EP1573293A2 - Method and device for fault analysis of motor vehicle control units and corresponding control unit - Google Patents
Method and device for fault analysis of motor vehicle control units and corresponding control unitInfo
- Publication number
- EP1573293A2 EP1573293A2 EP03767391A EP03767391A EP1573293A2 EP 1573293 A2 EP1573293 A2 EP 1573293A2 EP 03767391 A EP03767391 A EP 03767391A EP 03767391 A EP03767391 A EP 03767391A EP 1573293 A2 EP1573293 A2 EP 1573293A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- test bench
- memory device
- signal environment
- detection means
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0264—Control of logging system, e.g. decision on which data to store; time-stamping measurements
Definitions
- the invention relates to a method for analyzing errors in a control unit of a component of a motor vehicle, the control unit being exposed to a signal environment in a test bench and an error storage device provided in the control unit being read out.
- the invention further relates to a system for analyzing errors in a control unit of a component of a motor vehicle, comprising the control unit and a test bench which exposes the control unit installed in it to a signal environment, an error memory device provided in the control unit being readable.
- the invention relates to a control device for controlling a component of a motor vehicle as a function of a signal environment acting on the control device with a fault memory device, via which malfunctions of motor vehicle elements can be read out.
- Modern motor vehicles form a highly complex interplay of individual components that are increasingly controlled by electrical signals and also communicate with one another via electrical signals.
- the individual components ⁇ separate security elements-as airbags, divekom- - plex populations, such as motors, or other devices can be assigned to controllers.
- These control units receive a large number of signals from control units of other components connected to them and control their NEN assigned component depending on this signal environment.
- each control unit sends its own state-identifying signals to the other control units connected to it. In many motor vehicles, this communication takes place via a so-called CAN (Control Area Network) bus, to which all control units are connected via appropriate interfaces.
- CAN Control Area Network
- the control units usually include a fault memory device which, in the event of a malfunction, which, for. B. is recognized based on function parameters outside a predetermined value range, make a corresponding error code accessible to the user or other vehicle components. This can be done, for example, by querying the other components or by actively sending an error message. Malfunctions can e.g. B. caused by damage to the control unit, the associated vehicle component or by a faulty signal environment.
- the corresponding control device is usually removed, possibly together with the assigned component, and installed in a special test bench which has signal generators which expose the control device to a signal environment.
- the signal environment is intended to simulate the real signal environment in the assembled state. By changing the signal environment, different operating states can be simulated and the function of the control device and its fault memory device can be examined.
- a disadvantage of this known method or the system used for this or the known control devices is that the signal environment simulated by the test bench often does not “ realistically” simulate the reality of the operating case, which leads to additional errors due to the test bench. These are difficult or even impossible indistinguishable from the actual errors.
- DE 198 57 462 AI discloses a method for optimizing the signal environment. It is based on the fact that the output signals of all control devices connected to the control device to be examined are measured and stored in different operating states and the signal generators of the test bench are then controlled according to the stored parameters.
- test bench detection means " whether the " signal environment is generated by a test bench and, if this is the case, the current state of the fault memory device is stored and made accessible independently. This ensures that the fault memory device in the Operating errors determined can be read out and analyzed without the errors induced by the test stand environment being misinterpreted as actual errors, which could lead to incorrect conclusions. On the contrary, it is even possible to adapt the test bench environment so that the errors determined in the test bench correspond to the stored errors, which can be used to optimize the test bench environment or to identify errors in the signal environment of the control unit in the assembled state.
- the test bench can be designed in a correspondingly simple manner, which leads to cost savings. Different control units that are exposed to different signal environments in the vehicle can also be analyzed on the same test bench.
- the test stand detection means which can be implemented in software, for example, differentiate the test stand operation from real operation.
- the test bench identification means determine, based on a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench. Global values such as e.g. B. speed, load, engine temperature, etc., but also more detailed variables such as slope or amplitude of electrical signals.
- This method is particularly secure against manipulation, since it requires a very precise knowledge of the test bench characteristics.
- it can make a very complex design of the test stand detection means or a standardized test stand design necessary. This is particularly due to the internal connection system sizes that are essential for the control of an engine or of components to one-ordinary loading 'drive to ensure the case.
- test bench detection means is based on a separate, predetermined one Test bench signal determine whether the signal environment is generated by a test bench.
- This method is particularly easy to implement since it only requires the transmission of a standardized signal from the test bench to the control unit.
- this simplicity is susceptible to manipulation and abuse.
- combinations of both alternatives can therefore be implemented.
- test stand detection step is preceded by a monitoring step in which a decision by the test stand detection means is checked on the basis of further criteria. This provides additional security against an alleged but inaccurate detection of test bench conditions.
- the current state of the error memory device is generally stored by writing the corresponding data into memory means provided for this purpose.
- separate storage means can be provided, into which the values are transferred and recorded in addition to the further operation of the error storage device.
- the costs of the additional storage means it may be more advantageous if the storage takes place while the fault storage device is deactivated. This corresponds to “freezing” the current state.
- control device has an interface to a CAN bus. On the one hand, this enables the control device to be easily integrated into the entirety of the motor vehicle. On the other hand, data between the control unit and the test bench or other units can easily be read out and read in via such a standardized interface.
- test stand detection means are provided in the control device to determine whether the signal environment is generated by a test stand and, if this is the case, the current state of the fault memory device can be stored and is independently accessible after storage.
- the test stand identification means can be implemented in software, for example, and only require a suitable input option, eg. B. a CAN bus for the signals to be processed.
- test bench identification means are able to determine, based on a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench.
- test stand communicates a separate, predetermined test stand signal to the test stand detection means, by means of which the test stand detection means are able to determine whether the signal environment is generated by a test stand.
- test stand detection means have superordinate monitoring means which are able to detect Divorce of the test stand detection means to be checked against other criteria.
- the monitoring means can also be implemented in software, for example.
- a particularly favorable embodiment of the invention provides for the current status of the error storage device to be stored while the error storage device is deactivated at the same time.
- control unit is connected to further control units of further vehicle components in the assembled state via a CAN bus.
- CAN bus interface required for this can also be carried out via this standardized interface for reading out the stored status data of the fault memory device.
- test bench detection means are provided for determining whether the signal environment is generated by a test bench and, if this is the case, the current state of the fault memory device can be stored and is independently accessible after storage.
- test bench detection means are able to determine, on the basis of a predetermined value pattern of at least some of the components of the signal environment, whether the signal environment is generated by a test bench.
- test stand detection means are able to determine, on the basis of a separate, predetermined test stand signal communicated by a test stand, whether the signal environment is test bench is generated.
- the test bench detection means can be implemented in software, for example.
- test stand detection means have superordinate monitoring means which are able to check a decision of the test stand detection means on the basis of further criteria.
- the monitoring means can also be implemented in software, for example.
- the current status of the error memory device is stored with simultaneous deactivation of the error memory device.
- FIG. 1 shows, in a highly simplified and schematic form, an exemplary embodiment of "the " method according to the invention, which can run in a control device 10 according to the invention as part of the system according to the invention.
- the graphic is used only to illustrate the principle of the invention and does not distinguish sharply between process and device elements.
- Block 12 represents the internal variables of the control unit 10, which u. a. derive from the signal environment to which the control device 10 is exposed via interfaces that are not shown in detail. These internal variables form patterns of certain parameter values. These samples are interpreted in the procedural step of test bench identification - represented by block 14 and carried out by test bench recognition means (not shown in more detail) - as characterizing the operational or test bench case. If the test stand identification shows that the test stand case and not the operating case is present, the error storage means 16 are deactivated in the following method step or, depending on the previous state, are not activated (block 18). 1 shows an exemplary embodiment in which the state parameters of the error storage means 16 are “frozen” when the test stand case is recognized. The error memory of the error memory means can then be read out via an interface (not shown in detail), preferably a standardized CAN bus interface, and interpreted by the test bench software.
- an interface not shown in detail
- a monitoring function 20 is superior to test stand detection 14 and deactivation 18. It preferably only allows deactivation if the decision of the test bench detection means has been judged to be correct on the basis of further criteria.
- the monitoring function 20 is designed in such a comprehensive manner that it also controls the recording of the internal parameters “(Bloc 12)” and the error memory device (Block 16).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Testing Of Engines (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10260240 | 2002-12-20 | ||
DE10260240 | 2002-12-20 | ||
PCT/DE2003/003580 WO2004061405A2 (en) | 2002-12-20 | 2003-10-28 | Method and device for fault analysis of motor vehicle control units and corresponding control unit |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1573293A2 true EP1573293A2 (en) | 2005-09-14 |
Family
ID=32694862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03767391A Withdrawn EP1573293A2 (en) | 2002-12-20 | 2003-10-28 | Method and device for fault analysis of motor vehicle control units and corresponding control unit |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1573293A2 (en) |
WO (1) | WO2004061405A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004063082A1 (en) * | 2004-12-28 | 2006-07-06 | Robert Bosch Gmbh | Device for controlling an activation algorithm for personal protective equipment |
DE102005010672A1 (en) * | 2005-03-09 | 2006-09-14 | Bayerische Motoren Werke Ag | Motor vehicle control for controlling vehicle functions of modern motor vehicle is transferable into test mode in which first output signal is measured and is stored into storage unit |
DE102012207342B4 (en) * | 2012-05-03 | 2024-10-02 | Bayerische Motoren Werke Aktiengesellschaft | Failure analysis device and method for determining causes of errors in vehicle production or commissioning processes, use of a failure analysis device and factory system |
DE102020102267B3 (en) | 2020-01-30 | 2021-07-22 | Bayerische Motoren Werke Aktiengesellschaft | Method for performing a functional test of at least one operating element by means of a CNC machine and a test system |
DE102021211257A1 (en) | 2021-10-06 | 2023-04-06 | Zf Friedrichshafen Ag | Prevent attacks on an artificial neural network |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2625148B2 (en) * | 1988-04-11 | 1997-07-02 | 富士重工業株式会社 | In-vehicle electronic control unit |
DE4202726A1 (en) * | 1992-01-31 | 1993-08-05 | Bosch Gmbh Robert | METHOD AND DEVICE FOR TESTING A DEVICE THAT AT LEAST CONTAINS A MICROCALCULATOR |
EP0704343A3 (en) * | 1994-10-01 | 1997-01-15 | Bayerische Motoren Werke Ag | Electronic control device for motor vehicles |
DE19540943A1 (en) * | 1995-11-03 | 1997-05-07 | Bosch Gmbh Robert | Method for checking vehicle subsystems in motor vehicles |
DE19857462A1 (en) * | 1998-12-12 | 2000-06-15 | Volkswagen Ag | Method to test individual components of vehicle; involves measuring data for all components that affect individual component in different operating states and generating signal course for individual component |
-
2003
- 2003-10-28 WO PCT/DE2003/003580 patent/WO2004061405A2/en active Application Filing
- 2003-10-28 EP EP03767391A patent/EP1573293A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2004061405A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004061405A3 (en) | 2005-02-17 |
WO2004061405A2 (en) | 2004-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3782165T3 (en) | SYSTEM FOR DETERMINING ANOMALIES AND FUNCTIONAL FAILURES OF DIFFERENT TYPES OF ELECTRONIC MONITORING SYSTEMS BUILT IN MOTOR VEHICLES. | |
DE3429941C2 (en) | Vehicle body communication system | |
EP1597643B1 (en) | Device and method for on-board diagnosis based on a model | |
EP2104075B1 (en) | Method and device for recording data | |
EP3140816B1 (en) | Method for diagnosis of a state in a vehicle | |
DE102015108064B4 (en) | Test system and method for automated testing of at least two simultaneously connected to the test system control units and ECU connection and control unit switching unit for use in such a test system | |
EP1796051B1 (en) | Diagnostics devices in a vehicle with diagnostics framework for diagnostics module | |
DE102004004572A1 (en) | Fault diagnosis method for a vehicle communication network | |
EP3745217B1 (en) | Device for monitoring the data processing and data transmission in a safety system | |
DE112008003195T5 (en) | Electrical circuit with a physical transmission layer diagnostic system | |
EP3557598B1 (en) | Safety switch | |
EP0437551B1 (en) | Process and device for polling control unit data | |
WO2005040949A1 (en) | Method for error processing in electronic controllers | |
EP1573293A2 (en) | Method and device for fault analysis of motor vehicle control units and corresponding control unit | |
EP2786162B1 (en) | Method of detecting a fault in connecting lines between a central unit and a plurality of electronic components which are independent of one another | |
EP1597117B1 (en) | Device and method for central on-board diagnosis for motor vehicles | |
EP2729857B1 (en) | Documentation of faults in a fault memory of a motor vehicle | |
EP3056955A1 (en) | Planning and engineering method, software tool and system for a processing assembly | |
DE3510425C2 (en) | ||
DE10307344A1 (en) | Device and method for decentralized on-board diagnosis for motor vehicles | |
EP4051548A1 (en) | Switching device for a brake system for a vehicle, brake system with a switching device and method for operating a switching device | |
EP1117023B1 (en) | Device for fault diagnosis during motor vehicle operation | |
DE69114971T2 (en) | Monitoring device for multiplex data transmission device. | |
EP3807660B1 (en) | Method and device for electrical testing of an electrical assembly | |
DE10226876B4 (en) | Device and method for checking a bus system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050519 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KETTERER, ALEXANDER Inventor name: LAEUFER, ANDREAS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONTINENTAL AUTOMOTIVE GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20081215 |