched to form a membrane in the conventional MEMS processes.
  • the second trench is preferably also at least partially covered or filled with an insulating material.
  • the power devices would typically (but not necessarily exclusively) be vertical power transistors, such as vertical IGBT's, vertical trench IGBT's, VDMOSFET's, trench MOSFET's, and the like.
  • PICS Power Integrated Circuits
  • high voltage/power devices are fabricated on a common semiconductor substrate (usually silicon) used for low voltage logic circuits.
  • a very complex functionality of the power IC is combined with higher switching speed, higher reliability, and less weight and size.
  • pure bipolar technologies were used for power ICs implementation.
  • Lateral DMOSFETs are preferably used because of their fast switching characteristics and the possibility of controlling them by voltage rather than current.
  • Conventional LDMOSFETs are used for up to 100V applications.
  • the introduction of Reduced Surface Field devices (RESURF LDMOSFET) in the early eighties made these devices applicable for the higher voltage applications (up to 700V).
  • RESURF LDMOSFET Reduced Surface Field devices
  • JI Junction Isolation
  • IGBT devices For applications higher than 700V, IGBT devices have to be integrated with the low voltage circuitry. Full integration of the lateral IGBT devices is a much more complex task since a high level of the minority carriers injected into the substrate will lead to interference with a low voltage (logic) circuits for junction isolated devices.
  • SOI silicon oxide
  • SOI-SDVIOX SOI- Wafer Bonding
  • SOI-Unibond can be employed to adequately protect low voltage devices from carrier injection. Consequently, sol devices have very low interference between adjacent devices, high speed and low area consumption, but they are more expensive, and they involve self-heating problems (thermal conductivity of the silicon-dioxide is about 100 times larger than silicon).
  • an integrated circuit comprising a semiconductor wafer comprising upper and lower layers of semiconductor material bonded together with a layer of insulating material therebetween, said wafer having a front or upper surface and an opposing rear or bottom surface, the circuit further comprising a trench in the rear or bottom surface of the wafer which trench extends into the lower layer of semiconductor material but does not extend beyond said layer of insulating material, said trench being at least partially covered or filled with an insulating material, said lower layer of semiconductor material being for receiving one or more high voltage power devices adjacent said trench and said upper layer of semiconductor material being for receiving one or more low voltage circuits or components, said layer of insulating material providing electrical insulation between said upper and lower layers.
  • a method of fabricating an integrated circuit comprising the steps of providing a semiconductor wafer comprising upper and lower layers of semiconductor material bonded together with a layer of insulating material therebetween, said wafer having a front or upper surface and an opposing rear or bottom surface, the method further comprising the steps of forming a trench in the rear or bottom surface of the wafer which extends into the lower layer of semiconductor material but does not extend beyond said layer of insulating material, at least partially covering or filling said trench with an insulating material, providing one or more high voltage power devices in or on said lower layer of semiconductor material adj acent said trench and providing one or more low voltage circuits or components in or on said upper layer of semiconductor material, said layer of insulating material providing electrical insulation between said upper and lower layers.
  • a method of isolating from each other a high voltage power device and a low voltage circuit provided on a semiconductor wafer comprising upper and lower layers of semiconductor material bonded together with a layer of insulating material there between, wherein at least one high voltage power device is provided in or on said lower layer of semiconductor material and at least one low voltage circuit or component is provided in or on said upper layer of semiconductor material, the method comprising the steps of forming a trench in a rear or bottom surface of said wafer which extends into the lower layer of semiconductor material but does not extend beyond said layer of insulating material, and at least partially covering or filling said first trench with an insulating material.
  • the third aspect of the present invention it is possible to integrate one or more vertical power devices (and, more particularly, high voltage power transistors and the like) into the same integrated circuit, with the method of isolation enabling dielectric isolation of the high voltage power devices from the low voltage control and protection circuitry (typically comprised of CMOS or BiCMOS devices) and from adjacent devices (i.e. each other), and also enabling the multiple power devices and the low voltage control logic to be fabricated simultaneously to form a monolithic integrated circuit, and all of this at an acceptably low processing cost.
  • the low voltage control and protection circuitry typically comprised of CMOS or BiCMOS devices
  • adjacent devices i.e. each other
  • the power devices would typically (but not necessarily exclusively) be vertical power transistors, such as vertical IGBT's, vertical trench IGBT's, VDMOSFET's, trench MOSFET's, and the like. It is preferred that the trench extends up to but not beyond the layer of insulating material and is substantially completely covered and/or filled with an insulating material, such that high voltage power devices provided in the lower layer of semiconductor material, on either side of the trench, are completely isolated from each other by the trench and from the low voltage circuitry provided in the upper layer of semiconductor material by the layer of insulating material.
  • the trench may be etched by, for example, wet chemical etching, reactive ion etching (RIE), or the like, and preferably tapers inwardly from the bottom surface of the wafer up.
  • RIE reactive ion etching
  • the layer of insulation material provides a natural etch stop layer.
  • the upper layer of semiconductor material may be etched to form one or more semiconductor islands, in or on which the low voltage circuitry may be provided (for example, CMOS or BiCMOS circuitry is preferred).
  • Figure 1 is a schematic perspective view of a semiconductor wafer
  • Figure 2 is a schematic perspective view of the semiconductor wafer of Figure 1 after the first trench has been formed in the rear or bottom surface thereof;
  • Figure 3 is a schematic perspective view of the semiconductor wafer of Figure 2 after the first trench has been covered with an insulating material;
  • Figure 4 is a schematic perspective view of the semiconductor wafer of Figure 3 after the first trench has been filled with an insulating material
  • Figure 5 is a partial schematic cross-sectional view of the semiconductor wafer of Figure 4 after a second trench has been formed in the front or upper surface thereof;
  • Figure 6 is a schematic perspective view of the semiconductor wafer of Figure 5 after the second trench has been filled with an insulating material
  • Figure 7 is a schematic perspective view of an integrated circuit according to an exemplary embodiment of the present invention.
  • Figure 8 is a partial schematic cross-sectional view of an integrated circuit according to a first specific exemplary embodiment of the present invention.
  • Figure 9 is a partial schematic cross-sectional view of an integrated circuit according to a second exemplary embodiment of the present invention.
  • Figure 10 is a partial schematic cross-sectional view of an integrated circuit according to a third exemplary embodiment of the present invention.
  • Figure 11 is a partial schematic cross-sectional view of an integrated circuit according to a fourth exemplary embodiment of the present invention.
  • Figure 12 is a schematic perspective view of a semiconductor (SOI) wafer
  • Figure 13 is a schematic perspective view of the semiconductor wafer of Figure 12 after two trenches have been formed in the rear or bottom surface thereof;
  • Figure 14 is a schematic perspective view of the semiconductor wafer of Figure 13 after the trenches have been covered with an insulating material;
  • Figure 15 is a schematic perspective view of the semiconductor wafer of Figure 14 after the trenches have been filled with another material;
  • Figure 16 is a schematic perspective view of the semiconductor wafer of Figure 15 after the upper layer of semiconductor material has been etched;
  • Figure 17 is a schematic cross-sectional view of an integrated circuit according to a specific exemplary embodiment of the present invention.
  • Figure 18 is a schematic cross-sectional view of an integrated circuit according to another exemplary embodiment of the present invention.
  • Figure 19 is a schematic cross-sectional view of an integrated circuit according to yet another exemplary embodiment of the present invention.
  • Figure 20 is a schematic cross-sectional view of an integrated circuit according to yet another exemplary embodiment of the present invention.
  • Figure 21 is a schematic plan view of a semiconductor chip according to an exemplary embodiment of the invention.
  • the starting material for an integrated circuit according to the invention is a semiconductor wafer 1.
  • a silicon membrane 2 is formed in the wafer 1 by etching, and low voltage logic circuitry can be provided, either partially or completely in the membrane 2, whereas the power device area 10 remains intact and is reserved for a vertical power device.
  • the trench formed to provide the membrane 2 is covered with an insulating material 3 and then filled with another material 4, such as another insulating material, glass or metal.
  • a second trench 12 is etched in the upper surface of the semiconductor wafer- 1 until it reaches the layer 3 of insulating material covering the first trench.
  • the second trench 12 is then filled with an insulating material, such that the low voltage area (provided by the membrane 2) is completely isolated from the power device area (in which a vertical power device is provided).
  • This process can, of course, be extended to three or more vertical power devices, as required. It will be appreciated that the devices 10 are completely isolated from each other as well as the low voltage circuitry.
  • Figure 8 of the drawings illustrates an integrated circuit according to a first specific exemplary embodiment of the present invention, in which a vertical IGBT 10 is integrated with the low voltage CMOS circuitry 20.
  • Figure 9 illustrates an integrated circuit according to a second specific exemplary embodiment of the present invention, in which a vertical trench IGBT 10 is integrated with the low voltage CMOS circuitry 20.
  • Figure 10 illustrates an integrated circuit according to a third specific exemplary embodiment of the present invention, in which a VDMOSFET 10 is integrated with the low voltage CMOS circuitry 20.
  • Figure 11 illustrates an integrated circuit according to a fourth specific exemplary embodiment of the present invention, in which a vertical trench MOSFET 10 is integrated with the low voltage CMOS circuitry 20.
  • the starting material for an integrated circuit is a semiconductor (SOI) wafer 1, comprising a first, lower layer 100 of semiconductor material (typically silicon), a second layer 102 of insulating material (typically silicon oxide) and a third, upper layer of semiconductor material (again, typically silicon).
  • SOI semiconductor
  • Trenches 2 are formed by, for example, wet chemical etching, or reactive ion etching in the lower layer 100 of semiconductor material up to the insulating layer 102, which may be used as a natural etch stop layer.
  • the trenches 2 are covered with an insulating material 3 and then filled with another material 4, such as another insulating material, glass or metal.
  • the upper layer 104 of semiconductor material is etched to form semiconductor islands 5, inside which low voltage (for example BiCMOS) circuitry can be completely provided.
  • low voltage for example BiCMOS
  • FIG. 17 of the drawings illustrates a structure in which two vertical IGBT's 10 are monolithically integrated with CMOS low voltage devices 20. It will be appreciated that the vertical power devices are completely isolated from each other and from the low voltage circuits.
  • Figure 18 of the drawings illustrates a structure in which two trench IGBT's 10 are monolithically integrated with CMOS low voltage devices 20. It will be appreciated once again that the vertical power devices are completely isolated from each other and from the low voltage circuits.
  • Figure 19 of the drawings illustrates a structure in which two vertical DMOSFET's 10 are monolithically integrated with CMOS low voltage devices 20. Once again, it will be appreciated that the vertical power devices are completely isolated from each other and from the low voltage circuits.
  • Figure 20 of the drawings illustrates a structure in which two vertical trench MOSFET's 10 are monolithically integrated with CMOS low voltage devices 20. It will once again be appreciated that the vertical power devices are completely isolated from each other and from the low voltage circuits.
  • Figure 21 is a schematic plan view of a semiconductor chip according to an exemplary embodiment of the first, second or third aspects of the present invention.
  • the two top trenches 6 and 7 have been designed to create five semiconductor regions 1, 2, 3, 4 and 5 (although it will be appreciated by a person skilled in the art that any other combination can be assumed).
  • a vertical device Inside each of the semiconductor regions 1 -5, a vertical device, one or more lateral devices, or CMOS circuitry can be placed. Isolation amongst the regions 1, 2, 3, 4 and 5 is achieved in combination by the present invention between the top trenches 6 and 7, the cut lines (kerfs) 8, 9, 10, and 11 , and the bottom (back) trenches (not shown in the figure).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)
EP03780365A 2002-12-10 2003-12-09 Integrierte leistungsschaltkreise Withdrawn EP1576669A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0228755A GB0228755D0 (en) 2002-12-10 2002-12-10 Power integrated circuits
GB0228755 2002-12-10
GB0228754 2002-12-10
GB0228754A GB0228754D0 (en) 2002-12-10 2002-12-10 Power integrated circuits
PCT/GB2003/005367 WO2004053993A1 (en) 2002-12-10 2003-12-09 Power integrated circuits

Publications (1)

Publication Number Publication Date
EP1576669A1 true EP1576669A1 (de) 2005-09-21

Family

ID=32510404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780365A Withdrawn EP1576669A1 (de) 2002-12-10 2003-12-09 Integrierte leistungsschaltkreise

Country Status (3)

Country Link
EP (1) EP1576669A1 (de)
AU (1) AU2003288446A1 (de)
WO (1) WO2004053993A1 (de)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE445254T1 (de) 2003-05-06 2009-10-15 Enecsys Ltd Stromversorgungsschaltungen
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
EP1617476A3 (de) * 2004-07-16 2007-12-26 Power Electronics Design Centre Vertikale Integration in integrierten Leistungsschaltkreisen
WO2006048689A2 (en) * 2004-11-08 2006-05-11 Encesys Limited Integrated circuits and power supplies
DE102005002023B4 (de) * 2005-01-15 2007-08-16 Atmel Germany Gmbh Halbleiterstruktur mit vertikalem JFET
DE102005046624B3 (de) * 2005-09-29 2007-03-22 Atmel Germany Gmbh Verfahren zur Herstellung einer Halbleiteranordnung
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP4087416B2 (ja) * 2006-04-06 2008-05-21 シャープ株式会社 パワーicデバイス及びその製造方法
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
WO2008152911A1 (ja) * 2007-06-08 2008-12-18 Panasonic Electric Works Co., Ltd. 半導体装置とその製造方法
US8278731B2 (en) 2007-11-20 2012-10-02 Denso Corporation Semiconductor device having SOI substrate and method for manufacturing the same
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
EP2232690B1 (de) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel geschaltete umrichter
CN101933209B (zh) 2007-12-05 2015-10-21 太阳能安吉有限公司 分布式电力装置中的安全机构、醒来和关闭方法
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP3506370B1 (de) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass-mechanismus
EP2887387A1 (de) * 2013-12-20 2015-06-24 Nxp B.V. Halbleitervorrichtung und zugehöriges Verfahren
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11830778B2 (en) * 2020-11-12 2023-11-28 International Business Machines Corporation Back-side wafer modification

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5138422A (en) * 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip
JP2788269B2 (ja) * 1988-02-08 1998-08-20 株式会社東芝 半導体装置およびその製造方法
EP1319252B1 (de) * 2000-09-21 2012-02-15 Cambridge Semiconductor Limited Halbleiterbauelement und dessen herstellungsverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004053993A1 *

Also Published As

Publication number Publication date
WO2004053993A1 (en) 2004-06-24
AU2003288446A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
WO2004053993A1 (en) Power integrated circuits
US10431598B2 (en) Vertical semiconductor device with thinned substrate
US10079230B2 (en) Double-sided vertical semiconductor device with thinned substrate
JP5392959B2 (ja) 半導体デバイスおよび半導体デバイスを形成する方法
KR100311589B1 (ko) 고 전압용 반도체 부품
CN104221147B (zh) 半导体集成电路装置
WO2006109265A1 (en) Semiconductor device and method for manufacture
US7772652B2 (en) Semiconductor component arrangement having a first and second region
US8115273B2 (en) Deep trench isolation structures in integrated semiconductor devices
EP3961722A1 (de) Vorrichtung zur erweiterung der betriebsspannung
US6525392B1 (en) Semiconductor power device with insulated circuit
EP1617476A2 (de) Vertikale Integration in integrierten Leistungsschaltkreisen
KR100265049B1 (ko) 에스.오.아이 소자의 모스 전계효과 트랜지스터 및제조방법
AU2006200447B2 (en) Semiconductor device and method of forming a semiconductor device
KR100268866B1 (ko) 반도체 소자 및 이의 제조방법
Rotter et al. High-voltage devices (> 600 V) produced with a low-voltage (< 150 V) smart-power IC-technology
KR960015944A (ko) 횡방향 고속 바이폴라 트랜지스터 및 그의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050707

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060303