EP1573293A2 - Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant - Google Patents

Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant

Info

Publication number
EP1573293A2
EP1573293A2 EP03767391A EP03767391A EP1573293A2 EP 1573293 A2 EP1573293 A2 EP 1573293A2 EP 03767391 A EP03767391 A EP 03767391A EP 03767391 A EP03767391 A EP 03767391A EP 1573293 A2 EP1573293 A2 EP 1573293A2
Authority
EP
European Patent Office
Prior art keywords
test bench
memory device
signal environment
detection means
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03767391A
Other languages
German (de)
English (en)
Inventor
Alexander Ketterer
Andreas LÄUFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1573293A2 publication Critical patent/EP1573293A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0264Control of logging system, e.g. decision on which data to store; time-stamping measurements

Definitions

  • the invention relates to a method for analyzing errors in a control unit of a component of a motor vehicle, the control unit being exposed to a signal environment in a test bench and an error storage device provided in the control unit being read out.
  • the invention further relates to a system for analyzing errors in a control unit of a component of a motor vehicle, comprising the control unit and a test bench which exposes the control unit installed in it to a signal environment, an error memory device provided in the control unit being readable.
  • the invention relates to a control device for controlling a component of a motor vehicle as a function of a signal environment acting on the control device with a fault memory device, via which malfunctions of motor vehicle elements can be read out.
  • Modern motor vehicles form a highly complex interplay of individual components that are increasingly controlled by electrical signals and also communicate with one another via electrical signals.
  • the individual components ⁇ separate security elements-as airbags, divekom- - plex populations, such as motors, or other devices can be assigned to controllers.
  • These control units receive a large number of signals from control units of other components connected to them and control their NEN assigned component depending on this signal environment.
  • each control unit sends its own state-identifying signals to the other control units connected to it. In many motor vehicles, this communication takes place via a so-called CAN (Control Area Network) bus, to which all control units are connected via appropriate interfaces.
  • CAN Control Area Network
  • the control units usually include a fault memory device which, in the event of a malfunction, which, for. B. is recognized based on function parameters outside a predetermined value range, make a corresponding error code accessible to the user or other vehicle components. This can be done, for example, by querying the other components or by actively sending an error message. Malfunctions can e.g. B. caused by damage to the control unit, the associated vehicle component or by a faulty signal environment.
  • the corresponding control device is usually removed, possibly together with the assigned component, and installed in a special test bench which has signal generators which expose the control device to a signal environment.
  • the signal environment is intended to simulate the real signal environment in the assembled state. By changing the signal environment, different operating states can be simulated and the function of the control device and its fault memory device can be examined.
  • a disadvantage of this known method or the system used for this or the known control devices is that the signal environment simulated by the test bench often does not “ realistically” simulate the reality of the operating case, which leads to additional errors due to the test bench. These are difficult or even impossible indistinguishable from the actual errors.
  • DE 198 57 462 AI discloses a method for optimizing the signal environment. It is based on the fact that the output signals of all control devices connected to the control device to be examined are measured and stored in different operating states and the signal generators of the test bench are then controlled according to the stored parameters.
  • test bench detection means " whether the " signal environment is generated by a test bench and, if this is the case, the current state of the fault memory device is stored and made accessible independently. This ensures that the fault memory device in the Operating errors determined can be read out and analyzed without the errors induced by the test stand environment being misinterpreted as actual errors, which could lead to incorrect conclusions. On the contrary, it is even possible to adapt the test bench environment so that the errors determined in the test bench correspond to the stored errors, which can be used to optimize the test bench environment or to identify errors in the signal environment of the control unit in the assembled state.
  • the test bench can be designed in a correspondingly simple manner, which leads to cost savings. Different control units that are exposed to different signal environments in the vehicle can also be analyzed on the same test bench.
  • the test stand detection means which can be implemented in software, for example, differentiate the test stand operation from real operation.
  • the test bench identification means determine, based on a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench. Global values such as e.g. B. speed, load, engine temperature, etc., but also more detailed variables such as slope or amplitude of electrical signals.
  • This method is particularly secure against manipulation, since it requires a very precise knowledge of the test bench characteristics.
  • it can make a very complex design of the test stand detection means or a standardized test stand design necessary. This is particularly due to the internal connection system sizes that are essential for the control of an engine or of components to one-ordinary loading 'drive to ensure the case.
  • test bench detection means is based on a separate, predetermined one Test bench signal determine whether the signal environment is generated by a test bench.
  • This method is particularly easy to implement since it only requires the transmission of a standardized signal from the test bench to the control unit.
  • this simplicity is susceptible to manipulation and abuse.
  • combinations of both alternatives can therefore be implemented.
  • test stand detection step is preceded by a monitoring step in which a decision by the test stand detection means is checked on the basis of further criteria. This provides additional security against an alleged but inaccurate detection of test bench conditions.
  • the current state of the error memory device is generally stored by writing the corresponding data into memory means provided for this purpose.
  • separate storage means can be provided, into which the values are transferred and recorded in addition to the further operation of the error storage device.
  • the costs of the additional storage means it may be more advantageous if the storage takes place while the fault storage device is deactivated. This corresponds to “freezing” the current state.
  • control device has an interface to a CAN bus. On the one hand, this enables the control device to be easily integrated into the entirety of the motor vehicle. On the other hand, data between the control unit and the test bench or other units can easily be read out and read in via such a standardized interface.
  • test stand detection means are provided in the control device to determine whether the signal environment is generated by a test stand and, if this is the case, the current state of the fault memory device can be stored and is independently accessible after storage.
  • the test stand identification means can be implemented in software, for example, and only require a suitable input option, eg. B. a CAN bus for the signals to be processed.
  • test bench identification means are able to determine, based on a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench.
  • test stand communicates a separate, predetermined test stand signal to the test stand detection means, by means of which the test stand detection means are able to determine whether the signal environment is generated by a test stand.
  • test stand detection means have superordinate monitoring means which are able to detect Divorce of the test stand detection means to be checked against other criteria.
  • the monitoring means can also be implemented in software, for example.
  • a particularly favorable embodiment of the invention provides for the current status of the error storage device to be stored while the error storage device is deactivated at the same time.
  • control unit is connected to further control units of further vehicle components in the assembled state via a CAN bus.
  • CAN bus interface required for this can also be carried out via this standardized interface for reading out the stored status data of the fault memory device.
  • test bench detection means are provided for determining whether the signal environment is generated by a test bench and, if this is the case, the current state of the fault memory device can be stored and is independently accessible after storage.
  • test bench detection means are able to determine, on the basis of a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench.
  • test stand detection means are able to determine, on the basis of a separate, predetermined test stand signal communicated by a test stand, whether the signal environment is test bench is generated.
  • the test bench detection means can be implemented in software, for example.
  • test stand detection means have superordinate monitoring means which are able to check a decision of the test stand detection means on the basis of further criteria.
  • the monitoring means can also be implemented in software, for example.
  • the current status of the error memory device is stored with simultaneous deactivation of the error memory device.
  • FIG. 1 shows, in a highly simplified and schematic form, an exemplary embodiment of "the " method according to the invention, which can run in a control device 10 according to the invention as part of the system according to the invention.
  • the graphic is used only to illustrate the principle of the invention and does not distinguish sharply between process and device elements.
  • Block 12 represents the internal variables of the control unit 10, which u. a. derive from the signal environment to which the control device 10 is exposed via interfaces that are not shown in detail. These internal variables form patterns of certain parameter values. These samples are interpreted in the procedural step of test bench identification - represented by block 14 and carried out by test bench recognition means (not shown in more detail) - as characterizing the operational or test bench case. If the test stand identification shows that the test stand case and not the operating case is present, the error storage means 16 are deactivated in the following method step or, depending on the previous state, are not activated (block 18). 1 shows an exemplary embodiment in which the state parameters of the error storage means 16 are “frozen” when the test stand case is recognized. The error memory of the error memory means can then be read out via an interface (not shown in detail), preferably a standardized CAN bus interface, and interpreted by the test bench software.
  • an interface not shown in detail
  • a monitoring function 20 is superior to test stand detection 14 and deactivation 18. It preferably only allows deactivation if the decision of the test bench detection means has been judged to be correct on the basis of further criteria.
  • the monitoring function 20 is designed in such a comprehensive manner that it also controls the recording of the internal parameters “(Bloc 12)” and the error memory device (Block 16).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Engines (AREA)

Abstract

L'invention concerne un procédé permettant d'analyser des erreurs dans un bloc électronique (10) d'un composant de véhicule. Ledit bloc électronique (10) est exposé, lors d'un banc d'essai, à un environnement de signaux et un dispositif (16) d'enregistrement d'erreurs présent dans le bloc électronique (10) est sélectionné. L'invention est caractérisée en ce que l'on détermine, dans une étape (14) de reconnaissance d'un banc d'essai, à partir de moyens de reconnaissance de banc d'essai, si l'environnement de signaux d'un banc d'essai est produit, et dans ce cas, l'état réel du dispositif (16) d'enregistrement d'erreurs est enregistré et il est rendu accessible de manière indépendante. L'invention concerne également un système correspondant et un bloc électronique (10).
EP03767391A 2002-12-20 2003-10-28 Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant Withdrawn EP1573293A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10260240 2002-12-20
DE10260240 2002-12-20
PCT/DE2003/003580 WO2004061405A2 (fr) 2002-12-20 2003-10-28 Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant

Publications (1)

Publication Number Publication Date
EP1573293A2 true EP1573293A2 (fr) 2005-09-14

Family

ID=32694862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767391A Withdrawn EP1573293A2 (fr) 2002-12-20 2003-10-28 Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant

Country Status (2)

Country Link
EP (1) EP1573293A2 (fr)
WO (1) WO2004061405A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063082A1 (de) * 2004-12-28 2006-07-06 Robert Bosch Gmbh Vorrichtung zur Steuerung eines Ansteueralgorithmus für Personenschutzmittel
DE102005010672A1 (de) * 2005-03-09 2006-09-14 Bayerische Motoren Werke Ag Kraftfahrzeug-Steuergerät
DE102012207342A1 (de) * 2012-05-03 2013-11-07 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zum Bestimmen von Fehlerursachen in Fahrzeugproduktions- oder Inbetriebnahmeprozessen
DE102020102267B3 (de) 2020-01-30 2021-07-22 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Durchführen einer Funktionsprüfung zumindest eines Bedienelements mittels einer CNC-Maschine, sowie Prüfsystem
DE102021211257A1 (de) 2021-10-06 2023-04-06 Zf Friedrichshafen Ag Angriffen auf ein künstliches neuronales Netzwerk vorbeugen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2625148B2 (ja) * 1988-04-11 1997-07-02 富士重工業株式会社 車載電子制御装置
DE4202726A1 (de) * 1992-01-31 1993-08-05 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen einer einrichtung, die wenigstens einen mikrorechner enthaelt
EP0704343A3 (fr) * 1994-10-01 1997-01-15 Bayerische Motoren Werke Ag Commande électronique pour véhicules
DE19540943A1 (de) * 1995-11-03 1997-05-07 Bosch Gmbh Robert Verfahren zur Überprüfung von Fahrzeugteilsystemen bei Kraftfahrzeugen
DE19857462A1 (de) * 1998-12-12 2000-06-15 Volkswagen Ag Verfahren zur Prüfung von Einzelkomponenten eines Kraftfahrzeuges

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004061405A3 *

Also Published As

Publication number Publication date
WO2004061405A3 (fr) 2005-02-17
WO2004061405A2 (fr) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1597643B1 (fr) Dispositif et procede de diagnostic embarque base sur un modele
EP2104075B1 (fr) Procédé d'enregistrement de données et système d'enregistrement de données
EP3140816B1 (fr) Procédé de diagnostic d'un état dans un véhicule
DE102015108064B4 (de) Testsystem und Verfahren zum automatisierten Testen von wenigstens zwei gleichzeitig an das Testsystem angeschlossenen Steuergeräten sowie Steuergeräte-Anschluss- und Steuergeräte-Umschalteinheit zur Verwendung in einem solchen Testsystem
EP1796051B1 (fr) Dispositifs de diagnostic dans un véhicule doté d'une unité d'informations de diagnostic pour un module de diagnostic
WO2001043079A1 (fr) Procede de reconnaissance de defauts d'un vehicule automobile
DE102004004572A1 (de) Fehlerdiagnoseverfahren für ein Fahrzeugkommunikationsnetz
DE112008003195T5 (de) Elektrischer Schaltkreis mit einem physikalischen Übertragungsschicht-Diagnosesystem
EP3745217B1 (fr) Dispositif de surveillance d' un système de traitement et de transmission de données.
EP3557598B1 (fr) Commutateur de sécurité
EP0437551B1 (fr) Procede et dispositif pour l'interrogation de donnees provenant d'appareils de commande
DE10344460B4 (de) Verfahren zur Fehlerbehandlung bei elektronischen Steuergeräten
EP1573293A2 (fr) Procede et systeme pour analyser des erreurs de blocs electroniques de vehicules et bloc electronique correspondant
EP2786162B1 (fr) Procédé de détection d'une erreur dans des lignes de connexion entre une unité centrale et une multiplicité d'unités électroniques indépendantes l'une de l'autre
EP1597117B1 (fr) Dispositif et procede de diagnostic embarque central pour vehicules automobiles
EP2729857B1 (fr) Documentation d'erreurs au sein d'une mémoire d'erreurs d'un véhicule à moteur
EP3056955A1 (fr) Procédé de planification et d'ingénierie, outil et système de logiciel pour une installation technique de processus
DE3510425C2 (fr)
DE10307344A1 (de) Vorrichtung und Verfahren zur dezentralen On-Board-Diagnose für Kraftfahrzeuge
EP4051548A1 (fr) Dispositif de commutation pour un système de frein pour un véhicule, système de frein doté d'un dispositif de commutation et procédé d'actionnement d'un dispositif de commutation
EP1117023B1 (fr) Dispositif de diagnostic de fautes pendant le fonctionnement d'un véhicule automobile
EP3807660B1 (fr) Procédé et dispositif de vérification électrique d'un module électrique
DE10226876B4 (de) Vorrichtung und Verfahren zur Überprüfung eines Bussystems
DE2839345C2 (fr)
EP1486791B1 (fr) Puce semi-conductrice qui présente un dispositif de surveillance qui permet de surveiller si la puce semi-conductrice a été endommagée mécaniquement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050519

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KETTERER, ALEXANDER

Inventor name: LAEUFER, ANDREAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20081215