EP1567749B1 - Turbine shaft and production of a turbine shaft - Google Patents
Turbine shaft and production of a turbine shaft Download PDFInfo
- Publication number
- EP1567749B1 EP1567749B1 EP03788831A EP03788831A EP1567749B1 EP 1567749 B1 EP1567749 B1 EP 1567749B1 EP 03788831 A EP03788831 A EP 03788831A EP 03788831 A EP03788831 A EP 03788831A EP 1567749 B1 EP1567749 B1 EP 1567749B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- turbine shaft
- weld
- turbine
- pressure part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 5
- 239000000463 material Substances 0.000 claims description 46
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000000945 filler Substances 0.000 claims description 6
- 238000003466 welding Methods 0.000 description 7
- 238000005496 tempering Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 235000019589 hardness Nutrition 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/026—Shaft to shaft connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/06—Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
- F01D5/063—Welded rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0466—Nickel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
- F05D2230/232—Manufacture essentially without removing material by permanently joining parts together by welding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/131—Molybdenum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/132—Chromium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
Definitions
- the invention relates to a turbine shaft aligned in an axial direction for a steam turbine having a first flow region and a second flow region adjoining the first flow region in the axial direction, wherein the turbine shaft has a first material in the first flow region and has a second material in the second flow region.
- the invention also relates to a method for producing a turbine shaft comprising two materials oriented in an axial direction.
- Turbine shafts are usually used in turbomachinery.
- a steam turbine can be considered.
- To increase the efficiency of steam turbines are designed as so-called combined steam turbines.
- Such steam turbines have an inflow region and two or more flow regions formed with blades and vanes.
- a flow medium flows via the inflow region to a first flow region and then to another flow region.
- steam can be considered here.
- steam is conducted at temperatures of over 400 ° C in the inflow region and passes from there to the first flow region.
- various components in particular the turbine shaft, are thermally stressed in the first flow region.
- the steam flows to the second flow area.
- the vapor typically has lower temperatures and lower pressures.
- the turbine shaft should have cold-tough properties.
- One solution is to combine the heat-resistant property and the cold-resistant property of the turbine shaft.
- a so-called monobloc wave is used, which combines the two necessary properties with certain limitations.
- here compromises are made, which can lead to restrictions for the design and operation of the steam turbine.
- the method for producing such turbine shafts is complicated and complicated.
- Object of the present invention is to provide a turbine shaft having cold-tough and heat-resistant properties. Another object of the invention is to provide a method for producing the turbine shaft.
- the invention is based on the knowledge that it is possible to dispense with an additional buffer welding and an additional intermediate annealing by a targeted selection of materials and adapted heat treatment.
- one advantage is the fact that a turbine shaft can be produced faster and thus more cost-effectively.
- live steam flows in a first section along a turbine shaft, relaxes there and simultaneously cools down. Therefore, in this first part of the section, heat resistant properties are required put the material of the turbine shaft.
- the temperature of the live steam can be up to 565 ° C.
- the cooled and relaxed live steam flows into a second section, in which cold-tough properties of the turbine shaft are necessary.
- the turbine shaft 1 shown in FIG. 1 is known as a monoblock shaft and has the material 23 CrMoNiWV 8-8 and is aligned in an axial direction 19. This turbine shaft 1 belongs to the prior art.
- This turbine shaft 1 is usually used for combined. Steam turbines with an outflow area between 10 to 12.5 m 2 used in a reverse flow design at 50 Hz. In the reverse flow type, a flow direction after flowing through the middle pressure part 13 rotates in a substantially opposite direction and then flows through the low pressure part 14.
- the material 23 CrMoNiWV 8-8 comprises 0.20 - 0.24 wt .-% C, ⁇ 0.20 wt% Si, 0.60-0.80 wt% Mn, ⁇ 0.010 wt% P, ⁇ 0.007 wt% S, 2.05-2.20 wt% Cr, 0.80-0.90 wt% Mo, 0.70-0.80 wt% Ni, 0.25-0.35 wt% V and 0.60-0.70 wt.
- the necessary properties with regard to heat resistance and cold toughness have hitherto been combined with certain restrictions by the use of the turbine shaft 1 described in FIG.
- This turbine shaft 1 abuts with the specified material 23 CrMoNiWV 8-8 at a strength and toughness limit in the low-pressure part 14 with large diameters, if requirements for the static strength of more than R p 0.2> 650 MPa are set for an edge region 18.
- the turbine shaft 7 shown in Figure 2 belongs to the prior art and has a medium-pressure part 13, which is exposed to high temperatures.
- the turbine shaft 7 also has a low-pressure part 14, which is thermally less loaded than the medium-pressure part 13 and is aligned in an axial direction.
- the medium-pressure 13 and low-pressure part 14 consist of different materials.
- the medium-pressure part 13 consists of 1% CrMoV (30 CrMoNiV 5-11) and the low-pressure part consists of the material 3.5 NiCrMoV (26 NiCrMoV 14-5).
- the material 30 CrMoNiV 5-11 comprises 0.27-0.34 wt% C, ⁇ 0.15 wt% Si, 0.30-0.80 wt% Mn, ⁇ 0.010 wt% P, ⁇ 0.007 wt% S, 1.10-1.40 wt% Cr, 1.0-1.20 wt% Mo, 0.50-0.75 wt% Ni, and 0 , 25 - 0.35 wt .-% V.
- the first material of a heat-resistant material and the second material of a cold-tough material are examples of the first material of a heat-resistant material.
- the medium-pressure part 13 must have heat-resistant properties and the low-pressure part 14 must have cold-strength properties.
- the turbine shaft 7 has a buffer weld 9, which is applied to the middle pressure part 13 first and is annealed at a temperature T1. Subsequently, the medium-pressure part 13 and the low-pressure part 14 are connected to one another by a weld. After this welding process is annealed at a temperature T2.
- the reason for the different temperatures T1 and T2 is the different chemical composition and microstructural formation of the materials and the resulting different tempering stability: T1> T2. High hardnesses in the heat-affected zones and residual stresses must be avoided by using the highest possible tempering temperatures, without adversely affecting the strength of the already manufactured and tested individual waves.
- FIG. 3 shows a turbine shaft 2 according to the invention in the reverse flow type.
- the turbine shaft 2 has a middle pressure section 5 designed as a first flow area 5 and a low pressure section 6 designed as a second flow area.
- the low-pressure section 6 is connected to the intermediate-pressure section 5 by means of a structural weld 4. The welding of the medium-pressure part 5 and the low-pressure part 6, which have two different materials, takes place without additional Puffersch spauhg and therefore without an additional intermediate annealing for it.
- the medium-pressure part 5 comprises the material 2 CrMoNiWV (23 CrMoNiWV 8-8) up to the penultimate low-pressure stage and the low-pressure part with the last low pressure stage consists of the material 3.5 NiCrMoV (26 NiCrMoV 14-5).
- the material 23 CrMoNiWVV 8-8 comprises 0.20-0.24 wt% C, ⁇ 0.20 wt% Si, 0.60-0.80 wt% Mn, ⁇ 0.010 wt% P, ⁇ 0.007 wt% S, 2.05-2.20 wt% Cr, 0.80-0.90 wt% Mo, 0.70-0.80 wt% Ni, 0 , 25 - 0.35 wt .-% V and 0.60 - 0.70 wt .-% W and the material 26 NiCrMoV 14-5 comprises 0.22 - 0.32 wt .-% C, ⁇ 0.15 Wt% Si, 0.15-0.40 wt% Mn, ⁇ 0.0 wt% P, ⁇ 0.007 wt% S, 1.20-1.80 wt% Cr, 0, 25-0.45 wt% Mo, 3.40-4.00 wt% Ni, 0.05-0.15 wt% V.
- the weld is carried out as a structural weld, with weld filler added during construction welding.
- the welding filler should z. B. 2% nickel.
- the welded shaft should be tempered between 2 and 20 hours at a temperature between 600 ° C and 640 ° C.
- the advantage of the 3.5 NiCrMoV material lies in the fact that it has a static strength of up to R p 0.2> 760 MPa without toughness problems.
- the Vickers hardness is HV ⁇ 360. This results in a welded shaft, which has the necessary heat resistance in the front part, but in the rear part can withstand the high strength and toughness requirement due to the large blade centrifugal forces.
- the connection only needs to be welded once and annealed once.
- the turbine shaft 8 shown in Figure 4 shows an aligned in the axial direction 19 turbine shaft 8 for use in the straight-flow design.
- the turbine shaft 8 has a middle pressure part 13 designed as a first flow region (13) and a low pressure part 14 designed as a second flow region (14).
- the medium-pressure part 13 and the low-pressure part 14 are connected via a construction weld 15.
- the advantage of this embodiment for the straight-flow design over the embodiment shown in Figure 2 is in particular that by replacing the more tempered 1 CrMoV steel by the 2 CrMoNiWV steel with comparable hot strengths, but lower tempering stability by the chosen tempering parameters Hardening in the heat affected zones of the 2 CrMoNiWV and 3.5 NiCrMoV and the residual stresses can be reduced to the required levels.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Description
Die Erfindung betrifft eine in einer Axialrichtung ausgerichtete Turbinenwelle für eine Dampfturbine mit einem ersten Strömungsbereich und einem in der Axialrichtung an den ersten Strömungsbereich angrenzenden zweiten Strömungsbereich, wobei die Turbinenwelle im ersten Strömungsbereich ein erstes Material aufweist und im zweiten Strömungsbereich ein zweites Material aufweist. Die Erfindung betrifft ebenso ein Verfahren zur Herstellung einer zwei Materialien umfassenden in einer Axialrichtung ausgerichteten Turbinenwelle.The invention relates to a turbine shaft aligned in an axial direction for a steam turbine having a first flow region and a second flow region adjoining the first flow region in the axial direction, wherein the turbine shaft has a first material in the first flow region and has a second material in the second flow region. The invention also relates to a method for producing a turbine shaft comprising two materials oriented in an axial direction.
Turbinenwellen werden in der Regel in Strömungsmaschinen eingesetzt. Als Beispiel für eine Strömungsmaschine kann eine Dampfturbine betrachtet werden. Zur Wirkungsgradsteigerung werden Dampfturbinen als sogenannte kombinierte Dampfturbinen ausgebildet. Derartige Dampfturbinen weisen einen Einströmungsbereich und zwei oder mehreren mit Lauf- und Leitschaufeln ausgebildete Strömungsbereiche auf. Ein Strömungsmedium strömt über den Einströmungsbereich zu einem ersten Strömungsbereich und anschließend zu einem weiteren Strömungsbereich. Als Beispiel für ein Strömungsmedium kann hier Dampf betrachtet werden.Turbine shafts are usually used in turbomachinery. As an example of a turbomachine, a steam turbine can be considered. To increase the efficiency of steam turbines are designed as so-called combined steam turbines. Such steam turbines have an inflow region and two or more flow regions formed with blades and vanes. A flow medium flows via the inflow region to a first flow region and then to another flow region. As an example of a flow medium, steam can be considered here.
Beispielsweise wird Dampf bei Temperaturen von über 400°C in den Einströmungsbereich geleitet und gelangt von dort zu dem ersten Strömungsbereich. Dabei werden im ersten Strömungsbereich verschiedene Bauteile, insbesondere die Turbinenwelle thermisch belastet. Nach dem ersten Strömungsbereich strömt der Dampf zum zweiten Strömungsbereich. Im zweiten Strömungsbereich weist der Dampf in der Regel niedrigere Temperaturen und niedrigere Drücke auf. In diesem Bereich sollte die Turbinenwelle kaltzähe Eigenschaften aufweisen. Um die beiden notwendigen Eigenschaften der Turbinenwelle miteinander zu kombinieren, sind verschiedene Lösungen bisher bekannt. Eine Lösung sieht vor, die warmfeste Eigenschaft und die kaltzähe Eigenschaft der Turbinenwelle miteinander zu kombinieren. Dabei wird eine sogenannte Monoblockwelle eingesetzt, die die beiden notwendigen Eigenschaften mit gewissen Einschränkungen kombiniert. Allerdings werden hier Kompromisse eingegangen, die für die Konstruktion und den Be-trieb der Dampfturbine zu Einschränkungen führen kann.For example, steam is conducted at temperatures of over 400 ° C in the inflow region and passes from there to the first flow region. In the process, various components, in particular the turbine shaft, are thermally stressed in the first flow region. After the first flow area, the steam flows to the second flow area. In the second flow regime, the vapor typically has lower temperatures and lower pressures. In this area, the turbine shaft should have cold-tough properties. In order to combine the two necessary properties of the turbine shaft with each other, various solutions are so far known. One solution is to combine the heat-resistant property and the cold-resistant property of the turbine shaft. Here, a so-called monobloc wave is used, which combines the two necessary properties with certain limitations. However, here compromises are made, which can lead to restrictions for the design and operation of the steam turbine.
Es ist weiterhin bekannt, Turbinenwellen zu schweißen. Bei den bisher bekannten Werkstoffen und den daran angestellten Anforderungen muss eine Pufferschweißung auf einen Werkstoff aufgetragen werden, die bei einer bestimmten Temperatur geglüht werden muss. Nach dem Glühen der Pufferschweißung an einem ersten Werkstoff erfolgt die Verbindung der beiden Teile der Turbinenwelle aus einem ersten und einem zweiten Material durch eine Konstruktionsschweißung mit einer abschließenden Anlassbehandlung bei einer Temperatur, die geringer ist als die während der Glühung der Pufferschweißung herrschende Temperatur. Als Werkstoff für den ersten Bereich der Turbinenwelle, die warmfeste Eigenschaften zeigen muss, wurde bislang 1% CrMoV eingesetzt. Für den zweiten Bereich der Turbinenwelle, der kaltzähe Eigenschaften zeigen muss, wurde bisher 3,5% NiCrMoV eingesetzt.It is also known to weld turbine shafts. In the previously known materials and the demands made on it, a buffer welding must be applied to a material that must be annealed at a certain temperature. After annealing the buffer weld to a first material, the connection of the two parts of the turbine shaft of a first and a second material by a structural weld with a final tempering treatment at a temperature which is lower than the temperature prevailing during the annealing of the buffer weld. As a material for the first section of the turbine shaft, which must show heat-resistant properties, so far 1% CrMoV has been used. For the second section of the turbine shaft, which has to show cold-tough properties, 3.5% NiCrMoV has been used so far.
In der EP 0 964 135 A2 wird Dampfturbinenrotor offenbart, der aus verschiedenen Materialien besteht und verschweißt ist. Der Rotor ist in einen Hochtemperatur- und einen Niedrigtemperaturbereich einegeteilt.In EP 0 964 135 A2 steam turbine rotor is disclosed, which consists of different materials and is welded. The rotor is divided into a high temperature and a low temperature range.
In dem Artikel "Fortschritte bei warmfesten undhochwarmfesten Stählen", Stahl und Eisen Band 106, Nr. 13, 30. Juni 1986, Seiten 733-738, XP 002278825 werdenTurbinenläufer und Wärmetauscher-Rohrbündel aus warm- und hochwarmfesten Stählen offenbart.In the article "Advances in Heat Resistant and High Temperature Steels", Steel and Iron Vol. 106, No. 13, June 30, 1986, pages 733-738, XP 002278825, turbine runners and heat exchanger tube bundles of hot and high temperature steels are disclosed.
Das Verfahren zur Herstellung derartiger Turbinenwellen ist aufwändig und kompliziert.The method for producing such turbine shafts is complicated and complicated.
Aufgabe der vorliegenden Erfindung ist es, eine Turbinenwelle anzugeben, die kaltzähe und warmfeste Eigenschaften aufweist. Eine weitere Aufgabe der Erfindung ist es, ein Verfahren zur Herstellung der Turbinenwelle anzugeben.Object of the present invention is to provide a turbine shaft having cold-tough and heat-resistant properties. Another object of the invention is to provide a method for producing the turbine shaft.
Die auf die Turbinenwelle hingerichtete Aufgabe wird gelöst durch die kennzeichnenden Merkmale des Anspruchs 1.The object executed on the turbine shaft is solved by the characterizing features of claim 1.
Vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen dargestellt.Advantageous embodiments are shown in the dependent claims.
Die auf das Verfahren hin gerichtete Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 6 beschrieben.The task directed towards the method is described by the characterizing features of
Die Erfindung geht von der Erkenntnis aus, dass durch eine gezielte Werkstoffauswahl und angepasste Wärmebehandlung auf eine zusätzliche Pufferschweißung und auf eine zusätzliche Zwischenglühung verzichtet werden kann.The invention is based on the knowledge that it is possible to dispense with an additional buffer welding and an additional intermediate annealing by a targeted selection of materials and adapted heat treatment.
Ein Vorteil ist unter anderem darin zu sehen, dass eine Turbinenwelle schneller und damit kostengünstiger hergestellt werden kann.Among other things, one advantage is the fact that a turbine shaft can be produced faster and thus more cost-effectively.
Nachfolgend werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert. Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen. Darin zeigen schematisch und nicht maßstäblich:
- Figur 1
- Schnittbild durch eine zum Stand der Technik gehörende; materialeinheitliche Turbinenwelle,
Figur 2- Schnittbild durch eine zum Stand der Technik gehörende, aus zwei Materialien bestehende Turbinenwelle,
- Figur 3
- Schnittbild durch eine Turbinenwelle,
- Figur 4
- Schnittbild durch eine Turbinenwelle.
- FIG. 1
- Cross-sectional view through a belonging to the prior art; uniform turbine shaft,
- FIG. 2
- Cross-sectional view of a prior art, consisting of two materials turbine shaft,
- FIG. 3
- Sectional view through a turbine shaft,
- FIG. 4
- Cross-section through a turbine shaft.
In den stark vereinfachten Figuren 1, 2, 3 und 4 sind nur jene Teile dargestellt, die für das Verständnis der Funktionsweise der Erfindung von Bedeutung sind.In the highly simplified Figures 1, 2, 3 and 4, only those parts are shown which are important for understanding the operation of the invention.
In einer nicht dargestellten kombinierten Mitteldruck- und Niederdruck-Dampfturbine strömt Frischdampf in einem ersten Teilabschnitt entlang einer Turbinenwelle, entspannt sich dort und kühlt gleichzeitig ab. In diesem ersten Teilabschnitt werden daher warmfeste Eigenschaftsanforderungen an das Material der Turbinenwelle gestellt. Die Temperatur des Frischdampfs kann bis zu 565°C betragen. Der abgekühlte und entspannte Frischdampf strömt in einen zweiten Teilabschnitt, in dem kaltzähe Eigenschaften der Turbinenwelle notwendig sind.In a combined medium-pressure and low-pressure steam turbine, not shown, live steam flows in a first section along a turbine shaft, relaxes there and simultaneously cools down. Therefore, in this first part of the section, heat resistant properties are required put the material of the turbine shaft. The temperature of the live steam can be up to 565 ° C. The cooled and relaxed live steam flows into a second section, in which cold-tough properties of the turbine shaft are necessary.
Die in Figur 1 dargestellte Turbinenwelle 1 ist als Monoblockwelle bekannt und weist den Werkstoff 23 CrMoNiWV 8-8 auf und ist in einer Axialrichtung 19 ausgerichtet. Diese Turbinenwelle 1 gehört zum Stand der Technik.The turbine shaft 1 shown in FIG. 1 is known as a monoblock shaft and has the material 23 CrMoNiWV 8-8 and is aligned in an
Diese Turbinenwelle 1 wird üblicherweise für kombinierte. Dampfturbinen mit einer Abströmfläche zwischen 10 bis 12,5 m2 in einer Reverse-Flow-Bauart bei 50 Hz eingesetzt. In der Reverse-Flow-Bauart dreht sich eine Strömungsrichtung nach Durchströmen des Mitteldruckteils 13 in im wesentlichen entgegengesetzter Richtung und strömt anschließend durch den Niederdruckteil 14. Der Werkstoff 23 CrMoNiWV 8-8 umfasst 0,20 - 0,24 Gew.-% C, ≤ 0,20 Gew.-% Si, 0,60 - 0,80 Gew.-% Mn, ≤ 0,010 Gew.-% P, ≤ 0,007 Gew.-% S, 2,05 - 2,20 Gew.-% Cr, 0,80 - 0,90 Gew.-% Mo, 0,70 - 0,80 Gew.-% Ni, 0,25 - 0,35 Gew.-% V und 0,60 - 0,70 Gew.-% W. Die notwendigen Eigenschaften bezüglich der Warmfestigkeit und der Kaltzähigkeit wurden bisher mit gewissen Einschränkungen durch den Einsatz der in Figur 1 beschriebenen Turbinenwelle 1 kombiniert. Diese Turbinenwelle 1 stößt mit dem angegebenen Werkstoff 23 CrMoNiWV 8-8 an eine Festigkeits- und Zähigkeitsgrenze im Niederdruckteil 14 bei großen Durchmessern, wenn für einen Randbereich 18 Anforderungen an die statische Festigkeit von über Rp 0,2 > 650 MPa gestellt werden.This turbine shaft 1 is usually used for combined. Steam turbines with an outflow area between 10 to 12.5 m 2 used in a reverse flow design at 50 Hz. In the reverse flow type, a flow direction after flowing through the
Die in Figur 2 dargestellte Turbinenwelle 7 gehört zum Stand der Technik und weist einen Mitteldruckteil 13 auf, der hohen Temperaturen ausgesetzt wird. Die Turbinenwelle 7 weist ebenso einen Niederdruckteil 14 auf, der thermisch geringer belastet wird als der Mitteldruckteil 13 und in einer Axialrichtung ausgerichtet ist. Dafür wird der Niederdruckteil 14 mechanisch stärker beansprucht als der Mitteldruckteil 13. In der Regel bestehen das Mitteldruck- 13 und Niederdruckteil 14 aus unterschiedlichen Materialien. Der Mitteldruckteil 13 besteht aus 1%igem CrMoV (30 CrMoNiV 5-11) und der Niederdruckteil besteht aus dem Werkstoff 3,5 NiCrMoV (26 NiCrMoV 14-5). Der Werkstoff 30 CrMoNiV 5-11 umfasst 0,27 - 0,34 Gew.-% C, ≤ 0,15 Gew.-% Si, 0,30 - 0,80 Gew.-% Mn, ≤ 0,010 Gew.-% P, ≤0,007 Gew.-% S, 1,10 - 1,40 Gew.-% Cr, 1,0 - 1,20 Gew.-% Mo, 0,50 - 0,75 Gew.-% Ni und 0,25 - 0,35 Gew.-% V. Im wesentlichen besteht das erste Material aus einem warmfesten Material und das zweite Material aus einem kaltzähen Material.The turbine shaft 7 shown in Figure 2 belongs to the prior art and has a medium-
Das Mitteldruckteil 13 muss warmfeste Eigenschaften und das Niederdruckteil 14 muss kaltzähe Eigenschaften besitzen. Die Turbinenwelle 7 weist eine Pufferschweißung 9 auf, die auf das Mitteldruckteil 13 zuerst aufgebracht wird und bei einer Temperatur T1 geglüht wird. Anschließend werden das Mitteldruckteil 13 und das Niederdruckteil 14 mit einer Schweißnaht miteinander verbunden. Nach diesem Schweißvorgang wird bei einer Temperatur T2 geglüht. Ursache für die verschiedenen Temperaturen T1 und T2 ist die unterschiedliche chemische Zusammensetzung und Gefügeausbildung der Werkstoffe und die daraus resultierende unterschiedliche Anlassstabilität: T1 > T2. Hohe Härten in den Wärmeeinflusszonen und Eigenspannungen müssen vermieden werden durch höchstmögliche Anlasstemperaturen, ohne die Festigkeit der bereits gefertigten und geprüften Einzelwellen negativ zu beeinflussen.The medium-
In der Figur 3 ist eine erfindungsgemäße Turbinenwelle 2 in Reverse-Flow-Bauart zu sehen. Die Turbinenwelle 2 weist einen als ersten Strömungsbereich 5 ausgebildeten Mitteldruckabschnitt 5 und einen als zweiten Strömungsbereich ausgebildeten Niederdruckabschnitt 6 auf. Der Niederdruckabschnitt 6 ist mit dem Mitteldruckabschnitt 5 mittels einer Konstruktionsschweißung 4 miteinander verbunden. Die Verschweißung des Mitteldruckteils 5 und des Niederdruckteils 6, die zwei unterschiedliche Werkstoffe aufweisen, erfolgt ohne zusätzliche Pufferschweißuhg und daher auch ohne ein zusätzliches Zwischenglühen dafür. Der Mitteldruckteil 5 umfasst bis zur vorletzten Niederdruckstufe den Werkstoff 2 CrMoNiWV (23 CrMoNiWV 8-8) und der Niederdruckteil mit letzter Niederdruckstufe besteht aus dem Werkstoff 3,5 NiCrMoV (26 NiCrMoV 14-5). Der Werkstoff 23 CrMoNiWVV 8-8 umfasst 0,20 - 0,24 Gew.-% C, ≤ 0,20 Gew.-% Si, 0,60 - 0,80 Gew.-% Mn, ≤ 0,010 Gew.-% P, ≤ 0,007 Gew.-% S, 2,05 - 2,20 Gew.-% Cr, 0,80 - 0,90 Gew.-% Mo, 0,70 -0,80 Gew.-% Ni, 0,25 - 0,35 Gew.-% V und 0,60 - 0,70 Gew.-% W und der Werkstoff 26 NiCrMoV 14-5 umfasst 0,22 - 0,32 Gew.-% C, ≤ 0,15 Gew.-% Si, 0,15 - 0,40 Gew.-% Mn, ≤0,010 Gew.-% P, ≤ 0,007 Gew.-% S, 1,20 - 1,80 Gew.-% Cr, 0,25 - 0,45 Gew.-% Mo, 3,40 - 4,00 Gew.-% Ni, 0,05 - 0,15 Gew.-% V.FIG. 3 shows a
Die Schweißung wird als Konstruktionsschweißung ausgeführt, wobei während der Konstruktionsschweißung ein Schweißzusatzwerkstoff zugeführt wird. Der Schweißzusatzwerkstoff sollte z. B. 2% Nickel umfassen.The weld is carried out as a structural weld, with weld filler added during construction welding. The welding filler should z. B. 2% nickel.
Nach der Schweißung sollte die geschweißte Welle bei einer Temperatur zwischen 600°C und 640°C ausreichend lang zwischen 2 und 20 Stunden angelassen werden.After welding, the welded shaft should be tempered between 2 and 20 hours at a temperature between 600 ° C and 640 ° C.
Der Vorteil des 3,5 NiCrMoV-Werkstoff liegt insbesondere darin, dass er ohne Zähigkeitsprobleme eine statische Festigkeit von bis zu Rp0,2 > 760 MPa aufweist. Durch das Anlassen bei den vorgenannten Temperaturen wird die Festigkeit der Schweißnaht kaum beeinflusst. Die Eigenspannungen und die Härten in der Wärmeeinflusszone werden verringert, so dass Spannungsrisskorrosionsgefahr durch feuchte Medien vermieden werden kann. Die Vickers-Härte liegt bei HV < 360. Damit ergibt sich eine geschweißte Welle, die im vorderen Teil die notwendige Warmfestigkeit besitzt, im hinteren Teil aber die hohe Festigkeits- und Zähigkeitsanforderung durch die großen Schaufel-Fliehkräfte ertragen kann. Die Verbindung muss nur einmal geschweißt und einmal geglüht werden.The advantage of the 3.5 NiCrMoV material lies in the fact that it has a static strength of up to R p 0.2> 760 MPa without toughness problems. By tempering at the aforementioned temperatures, the strength of the weld is hardly affected. The residual stresses and the hardnesses in the heat-affected zone are reduced, so that stress corrosion cracking by moist media can be avoided. The Vickers hardness is HV <360. This results in a welded shaft, which has the necessary heat resistance in the front part, but in the rear part can withstand the high strength and toughness requirement due to the large blade centrifugal forces. The connection only needs to be welded once and annealed once.
Die in Figur 4 dargestellte Turbinenwelle 8 zeigt eine in Axialrichtung 19 ausgerichtete Turbinenwelle 8 für den Einsatz in der Straight-Flow-Bauart. Die Turbinenwelle 8 weist einen als ersten Strömungsbereich (13) ausgebildeten Mitteldruckteil 13 und einen als zweiten Strömungsbereich (14) ausgebildeten Niederdruckteil 14 auf. Der Mitteldruckteil 13 und der Niederdruckteil 14 werden über eine Konstruktionsschweißnaht 15 verbunden. Der Vorteil dieser Ausführungsform für die Straight-Flow-Bauart gegenüber der in Figur 2 dargestellten Ausführungsform besteht insbesondre darin, dass durch den Ersatz des anlassstabileren 1 CrMoV-Stahles durch den 2 CrMoNiWV-Stahl mit vergleichbaren Warmfestigkeiten, aber geringerer Anlassstabilität durch die gewählten Anlassparameter die Härten in den Wärmeeinflusszonen des 2 CrMoNiWV und 3,5 NiCrMoV und die Eigenspannungen auf die erforderlichen Niveaus reduziert werden können. Auch hier ergibt sich eine geschweißte Turbinenwelle 8, die im Mitteldruckteil 13 die notwendige Warmfestigkeit besitzt und im Niederdruckteil 14 die notwendige hohe Festigkeits- und Zähigkeitsanforderungen erfüllt.The
Weitere Vorteile ergeben sich dadurch, dass die Turbinenwelle lediglich einmal geschweißt und einmal angelassen werden muss. Dadurch reduzieren sich die Durchlaufzeiten in der Fertigung. Die Realisierbarkeit von weiteren konstruktiven Lösungen mit hohen Festigkeits- und Zähigkeitsanforderungen im Niederdruckteil 14 und hoher Warmfestigkeit im Mitteldruckteil 13 werden für neue Dampfturbinenbaureihen möglich.Further advantages result from the fact that the turbine shaft only needs to be welded once and tempered once. This reduces the throughput times in production. The feasibility of further constructive solutions with high strength and toughness requirements in the low-
Claims (10)
- Turbine shaft (2, 8) which is oriented in an axial direction (19),
having a first flow region (5, 13) and a second flow region (6, 14), which adjoins the first flow region (5, 13) in the axial direction (19),
the turbine shaft (2, 8) comprising a first material in the first flow region (5, 13) and
comprising a second material in the second flow region (6, 14), in which
the first material comprises a heat-resistant steel, and
the second material comprises a steel which is tough at low temperatures and in which the second material comprises a 3.5 NiCrMoV steel, characterized in that the first material comprises a 2 CrMoNiWV steel. - Turbine shaft (2, 8) according to Claim 1, characterized in that the first material includes
0.20 - 0.24% by weight of C, ≤ 0.20% by weight of Si, 0.60 - 0.80% by weight of Mn, ≤ 0.010% by weight of P, ≤ 0.007% by weight of S, 2.05 - 2.20% by weight of Cr, 0.80 - 0.90% by weight of Mo, 0.70 - 0.80% by weight of Ni, 0.25 - 0.35% by weight of V and 0.60 - 0.70% by weight of W
and the second material includes
0.22 - 0.32% by weight of C, ≤ 0.15% by weight of Si, 0.15 to 0.40% by weight of Mn, ≤ 0.010% by weight of P,≤ 0.007% by weight of S, 1.20 - 1.80% by weight of Cr, 0.25 - 0.45% by weight of Mo, 3.40 - 4.00% by weight of Ni, 0.05 - 0.15% by weight of V. - Turbine shaft (2, 8) according to one of Claims 1 to 2, characterized in that a structural weld seam (4) is arranged between the first material and the second material.
- Turbine shaft (2, 8) according to one of the preceding claims, characterized in that the structural weld seam (4) includes a weld filler.
- Turbine shaft (2, 8) according to Claim 4, characterized in that the weld filler includes 2% by weight of nickel.
- Process for producing a turbine shaft (2, 8) which comprises two materials and is oriented in an axial direction (19), in which the first and second materials are directly joined to one another by means of a structural weld (4) and in which a 3.5 NiCrMoV steel is used for the second material, characterized in that a 2 CrMoNiWV steel is used for the first material.
- Process according to Claim 6, characterized in that
0.20 - 0.24% by weight of C, ≤ 0.20% by weight of Si, 0.60 - 0.80% by weight of Mn, ≤ 0.010% by weight of P, ≤ 0.007% by weight of S, 2.05 - 2.20% by weight of Cr, 0.80 - 0.90% by weight of Mo, 0.70 - 0.80% by weight of Ni, 0.25 - 0.35% by weight of V and 0.60 - 0.70% by weight of W is used for the first material, and
0.22 - 0.32% by weight of C, ≤ 0.15% by weight of Si, 0.15 - 0.40% by weight of Mn, ≤ 0.010% by weight of P, ≤ 0.007% by weight of S, 1.20 - 1.80% by weight of Cr, 0.25 - 0.45% by weight of Mo, 3.40 - 4.00% by weight of Ni, 0.05 - 0.15% by weight of V is used for the second material. - Process according to Claim 6 or 7, characterized in that a weld filler is fed to the structural weld (4).
- Process according to Claim 8, characterized in that the weld filler used is a material which includes 2% by weight of nickel.
- Use of the turbine shaft (4) as described in one of Claims 1 to 9 in a steam turbine.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10257091 | 2002-12-05 | ||
DE10257091 | 2002-12-05 | ||
PCT/DE2003/003959 WO2004051056A1 (en) | 2002-12-05 | 2003-12-02 | Turbine shaft and production of a turbine shaft |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1567749A1 EP1567749A1 (en) | 2005-08-31 |
EP1567749B1 true EP1567749B1 (en) | 2007-04-11 |
Family
ID=32403719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03788831A Expired - Lifetime EP1567749B1 (en) | 2002-12-05 | 2003-12-02 | Turbine shaft and production of a turbine shaft |
Country Status (7)
Country | Link |
---|---|
US (1) | US7331757B2 (en) |
EP (1) | EP1567749B1 (en) |
CN (1) | CN100335747C (en) |
AU (1) | AU2003292993A1 (en) |
DE (1) | DE50307042D1 (en) |
ES (1) | ES2283856T3 (en) |
WO (1) | WO2004051056A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1624155A1 (en) * | 2004-08-02 | 2006-02-08 | Siemens Aktiengesellschaft | Steam turbine and method of operating a steam turbine |
EP1624156B1 (en) * | 2004-08-04 | 2015-09-30 | Siemens Aktiengesellschaft | Gas or steam turbine with a stress-resistant component |
DE502005006834D1 (en) * | 2005-11-09 | 2009-04-23 | Siemens Ag | Method for producing a steam turbine shaft |
DE112006003408A5 (en) * | 2005-12-22 | 2008-10-30 | Alstom Technology Ltd. | Method for producing a welded rotor of a low-pressure steam turbine |
US20070189894A1 (en) * | 2006-02-15 | 2007-08-16 | Thamboo Samuel V | Methods and apparatus for turbine engine rotors |
EP1860279A1 (en) * | 2006-05-26 | 2007-11-28 | Siemens Aktiengesellschaft | Welded LP-turbine shaft |
EP2025866A1 (en) * | 2007-08-08 | 2009-02-18 | Siemens Aktiengesellschaft | Method for producing a turbine component and corresponding turbine component |
FR2936178B1 (en) * | 2008-09-24 | 2012-08-17 | Snecma | ASSEMBLY OF TITANIUM AND STEEL PARTS BY WELDING DIFFUSION |
DE102008053222A1 (en) * | 2008-10-25 | 2010-04-29 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | turbocharger |
EP3072624A1 (en) | 2015-03-23 | 2016-09-28 | Siemens Aktiengesellschaft | Shaft-element, method of producing a shaft-element made of two different materials and corresponding flow engine |
CN110629126B (en) * | 2019-10-23 | 2021-07-13 | 哈尔滨汽轮机厂有限责任公司 | Material for high-low pressure combined rotor of medium-small turbine at 566 ℃ grade |
US11603801B2 (en) | 2021-05-24 | 2023-03-14 | General Electric Company | Midshaft rating for turbomachine engines |
US11808214B2 (en) | 2021-05-24 | 2023-11-07 | General Electric Company | Midshaft rating for turbomachine engines |
US12071978B2 (en) | 2021-05-24 | 2024-08-27 | General Electric Company | Midshaft rating for turbomachine engines |
US11724813B2 (en) | 2021-05-24 | 2023-08-15 | General Electric Company | Midshaft rating for turbomachine engines |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2906371A1 (en) * | 1979-02-19 | 1980-08-21 | Kloeckner Werke Ag | Turbine rotor for high pressure and satd. steam turbines - made by successive electroslag remelting of two steel electrodes of different compsns. |
FR2596774B1 (en) * | 1986-04-04 | 1988-07-22 | Pasteur Institut | OLIGONUCLEOTIDE PROBES AND METHODS FOR HYBRIDIZED DETECTION OF NUCLEIC ACIDS FROM BACTERIA AND OTHER LIVING BEINGS |
US4962586A (en) * | 1989-11-29 | 1990-10-16 | Westinghouse Electric Corp. | Method of making a high temperature - low temperature rotor for turbines |
US5524019A (en) * | 1992-06-11 | 1996-06-04 | The Japan Steel Works, Ltd. | Electrode for electroslag remelting and process of producing alloy using the same |
FR2701272B1 (en) | 1993-02-05 | 1995-03-31 | Alsthom Gec | Heat treatment process after welding of two alloy steel parts of different grades. |
WO1997032112A1 (en) * | 1996-02-29 | 1997-09-04 | Siemens Aktiengesellschaft | Turbine shaft consisting of two alloys |
DE69705167T2 (en) * | 1996-06-24 | 2001-11-15 | Mitsubishi Jukogyo K.K., Tokio/Tokyo | Ferritic steels with a low Cr content and ferritic cast steels with a low Cr content, which have excellent high-temperature strength and weldability |
JP3999402B2 (en) * | 1998-06-09 | 2007-10-31 | 三菱重工業株式会社 | Dissimilar welding rotor for steam turbine |
US6499946B1 (en) * | 1999-10-21 | 2002-12-31 | Kabushiki Kaisha Toshiba | Steam turbine rotor and manufacturing method thereof |
DE19953079B4 (en) | 1999-11-04 | 2013-12-19 | Alstom Technology Ltd. | Method for welding components |
US6454531B1 (en) * | 2000-12-27 | 2002-09-24 | General Electric Company | Fabricating turbine rotors composed of separate components |
-
2003
- 2003-12-02 ES ES03788831T patent/ES2283856T3/en not_active Expired - Lifetime
- 2003-12-02 CN CNB2003801052893A patent/CN100335747C/en not_active Expired - Lifetime
- 2003-12-02 WO PCT/DE2003/003959 patent/WO2004051056A1/en active IP Right Grant
- 2003-12-02 DE DE50307042T patent/DE50307042D1/en not_active Expired - Lifetime
- 2003-12-02 EP EP03788831A patent/EP1567749B1/en not_active Expired - Lifetime
- 2003-12-02 AU AU2003292993A patent/AU2003292993A1/en not_active Abandoned
- 2003-12-02 US US10/537,237 patent/US7331757B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
ES2283856T3 (en) | 2007-11-01 |
EP1567749A1 (en) | 2005-08-31 |
WO2004051056A1 (en) | 2004-06-17 |
CN100335747C (en) | 2007-09-05 |
CN1720387A (en) | 2006-01-11 |
US7331757B2 (en) | 2008-02-19 |
US20060153686A1 (en) | 2006-07-13 |
DE50307042D1 (en) | 2007-05-24 |
AU2003292993A1 (en) | 2004-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1567749B1 (en) | Turbine shaft and production of a turbine shaft | |
DE3789776T2 (en) | Heat-resistant steel and gas turbine parts made from it. | |
DE69726524T2 (en) | Blading for a steam turbine of a gas-steam combined cycle power plant | |
DE69634287T2 (en) | Gas turbine combustor and gas turbine | |
DE69817053T2 (en) | High-tenacity, high-temperature-resistant steel, turbine rotor and process for its production | |
DE69033878T2 (en) | steam turbine | |
DE69720616T2 (en) | Turbine rotor and method for repairing a turbine rotor | |
DE69523268T2 (en) | Method of manufacturing a one-piece high-pressure, low-pressure turbine rotor | |
EP1770184A1 (en) | High-strength martensite heat resisting cast steel and method of producing the steel | |
DE69824962T2 (en) | Use of a heat-resistant cast steel | |
CH699716A1 (en) | Component for high temperature steam turbine and high temperature steam turbine. | |
EP2432905A1 (en) | Ferritic martensitic iron-based alloy, a component and a process | |
JP4256311B2 (en) | Rotor shaft for steam turbine, steam turbine, and steam turbine power plant | |
DE69800133T2 (en) | Turbine blades | |
DE69525621T2 (en) | Steam turbine power plant and steam turbine | |
DE112013007314T5 (en) | Precipitation hardened stainless steel alloys | |
WO2008031457A1 (en) | Method for the production of tough-at-subzero steels | |
EP2431570A1 (en) | Steam turbine with a dummy piston and wet steam blockage | |
WO2007137884A1 (en) | Welded low-pressure turbine shaft | |
EP1873356B1 (en) | Shaft for turbomachine and process for manufacturing | |
EP1754798A1 (en) | Screw for a turbine housing | |
EP1785585B1 (en) | Method for manufacturing a steam turbine shaft | |
EP0060577B1 (en) | Turbine blade material with high fatigue-corrosion resistance, method of production and use | |
EP1898047A1 (en) | Shaft body made by powder metallurgical process and optimised for weld joints | |
EP1760162B1 (en) | Process for producing a shaft for compressors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE ES GB IT LI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50307042 Country of ref document: DE Date of ref document: 20070524 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070620 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2283856 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080114 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20171207 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20180305 Year of fee payment: 15 Ref country code: ES Payment date: 20180322 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20171221 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20181202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181202 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50307042 Country of ref document: DE Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220617 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50307042 Country of ref document: DE |