EP1576331B1 - Condenseur avec systeme de deaeration/degazage pour centrale thermique - Google Patents

Condenseur avec systeme de deaeration/degazage pour centrale thermique Download PDF

Info

Publication number
EP1576331B1
EP1576331B1 EP03798937A EP03798937A EP1576331B1 EP 1576331 B1 EP1576331 B1 EP 1576331B1 EP 03798937 A EP03798937 A EP 03798937A EP 03798937 A EP03798937 A EP 03798937A EP 1576331 B1 EP1576331 B1 EP 1576331B1
Authority
EP
European Patent Office
Prior art keywords
condensate
condenser
power plant
plant condenser
deaeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03798937A
Other languages
German (de)
English (en)
Other versions
EP1576331A1 (fr
Inventor
Francisco Blangetti
Hartwig E. Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1576331A1 publication Critical patent/EP1576331A1/fr
Application granted granted Critical
Publication of EP1576331B1 publication Critical patent/EP1576331B1/fr
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Definitions

  • the invention relates to the field of power plant technology. It relates to a power plant condenser with a venting / degassing system according to the preamble of claim 1.
  • Power plant capacitors are devices that result in the reduction of the backpressure of steam boilers by reducing the exhaust steam. They have the task to dissipate the not converted into electricity heat of the steam to the environment.
  • Turbine steam flows during operation of the power plant via an inlet, the condenser neck, in the condensation chamber, where it is on the outside the condenser tubes, which are traversed by a coolant, usually cooling water, is deposited.
  • a coolant usually cooling water
  • the resulting condensate is collected in a condensate collection vessel, the Hotwell, in the lower part of the condenser and fed back into the water-steam circuit by means of condensate pumps. It passes through the preheater and the feedwater pipe into the boiler, where it is vaporized again and drives the turbines as working steam.
  • the capacity of the condenser significantly influences the efficiency of the entire system and thus the generator output via the turbine counterpressure.
  • deaerators or deaerators are used, which are connected to the capacitors so that they aspirate a gas / vapor mixture at a point of the lowest possible vapor pressure and the highest possible gas concentration from the condensation space of the capacitors.
  • the reason for this measure lies in the deterioration of the condensation performance and thus the condensation pressure in power plants caused by the reduction of the heat transfer coefficient due to the presence of even low concentrations of non-condensable components, which are also referred to as inert gases.
  • Air coolers are funnel-shaped sheet metal structures in the pipe network. They cause a spatial acceleration of the steam / inert gas mixture, so that the steam velocity at the pipe web by the self-sucking effect of the condensation and the suction system does not fall too low and remains in the range of 2-3 m / s. This partially reduces the negative effect of the non-condensable gases.
  • the condensation capacity is typically 20-30 kW / m 2 in the Hauptkondensatorberohrung, it can sink in the pre-cooler and air cooler space to 0.3-0.5 kW / m 2 . This corresponds to a reduction of the heat flux densities by one and a half orders of magnitude.
  • a disadvantage of this known state of the art is that in power plants often insufficient suction capacity occurs, especially in the capacitor retrofitting of boiling water reactors with simultaneous increase in power. Then the existing suction capacity is usually no longer sufficient for the newly set pressure and the current thermal performance.
  • DE 199 24 853 A1 discloses a capacitor module system with a device for warming up and degassing make-up water, which is arranged between the module walls of the capacitor modules and in which the make-up water flows in direct contact in countercurrent to the turbine exhaust steam.
  • the aim of the invention is to avoid the mentioned disadvantages of the prior art.
  • the invention is based on the object to develop a power plant condenser with a venting / degassing, with which it is possible with converted capacitors even with new pressure and increased thermal performance sufficient suction power with the original Saugeraggregat, d. H. So without replacement / conversion of the original Saugeraggregates to achieve.
  • the pressure loss is to be reduced via the suction line and cavitation problems are avoided especially in Saugeraggregaten with water ring pumps and water jet pumps.
  • this object is in a power plant condenser, which has a condensate collection and optionally an air cooler, and a venting / degassing with an externally arranged Saugeraggregat and a suction line for a vapor / inert gas mixture, wherein said suction line the condenser or in the presence of an air cooler the Llustkühler of the condenser with the Saugeraggregat connects, solved in that in said suction line, a device for direct contact condensation is arranged, which can be flowed through by direct contact of the vapor / inert gas in countercurrent to erkaltetem condensate from the condensate collector.
  • the advantages of the invention are that it is possible with the inventive system to achieve an enrichment of the concentration of the non-condensable components while reducing the mass / volume flow of the suction mixture.
  • a sufficient suction power can be achieved with the original vacuum unit, ie without replacement / retrofitting of the original vacuum unit.
  • the pressure loss via the suction line is reduced, because the volume flow reduced.
  • Cavitation problems especially with suction units with water ring pumps and water jet pumps are avoided because the gas mixture is removed from the cavitation boundary.
  • Further advantages are that the resistances of the wall and fouling, which worsen the heat transfer coefficient, are eliminated by the direct contact condensation. Due to the constant destruction / new formation of the material and temperature boundary layers in the device for direct contact condensation (start-up conditions) can be achieved in both phases by the flow deflection good transport performance.
  • the device for direct contact condensation consists of at least one packed column. Further advantageous alternatives are step / ground contact devices or spray devices.
  • the device for direct contact condensation is installed outside the capacitor. If sufficient space is available, the device may also be arranged inside the capacitor.
  • the condensate collecting vessel branches off a first condensate line with a condensate pump arranged therein, downstream of the condensate pump from the first condensate line branches off a second condensate line which is connected to a flowed through by cooling water tube or plate heat exchanger, in which the condensate to a temperature is cooled near the cooling water inlet temperature, and if from the tube or plate heat exchanger, a third condensate line for the cooled condensate to the device for direct contact condensation.
  • liquid distribution devices such as a spray device, are arranged.
  • the condensate is guided in such a way, that is branched off after the condensate pump and passed to the condenser using the recirculation line, it is advantageously ensured that even when starting or in partial load operation Minimum quantity is available. In addition, the required amount of condensate is very small.
  • the cooling of the condensate from the condensation temperature to about the cooling water inlet temperature can be particularly well realized in tube or Plattenabiaschreibtragem.
  • the device for direct contact condensation has a siphon for the condensate mixture from the recirculated cold condensate and condensate newly formed in the device and the siphon opens into the condenser such that a venting of the condensate mixture takes place as a wet wall column.
  • composition of the mixture can be controlled by changing the cold condensate stream and / or its temperature.
  • the condenser 1 has a condenser neck 2, a vapor dome 3, condenser tubes 5 arranged in the condenser space 4 and an air cooler 6 and an inlet water chamber 7, an outlet water chamber 8 and a condensate collecting tank 9 (hot well). From the condensate collecting 9 branches off a first condensate line 10, in which a condensate pump 11 is arranged.
  • a throttle device for regulating the condensate mass flow and reducing the pressure of about 40-50 bar is arranged at 2-3 bar, which is very important for the plate heat exchanger 13.
  • the outlet of the plate heat exchanger 13 is connected to a third condensate line 14, which leads to a device consisting of at least one packing column 17 for direct condensation 15 and opens into the part of the device 15, which is located above the packing column 17.
  • a third condensate line 14 which leads to a device consisting of at least one packing column 17 for direct condensation 15 and opens into the part of the device 15, which is located above the packing column 17.
  • an aperture 27 is arranged, which serves to cause no two-phase flow in the water supply line.
  • a Liquid distribution device 23 for the cold condensate 24 is arranged.
  • the device 15 is arranged outside of the capacitor 1 in this embodiment.
  • the known packing column 17 consists of internals with a very large surface area. From the lower part of the device 15, which is located below the packing column 17, a siphon 18 branches off. The siphon 18 opens into the condenser 1 such that a venting of the condensate mixture takes place as a wet wall column.
  • a suction line 19 for the vapor / inert gas mixture 20 coming from the air cooler 6 opens.
  • the suction line 21 opens into the suction unit 22.
  • the suction unit 22 is a vacuum pump, for example a water jet pump, a water ring pump or a steam jet vacuum.
  • Turbine steam 25 flows through the condenser neck 2 and the steam dome 3 of the condenser 1 in the condensation space 4. Cooling water 26 is uniformly supplied via the inlet water chamber 7 to the condenser tubes 5, flows through the condenser tubes 5 and leaves via the outlet water chamber 8, the condenser 1. Auf the outer side of the condenser tubes 5 condenses the turbine exhaust steam 25 and outputs the heat of condensation to the cooling water 26 in the interior of the tubes 5 from. The resulting condensate is collected in the condensate collection 9 and fed via the line 10 by means of condensate pump 11 to the water vapor cycle again.
  • a portion of the condensate is diverted after the condensate pump 11 from the line 10 and recirculated to the condenser 1, so that when starting or at partial load, a minimum amount is present.
  • the amount of condensate required for this purpose is low. For example, it is about 3-5 kg for a ratio of 1 to 30-40 for sloshable mass flow to cold condensate for a class 300 MWe condenser.
  • the condensate attributable to the condenser 1 is supplied via the line 12 to the plate heat exchanger 13. Since this is fed with cold cooling water 25, there takes place a heat exchange. There is a cooling of the condensate from the condensation temperature to about 1 K Gravency with respect to the cooling water inlet temperature.
  • a tube heat exchanger can also be used well. In these apparatuses, however, one should provide a 100% redundancy, as an alternative to be cleaned.
  • the at least one packing column 17 is known to consist of random packings or structured packings with a very large surface area.
  • the volume-specific transfer area of the pack of a product available on the market is about 250 m 2 / m 3 .
  • a bore with an outer diameter of 24 mm and a web of 8 mm gives about 85 m 2 / m 3 .
  • the at least one packing column 17 is flowed through in direct contact in counterflow of cooled condensate 24 and the vapor / inert gas mixture 20, which is introduced from the air cooler 6 via the suction line 19 in the lower part of the device 15. Due to the direct contact and the large surface of the packing, which leads to high residence times and Turbulence lead, the heat transfer is significantly improved. The condensation of a portion of the vapor in the vapor / inert gas mixture 20 therefore occurs. The reduction of the vapor fraction reduces the total mass flow of the vapor / inert gas mixture 20, which is supplied to the suction unit 22 via the suction line 21.
  • the volumetric flow can be reduced by 35-45%, reducing the pressure loss in the suction line 21 by more than half.
  • the pressure drop across the packing is less than 1 mbar at a load factor of 1.72 at the sump end of the packing.
  • the composition of the mixture can be controlled cleanly.
  • the invention is not limited to the embodiment described.
  • the device 15 may also be arranged inside the condenser 1, if sufficient space is available, or it is possible entirely to dispense with the internal air cooler 6 in the condenser 1 due to the device 15.
  • packing columns 17 are as devices 15 also advantageous tray columns, stepped columns or simply spray devices used.
  • the plate heat exchanger and a tube heat exchanger can be arranged in the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (11)

  1. Condenseur de centrale (1) avec un système de désaération/dégazage, dans lequel le condenseur de centrale (1) présente un récipient collecteur de condensat (9) et au choix un refroidisseur à air (6), et dans lequel le système de désaération/dégazage se compose essentiellement d'une unité d'aspiration externe (22) et d'une conduite d'aspiration (19, 21) pour un mélange de vapeur/gaz inerte (20) et ladite conduite d'aspiration (19, 21) relie le condenseur (1) ou, en présence d'un refroidisseur à air (6), le refroidisseur à air (6) du condenseur (1) avec l'unité d'aspiration (22), caractérisé en ce que dans la conduite d'aspiration (19, 21) est disposé un dispositif (15) pour effectuer une condensation par contact direct, lequel est relié par le biais de conduites de condensat (10, 12, 14) au récipient collecteur de condensat (9) et lequel, pendant le fonctionnement, est parcouru par le mélange de vapeur/gaz inerte (20) en contact direct à contre-courant du condensat refroidi (24) provenant du récipient collecteur de condensat (9).
  2. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce qu'une première conduite de condensat (10) part du récipient collecteur de condensat (9) avec une pompe de condensat (11) disposée dans celle-ci, en aval de la pompe de condensat (11) de la première conduite de condensat (10) part une deuxième conduite de condensat (12), laquelle est relié à un échangeur de chaleur à plaques ou à tubes (13) parcouru par de l'eau de refroidissement, dans lequel le condensat est refroidi à une température proche de la température d'entrée de l'eau de refroidissement, et en ce qu'une troisième conduite de condensat (14) pour le condensat refroidi (24) va de l'échangeur de chaleur à tubes ou à plaques (24) au dispositif (15) pour la condensation par contact direct.
  3. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce que le dispositif (15) se compose d'au moins une colonne de garnissage (17).
  4. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce que le dispositif (15) se compose d'un appareil de contact par étages/fond.
  5. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce que le dispositif (15) se compose d'un dispositif de pulvérisation.
  6. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce que le dispositif (15) est disposé à l'extérieur du condenseur (1).
  7. Condenseur de centrale (1) selon la revendication 1, caractérisé en ce que le dispositif (15) est disposé à l'intérieur du condenseur (1).
  8. Condenseur de centrale (1) selon la revendication 3, caractérisé en ce qu'un dispositif de distribution de liquide (23) est disposé au-dessus de la colonne de garnissage (17).
  9. Condenseur de centrale (1) selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le dispositif (15) pour la condensation par contact direct présente un siphon (18) pour le mélange de condensat provenant du condensat froid recirculé (24) et du nouveau condensat formé dans le dispositif (15) et le siphon (18) débouche dans le condenseur (1) de telle sorte qu'il se produit un désaérage du mélange de condensat sous forme de colonne humide à parois.
  10. Condenseur de centrale (1) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le système de désaération/dégazage est utilisé pour des condenseurs (1) équipés en rattrapage.
  11. Condenseur de centrale (1) selon l'une quelconque des revendications 1 à 9, caractérisé en ce que le système de désaération/dégazage est utilisé pour compléter et/ou pour remplacer partiellement ou complètement le refroidisseur à air interne (6).
EP03798937A 2002-09-30 2003-09-25 Condenseur avec systeme de deaeration/degazage pour centrale thermique Expired - Fee Related EP1576331B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10245935 2002-09-30
DE10245935A DE10245935A1 (de) 2002-09-30 2002-09-30 Entlüftungs-/Entgasungssystem für Kraftwerkskondensatoren
PCT/EP2003/050658 WO2004031672A1 (fr) 2002-09-30 2003-09-25 Systeme de desaeration/degazage pour condensateurs de centrale electrique

Publications (2)

Publication Number Publication Date
EP1576331A1 EP1576331A1 (fr) 2005-09-21
EP1576331B1 true EP1576331B1 (fr) 2006-11-29

Family

ID=32049187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798937A Expired - Fee Related EP1576331B1 (fr) 2002-09-30 2003-09-25 Condenseur avec systeme de deaeration/degazage pour centrale thermique

Country Status (5)

Country Link
US (1) US7540905B2 (fr)
EP (1) EP1576331B1 (fr)
AU (1) AU2003299148A1 (fr)
DE (2) DE10245935A1 (fr)
WO (1) WO2004031672A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100199670A1 (en) 2009-02-06 2010-08-12 Siemens Energy, Inc. Power Generation Plant Having Inert Gas Deaerator and Associated Methods
DE102012108992A1 (de) * 2012-09-24 2014-06-12 Clyde Bergemann TERMOTEC GmbH Verfahren und Vorrichtung zum Betrieb eines luftgekühlten Kondensationsapparates
EP3015660B1 (fr) * 2014-10-31 2018-12-05 Orcan Energy AG Procédé pour le fonctionnement d'un cycle thermodynamique
ES2887407T3 (es) * 2017-04-11 2021-12-22 Siemens Energy Global Gmbh & Co Kg Procedimiento de mantenimiento
JP7384771B2 (ja) * 2020-09-18 2023-11-21 三菱重工業株式会社 蒸気タービンプラント、及びそのクリーニング方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1353855A (en) * 1915-11-01 1920-09-28 British Westinghouse Electric Steam-condenser apparatus
US1542544A (en) * 1920-11-26 1925-06-16 William S Elliott Separation of air and dissolved gases from liquids
FR948379A (fr) * 1947-06-04 1949-07-29 Delas Condenseurs Perfectionnements apportés à la séparation des gaz incondensables dans les condenseurs
US2626005A (en) * 1949-01-08 1953-01-20 Worthington Corp Method and apparatus for removal of ammonia in boiler feedwater systems
FR1085112A (fr) * 1953-06-18 1955-01-27 Procédé et dispositifs de désaération complémentaire pour ?seurs principaux de centrales électriques et de navires
CH640598A5 (en) 1979-09-06 1984-01-13 Sulzer Ag Steam power plant with air-cooled steam condenser
JPS58106108A (ja) * 1981-12-18 1983-06-24 Hitachi Ltd バイナリ発電プラント凝縮器の抽気装置
US5165237A (en) * 1991-03-08 1992-11-24 Graham Corporation Method and apparatus for maintaining a required temperature differential in vacuum deaerators
DE19506757A1 (de) 1995-02-27 1996-08-29 Abb Management Ag Kombikraftwerk
DE19549139A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser
DE19924853A1 (de) * 1999-05-31 2000-12-07 Asea Brown Boveri Kondensatormodul-System mit einer Apparateanordnung zum Aufwärmen und Entgasen von Zusatzwasser
EP1093836A1 (fr) * 1999-10-21 2001-04-25 ABB (Schweiz) AG Système de dégazage pour une centrale

Also Published As

Publication number Publication date
AU2003299148A1 (en) 2004-04-23
EP1576331A1 (fr) 2005-09-21
WO2004031672A1 (fr) 2004-04-15
DE50305876D1 (de) 2007-01-11
US7540905B2 (en) 2009-06-02
DE10245935A1 (de) 2004-05-19
US20060010869A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
EP0773349B1 (fr) Générateur de vapeur à hélice pour centrales
DE3622062A1 (de) Sicherheitskuehlvorrichtung mit intrinsischer sicherheit fuer einen druckwasserkernreaktor
EP0134457B1 (fr) Centrale électrique à vapeur
DE1941005A1 (de) Dampferzeuger,insbesondere fuer einen Betrieb mit fluessigem Metall oder geschmolzenen Salzen als Heizmedium
DE3717521C2 (fr)
EP0215230B1 (fr) Dispositif de dégazage de condensat dans le circuit d'une unité de production d'électricité
EP1576331B1 (fr) Condenseur avec systeme de deaeration/degazage pour centrale thermique
EP1590603B1 (fr) Refroidisseur a air pour centrales electriques et application d'un refroidisseur a air de ce type
EP0781583A2 (fr) Procédé et dispositif de chauffage et de déaération multiple de l'eau
EP0619466B1 (fr) Condenseur de vapeur
WO2003024559A1 (fr) Procede et dispositif de degazage thermique
CH625031A5 (fr)
DE1451133C2 (de) Mischkondensator
DE19712993A1 (de) Apparat zum Aufwärmen und Entgasen von Wasser
DE1909214A1 (de) Vorrichtung zur fraktionierten Destillation einer Fluessigkeit,insbesondere von Meerwasser
EP0463448A1 (fr) Procédé et dispositif de chauffage et de dégazage à multiple effet de l'eau
DE2248124A1 (de) Destillationsanlage
DE102013106329B4 (de) Verfahren und Anordnung zum Evakuieren eines Rohrleitungssystems
DE2912113C2 (de) Verfahren und Einrichtung zum Entwässern und Nacherhitzen von Dampf
EP0214934B1 (fr) Dispositif d'évaporation et installation avec un tel dispositif pour la désalinition de l'eau de mer
DE2313800C3 (de) Vorrichtung zum Aufbereiten von verunreinigtem Wasser
AT501207A1 (de) Vorrichtung zur erzeugung von reinem dampf
DE10328911A1 (de) Verdampfer-Kondensator-Wärmeübertrager
DE4140685A1 (de) Waermetauscher
DE1601113C (de) Vorrichtung zur Regelung der Kon densationsleistung und des Dampfdruckes in Kondensatoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: POWER PLANT CONDENSER WITH DEAERATION/DEGASSING SYSTEM

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50305876

Country of ref document: DE

Date of ref document: 20070111

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50305876

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 50305876

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENT- UND RECHTSANWAELTE, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190820

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190820

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305876

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200925

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523