EP0060577B1 - Turbine blade material with high fatigue-corrosion resistance, method of production and use - Google Patents

Turbine blade material with high fatigue-corrosion resistance, method of production and use Download PDF

Info

Publication number
EP0060577B1
EP0060577B1 EP82200212A EP82200212A EP0060577B1 EP 0060577 B1 EP0060577 B1 EP 0060577B1 EP 82200212 A EP82200212 A EP 82200212A EP 82200212 A EP82200212 A EP 82200212A EP 0060577 B1 EP0060577 B1 EP 0060577B1
Authority
EP
European Patent Office
Prior art keywords
mpa
weight
turbine blade
blade material
remainder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200212A
Other languages
German (de)
French (fr)
Other versions
EP0060577B2 (en
EP0060577A1 (en
Inventor
Andrejs Dr. Atrens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4218072&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0060577(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Priority to AT82200212T priority Critical patent/ATE19659T1/en
Publication of EP0060577A1 publication Critical patent/EP0060577A1/en
Application granted granted Critical
Publication of EP0060577B1 publication Critical patent/EP0060577B1/en
Publication of EP0060577B2 publication Critical patent/EP0060577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to a turbine blade material according to the preamble of claim 1 and to a method for its production according to the preamble of claim 7.
  • Blade materials for steam turbines are subject to increased demands, particularly in the area of medium and low temperatures, in the course of many years of operating experience. At the same time, they should have a high static strength, i.e. H. a high yield strength, a sufficient deformation reserve, d. H. have sufficiently high notched toughness and a high resistance to corrosion fatigue in the relevant temperature range in a possible aggressive atmosphere. In some cases, similar requirements are placed on the blade materials of turbo compressors in gas turbine plants.
  • the corrosion-resistant steels can basically be divided into 3 groups: ferritic, ferritic-austenitic and austenitic.
  • the first two generally have a maximum yield strength of 640 MPa, the latter a limit of only 400 MPa. There is therefore a need for blade materials that meet all three of the above conditions.
  • the invention is based on the object of specifying a turbine blade material and a corresponding production method which ensure high strength against corrosion fatigue in the finished product with the simplest possible simplicity and avoidance of unusual, expensive starting materials with good ductility, high yield strength and notch toughness.
  • the turbine blade material used is a stainless steel with a ferritic-austenitic mixed structure, which in itself has good strength against corrosion fatigue, the otherwise inadequate mechanical properties such as yield strength and notch toughness being improved by a special choice of the alloy composition and by precipitation hardening . This is achieved through targeted heat treatment.
  • the starting point was a stainless steel (alloy I) with the following composition:
  • the alloy was melted in a vacuum furnace and cast into a cast ingot.
  • the ingot was rolled down to a thickness of 12 mm at a temperature of approximately 1,050 ° C., the decrease in cross-section being at least 50% and then quenched in water from the same temperature. Quenching the workpiece effectively suppresses the possible formation of the brittle intermetallic iron / chromium compound, the so-called ⁇ phase.
  • Test bar blanks were machined out of the plate in question, the longitudinal axes of which were parallel to the rolling direction. The blanks were precipitation hardened by a heat treatment in the temperature range from 300 to 650 ° C. for 1 to 4 hours.
  • the alloy was cast and the cast ingot produced in this way was further thermomechanically processed.
  • a first step of hot forming the cross-section was reduced by 75%.
  • the workpiece temperature was 1 250 ° C, at the end of it still 1 050 ° C.
  • the second deformation step which was carried out isothermally at a temperature of 1,050 ° C.
  • the cross section of the workpiece was totally reduced by a further 50%, based on the cross section after the first operation.
  • the semi-finished product thus produced was then quenched in water at 1,050 ° C.
  • test bar blanks were worked out in such a way that their longitudinal axes were parallel to the main direction of deformation of the workpiece.
  • the precipitation hardening of the blanks was carried out for 1 to 4 hours in the temperature range from 300 to 650 ° C.
  • Rods for tensile, notch impact and fatigue strength tests were produced, which were tested under exactly the same conditions as given in example 1.
  • the starting point was a stainless steel (alloy IV) with the following composition:
  • the titanium alloy can only show a higher static strength (yield strength), but drops considerably compared to the proposed alloys I to IV in terms of dynamic values. In view of the cost and difficult processability of the titanium alloy, this is all the more important.
  • turbine blade materials are steels with a two-phase mixture of the following general composition, consisting of ferrite or martensite on the one hand and austenite on the other hand: + at least one precipitation hardening element for Fe alloys
  • At least one of the elements may preferably be among the elements for precipitation hardening are used, the total content of which should be at least 0.5% by weight, but the content of each individual element should be at least 0.2% by weight.
  • Mn-free alloys are preferred: where Ti, Al individually each ⁇ 0.2 wt .-%.
  • the hot deformation after casting may be in the temperature range between 1000 ° C and 1250 0 C are performed, wherein the reduction in cross section should be at least 50%.
  • the precipitation hardening can be carried out in the temperature range between 300 ° C and 650 ° C for 1 to 8 hours.
  • the turbine blade material can preferably be used continuously as a steam turbine blade in the low-pressure part or as a turbo compressor blade up to temperatures of 350 ° C.
  • the turbine materials produced and proposed according to the invention combine high ductility and notch toughness with high static strength and high resistance to corrosion fatigue and thus ensure a long service life of the component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Heat Treatment Of Articles (AREA)
  • Dry Shavers And Clippers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

1. Turbine blade material of high corrosion fatigue strength with a two-phased mixed structure of austenite and ferrite or austenite and martensite, consisting of Carbon = 0.005 to 0.06% by weight Chromium = 18 to 30% by weight Molybdenum = 1 to 6% by weight Nickel = 2 to 6% by weight Manganese = 4 to 8% by weight at least one of the elements copper, titanium and aluminium, the content of each individual element being at least 0.2% by weight and the total content of copper, titanium and aluminium being 0.5 to 4% by weight, and optionally 0.2 to 1.5% by weight of nitrogen, the remainder being iron and unavoidable impurities, this material having a yield stress of at least 800 MPa, and elongation at break of at least 15% for a specimen length : specimen diameter ratio = 4.4 and a fatigue strength relative to alternating tensile/compressive stresses, under aerated 4N NaCl solution of pH = 5 at 80 degrees C, of at least 350 MPa without a static preload and of at least +- 250 MPa under a static preload of + 250 MPa relative to 10**8 load changes, and a notched impact strength of at least 50 J per cm**2 .

Description

Die Erfindung geht aus von einem Turbinenschaufelwerkstoff nach der Gattung des Anspruchs 1 und von einem Verfahren zu dessen Herstellung nach der Gattung des Anspruchs 7.The invention relates to a turbine blade material according to the preamble of claim 1 and to a method for its production according to the preamble of claim 7.

An Schaufelwerkstoffe für Dampfturbinen werden insbesondere im Bereich mittlerer und tieferer Temperaturen im Zuge langjähriger Betriebserfahrungen erhöhte Anforderungen gestellt. Sie sollen gleichzeitig eine hohe statische Festigkeit, d. h. eine hohe Streckgrenze, eine ausreichende Verformungsreserve, d. h. genügend hohe Kerbzähigkeit und eine hohe Widerstandsfähigkeit gegen Korrosionsermüdung im betreffenden Temperaturbereich in möglicher agressiver Atmosphäre aufweisen. Zum Teil werden ähnliche Anforderungen an Schaufelwerkstoffe von Turbokompressoren in Gasturbinenanlagen gestellt.Blade materials for steam turbines are subject to increased demands, particularly in the area of medium and low temperatures, in the course of many years of operating experience. At the same time, they should have a high static strength, i.e. H. a high yield strength, a sufficient deformation reserve, d. H. have sufficiently high notched toughness and a high resistance to corrosion fatigue in the relevant temperature range in a possible aggressive atmosphere. In some cases, similar requirements are placed on the blade materials of turbo compressors in gas turbine plants.

Es hat sich gezeigt, dass im Niederdruckteil von Dampfturbinen Schaufelschäden aufgetreten sind, welche einer ungenügenden Festigkeit gegen Korrosionsermüdung zugeschrieben werden (H. J. Bohnstedt, P.-H. Effertz, P. Forchhammer und L. Hagn, Der Maschinenschaden 51, 73, 1978 ; K. Yaeger, EPRI Journal, p. 44, April 1980). Die hier üblicherweise verwendeten ferritischen bzw. martensitischen legierten Stähle (13 % Cr oder 12 % Cr/1 % Mo) weisen wohl hohe statische Festigkeitswerte (Streckgrenze, 0,2 %-Grenze) auf, ihr Verhalten gegenüber dynamischer Beanspruchung bei gleichzeitiger Anwesenheit agressiver Medien ist offensichtlich ungenügend. In allen Turbomaschinen, wo mit Wasserströpfchenbildung zufolge Kondensation und demzufolge mit einer Konzentration der in der Gasphase vorhandenen Verunreinigungen in der flüssigen Phase als Lösung gerechnet werden muss, stellt sich das Problem der Korrosionsermüdung.It has been shown that blade damage has occurred in the low-pressure section of steam turbines, which is attributed to insufficient resistance to corrosion fatigue (HJ Bohnstedt, P.-H. Effertz, P. Forchhammer and L. Hagn, Der Maschinenschaden 51, 73, 1978; K Yaeger, EPRI Journal, p. 44, April 1980). The ferritic or martensitic alloy steels commonly used here (13% Cr or 12% Cr / 1% Mo) probably have high static strength values (yield strength, 0.2% limit), their behavior towards dynamic stress and the simultaneous presence of aggressive media is obviously insufficient. The problem of corrosion fatigue arises in all turbomachinery, where condensation and consequently a concentration of the impurities present in the gas phase in the liquid phase must be expected as a result of water droplet formation.

Man hat versucht, die Frage der Korrosionsermüdung auf zwei Wegen zu lösen. Einerseits ist es möglich, die dynamische Beanspruchung (Schwingungen) der Schaufel durch entsprechende konstruktive Gestaltung herabzusetzen. Andererseits müssen an den Reinheitsgrad der gasförmigen Medien höhere Anforderungen gestellt werden, um diese von Schadstoffen möglichst frei zu halten. Derartige Massnahmen erwiesen sich indessen als sehr aufwendig und teuer und zeitigten oft nicht den erhofften Erfolg. Insbeonsere vermag selbst eine noch so hoch getriebene Reinheit des Dampfes oder Gases eine lokale Anreicherung und somit Sättigung einer wässrigen Lösung nicht mit Sicherheit zu unterbinden. Es muss daher praktisch immer mit der Möglichkeit eines korrosiven Angriffs gerechnet werden.Attempts have been made to solve the problem of corrosion fatigue in two ways. On the one hand, it is possible to reduce the dynamic stress (vibrations) of the blade by appropriate design. On the other hand, higher requirements must be placed on the degree of purity of the gaseous media in order to keep them as free as possible from pollutants. Such measures, however, proved to be very complex and expensive and often did not achieve the hoped-for success. In particular, no matter how high the purity of the steam or gas, local enrichment and thus saturation of an aqueous solution cannot be prevented with certainty. The possibility of a corrosive attack must therefore almost always be expected.

Ein anderer Weg, die obengenannten Schwierigkeiten zu beseitigen, bietet sich von der materialtechnischen Seite an. Es wurde schon versucht, gute chemische Beständigkeit mit genügend hoher mechanischen Festigkeit zu kombinieren (K. Detert, W. Bertram und H. Buhl, Werkstoffe und Korrosion, 31, S. 439-446, 1980, insbesondere Tabelle 1 Werkstoff 8 : XCrNiMoCu 255 ; GB-A-1 456 634). Bei diesen Werkstoffen handelt es sich grundsätzlich um ferritischaustenitische Stähle. Das gesteckte Ziel, einen Werkstoff hoher statischer Festigkeit, hoher Zähigkeit und hoher Ermüdungsfestigkeit in korrosiver Umgebung empfehlen zu können, wurde indessen nicht erreicht.Another way of eliminating the above difficulties is on the material side. Attempts have already been made to combine good chemical resistance with sufficiently high mechanical strength (K. Detert, W. Bertram and H. Buhl, Materials and Corrosion, 31, pp. 439-446, 1980, in particular Table 1 Material 8: XCrNiMoCu 255 ; GB-A-1 456 634). These materials are basically ferritic-austenitic steels. However, the goal of being able to recommend a material with high static strength, high toughness and high fatigue strength in a corrosive environment has not been achieved.

Die korrosionsbeständigen Stähle können grundsätzlich in 3 Gruppen eingeteilt werden : ferritisch, ferritischaustenitisch und austenitisch. Die ersten beiden erreichen im allgemeinen eine Streckgrenze von höchstens 640 MPa, die letzteren eine solche von nur 400 MPa. Es besteht daher ein Bedürfnis nach Schaufelwerkstoffen, welche alle drei oben angegebenen Bedingungen erfüllen.The corrosion-resistant steels can basically be divided into 3 groups: ferritic, ferritic-austenitic and austenitic. The first two generally have a maximum yield strength of 640 MPa, the latter a limit of only 400 MPa. There is therefore a need for blade materials that meet all three of the above conditions.

Der Erfindung liegt die Aufgabe zugrunde, einen Turbinenschaufelwerkstoff sowie ein entsprechendes Herstellungsverfahren anzugeben, die im Fertigerzeugnis bei möglichster Einfachheit und unter Vermeidung ausgefallener, teurer Ausgangsmaterialien bei guter Duktilität, hoher Streckgrenze und Kerbzähigkeit eine hohe Festigkeit gegen Korrosionsermüdung gewährleisten.The invention is based on the object of specifying a turbine blade material and a corresponding production method which ensure high strength against corrosion fatigue in the finished product with the simplest possible simplicity and avoidance of unusual, expensive starting materials with good ductility, high yield strength and notch toughness.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale der Ansprüche 1, 4, 7 gelöst.According to the invention, this object is achieved by the features of claims 1, 4, 7.

Der Kern der Erfindung besteht darin, dass als Turbinenschaufelwerkstoff ein rostfreier Stahl mit ferritischaustenitischem Mischgefüge, welches an sich eine gute Festigkeit gegen Korrosionsermüdung aufweist, verwendet wird, wobei die sonst ungenügenden mechanischen Eigenschaften wie Streckgrenze und Kerbzähigkeit durch spezielle Wahl der Legierungszusammensetzung und durch Ausscheidungshärtung verbessert werden. Dies wird durch eine gezielte Wärmebehandlung erreicht.The essence of the invention is that the turbine blade material used is a stainless steel with a ferritic-austenitic mixed structure, which in itself has good strength against corrosion fatigue, the otherwise inadequate mechanical properties such as yield strength and notch toughness being improved by a special choice of the alloy composition and by precipitation hardening . This is achieved through targeted heat treatment.

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele näher erläutert :The invention is explained in more detail using the following exemplary embodiments:

Ausführungsbeispiel 1 :Example 1:

Ausgegangen wurde von einem rostfreien Stahl (Legierung I) der nachfolgenden Zusammensetzung :

Figure imgb0001
The starting point was a stainless steel (alloy I) with the following composition:
Figure imgb0001

Die Legierung wurde im Vakuumofen geschmolzen und zu einem Gussbarren vergossen. Der Barren wurde bei einer Temperatur von ca. 1 050 °C auf eine Dicke von 12 mm heruntergewalzt, wobei die Querschnittsabnahme mindestens 50 % betrug und dann von der gleichen Temperatur aus in Wasser abgeschreckt. Durch das Abschrecken des Werkstückes wird die ev. mögliche Bildung der spröden intermetallischen Eisen/Chrom-Verbindung, der sogenannten σ-Phase wirksam unterdrückt. Aus der betreffenden Platte wurden durch spanabhebende Bearbeitung Probestab-Rohlinge herausgearbeitet, deren Längsachsen parallel zur Walzrichtung verliefen. Die Rohlinge wurden durch eine 1 bis 4 h dauernde Wärmebehandlung im Temperaturbereich von 300 bis 650 °C ausscheidungsgehärtet. Insgesamt wurden je mehrere Probestäbe für Zugproben, Kerbschlagproben nach Charpy und Dauerwechselfestigkeit-Versuche bei axialer Belastung (Zug/Druck) mit und ohne Vorlast sowohl in Luft wie in einer belüfteten 4 N NaCI-Lösung mit pH = 5 bei 80 °C untersucht. Alle Dauerwechselfestigkeitsbestimmungen wurden unter Anwendung einer sinusförmigen axialen Belastung vorgenommen. Der für die praktische Bewertung im Betrieb vor allem massgebende Spannungszustand wurde durch zusätzliches Aufbringen einer positiven statischen Vorlast (Zug) verwirklicht, welche einer Spannung (Mittelwert der Beanspruchung) von 250 MPa entsprach.The alloy was melted in a vacuum furnace and cast into a cast ingot. The ingot was rolled down to a thickness of 12 mm at a temperature of approximately 1,050 ° C., the decrease in cross-section being at least 50% and then quenched in water from the same temperature. Quenching the workpiece effectively suppresses the possible formation of the brittle intermetallic iron / chromium compound, the so-called σ phase. Test bar blanks were machined out of the plate in question, the longitudinal axes of which were parallel to the rolling direction. The blanks were precipitation hardened by a heat treatment in the temperature range from 300 to 650 ° C. for 1 to 4 hours. A total of several test bars for tensile tests, Charpy impact tests and fatigue tests under axial load (tensile / compression) with and without preload were examined both in air and in an aerated 4 N NaCI solution with pH = 5 at 80 ° C. All fatigue strength determinations were made using a sinusoidal axial load. The stress state, which is particularly important for the practical evaluation in operation, was achieved by additionally applying a positive static preload (tension), which corresponded to a stress (mean value of the stress) of 250 MPa.

Ausführungsbeispiel 11 :Example 11:

Es wurde von einem rostfreien Stahl (Legierung II) der nachfolgenden Zusammensetzung ausgegangen :

Figure imgb0002
A stainless steel (alloy II) with the following composition was assumed:
Figure imgb0002

Nach dem Erschmelzen unter Vakuum wurde die Legierung gegossen und der auf diese Weise hergestellte Gussbarren in zwei Stufen thermomechanisch weiterverarbeitet. In einem ersten Schritt der Warmverformung wurde eine Querschnittsverminderung von 75% vorgenommen. Zu Beginn dieser Operation betrug die Werkstücktemperatur 1 250 °C, am Ende derselben noch 1 050 °C. Daraufhin erfolgte unmittelbar der zweite Verformungsschritt, welcher isotherm bei einer Temperatur von 1 050 °C durchgeführt wurde. Während dieses Schrittes wurde der Querschnitt des Werkstücks total um weitere 50 %, bezogen auf den Querschnitt nach der ersten Operation, reduziert. Nun wurde das auf diese Weise hergestellte Halbzeug von 1 050 °C in Wasser abgeschreckt. Die Herausarbeitung von Probestab-Rohlingen erfolgte derart, dass ihre Längsachsen parallel zur Hauptverformungsrichtung des Werkstücks lagen. Die Ausscheidungshärtung der Rohlinge erfolgte während 1 bis 4 h im Temperaturbereich von 300 bis 650 °C. Es wurden Stäbe für Zug-, Kerbschlag- und Dauerwechselfestigkeitsproben hergestellt, welche unter genau den gleichen Bedingungen wie unter Beispiel 1 angegeben, geprüft wurden.After melting under vacuum, the alloy was cast and the cast ingot produced in this way was further thermomechanically processed. In a first step of hot forming, the cross-section was reduced by 75%. At the start of this operation, the workpiece temperature was 1 250 ° C, at the end of it still 1 050 ° C. This was immediately followed by the second deformation step, which was carried out isothermally at a temperature of 1,050 ° C. During this step, the cross section of the workpiece was totally reduced by a further 50%, based on the cross section after the first operation. The semi-finished product thus produced was then quenched in water at 1,050 ° C. The test bar blanks were worked out in such a way that their longitudinal axes were parallel to the main direction of deformation of the workpiece. The precipitation hardening of the blanks was carried out for 1 to 4 hours in the temperature range from 300 to 650 ° C. Rods for tensile, notch impact and fatigue strength tests were produced, which were tested under exactly the same conditions as given in example 1.

Ausführungsbeispiel III:Working example III:

Ausgegangen wurde von einem rostfreien Stahl (Legierung 111) der nachfolgenden Zusammensetzung :

Figure imgb0003
A stainless steel (alloy 111) with the following composition was assumed:
Figure imgb0003

Die Herstellung, Weiterverformung, Wärmebehandlung und Prüfung dieses Turbinenschaufelwerkstoffes erfolgte genau gleich wie unter Beispiel II angegeben.The production, further shaping, heat treatment and testing of this turbine blade material were carried out in exactly the same way as given under Example II.

Ausführungsbeispiel IV :Working example IV:

Ausgegangen wurde von einem rostfreien Stahl (Legierung IV) der nachfolgenden Zusammensetzung :

Figure imgb0004
Figure imgb0005
The starting point was a stainless steel (alloy IV) with the following composition:
Figure imgb0004
Figure imgb0005

Die Herstellung, Behandlung und Prüfungdieses Materials wurde genau gemäss Ausführungsbeispiel 11 durchgeführt.The production, treatment and testing of this material was carried out exactly in accordance with exemplary embodiment 11.

Prüfresultate :Test results:

Die Resultate der Prüfungen sind in der nachfolgenden Tabelle zusammengestellt. Dabei entsprechen die Legierungen I bis IV denjenigen in den Ausführungsbeispielen. Vergleichsweise sind die Eigenschaften eines für Turbinenschaufeln häufig verwendeten härtbaren ferritischen Cr-Mo-Stahles der Norm X20 Cr Mo V 12 I folgender Zusammensetzung dargestellt :

Figure imgb0006
The results of the tests are summarized in the table below. Alloys I to IV correspond to those in the exemplary embodiments. For comparison, the properties of a hardenable ferritic Cr-Mo steel of the standard X20 Cr Mo V 12 I of the following composition, which is frequently used for turbine blades, are shown:
Figure imgb0006

Ausserdem ist die bekannte Titanlegierung Ti 6 AI4V der nachfolgenden Zusammensetzung als Vergleich herangezogen:

Figure imgb0007
In addition, the well-known titanium alloy Ti 6 AI4V with the following composition is used as a comparison:
Figure imgb0007

Aus der Tabelle geht eindeutig hervor, dass die erfindungsgemässen Turbinenschaufelwerkstoffe unter korrosivem Medium den beiden Vergleichsmaterialien deutlich überlegen sind. Dies gilt vor allem gegenüber dem Cr-Mo-Stahl, der ausserdem eine ungenügende Zähigkeit aufweist. Die Titanlegierung kann sich lediglich über eine höhere statische Festigkeit (Streckgrenze) ausweisen, fällt jedoch gegenüber den vorgeschlagenen Legierungen I bis IV bezüglich dynamischer Werte beträchtlich ab. In Anbetracht der Kostspieligkeit und schwierigen Verarbeitbarkeit der Titanlegierung fällt dies umsomehr ins Gewicht.The table clearly shows that the turbine blade materials according to the invention are significantly superior to the two comparison materials under corrosive medium. This applies above all to Cr-Mo steel, which also has insufficient toughness. The titanium alloy can only show a higher static strength (yield strength), but drops considerably compared to the proposed alloys I to IV in terms of dynamic values. In view of the cost and difficult processability of the titanium alloy, this is all the more important.

Es soll noch nachgetragen werden, dass die Bruchdehnung der Legierungen I bis IV bezogen auf einen Probestab mit einem Längen : Durchmesserverhältnis von 4,4 durchweg über 15 % betrug, was für die hervorragende Duktilität dieses Materials spricht. Die Werte der Dauefestigkeit unter 4N NaCI-Lösung bei pH = 5 und 80 °C ohne statische Vorlast lagen in allen Fällen über 350 MPa.It should be added that the elongation at break of alloys I to IV based on a test bar with a length: diameter ratio of 4.4 was consistently over 15%, which speaks for the excellent ductility of this material. The values of the fatigue strength under 4N NaCI solution at p H = 5 and 80 ° C without static preload were in all cases over 350 MPa.

Insbesondere eignen sich als Turbinenschaufelwerkstoffe Stähle mit zweiphasigem, aus Ferrit oder Martensit einerseits und Austenit andererseits bestehenden Mischgefüge folgender allgemeinen Zusammensetzung :

Figure imgb0008
+ mindestens ein Ausscheidungshärtungs-Element für Fe-Legierungen
Figure imgb0009
Particularly suitable as turbine blade materials are steels with a two-phase mixture of the following general composition, consisting of ferrite or martensite on the one hand and austenite on the other hand:
Figure imgb0008
+ at least one precipitation hardening element for Fe alloys
Figure imgb0009

Unter den Elementen zur Ausscheidungshärtung kann vorzugsweise mindestens eines der Elemente

Figure imgb0010
herangezogen werden, wobei deren totaler Gehalt mindestens 0,5 Gew.-%, der Gehalt jedes einzelnen Elementes aber mindestens 0,2 Gew.-% betragen soll.At least one of the elements may preferably be among the elements for precipitation hardening
Figure imgb0010
are used, the total content of which should be at least 0.5% by weight, but the content of each individual element should be at least 0.2% by weight.

In die engere Wahl kommen bevorzugt die nachfolgenden Mn-freien Legierungen :

Figure imgb0011
wobei Ti, AI einzeln je ≥ 0,2 Gew.-%.The following Mn-free alloys are preferred:
Figure imgb0011
where Ti, Al individually each ≥ 0.2 wt .-%.

Fe = Rest

Figure imgb0012
Figure imgb0013
Fe = rest
Figure imgb0012
Figure imgb0013

Eine weitere Auswahl bevorzugter Legierungen, welche sowohl Ni wie Mn enthalten, ist nachfolgend aufgeführt :

Figure imgb0014
wobei Cu, Ti, AI einzeln je ≥ 0,2 Gew.-%A further selection of preferred alloys which contain both Ni and Mn is listed below:
Figure imgb0014
where Cu, Ti, AI individually each ≥ 0.2% by weight

Fe = Rest

  • 5) Zusammensetzung wie 4)., jedoch zusätzlich
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
Fe = rest
  • 5) Composition as 4)., But additionally
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017

Nach dem erfindungsgemässe Verfahren wird die Warmverformung nach dem Giessen kann im Temperaturbereich zwischen 1 000 °C und 1 2500C durchgeführt werden, wobei die Querschnittsabnahme mindestens 50 % betragen soll. Die Ausscheidungshärtung kann je nach Legierung und Werkstückgrösse im Temperaturbereich zwischen 300 °C und 650 °C während 1 bis 8 h durchgeführt werden.According to the inventive method, the hot deformation after casting may be in the temperature range between 1000 ° C and 1250 0 C are performed, wherein the reduction in cross section should be at least 50%. Depending on the alloy and workpiece size, the precipitation hardening can be carried out in the temperature range between 300 ° C and 650 ° C for 1 to 8 hours.

Der Turbinenschaufelwerkstoff kann vorzugsweise als Dampfturbinenschaufel im Niederdruckteil oder als Turbokompressorschaufel bis zu Temperaturen von 350 °C dauernd eingesetzt werden.The turbine blade material can preferably be used continuously as a steam turbine blade in the low-pressure part or as a turbo compressor blade up to temperatures of 350 ° C.

Die erfindungsgemäss hergestellten und vorgeschlagenen Turbinenwerkstoffe verbinden hohe Duktilität und Kerbzähigkeit mit hoher statischer Festigkeit und grossem Widerstand gegen Korrosionsermüdung und gewährleisten somit eine lange Lebensdauer des Bauteils.The turbine materials produced and proposed according to the invention combine high ductility and notch toughness with high static strength and high resistance to corrosion fatigue and thus ensure a long service life of the component.

Claims (7)

1. Turbine blade material of high corrosionfatigue strength with a two-phased mixed structure of austenite and ferrite or austenite and martensite, consisting of
Figure imgb0024
at least one of the elements copper, titanium and aluminium, the content of each individual element being at least 0.2 % by weight and the total content of copper, titanium and aluminium being 0.5 to 4 % by weight, and optionally 0.2 to 1.5 % by weight of nitrogen, the remainder being iron and unavoidable impurities, this material having a yield stress of at least 800 MPa, and elongation at break of at least 15 % for a specimen length : specimen diameter ratio = 4.4 and a fatigue strength relative to alternating tensile/compressive stresses, under aerated 4N NaCI solution of pH = 5 at 80 °C, of at least 350 MPa without a static preload and of at least ± 250 MPa under a static preload of + 250 MPa relative to 108 load changes, and a notched impact strength of at least 50 J per cm2.
2. Turbine blade material according to Claim 1, consisting of
Figure imgb0025
the remainder being iron and impurities.
3. Turbine blade material according to Claim 1, consisting of
Figure imgb0026
the remainder being iron and impurities.
4. Turbine blade material of high corrosionfatigue strength with a two-phase mixed structure of austenite and ferrite or austenite and martensite, consisting of :
Figure imgb0027
the remainder being iron and unavoidable impurities, this material having a yield stress of at least 800 MPa, an elongation at break of at least 15 % for a specimen length : specimen diameter ratio = 4.4 and a fatigue strength relative to alternating tensile/compressive stresses, under an aerated 4 N NaCI solution of pH = 5 at 80 °C of at least 350 Mpa without static preload and of at least ± 250 MPa under a static preload of + 250 MPa relative to 108 load changes, and a notched impact strength of at least 50 J per cm2.
5. Turbine blade material according to Claim 4, consisting of
Figure imgb0028
the remainder being iron and impurities.
6. Turbine blade material according to Claim 4, consisting of
Figure imgb0029
the remainder being iron and impurities.
7. Process for the manufacture of a turbine blade material according to Claims 1 and 4, characterised in that the components are melted and cast under vacuum, that the cast ingot produced in this way is subjected to hot-forming in a temperature range between 1 000 °C and 1 250 °C with a reduction in cross- section of at least 50 % and the workpiece produced in this way is quenched from the said temperature directly in water, is machined to the final form and then heat-treated in the temperature range between 300 °C and 650 °C for 1 to 8 hours for the purpose of precipitation hardening.
EP82200212A 1981-03-16 1982-02-22 Turbine blade material with high fatigue-corrosion resistance, method of production and use Expired - Lifetime EP0060577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82200212T ATE19659T1 (en) 1981-03-16 1982-02-22 TURBINE BLADE MATERIAL OF HIGH CORROSION FATIGUE RESISTANCE, PROCESS FOR ITS PRODUCTION AND ITS USE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1766/81 1981-03-16
CH1766/81A CH654594A5 (en) 1981-03-16 1981-03-16 TURBINE BLADE MATERIAL OF HIGH STRENGTH AGAINST CORROSION FATIGUE, METHOD FOR THE PRODUCTION THEREOF AND ITS USE.

Publications (3)

Publication Number Publication Date
EP0060577A1 EP0060577A1 (en) 1982-09-22
EP0060577B1 true EP0060577B1 (en) 1986-05-07
EP0060577B2 EP0060577B2 (en) 1993-06-30

Family

ID=4218072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200212A Expired - Lifetime EP0060577B2 (en) 1981-03-16 1982-02-22 Turbine blade material with high fatigue-corrosion resistance, method of production and use

Country Status (5)

Country Link
EP (1) EP0060577B2 (en)
JP (1) JPS57161052A (en)
AT (1) ATE19659T1 (en)
CH (1) CH654594A5 (en)
DE (1) DE3270941D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128632A (en) * 1982-10-23 1984-05-02 Mather & Platt Ltd Stainless steel
DE3339593A1 (en) * 1983-11-02 1985-05-15 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD FOR PRODUCING SEMI-FINISHED PRODUCTS FROM A STAINLESS STEEL AUSTENITIC OR MARTENSITICAL STEEL
EP0179117A1 (en) * 1984-04-27 1986-04-30 Bonar Langley Alloys Limited High chromium duplex stainless steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE767167C (en) * 1937-06-17 1951-12-06 Fried Krupp A G Objects resistant to stress corrosion
USRE28772E (en) * 1968-04-30 1976-04-13 Armco Steel Corporation High strength corrosion-resistant stainless steel
FR2194195A5 (en) * 1972-07-28 1974-02-22 Creusot Loire
GB1456634A (en) * 1972-09-13 1976-11-24 Langley Alloys Ltd High strength stainless steel having a high resistance to corro sive and abrasive wear in corrosive environments particularly chloride environments
DE2624117A1 (en) * 1976-05-28 1977-12-08 Graenges Nyby Ab TOUGH FERRITIC STEELS AND USE THE SAME FOR METALLIC OBJECTS, IN PARTICULAR WELDED CONSTRUCTIONS
US4099966A (en) * 1976-12-02 1978-07-11 Allegheny Ludlum Industries, Inc. Austenitic stainless steel
DE2815439C3 (en) * 1978-04-10 1980-10-09 Vereinigte Edelstahlwerke Ag (Vew), Wien Niederlassung Vereinigte Edelstahlwerke Ag (Vew) Verkaufsniederlassung Buederich, 4005 Meerbusch Use of a ferritic-austenitic chrome-nickel steel
JPS5662949A (en) * 1979-10-23 1981-05-29 Mitsubishi Heavy Ind Ltd Steel products for steam turbine moving blade or the like

Also Published As

Publication number Publication date
EP0060577B2 (en) 1993-06-30
CH654594A5 (en) 1986-02-28
ATE19659T1 (en) 1986-05-15
DE3270941D1 (en) 1986-06-12
JPS57161052A (en) 1982-10-04
EP0060577A1 (en) 1982-09-22

Similar Documents

Publication Publication Date Title
DE60214456T2 (en) Martensitic stainless steel with high hardness and good corrosion resistance
DE69604341T3 (en) Martensitic. STAINLESS STEEL WITH GOOD RESISTANCE TO HOLE FRICTION CORROSION AND HIGH HARDENING
DE2423193C2 (en) Use of an austenitic stainless steel
EP0652300B1 (en) Case nitriding for producing a high-strength austenitic skin in stainless steels
DE4212966C2 (en) Use of a martensitic chromium steel
AT502397B1 (en) Alloy used for preparing bearing component and bearing of roller for aircraft, contains carbon, manganese, silicon, chromium, molybdenum, vanadium, tungsten, niobium, tantalum, nickel, cobalt, aluminum, nitrogen and iron
DE2621297A1 (en) HIGH PERFORMANCE TURBO MACHINE IMPELLER
DE1558668C3 (en) Use of creep-resistant, stainless austenitic steels for the production of sheet metal
DE19607828C2 (en) Process for producing an austenitic Cv-Mn steel
EP0078254B1 (en) Use of a heat treatable steel and composite saw-blade
DE3238716A1 (en) STEEL AND CHAIN MADE THEREOF
DE602004005910T2 (en) Heat-resistant steel and gas turbine and components made thereof
EP2617855B1 (en) Low alloyed steel and components produced therefrom
CH365880A (en) Process for the production of workpieces with high damping capacity, workpiece produced according to this process and its use
DE1230232B (en) Use of a corrosion-resistant steel alloy as a material for easily weldable objects
DE69909718T2 (en) BN REINFORCEMENT, FERRITIC HEAT RESISTANT STEEL WITH LOW CARBON CONTENT AND HIGH WELDING PROPERTIES
DE3522115A1 (en) HEAT-RESISTANT 12 CR STEEL AND TURBINE PARTS MADE OF IT
DE19531260C5 (en) Process for producing a hot-work tool steel
DE2331134A1 (en) ROLL-CLAD MATERIALS MADE FROM A BASE MATERIAL MADE FROM STEEL AND FROM CLADDING MATERIALS MADE FROM CORROSION-RESISTANT AUSTENITIC STEELS AND ALLOYS
EP0060577B1 (en) Turbine blade material with high fatigue-corrosion resistance, method of production and use
DE1232759B (en) Martensite-hardenable chrome-nickel steel
DE2915688A1 (en) STEEL ALLOY AND USE OF THE SAME
DE3105891A1 (en) Use of a weldable, stainless steel for chain links
EP1352982A2 (en) Stainless steel, method for manufacturing of stress cracking free workpieces and product made thereof
EP3292223B1 (en) Method for producing thin sheet from a stainless austenitic crmnni steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB SE

Designated state(s): AT CH DE FR GB SE

17P Request for examination filed

Effective date: 19830223

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB LI SE

REF Corresponds to:

Ref document number: 19659

Country of ref document: AT

Date of ref document: 19860515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3270941

Country of ref document: DE

Date of ref document: 19860612

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ASEA AKTIEBOLAG

Effective date: 19870203

Opponent name: KRAFTWERK UNION AKTIENGESELLSCHAFT

Effective date: 19870202

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BBC BROWN BOVERI AG

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: DELETED BERGES, PIETER JOZEF R. 106(3), 102(1) 24.

Effective date: 19870202

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN *

Effective date: 19870202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19890526

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19900228

Ref country code: CH

Effective date: 19900228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930125

Year of fee payment: 12

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19930630

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT CH DE FR GB LI SE

ET3 Fr: translation filed ** decision concerning opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19940222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940223

EUG Se: european patent has lapsed

Ref document number: 82200212.7

Effective date: 19940910

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000122

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000124

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010112

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011201

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20020221

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20020221

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO