EP1564411B1 - Method for detecting operation errors of a pump aggregate - Google Patents

Method for detecting operation errors of a pump aggregate Download PDF

Info

Publication number
EP1564411B1
EP1564411B1 EP04002979A EP04002979A EP1564411B1 EP 1564411 B1 EP1564411 B1 EP 1564411B1 EP 04002979 A EP04002979 A EP 04002979A EP 04002979 A EP04002979 A EP 04002979A EP 1564411 B1 EP1564411 B1 EP 1564411B1
Authority
EP
European Patent Office
Prior art keywords
pump
motor
variables
fault
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04002979A
Other languages
German (de)
French (fr)
Other versions
EP1564411A1 (en
EP1564411B2 (en
Inventor
Carsten Kallesoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grundfos AS
Original Assignee
Grundfos AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34684659&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1564411(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grundfos AS filed Critical Grundfos AS
Priority to DE502004006565T priority Critical patent/DE502004006565D1/en
Priority to EP04002979.5A priority patent/EP1564411B2/en
Priority to AT04002979T priority patent/ATE389807T1/en
Priority to PCT/EP2005/001193 priority patent/WO2005078287A1/en
Priority to US10/597,892 priority patent/US8070457B2/en
Priority to CN200580008075.3A priority patent/CN1938520B/en
Publication of EP1564411A1 publication Critical patent/EP1564411A1/en
Publication of EP1564411B1 publication Critical patent/EP1564411B1/en
Application granted granted Critical
Priority to US13/284,049 priority patent/US8353676B2/en
Publication of EP1564411B2 publication Critical patent/EP1564411B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0245Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions
    • F04D15/0209Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
    • F04D15/0218Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
    • F04D15/0236Lack of liquid level being detected by analysing the parameters of the electric drive, e.g. current or power consumption

Definitions

  • the invention relates to a method for determining errors in the operation of a pump unit, in particular a centrifugal pump unit according to the features specified in the preamble of claim 1.
  • EP-A-1 286 056 It belongs to the state of the art to detect in a pump unit cavitation in the pump by means of sensors which record the pump pressure and the flow rate. The data recorded by the sensors are fed to a classification system which determines through a neural network whether and to what extent cavitation exists.
  • EP-A-0 321 295 It belongs to the state of the art to detect by means of a variety of sensors hydraulic system data and mechanical data of the pump motor to detect critical operating conditions of the pump and turn off the pump if necessary in time when the pump z. B. runs dry or promotes closed valves.
  • pump units are therefore considered to be the state of the art for providing a large number of sensors, on the one hand in order to detect operating conditions, and on the other hand also to determine fault conditions of the system and / or the pump unit.
  • the disadvantage here is that the sensors required in this context not only consuming and expensive, but is often prone to failure. Gats to create, which is executable with the least possible sensor technology and a device for carrying out the method.
  • the basic idea of the present invention is to detect characteristic data which are generally available anyway or at least with little effort to determine the motor's electrical variables and at least one variable hydraulic variable of the pump for the electric motor and the hydraulic-mechanical pump and to evaluate them by mathematical linkage. In the simplest form, this is done by comparison with predetermined values, wherein both the comparison and the result is done automatically by means of electronic data processing, which thus determines whether an error in the operation of the pump is present or not.
  • the method according to the invention requires a minimum of sensor technology and, in the case of modern pumps, which are typically frequency-controlled, which in any case have digital data processing, can generally be implemented by software. It is particularly advantageous that the electrical power of the motor determining variables, namely typically the voltage applied to the motor and the motor current, anyway within the frequency converter electronics are available, so that for detecting a hydraulic variable, eg the pressure only one Pressure sensor is required, which incidentally in modern pumps also often Standard features.
  • the predetermined values required for comparison can be stored in digital form in corresponding memory components of the engine electronics.
  • the two electrical quantities of the motor determining the electrical power of the motor are mathematically linked to obtain at least one comparison value and, on the other hand, the at least one variable hydraulic variable the pump and a further determining the performance of the pump mechanical or hydraulic variable to obtain at least one further comparison value are mathematically linked, in which case it is determined by comparison with predetermined values based on the result of the mathematical link, whether an error exists or not.
  • the mathematical combination is carried out for the motor-side data by appropriate for the electrical and / or magnetic relationships in the engine determining equations whereas equations are used for the pump, which describe the hydraulic and / or mechanical system.
  • the values resulting from the respective links are compared either directly or with predetermined values stored in the memory electronics, after which the electronic data processing automatically determines whether an error exists or not.
  • the error magnitude is calculated as a deviation between a quantity derived from the engine model, e.g. B. T e or ⁇ and a corresponding from the mechanical-hydraulic model resulting size determined.
  • the method according to the invention has the advantage that it requires little storage space for the given values.
  • the pressure or differential pressure generated by the pump is advantageously used, since this size can be detected on the aggregate side and the provision of such a pressure sensor in numerous pump designs today is state of the art.
  • the amount delivered by the pump can advantageously also be used as a hydraulic variable.
  • the detection of the flow rate can also be done on the aggregate side, also for this are less complex and long-term stable measuring systems at your disposal.
  • an electrical motor model and for the mathematical combination of the mechanical-hydraulic pump size a mechanical-hydraulic pump / motor model is used for the mathematical link for determining the electrical power of the motor.
  • the electric motor model it is preferable to use one defined by the equations (1) to (5) or (6) to (9) or (10) to (14).
  • Equations (1) to (5) represent an electric dynamic motor model for an asynchronous motor.
  • Equations (6) to (9) also represent an electric static motor model for an asynchronous motor.
  • L s ⁇ di sd dt - R s ⁇ i sd + z p ⁇ ⁇ ⁇ L s ⁇ ⁇ rq + v sd
  • Equations (10) to (14) represent an electric dynamic motor model for a permanent magnet motor.
  • Equation (15) and at least one of Equations (16) and (17) are advantageously used.
  • Equation (15) represents the mechanical relationships between motor and pump, whereas equations (1b) and (17) describe the mechanical-hydraulic relationships in the pump.
  • Equation (15) represents the mechanical relationships between motor and pump, whereas equations (1b) and (17) describe the mechanical-hydraulic relationships in the pump.
  • Claim 8 defines, by way of example, how mathematical links are made to determine whether an error exists or not. On the storage of predetermined values can be completely omitted here in principle.
  • the basic idea of this, concrete method is, on the one hand with the aid of the engine model, to determine the engine torque resulting from the electrical variables on the motor shaft and the rotational speed, the latter also being able to be measured. With the aid of equations (16) and / or (17) a relationship between pressure and flow rate on the one hand and between power / torque and flow rate on the other hand is determined.
  • a tolerance band by variance of at least one of the variables a h0 to a h2 , a t0 to a t2 , B and J in order to register an error only if it is is also operationally relevant.
  • two hydraulic variables can preferably be determined by measuring and the determined values are compared with predetermined values to determine the type of error, wherein in each case the predetermined values define an area in three-dimensional space and it is determined whether or not the quantities determined lie on these areas (r * 1 to r * 4 ) and, based on the combination of the values, the type of error on the basis of given values Limit value combinations are determined.
  • the type of error can then be determined, for example, from the following table: Error type defect size r 1 , r 1 * r 2 , r 2 * r 3 , r 3 * r 4 r 4 * comparison area Increased friction due to mechanical defects 1 0 1 1
  • the surfaces formed in the three-dimensional space on the basis of predetermined values are typically space-curved surfaces whose values have previously been determined by the factory based on the respective unit or aggregate type and stored in the digital data memory on the aggregate side.
  • the aforementioned comparison surfaces r * 1 to r * 4 are arranged in a three-dimensional space which at r * 1 from the torque, the flow and the rotor speed, at r * 2 from the head, the flow rate and the rotor speed, for r * 3 from the torque, the head and the rotor speed as well are formed for r * 4 from the torque, the delivery head and the flow rate.
  • the variables defined in the table by the comparison surfaces r * 1 to r * 4 indicate the respective operating state, wherein the number 0 means that the respective value lies within the area defined by the predetermined values and 1 outside.
  • the error combination defined in the table due to increased friction due to mechanical defects can mean bearing damage or an otherwise caused increased frictional resistance between the rotating parts and the stationary parts of the aggregate.
  • the error combination marked under the generic term reduced promotion / missing pressure can be caused, for example, by errors or wear on the pump impeller or an obstacle in the pump inlet or outlet.
  • defect in the intake / missing flow error combination can be caused for example by defect of the ring seal at the suction of the pump.
  • the operating states designated in the table by the variables R 1 to R 4 are based on mathematical calculations of fault parameters r 1 to r 4 according to the equations (19) to (22), wherein the corresponding error amount becomes zero when a correct operation is present and the value 1 in case of error.
  • the table is to be understood in terms of the type of error in a similar manner as described above. Figuratively speaking, each represents the mistake sizes r 1 to r 4 are spaced from the corresponding areas r * 1 to r * 4 . However, the error quantities do not necessarily correspond to the areas r * 1 to r * 4 .
  • the error quantities r 1 to r 4 correspond to the equations (19) to (22) and correspond to the areas r * 1 to r * 4 in the FIGS. 7 to 10 ,
  • the pump unit when a fault is detected, the pump unit is actuated with a different speed, in order then to be able to narrow down the detected error more precisely on the basis of the resulting measuring results.
  • the mechanical-hydraulic pump / motor model comprises not only the pump unit itself, but also beyond at least parts of the acted upon by the pump hydraulic system, so that errors of this hydraulic system can be determined.
  • a centrifugal pump assembly In order to carry out the method according to the invention for determining the fault in operating states of a centrifugal pump assembly there are means for detecting two electrical variables determining the motor power and means for detecting at least one variable hydraulic size of the pump and means for detecting at least one further mechanical or mechanical performance determining the power of the pump provide hydraulic size and an electronic evaluation device which determines a fault condition of the pump unit based on the detected variables.
  • a sensor system for detecting the voltage applied to the motor supply voltage and the supply current and for detecting the pressure applied by the pump, preferably differential pressure and the delivery rate or the rotational speed is provided here.
  • an evaluation device is to be provided, which may be in the form of digital data processing, for example a microprocessor, in which the method according to the invention is implemented by software.
  • an electronic memory is also to be provided.
  • All components, with the exception of the sensors required for the detection of hydraulic variables, are preferably an integral part of the motor and / or pump electronics, so that constructively so far no further provisions for carrying out the method according to the invention are to be made.
  • Another embodiment may be a separate module provided in a panel or control panel, in the same way as a motor protection switch, but with the monitoring and diagnostic features as described above.
  • centrifugal pumps as can be seen from the mechanical-hydraulic pump model.
  • Such pumps may be, for example, industrial pumps, submersible pumps for sewage or water supply and heating circulation pumps.
  • Particularly advantageous is a diagnostic system according to the invention in canned pumps, since through early fault detection, the looping through of the can and thus outlet of the pumped liquid, eg. B. in the living area, preventively prevented.
  • the mechanical-hydraulic pump model In the application of the invention in Verdrängerpumpen Scheme the mechanical-hydraulic pump model must be adjusted according to the different physical relationships. The same applies to the use of other engine types for the electric motor model.
  • means are provided for generating and transmitting at least one error message to a display unit arranged on the pump unit or elsewhere, be it in the form of one or more indicator lights or a display with an alphanumeric display.
  • the transmission can be wireless, for example via infrared or radio but also wired, preferably in digital form.
  • FIG. 1 A simplified procedure is based on Fig. 1 shown.
  • the variable electrical power-determining variables flow, in particular the voltage V abc and the current i abc .
  • the product of these quantities defines the electrical power consumed by the motor.
  • the torque T e on the shaft of the motor and the rotational speed ⁇ derivable from the engine as they result arithmetically on the basis of the engine model.
  • This power-dependent electrical Sizes of the motor are linked to the determined mechanical delivery height H (pressure) in a pump model 2, for example according to equations (16) and (17), in which case the result is compared with predetermined operating values determined on the basis of defined operating points. If these input variables agree with the specified values, the pump set operates without errors. On the other hand, if the difference is greater than a predetermined amount, then an error signal r is generated which signals a malfunction of the pump.
  • Fig. 3 The system is structured as in Fig. 3 is shown in detail. Again, an electric motor model is provided, the input variables V abc and i abc and the example, a static motor model according to the equations (6) to (9) is based, as it is well known and based on Fig. 5 is shown.
  • the output variable of this static engine model is the engine torque T e , which in turn flows via the equation (15) input into the mechanical part of the pump model 3 a.
  • the hydraulic part of the pump model 3b is defined by equations (16) and (17), via which the hydraulic part of the plant 4 is coupled.
  • the hydraulic part of the plant is defined by equation (18) and based on Fig. 4 schematically shown, in which P in the pressure inlet of the pump, H p the differential pressure of the pump, Q the flow rate, P out the pressure at the consumer end of the system and V 1 the flow losses within the. Represent pump.
  • Z out is the static pressure level at the consumer end of the system and Z at the pump inlet.
  • Fig. 3 clarifies the relationship between the engine model, the mechanical part of the pump model, the hydraulic part of the pump model and the hydraulic part of the plant. While in the hydraulic parts of the pump model 3b and the hydraulic part of the plant Inlet and out flow, and go in the hydraulic part of the pump model 3b, the speed ⁇ r , which also enters the engine model 1. The torque determined from the hydraulic part of the pump model 3b in turn enters the mechanical part of the pump model 3a for determining the rotational speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Electric Motors In General (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

In a process to detect a fault during operation of an electric motor-powered pump, a monitoring has two electric wires linking the electric motor to a power monitoring system, and a further sensor monitoring a hydraulic parameter in the pump. The electrical and hydraulic values are logged and processed in an algorithm by a data processing system, the results being compared with pre-stored values. Also claimed is a commensurate pump monitoring system.

Description

Die Erfindung betrifft ein Verfahren zur Ermittlung von Fehlern beim Betrieb eines Pumpenaggregates, insbesondere eines Kreiselpumpenaggregats gemäß den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen.The invention relates to a method for determining errors in the operation of a pump unit, in particular a centrifugal pump unit according to the features specified in the preamble of claim 1.

Aus EP-A-1 286 056 zählt es zum Stand der Technik, bei einem Pumpenaggregat Kavitation im Bereich der Pumpe mittels Sensoren zu erfassen, welche den Pumpendruck und die Durchflussgeschwindigkelt aufnehmen. Die von den Sensoren aufgenommenen Daten werden einem Klassifizierungssystem zugeführt, welches durch ein neuronales Netzwerk bestimmt, ob und in welchem Ausmaß Kavitation vorliegt.Out EP-A-1 286 056 It belongs to the state of the art to detect in a pump unit cavitation in the pump by means of sensors which record the pump pressure and the flow rate. The data recorded by the sensors are fed to a classification system which determines through a neural network whether and to what extent cavitation exists.

Aus EP-A-0 321 295 zählt es zum Stand der Technik, mittels einer Vielzahl von Sensoren hydraulische Systemdaten und mechanische Daten des Pumpenmotors zu erfassen, um kritische Betriebszustände der Pumpe zu erfassen und die Pumpe ggf. rechtzeitig abzuschalten, wenn die Pumpe z. B. trockenläuft oder gegen geschlossene Ventile fördert.Out EP-A-0 321 295 It belongs to the state of the art to detect by means of a variety of sensors hydraulic system data and mechanical data of the pump motor to detect critical operating conditions of the pump and turn off the pump if necessary in time when the pump z. B. runs dry or promotes closed valves.

Es zählt also bei Pumpenaggregaten inzwischen zum Stand der Technik, eine Vielzahl von Sensorik vorzusehen, einerseits um Betriebszustände zu erfassen, andererseits auch um Fehlzustände der Anlage und/oder des Pumpenaggregats zu ermitteln. Nachteilig hierbei ist jedoch, dass die in diesem Zusammenhang erforderliche Sensorik nicht nur aufwändig und teuer, sondern häufig auch störanfällig ist. gats zu schaffen, welches mit möglichst geringer Sensorik ausführbar ist sowie eine Vorrichtung zur Ausführung des Verfahrens.In the meantime, pump units are therefore considered to be the state of the art for providing a large number of sensors, on the one hand in order to detect operating conditions, and on the other hand also to determine fault conditions of the system and / or the pump unit. The disadvantage here, however, is that the sensors required in this context not only consuming and expensive, but is often prone to failure. Gats to create, which is executable with the least possible sensor technology and a device for carrying out the method.

Diese Aufgabe wird gemäß der Erfindung durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung und den Figuren.This object is achieved according to the invention by the features specified in claim 1. Advantageous embodiments of the method according to the invention will become apparent from the dependent claims, the following description and the figures.

Grundgedanke der vorliegenden Erfindung ist es, anhand in der Regel ohnehin zur Verfügung stehender oder zumindest wenig aufwändig ermittelbarer elektrischer Größen des Motors sowie mindestens einer in der Regel sensorisch zu ermittelnden veränderlichen hydraulischen Größe der Pumpe für den elektrischen Motor sowie die hydraulischmechanische Pumpe charakteristische Daten zu erfassen und diese nach mathematischer Verknüpfung auszuwerten. In einfachster Form erfolgt dies durch Vergleich mit vorgegebenen Werten, wobei sowohl der Vergleich als auch das Ergebnis selbsttätig mittels elektronischer Datenverarbeitung erfolgt, die somit feststellt, ob ein Fehler im Betrieb der Pumpe vorliegt oder nicht.The basic idea of the present invention is to detect characteristic data which are generally available anyway or at least with little effort to determine the motor's electrical variables and at least one variable hydraulic variable of the pump for the electric motor and the hydraulic-mechanical pump and to evaluate them by mathematical linkage. In the simplest form, this is done by comparison with predetermined values, wherein both the comparison and the result is done automatically by means of electronic data processing, which thus determines whether an error in the operation of the pump is present or not.

Das erfindungsgemäße Verfahren benötigt ein Minimum an Sensorik und kann bei modernem, typischerweise frequenzumnchtergesteuerten Pumpen, die ohnehin eine digitale Datenverarbeitung aufweisen, in der Regel softwaremäßig implementiert werden. Dabei ist besonders vorteilhaft, dass die die elektrische Leistung des Motors bestimmenden Größen, nämlich typischerweise die am Motor anliegende Spannung und der den Motor speisende Strom, ohnehin innerhalb der Frequenzumrichtereiektronik zur Verfügung stehen, so dass zur Erfassung einer hydraulischen Größe, z.B. des Drucks lediglich ein Drucksensor erforderlich ist, der im Übrigen bei modernen Pumpen ebenfalls schon häufig zur Standardausstattung zählt. Die zum Vergleich erforderlichen vorgegebenen Werte können in digitaler Form in entsprechenden Speicherbausteinen der Motorelektronik abgelegt werden.The method according to the invention requires a minimum of sensor technology and, in the case of modern pumps, which are typically frequency-controlled, which in any case have digital data processing, can generally be implemented by software. It is particularly advantageous that the electrical power of the motor determining variables, namely typically the voltage applied to the motor and the motor current, anyway within the frequency converter electronics are available, so that for detecting a hydraulic variable, eg the pressure only one Pressure sensor is required, which incidentally in modern pumps also often Standard features. The predetermined values required for comparison can be stored in digital form in corresponding memory components of the engine electronics.

Gemäß der Erfindung ist vorgesehen, dass einerseits die zwei die elektrische Leistung des Motors bestimmenden elektrischen Größen des Motors, vorzugsweise die am Motor anliegende Spannung und der dem Motor speisende Strom, zur Erzielung mindestens eines Vergleichswertes mathematisch verknüpft werden und andererseits die mindestens eine veränderliche hydraulische Größe der Pumpe sowie eine weitere die Leistung der Pumpe bestimmende mechanische oder hydraulische Größe zur Erzielung mindestens eines weiteren Vergleichswerts mathematisch verknüpft werden, wobei dann anhand des Ergebnisses der mathematischen Verknüpfung durch Vergleich mit vorgegebenen Werten ermittelt wird, ob ein Fehler vorliegt oder nicht. Die mathematische Verknüpfung erfolgt dabei für die motorseitigen Daten durch entsprechende für die elektrischen und/oder magnetischen Zusammenhänge im Motor bestimmende Gleichungen wohingegen für die Pumpe Gleichungen verwendet werden, welche das hydraulische und/oder mechanische System beschreiben. Die sich bei den jeweiligen Verknüpfungen ergebenden Werte werden entweder direkt oder mit vorgegebenen, in der Speicherelektronik abgespeicherten Werten verglichen, wonach die elektronische Datenverarbeitung selbsttätig feststellt ob ein Fehler vorliegt oder nicht. Bei dem direkten Vergleich wird die Fehlergröße als eine Abweichung zwischen einer sich aus dem Motormodell ergebenen Größe, z. B. Te oder ω und einer entsprechenden aus dem mechanisch-hydraulisches Modell sich ergebenden Größe ermittelt. Das erfindungsgemäße Verfahren hat den Vorteil, dass es wenig Speicherplatz für die vorgegebenen Werte erfordert.According to the invention, it is provided that, on the one hand, the two electrical quantities of the motor determining the electrical power of the motor, preferably the voltage applied to the motor and the current supplying the motor, are mathematically linked to obtain at least one comparison value and, on the other hand, the at least one variable hydraulic variable the pump and a further determining the performance of the pump mechanical or hydraulic variable to obtain at least one further comparison value are mathematically linked, in which case it is determined by comparison with predetermined values based on the result of the mathematical link, whether an error exists or not. The mathematical combination is carried out for the motor-side data by appropriate for the electrical and / or magnetic relationships in the engine determining equations whereas equations are used for the pump, which describe the hydraulic and / or mechanical system. The values resulting from the respective links are compared either directly or with predetermined values stored in the memory electronics, after which the electronic data processing automatically determines whether an error exists or not. In the direct comparison, the error magnitude is calculated as a deviation between a quantity derived from the engine model, e.g. B. T e or ω and a corresponding from the mechanical-hydraulic model resulting size determined. The method according to the invention has the advantage that it requires little storage space for the given values.

Dabei kann mit dem erfindungsgemäßen Verfahren nicht nur festgestellt werden ob ein Fehler vorliegt, sondern es kann darüber hinaus vorteilhaft auch noch der Fehler spezifiziert werden, d.h. ermittelt werden, um welchen Fehler es sich handelt.It can not only be determined with the inventive method whether an error exists, but it can also be advantageous even the error can be specified, ie it can be determined which error it is.

Als zu erfassende hydraulische Größe wird vorteilhaft der von der Pumpe erzeugte Druck bzw. Differenzdruck herangezogen, da diese Größe aggregatseitig erfasst werden kann und das Vorsehen eines solchen Druckaufnehmers bei zahlreichen Pumpenbauarten heute zum Stand der Technik zählt.As a hydraulic variable to be detected, the pressure or differential pressure generated by the pump is advantageously used, since this size can be detected on the aggregate side and the provision of such a pressure sensor in numerous pump designs today is state of the art.

Alternativ oder zusätzlich zur Erfassung des Druckes kann als hydraulische Größe vorteilhaft auch die von der Pumpe geförderte Menge herangezogen werden. Die Erfassung der Fördermenge kann ebenfalls aggregatseitig erfolgen, auch hierfür stehen wenig aufwändige und langzeitstabile Messsysteme zur Verfugung.As an alternative or in addition to detecting the pressure, the amount delivered by the pump can advantageously also be used as a hydraulic variable. The detection of the flow rate can also be done on the aggregate side, also for this are less complex and long-term stable measuring systems at your disposal.

Da die Absolutdruckerfassung des von der Pumpe erzeugten Drucks stets eine Differenzdruckmessung gegenüber der Außenatmosphäre darstellt ist es häufig günstiger, den zwischen Saug- und Druckseite der Pumpe gebildeten Differenzdruck statt des Absolutdruckes zu erfassen, der darüber hinaus als hydraulische Größe der Pumpe wesentlich günstiger weiterzuverarbeiten ist.Since the absolute pressure detection of the pressure generated by the pump always represents a differential pressure measurement against the outside atmosphere, it is often cheaper to detect the differential pressure formed between the suction and discharge side of the pump instead of the absolute pressure, which is also much cheaper to further process as a hydraulic variable of the pump.

Erfindungsgemäß wird für die mathematische Verknüpfung für die die elektrische Leistung des Motors bestimmenden Größen ein elektrisches Motormodell und für die mathematische Verknüpfung der mechanisch-hydraulischen Pumpengröße ein mechanisch-hydraulisches Pumpen-/Motormodell verwendet. Dabei wird als elektrisches Motormodell bevorzugt, ein durch die Gleichungen (1) bis (5) oder (6) bis (9) oder (10) bis (14) definiertes verwendet. s = di sd di = - s i sd + L m L r r ψ rd + z p ω ψ rd + v sd

Figure imgb0001
s = di sq dt = - s i sq + L m L r r ψ rq + z p ω ψ rd + v sq
Figure imgb0002
rd dt = - r ψ rd - z p ω ψ rq + r L m i sd
Figure imgb0003
rq dt = - r ψ rq + z p ω ψ rd + r L m i sq
Figure imgb0004
T e = z p 3 2 L m L r ψ rd i sq - ψ rq i sd
Figure imgb0005
According to the invention, an electrical motor model and for the mathematical combination of the mechanical-hydraulic pump size a mechanical-hydraulic pump / motor model is used for the mathematical link for determining the electrical power of the motor. Here, as the electric motor model, it is preferable to use one defined by the equations (1) to (5) or (6) to (9) or (10) to (14). L' s = di sd di = - R ' s i sd + L m L r R ' r ψ rd + z p ω ψ rd + v sd
Figure imgb0001
L' s = di sq dt = - R ' s i sq + L m L r R ' r ψ rq + z p ω ψ rd + v sq
Figure imgb0002
rd dt = - R ' r ψ rd - z p ω ψ rq + R ' r L m i sd
Figure imgb0003
rq dt = - R ' r ψ rq + z p ω ψ rd + R ' r L m i sq
Figure imgb0004
T e = z p 3 2 L m L r ψ rd i sq - ψ rq i sd
Figure imgb0005

Die Gleichungen (1) bis (5) repräsentieren ein elektrisches dynamisches Motormodell für einen Asynchronmotor. V s = Z s s I s

Figure imgb0006
ω = ω s - s ω s
Figure imgb0007
I r = V s Z r s
Figure imgb0008
T e = 3 R r I r 2 s
Figure imgb0009
Equations (1) to (5) represent an electric dynamic motor model for an asynchronous motor. V s = Z s s I s
Figure imgb0006
ω = ω s - s ω s
Figure imgb0007
I r = V s Z r s
Figure imgb0008
T e = 3 R r I r 2 s
Figure imgb0009

Die Gleichungen (6) bis (9) repräsentieren ein elektrisches statisches Motormodell ebenfalls für einen Asynchronmotor. L s di sd dt = - R s i sd + z p ω L s ψ rq + v sd

Figure imgb0010
L s di sq dt = - R s i sq - z p ω L s ψ rd + v sq
Figure imgb0011
rd dt = - z p ω ψ rq
Figure imgb0012
rq dt = z p ω ψ rd
Figure imgb0013
T e = z p 3 2 ψ rd i sq - ψ rq i sd
Figure imgb0014
Equations (6) to (9) also represent an electric static motor model for an asynchronous motor. L s di sd dt = - R s i sd + z p ω L s ψ rq + v sd
Figure imgb0010
L s di sq dt = - R s i sq - z p ω L s ψ rd + v sq
Figure imgb0011
rd dt = - z p ω ψ rq
Figure imgb0012
rq dt = z p ω ψ rd
Figure imgb0013
T e = z p 3 2 ψ rd i sq - ψ rq i sd
Figure imgb0014

Die Gleichungen (10) bis (14) stellen ein elektrisches dynamisches Motormodell dar, und zwar für einen Permanentmagnetmotor.Equations (10) to (14) represent an electric dynamic motor model for a permanent magnet motor.

In den Gleichungen (1) bis (14) repräsentieren

isd
den Motorstrom in Richtung d
isq
den Motorstrom in Richtung q
ψrd
den magnetischen Fluss des Rotors in d-Richtung
ψrq
den magnetischen Fluss des Rotors in q-Richtung
Te
das Motormoment
νsd
die Versorgungsspannung des Motors in d-Richtung
νsq
die Versorgungsspannung des Motors in q-Richtung
ω
die Winkeigeschmdndigkeit des Rotors und Laufrades
R's
den Ersatzwiderstand der Statorwicklung
R'r
den Ersatzwiderstand der Rotorwicklung
Lm
den induktiven Kopplungswiderstand zwischen Stator-und Rotorwicklung
L's
den induktiven Ersatzwiderstand der Statorwicklung
Lr
den induktiven Widerstand der Motorwicklung
p
die Polpaarzahl
Is
den Phasenstrom
Vs
die Phasenspannung
ωs
die Frequenz der Versorgungsspannung
ω
die tatsächliche Rotor und Laufraddrehzahl
s
den Motorschlupf
Zs (s)
die Statorimpedanz
Zr (s)
die Rotorimpedanz
Rr
den Ersatzwiderstand der Rotorwicklung
Rs
den Ersatzwiderstand der Statorwicklung
Ls
Den induktiven Widerstand der Statorwicklung,
wobei d uns q zwei senkrecht zueinander stehende Richtungen senkrecht zur Motorwelle sind,Represent in equations (1) to (14)
i sd
the motor current in direction d
i sq
the motor current in direction q
ψ rd
the magnetic flux of the rotor in d-direction
q rq
the magnetic flux of the rotor in q-direction
T e
the engine torque
ν sd
the supply voltage of the motor in d-direction
ν sq
the supply voltage of the motor in q-direction
ω
the angularity of the rotor and impeller
R 's
the equivalent resistance of the stator winding
R ' r
the equivalent resistance of the rotor winding
L m
the inductive coupling resistance between stator and rotor winding
L ' s
the inductive equivalent resistance of the stator winding
L r
the inductive resistance of the motor winding
p
the pole pair number
I s
the phase current
V s
the phase voltage
ω s
the frequency of the supply voltage
ω
the actual rotor and impeller speed
s
the engine slip
Z s ( s )
the stator impedance
Z r ( s )
the rotor impedance
R r
the equivalent resistance of the rotor winding
R s
the equivalent resistance of the stator winding
L s
The inductive resistance of the stator winding,
where d and q are two perpendicular directions perpendicular to the motor shaft,

Für das mechanisch-hydraulische Pumpen-/Motormodell wir die Gleichung (15) und mindestens eine der Gleichungen (16) und (17) vorteilhaft verwendet.For the mechanical-hydraulic pump / motor model, Equation (15) and at least one of Equations (16) and (17) are advantageously used.

Dabei repräsentiert die Gleichung (15) die mechanischen Zusammenhänge zwischen Motor und Pumpe wohingegen die Gleichungen (1b) und (17) die mechanisch-hydraulischen Zusammenhänge in der Pumpe beschreiben. Diese Gleichungen lauten: J dt = T e - - T P

Figure imgb0015

und mindestens eine der Gleichungen H p = - a h 2 Q 2 + a h 1 + a h 0 ω 2
Figure imgb0016
T p = - a t 2 Q 2 + a t 1 + a t 0 ω 2
Figure imgb0017

in deren
dt
Figure imgb0018
  die zeitliche Ableitung der Winkelgeschwindigkeit des Rotors,
Tp   das Pumpendrehmoment,
J  das Massenträgheitsmoment von Rotor, Laufrad und im Laufrad gebundener Förderflüssigkeit,
B  die Reibungskonstante,
Q  der Förderstrom der Pumpe,
Hp   der von der Pumpe erzeugten Differenzdruck,
ah2, ah1 , a h0  die Parameter, die den Zusammenhang zwischen Drehzahl des Laufrades, Förderstrom und Differenzdruck beschreiben und
a t2, a t1 a t0  die Parameter, die den Zusammenhang zwischen Drehzahl des Laufrades, Förderstrom und Massenträgheitsmoment beschreibenEquation (15) represents the mechanical relationships between motor and pump, whereas equations (1b) and (17) describe the mechanical-hydraulic relationships in the pump. These equations are: J dw dt = T e - - T P
Figure imgb0015

and at least one of the equations H p = - a H 2 Q 2 + a H 1 + a H 0 ω 2
Figure imgb0016
T p = - a t 2 Q 2 + a t 1 + a t 0 ω 2
Figure imgb0017

in theirs
dw dt
Figure imgb0018
the time derivative of the angular velocity of the rotor,
T p is the pump torque,
J the mass moment of inertia of rotor, impeller and in the impeller bound delivery liquid,
B the friction constant,
Q is the flow rate of the pump,
H p is the differential pressure generated by the pump
a h2 , a h1 , a h 0 are the parameters describing the relationship between the speed of the impeller, the flow rate and the differential pressure, and
a t 2 , a t 1 a t 0 are the parameters that describe the relationship between the speed of the impeller, the flow rate and the mass moment of inertia

Anspruch 8 definiert beispielhaft, in welcher Weise mathematische Verknüpfungen vorgenommen werden um zu ermitteln, ob ein Fehler vorliegt oder nicht. Auf das Abspeichern vorgegebener Werte kann hier im Prinzip völlig verzichtet werden. Grundgedanke dieses, konkreten Verfahrens besteht darin, einerseits unter Zuhilfenahme des Motormodells, das sich aufgrund der elektrischen Größen an der Motorwelle ergebende Motormoment sowie die Drehzahl zu ermitteln, wobei letztere auch gemessen werden kann. Mit Hilfe der Gleichungen (16) und/oder (17) wird eine Beziehung zwischen Druck und Fördermenge einerseits bzw. zwischen Leistung/Moment und Fördermenge andererseits ermittelt. Es wird dann vorteilhaft mit Gleichung (15) überprüft, ob die mit Hilfe des Motormodells berechneten Größen mit denen mit Hilfe des Pumpenmodells nach Einsetzen der gemessenen hydraulischen Größe berechneten Größen übereinstimmen oder nicht, wobei bei mangelnder Übereinstimmung ein Fehler registriert wird. Es wird also quasi verglichen, ob die sich aus den elektrischen Motormodell ergebenden Antriebsgrößen mit denen aus dem hydraulisch-mechanischen Pumpenmodell sich ergebenden Antriebsgrößen übereinstimmen oder nicht. Wenn dies der Fall ist, arbeitet das Pumpenaggregat fehlerfrei, anderenfalls liegt ein Fehler vor, der ggfs. noch weiter spezifiziert werden kann.Claim 8 defines, by way of example, how mathematical links are made to determine whether an error exists or not. On the storage of predetermined values can be completely omitted here in principle. The basic idea of this, concrete method is, on the one hand with the aid of the engine model, to determine the engine torque resulting from the electrical variables on the motor shaft and the rotational speed, the latter also being able to be measured. With the aid of equations (16) and / or (17) a relationship between pressure and flow rate on the one hand and between power / torque and flow rate on the other hand is determined. It is then advantageously checked with equation (15) whether the variables calculated with the aid of the motor model and those with the aid of the pump model after the onset of the measured hydraulic variable calculated quantities or not, whereby in the case of a mismatch an error is registered. It is thus compared, as it were, whether or not the drive variables resulting from the electric motor model coincide with those resulting from the hydraulic-mechanical pump model. If this is the case, the pump set works without errors, otherwise there is an error that can be specified even further.

Um dem System eine gewisse Toleranz zu geben, kann es sinnvoll sein, durch Varianz mindestens einer der Größen ah0 bis ah2, at0 bis at2, B und J ein Toleranzband festzulegen, um nur dann einen Fehler zu, registrieren, wenn dieser auch betriebsrelevant ist.In order to give the system a certain tolerance, it may be useful to set a tolerance band by variance of at least one of the variables a h0 to a h2 , a t0 to a t2 , B and J in order to register an error only if it is is also operationally relevant.

Um die Art des Fehlers näher spezifizieren zu können ist es zweckmäßig zusätzlich zu den zwei elektrischen Größen zwei hydraulische Größen vorzugsweise durch Messen zu ermitteln und die ermittelten Werte in die Gleichungen nach Anspruch 7 einzusetzen, so dass sich dann vier Fehlergrößen r1 bis r4 ergeben. Anhand der Kombination dieser Fehlergrößen wird dann die Art des Fehlers anhand vorgegebener Grenzwertkombinationen bestimmt. Auch dies erfolgt selbsttätig durch die elektronische Datenverarbeitung.In order to be able to specify the type of error more precisely, it is expedient in addition to the two electrical variables to determine two hydraulic variables, preferably by measuring, and to insert the determined values into the equations according to claim 7, so that then four error variables r 1 to r 4 result , Based on the combination of these error variables, the type of error is then determined on the basis of predetermined limit value combinations. This too is done automatically by electronic data processing.

In alternativer Weiterbildung des erfindungsgemäßen Verfahrens können zur Ermittlung der Art des Fehlers zusätzlich zu den zwei elektrischen Größen zwei hydraulische Größen vorzugsweise durch Messen ermittelt werden und die ermittelten Werte mit vorgegebenen Werten verglichen werden, wobei dann jeweils die vorgegebenen Werte eine Fläche im dreidimensionalen Raum definieren und ermittelt wird, ob die ermittelten Größen auf diesen Flächen (r*1 bis r*4) liegen oder nicht und anhand der Kombination der Werte die Art des Fehlers anhand vorgegebener Grenzwertkombinationen ermittelt werden. Die Fehlerart kann dann beispielsweise anhand der folgenden Tabelle bestimmt werden: Fehlerart Fehlergröße r 1, r 1* r 2 , r 2* r 3 , r 3* r 4 r 4* Vergleichsfläche Erhöhte Reibung aufgrund mechanischer Defekte 1 0 1 1 Reduzierte Förderung/fehlender Druck 0 1 1 1 Defekt im Ansaugbereich/ fehlende Fördermenge 1 1 0 1 Förderausfall 1 1 1 1 In an alternative development of the method according to the invention, in addition to the two electrical variables, two hydraulic variables can preferably be determined by measuring and the determined values are compared with predetermined values to determine the type of error, wherein in each case the predetermined values define an area in three-dimensional space and it is determined whether or not the quantities determined lie on these areas (r * 1 to r * 4 ) and, based on the combination of the values, the type of error on the basis of given values Limit value combinations are determined. The type of error can then be determined, for example, from the following table: Error type defect size r 1 , r 1 * r 2 , r 2 * r 3 , r 3 * r 4 r 4 * comparison area Increased friction due to mechanical defects 1 0 1 1 Reduced promotion / lack of pressure 0 1 1 1 Defective intake / lack of delivery 1 1 0 1 Fjord failure 1 1 1 1

Mit Hilfe des erfindungsgemäßen Verfahrens ist es somit möglich, mit einem Minimum an Sensorik nicht nur den fehlerfreien Betriebszustand des Pumpenaggregats festzustellen oder nicht festzustellen, sondern darüber hinaus im Falle eines Fehlers diesen auch noch im Einzelnen zu spezifizieren, so dass im Pumpenaggregat ein entsprechendes Fehlersignal generiert werden kann, das die Art des Fehlers anzeigt. Dieses Signal kann gegebenenfalls zu entfernten Stellen übermittelt werden, wo die Funktion des Pumpenaggregats überwacht werden soll.With the aid of the method according to the invention, it is thus possible not only to determine or not to determine the fault-free operating state of the pump set with a minimum of sensor, but moreover to specify it in detail in the event of a fault, so that a corresponding error signal is generated in the pump set which indicates the type of error. This signal may optionally be transmitted to remote locations where the function of the pump set is to be monitored.

Die anhand vorgegebener Werte gebildeten Flächen im dreidimensionalen Raum sind typischerweise raumgekrümmte Flächen, deren Werte zuvor fabrikmäßig anhand des jeweiligen Aggregats oder des Aggregattyps ermittelt und im digitalen Datenspeicher aggregatseitig abgelegt sind. Dabei sind die vorerwähnten Vergleichsflächen r*1 bis r*4 in einem dreidimensionalen Raum angeordnet, der bei r*1 aus dem Drehmoment, dem Durchfluss und der Rotorgeschwindigkeit, bei r*2 aus der Förderhöhe, der Fördermenge und der Rotorgeschwindigkeit, für r*3 aus dem Drehmoment, der Förderhöhe und der Rotorgeschwindigkeit sowie für r*4 aus dem Drehmoment, der Förderhöhe und der Fördermenge gebildet sind.The surfaces formed in the three-dimensional space on the basis of predetermined values are typically space-curved surfaces whose values have previously been determined by the factory based on the respective unit or aggregate type and stored in the digital data memory on the aggregate side. The aforementioned comparison surfaces r * 1 to r * 4 are arranged in a three-dimensional space which at r * 1 from the torque, the flow and the rotor speed, at r * 2 from the head, the flow rate and the rotor speed, for r * 3 from the torque, the head and the rotor speed as well are formed for r * 4 from the torque, the delivery head and the flow rate.

Die in der Tabelle durch die Vergleichsflächen r*1 bis r*4 definierten Größen kennzeichnen den jeweiligen Betriebszustand, wobei die Ziffer 0 bedeutet, dass der jeweilige Wert innerhalb der durch die vorgegebenen Werte definierten Fläche liegt und 1 außerhalb. So kann die in der Tabelle durch erhöhte Reibung aufgrund mechanischer Defekte definierte Fehlerkombination beispielsweise einen Lagerschaden oder einen sonstwie verursachten erhöhten Reibwiderstand zwischen den rotierenden Teilen und den feststehenden Teilen des Aggregats bedeuten. Die unter dem Oberbegriff reduzierte Förderung/fehlender Druck gekennzeichnete Fehlerkombination kann beispielsweise durch Fehler oder Verschleiß am Pumpenlaufrad oder ein Hindernis im Pumpen Ein- oder Auslass verursacht sein. Die unter dem Oberbegriff Defekt im Ansaugbereich/fehlende Fördermenge definierte Fehlerkombination kann beispielsweise durch Defekt der Ringdichtung am Saugmund der Pumpe verursacht sein. Die unter dem Oberbegriff Förderausfall fallende Fehlerkombination kann vielfältigste Ursachen haben und ist ggfs. weiter zu spezifisieren. Dieser Förderausfall kann durch eine blockierte Welle oder ein blockiertes Pumpenlaufrad, durch einen Wellenbruch, durch das Lösen des Pumpenlaufrads, durch Kavitation aufgrund unzulässig niedrigen Drucks am Pumpeneinlass sowie durch Trockenlauf verursacht sein.The variables defined in the table by the comparison surfaces r * 1 to r * 4 indicate the respective operating state, wherein the number 0 means that the respective value lies within the area defined by the predetermined values and 1 outside. For example, the error combination defined in the table due to increased friction due to mechanical defects can mean bearing damage or an otherwise caused increased frictional resistance between the rotating parts and the stationary parts of the aggregate. The error combination marked under the generic term reduced promotion / missing pressure can be caused, for example, by errors or wear on the pump impeller or an obstacle in the pump inlet or outlet. Defined under the generic term defect in the intake / missing flow error combination can be caused for example by defect of the ring seal at the suction of the pump. The error combination under the generic term Förderausfall can have a variety of causes and should be further specified if necessary. This delivery failure may be caused by a blocked shaft or jammed pump impeller, shaft breakage, pump impeller loosening, cavitation due to excessively low pressure at the pump inlet, and dry running.

Die in der Tabelle durch die Größen r1 bis r4 gekennzeichneten Betriebszustände basieren auf mathematischen Berechnungen von Fehlergrößen r1 bis r4 entsprechend den Gleichungen (19) bis (22), wobei die entsprechende Fehlergröße den Wert Null annimmt, wenn ein einwandfreier Betrieb vorliegt und den Wert 1 im Falle eines Fehlers. Die Tabelle ist hinsichtlich der Fehlerart in entsprechender Weise wie oben beschrieben zu verstehen. Bildlich gesehen, repräsentiert jede der Fehler größen r1 bis r4 einen Abstand zu den entsprechenden Flächen r*1 bis r*4. Jedoch müssen die Fehlergrößen nicht notwendigerweise mit den Flächen r*1 bis r*4 korrespondieren. Die Fehlergrößen r1 bis r4 entsprechen den Gleichungen (19) bis (22) und korrespondieren zu den Flächen r*1 bis r*4 in den Figuren 7 bis 10.The operating states designated in the table by the variables R 1 to R 4 are based on mathematical calculations of fault parameters r 1 to r 4 according to the equations (19) to (22), wherein the corresponding error amount becomes zero when a correct operation is present and the value 1 in case of error. The table is to be understood in terms of the type of error in a similar manner as described above. Figuratively speaking, each represents the mistake sizes r 1 to r 4 are spaced from the corresponding areas r * 1 to r * 4 . However, the error quantities do not necessarily correspond to the areas r * 1 to r * 4 . The error quantities r 1 to r 4 correspond to the equations (19) to (22) and correspond to the areas r * 1 to r * 4 in the FIGS. 7 to 10 ,

Um die Art des Fehlers weiter zu differenzieren ist in einer Weiterbildung der Erfindung vorgesehen, dass bei Ermittlung eines Fehlers das Pumpenaggregat mit geänderter Drehzahl angesteuert wird, um dann anhand der sich einstellenden Messergebnisse den ermittelten Fehler näher eingrenzen zu können.In order to further differentiate the nature of the error, it is provided in a further development of the invention that, when a fault is detected, the pump unit is actuated with a different speed, in order then to be able to narrow down the detected error more precisely on the basis of the resulting measuring results.

Bevorzugt umfasst das mechanisch-hydraulische Pumpen-/Motormodell nicht nur das Pumpenaggregat selbst, sondern auch darüber hinaus zumindest Teile des von der Pumpe beaufschlagten hydraulischen Systems, damit auch Fehler dieses hydraulischen Systems ermittelbar sind.Preferably, the mechanical-hydraulic pump / motor model comprises not only the pump unit itself, but also beyond at least parts of the acted upon by the pump hydraulic system, so that errors of this hydraulic system can be determined.

Dabei wird das hydraulische System vorteilhaft durch die Gleichung (18) definiert, welche die Änderung des Förderstromes über die Zeit darstellt. K J dQ = H p - p out + ρgz out - p in - ρgz in K v + K l Q 2

Figure imgb0019
in der

KJ
die Konstante ist, die Massenträgheit der Flüssigkeitssäule im Rohrsystern beschreibt,
KV
die Konstante, die die flowabhängigen Druckverluste im Ventil beschreibt und
KL
die Konstante ist, die die flowobhängigen Druckverluste Im Rohrsystem beschreibt,
Hp
den Differenzdruck der Pumpe,
Pout
den Druck am verbraucherseitigen Ende der Anlage,
Pin
den Zulaufdruck,
Zout
das statische Druckniveau am verbraucherseitigen Ende der Anlage,
Zln
das statische Druckniveau am Pumpeneingang,
p
die Dichte des Fördermedium
g
die Gravitationskonstante
Sind.In this case, the hydraulic system is advantageously defined by equation (18), which represents the change in the delivery flow over time. K J dQ = H p - p out + ρgz out - p in - ρgz in K v + K l Q 2
Figure imgb0019
in the
K J
the constant is the mass inertia of the liquid column in the tube system,
K V
the constant which describes the flow-dependent pressure losses in the valve and
K L
is the constant that describes the flow-dependent pressure losses in the pipe system,
H p
the differential pressure of the pump,
P out
the pressure at the consumer end of the system,
P in
the inlet pressure,
Z out
the static pressure level at the consumer end of the system,
Z ln
the static pressure level at the pump inlet,
p
the density of the fluid
G
the gravitational constant
Are.

Die Fehlergrößen r1 bis r4 werden vorteilhaft durch die Gleichungen (19) bis (22) definiert: { J d ω ^ 1 dt = - B ω ^ 1 - - a t 2 Q 2 + a t 1 + a t 0 ω 2 + T e + k e ω - ω ^ 1 r 1 = q 1 ( ω - ω ^ 1 )

Figure imgb0020
{ r 2 = q 2 ( - a h 2 Q 2 + a h 1 + a h 0 ω 2 - H p )
Figure imgb0021
{ = a h 1 ω + a h 1 2 ω 2 - 4 a h 2 H p + a h 0 ω 2 2 a h 2 J d ω ^ 1 dt = - B ω ^ 3 - - a t 2 Q 2 + a t 1 Q ω + a t 0 ω 2 + T e + k 3 ω - ω ^ 3 r 3 = q 3 ( ω - ω ^ 3 )
Figure imgb0022
{ ωʹ = a h 1 ω + a h 1 2 ω 2 - 4 a h 2 H p + a h 0 ω 2 2 a h 2 J d ω ^ 4 dt = - B ω ^ 4 - - a t 2 Q 2 + a t 1 Qωʹ + a t 0 ωʹ 2 + T e + k 4 ωʹ - ω ^ 4 r 4 = q 4 ( ωʹ - ω ^ 4 )
Figure imgb0023

in denen

k 1,k 3,k 4
Konstanten,
q 1,q 2,q 3,q 4
Konstanten,
Q'
Die berechnete Fördermenge auf Basis von aktueller Drehzahl und gemessenem Druck,
1
die berechnete Rotordrehzahl auf Grundlage der mechanisch-hydraülischen Gleichungen (15) und (17),
3
die berechnete Rotordrehzahl auf Grundlage der Gleichungen (15), (16) und (17).
4
die berechnete Rotordrehzahl auf Grundlage der Gleichungen (15), (16) und (17).
ω'
die berechnete Rotordrehzahl aufgrund gemessenen Förderdrucks und gemessener Fördermenge
r 1 - r 4
Fehlergrößen und
r 1* - r 4*
durch drei Variable bestimmte Flächen sind, die einen fehlerfreien Betrieb der Pumpe repräsentieren.
The error quantities r 1 to r 4 are advantageously defined by the equations (19) to (22): { J d ω ^ 1 dt = - B ω ^ 1 - - a t 2 Q 2 + a t 1 + a t 0 ω 2 + T e + k e ω - ω ^ 1 r 1 = q 1 ( ω - ω ^ 1 )
Figure imgb0020
{ r 2 = q 2 ( - a H 2 Q 2 + a H 1 + a H 0 ω 2 - H p )
Figure imgb0021
{ Q ' = a H 1 ω + a H 1 2 ω 2 - 4 a H 2 H p + a H 0 ω 2 2 a H 2 J d ω ^ 1 dt = - B ω ^ 3 - - a t 2 Q ' 2 + a t 1 Q ' ω + a t 0 ω 2 + T e + k 3 ω - ω ^ 3 r 3 = q 3 ( ω - ω ^ 3 )
Figure imgb0022
{ ω' = a H 1 ω + a H 1 2 ω 2 - 4 a H 2 H p + a H 0 ω 2 2 a H 2 J d ω ^ 4 dt = - B ω ^ 4 - - a t 2 Q 2 + a t 1 Qω' + a t 0 ω' 2 + T e + k 4 ω' - ω ^ 4 r 4 = q 4 ( ω' - ω ^ 4 )
Figure imgb0023

in which
k 1 , k 3 , k 4
constant,
q 1 , q 2 , q 3 , q 4
constant,
Q '
The calculated flow rate based on actual speed and pressure,
1
the calculated rotor speed based on the mechanical-hydraulic equations (15) and (17),
3
the calculated rotor speed based on equations (15), (16) and (17).
4
the calculated rotor speed based on equations (15), (16) and (17).
ω '
the calculated rotor speed based on measured discharge pressure and measured flow rate
r 1 - r 4
Error sizes and
r 1 * - r 4 *
by three variables are certain areas that represent a faultless operation of the pump.

Um das erfindungsgemäße Verfahren zur Fehlerermittlung bei Betriebszuständen eines Kreiselpumpenaggregats durchzuführen sind dort Mittel zur Erfassung von zwei für den Motor leistungsbestimmenden elektrischen Größen sowie Mittel zur Erfassung mindestens einer veränderlichen hydraulischen Größe der Pumpe sowie Mittel zur Erfassung mindestens einer weiteren, die Leistung der Pumpe bestimmenden mechanischen oder hydraulischen Größe vorzusehen sowie eine elektronische Auswerteinrichtung, welche einen Fehlerzustand des Pumpenaggregats anhand der erfassten Größen ermittelt. In einfachster Form ist hier also eine Sensorik zur Erfassung von der am Motor anliegenden Versorgungsspannung und des Versorgungsstroms sowie zur Erfassung des von der Pumpe aufgebrachten Drucks vorzugsweise Differenzdrucks und der Fördermenge oder der Drehzahl vorzusehen. Darüber hinaus ist eine Auswerteinrichtung vorzusehen, die in Form einer digitalen Datenverarbeitung, z.B. eines Mikroprozessors ausgebildet sein kann, in den das erfindungsgemäße Verfahren softwaremäßig implementiert wird. Um den Vergleich zwischen erfassten bzw. berechneten Werten und vorgegebenen (z.B. fabrikseitig erfasst und abgespeicherten) Werten durchführen zu können ist ferner ein elektronischer Speicher vorzusehen. Bei modernen frequenzumrichtergesteuerten Pumpenaggregaten sind sämtliche vorgenannten hardwaremäßigen Voraussetzungen bereits vorhanden, so dass lediglich für eine ausreichende Dimensionierung der elektronischen Datenverarbeitungsanlage, insbesondere der Speichermittel und der Auswerteinrichtung zu sorgen ist. Sämtliche Bauteile mit Ausnahme der zur Erfassung von hydraulischen Größen erforderllchen Sensorik sind bevorzugt integraler Bestandteil der Motor- und/oder Pumpenelektronik, so dass konstruktiv insoweit keine weiteren Vorkehrungen zur Durchführung des erfindungsgemäßen Verfahrens zu treffen sind. Eine andere Ausführungsform kann ein separater in einer Schalttafel oder Steuertafel vorgesehener Baustein sein, in gleicher Weise wie ein Motorschutzschalter, jedoch mit den Überwachungs- und Diagnoseeigenschaften wie oben beschrieben.In order to carry out the method according to the invention for determining the fault in operating states of a centrifugal pump assembly there are means for detecting two electrical variables determining the motor power and means for detecting at least one variable hydraulic size of the pump and means for detecting at least one further mechanical or mechanical performance determining the power of the pump provide hydraulic size and an electronic evaluation device which determines a fault condition of the pump unit based on the detected variables. In the simplest form, therefore, a sensor system for detecting the voltage applied to the motor supply voltage and the supply current and for detecting the pressure applied by the pump, preferably differential pressure and the delivery rate or the rotational speed is provided here. In addition, an evaluation device is to be provided, which may be in the form of digital data processing, for example a microprocessor, in which the method according to the invention is implemented by software. In order to be able to carry out the comparison between detected or calculated values and specified values (eg recorded and stored by the factory), an electronic memory is also to be provided. In modern frequency converter controlled pump units all the aforementioned hardware requirements are already in place, so that is only to ensure sufficient dimensioning of the electronic data processing system, in particular the storage means and the evaluation device. All components, with the exception of the sensors required for the detection of hydraulic variables, are preferably an integral part of the motor and / or pump electronics, so that constructively so far no further provisions for carrying out the method according to the invention are to be made. Another embodiment may be a separate module provided in a panel or control panel, in the same way as a motor protection switch, but with the monitoring and diagnostic features as described above.

Die hier beschriebenen Ausführungsformen beziehen sich auf Kreiselpumpen, wie sich dies auch aus dem mechanisch-hydraulischen Pumpenmodell ergibt. Solche Pumpen können beispielsweise Industriepumpen, Tauchpumpen für die Abwasser- oder Wasserversorgung sowie Heizungsumwälzpumpen sein. Besonders vorteilhaft ist ein Diagnosesystem gemäß der Erfindung bei Spaltrohrpumpen, da durch frühzeitige Fehlererkennung das Durchschleifen des Spaltrohres und damit Austritt von Förderflüssigkeit, z. B. in den Wohnbereich, vorbeugend verhindert wird. Bei der Anwendung der Erfindung im Verdrängerpumpenbereich muss das mechanisch-hydraulische Pumpenmodell entsprechend den abweichenden physikalischen Zusammenhängen angepasst werden. Entsprechendes gilt auch beim Einsatz anderer Motortypen für das elektrische Motormodell.The embodiments described here relate to centrifugal pumps, as can be seen from the mechanical-hydraulic pump model. Such pumps may be, for example, industrial pumps, submersible pumps for sewage or water supply and heating circulation pumps. Particularly advantageous is a diagnostic system according to the invention in canned pumps, since through early fault detection, the looping through of the can and thus outlet of the pumped liquid, eg. B. in the living area, preventively prevented. In the application of the invention in Verdrängerpumpenbereich the mechanical-hydraulic pump model must be adjusted according to the different physical relationships. The same applies to the use of other engine types for the electric motor model.

Darüber hinaus sind gemäß der Erfindung Mittel vorgesehen um mindestens eine Fehlermeldung zu erzeugen und zu übertragen an ein am Pumpenaggregat oder anderswo angeordnetes Anzeigelement, sei es in Form einer oder mehrerer Kontrollleuchten oder eines Displays mit alphanumerischer Anzeige. Dabei kann die Übertragung drahtlos, beispielsweise über Infrarot oder Funk erfolgen aber auch drahtgebunden, vorzugsweise in digitaler Form.Moreover, according to the invention means are provided for generating and transmitting at least one error message to a display unit arranged on the pump unit or elsewhere, be it in the form of one or more indicator lights or a display with an alphanumeric display. In this case, the transmission can be wireless, for example via infrared or radio but also wired, preferably in digital form.

Ein vereinfachtes Verfahren ist anhand von Fig. 1 dargestellt. In ein elektrisches Motormodell 1 fließen die veränderlichen elektrischen leistungsbestimmenden Größen ein, hier insbesondere die Spannung Vabc und der Strom iabc. Das Produkt dieser Größen definiert die, vom Motor aufgenommene elektrische Leistung. Aus diesem Motormodell, wie es beispielsweise durch die Gleichungen (1) bis (5) oder (6) bis (9) oder (10) bis (14) gegeben ist, sind das Drehmoment Te an der Welle des Motors sowie die Drehzahl ω des Motors ableitbar, wie sie sich rechnerisch aufgrund des Motormodells ergeben. Diese leistungsabhängigen elektrischen Größen des Motors werden mit der ermittelten mechanischen Förderhöhe H (Druck) in einem Pumpenmodell 2, beispielsweise nach den Gleichungen (16) und (17) verknüpft, wobei dann das Ergebnis mit anhand definierter Betriebspunkte ermittelter vorgegebener Betriebswerte verglichen wird. Bei Übereinstimmung dieser Eingangsgrößen mit den vorgegebenen Werten arbeitet das Pumpenaggregat fehlerfrei. Ergibt sich hingegen über ein vorbestimmtes Maß hinausgehende Differenz, so wird ein Fehlersignal r generiert, welches eine Fehlfunktion der Pumpe signalisiert.A simplified procedure is based on Fig. 1 shown. In an electric motor model 1, the variable electrical power-determining variables flow, in particular the voltage V abc and the current i abc . The product of these quantities defines the electrical power consumed by the motor. From this motor model, such as given by the equations (1) to (5) or (6) to (9) or (10) to (14), the torque T e on the shaft of the motor and the rotational speed ω derivable from the engine, as they result arithmetically on the basis of the engine model. This power-dependent electrical Sizes of the motor are linked to the determined mechanical delivery height H (pressure) in a pump model 2, for example according to equations (16) and (17), in which case the result is compared with predetermined operating values determined on the basis of defined operating points. If these input variables agree with the specified values, the pump set operates without errors. On the other hand, if the difference is greater than a predetermined amount, then an error signal r is generated which signals a malfunction of the pump.

Bei der erfindungsgemäßen Ausführung gemäß Fig. 2 werden in gleicher Weise wie bei Fig. 1 die Eingangsspannung vabc und der Motorstrom iabc als Eingangswerte für das Motormodell 1 verwendet, um das an der Motorwelle anstehende Moment Te und die Drehgeschwindigkeit der Welle ω zu ermitteln. Diese aus dem Motormodell 1 abgeleiteten Werte sowie die sensorisch ermittelten Größen der Förderhöhe H (Druck) sowie der Fördermenge Q werden in einem mechanisch-hydraulischen Pumpenmodell 3 mathematisch miteinander verknüpft, das z.B. durch die Gleichungen (19) bis (22) weitergebildet ist. Hierbei werden vier Fehlergrößen r1 bis r4 generiert, wobei ein fehlerfreier Betrieb vorliegt, wenn diese alle den Wert Null annehmen und damit die Betriebspunkte in den in den Figuren 7 bis 10 im Einzelnen dargestellten Flächen r*1 bis r*4 liegen. Diese dort dargestellten Flächen sind aus einer Vielzahl von Betriebspunkten beim ordnungsgemäßen Betrieb des Pumpenaggregats definiert und fabrikmäßig erzeugt und im Speicherbaustein der Auswertelektronik digital abgespeichert. Alternativ oder zusätzlich wird festgestellt, ob die anhand des mechanisch-hydraulischen Pumpenmodells ermittelten Fehlergrößen r1 bis r4 Null sind oder nicht, entsprechend diesem Ergebnis erfolgt eine Auswertung gemäß der vorbeschriebenen Tabelle. Je nachdem, ob eine Fehlergröße vorliegt oder nicht, können beim Auftreten eines Fehlers insgesamt vier fehlerhafte Betriebszustände des Pumpenaggreggats festgestellt werden, und zwar die unter die vorgenannten Oberbegriffe fallenden:

  1. 1. erhöhte Reibung aufgrund mechanischer Defekte,
  2. 2. reduzierte Förderung/fehlender Druck,
  3. 3. Defekt im Ansaugbereich/fehfende Fördermenge und
  4. 4. Förderausfall.
In the embodiment according to the invention Fig. 2 become the same as at Fig. 1 the input voltage v abc and the motor current i abc are used as input values for the motor model 1 to determine the torque Te present at the motor shaft and the rotational speed of the shaft ω. These derived from the engine model 1 values and the sensory variables of the head H (pressure) and the flow rate Q are mathematically linked together in a mechanical-hydraulic pump model 3, for example, by the equations (19) to (22) developed. In this case, four error quantities r 1 to r 4 are generated, whereby a fault-free operation is present if they all assume the value zero and thus the operating points in the in the FIGS. 7 to 10 shown in detail surfaces r * 1 to r * 4 lie. These areas shown there are defined from a variety of operating points in the proper operation of the pump unit and factory-generated and stored digitally in the memory module of the evaluation electronics. Alternatively or additionally, it is determined whether or not the error variables r 1 to r 4 determined on the basis of the mechanical-hydraulic pump model are zero or not, according to this result an evaluation takes place in accordance with the above-described table. Depending on whether an error size is present or not, when an error occurs in total four faulty operating states of the pump aggregate are detected, namely those falling under the abovementioned preambles:
  1. 1. increased friction due to mechanical defects,
  2. 2. reduced promotion / lack of pressure,
  3. 3. Defective in the intake area / decreasing flow rate and
  4. 4. Delivery failure.

Mit dem erfindungsgemäßen Verfahren kann nicht nur das Pumpenaggregat selbst, sondern es können auch Teile der Anlage überwacht werden, in der das Pumpenaggregat angeordnet ist. Dabei gliedert sich das System so, wie in Fig. 3 im Einzelnen dargestellt ist. Auch hier ist ein elektrisches Motormodell vorgesehen, dessen Eingangsgrößen Vabc und iabc sind und dem beispielsweise ein statisches Motormodell nach den Gleichungen (6) bis (9) zugrunde liegt, so, wie es hinlänglich bekannt und anhand von Fig. 5 dargestellt ist. Die Ausgangsgröße dieses statischen Motormodells ist das Motormoment Te, das wiederum über die Gleichung (15) Eingang in den mechanischen Teil des Pumpenmodells 3a einfließt. Der hydraulische Teil des Pumpenmodells 3b ist durch die Gleichungen (16) und (17) definiert, über den der hydraulische Teil der Anlage 4 angekoppelt ist. Der hydraulische Teil der Anlage durch die Gleichung (18) definiert und anhand von Fig. 4 schematisch dargestellt, in dem Pin der Druck Zulauf der Pumpe, Hp der Differenzdruck der Pumpe, Q der Förderstrom, Pout der Druck am verbraucherseitigen Ende der Anlage und V1 die strömungsverluste innerhalb der. Pumpe darstellen. Zout ist das statische Druckniveau am verbraucherseitigen Ende der Anlage und Zin das am Pumpeneingang.With the method according to the invention, not only the pump unit itself, but also parts of the system can be monitored, in which the pump unit is arranged. The system is structured as in Fig. 3 is shown in detail. Again, an electric motor model is provided, the input variables V abc and i abc and the example, a static motor model according to the equations (6) to (9) is based, as it is well known and based on Fig. 5 is shown. The output variable of this static engine model is the engine torque T e , which in turn flows via the equation (15) input into the mechanical part of the pump model 3 a. The hydraulic part of the pump model 3b is defined by equations (16) and (17), via which the hydraulic part of the plant 4 is coupled. The hydraulic part of the plant is defined by equation (18) and based on Fig. 4 schematically shown, in which P in the pressure inlet of the pump, H p the differential pressure of the pump, Q the flow rate, P out the pressure at the consumer end of the system and V 1 the flow losses within the. Represent pump. Z out is the static pressure level at the consumer end of the system and Z at the pump inlet.

Fig. 3 verdeutlicht also die Zusammenhänge zwischen Motormodell, mechanischem Teil des Pumpenmodells, hydraulischen Teil des Pumpenmodells und hydraulischen Teil der Anlage. Während in den hydraulischen Teile des Pumpenmodells 3b und den hydraulischen Teil der Anlage Förderhöhe und Fördermenge ein- bzw. ausgehen, gehen in den hydraulischen Teil des Pumpenmodells 3b die Drehzahl ωr ein, die auch in das Motormodel 1 eingeht. Das aus dem hydraulischen Teil des Pumpenmodells 3b ermittelte Moment geht wiederum in den mechanischen Teil des Pumpenmodells 3a zur Ermittlung der Drehzahl ein. Fig. 3 clarifies the relationship between the engine model, the mechanical part of the pump model, the hydraulic part of the pump model and the hydraulic part of the plant. While in the hydraulic parts of the pump model 3b and the hydraulic part of the plant Inlet and out flow, and go in the hydraulic part of the pump model 3b, the speed ω r , which also enters the engine model 1. The torque determined from the hydraulic part of the pump model 3b in turn enters the mechanical part of the pump model 3a for determining the rotational speed.

Die vorstehend beschriebenen Gleichungen zur mathematischen Beschreibung von Pumpe und Motor sind nur beispielhaft zu verstehen und können ggfs. durch andere geeignete Gleichungen, wie sie aus der einschlägigen Fachliteratur bekannt sind, ersetzt werden. Die vorstehend mit diesen Modellen ermittelbaren Fehler beim Betrieb eines Pumpenaggregats bzw. Differenzierung nach Fehlerarten kann weiter diversifiziert werden durch geeignete Fehleralgorithmen.The equations described above for the mathematical description of pump and motor are to be understood as examples only and can be replaced, if necessary, by other suitable equations, as they are known from the relevant specialist literature. The above with these models detectable error in the operation of a pump set or differentiation by types of errors can be further diversified by appropriate error algorithms.

Um sicherzustellen, dass nicht schon geringe Fertigungstolleranzen oder Messfehler zur Abgabe von Fehlersignalen führen, ist es zweckmäßig, die in den Gleichungen (16) und (17) angegebenen Parameter ah und at nicht konstant zu wählen, sondern jeweils einen unteren oder oberen Grenzwert festzusetzen, um eine gewisse Bandbreite zu erzeugen, wie sie in Fig. 6 dargestellt sind. In der dort dargestellten linken Kurve ist die Leistung über der Fördermenge und in der rechten Kurve die Förderhöhe über der Fördermenge aufgetragen.To ensure that even small production tolerances or measurement errors do not lead to the emission of error signals, it is expedient to select the parameters a h and a t given in equations (16) and (17) not constant, but in each case a lower or upper limit value set to produce a certain bandwidth, as in Fig. 6 are shown. In the left-hand curve shown there, the power is plotted against the flow rate and in the right-hand curve the delivery height is plotted against the flow rate.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1 -1 -
Elektrisches MotormodellElectric engine model
2 -2 -
Vereinfachtes PumpenmodellSimplified pump model
3 -3 -
Erweitertes PumpenmodellExtended pump model
3a -3a -
Mechanischer Teil des PumpenmodellsMechanical part of the pump model
3b -3b -
Hydraulischer Teil des PumpenmodellsHydraulic part of the pump model
4 -4 -
Hydraulischer Teil der AnlageHydraulic part of the plant

Claims (16)

  1. A method for determining faults on operation of a pump assembly, with which at least two electrical variables of the motor which determine the electrical power of the motor, and at least one changing hydraulic variable of the pump, as well as at least one further mechanical or hydraulic variable which determines the power of the pump, are acquired, and on the one hand, the two electrical variables of the motor which determine the electrical power of the motor, are mathematically linked for achieving at least one comparison value, and on the other hand the at least one changing hydraulic variable of the pump, as well as at least one further mechanical or hydraulic variable determining the power of the pump are mathematically linked for achieving at least one comparison value, wherein a mathematical, electrical motor model (1) is used in combination with a mathematical, mechanical-hydraulic pump model / motor model (3) for the mathematical linking, and one determines whether a fault is present or not by way of the results of the mathematical linkings by comparison with predefined values.
  2. A method according to claim 1, characterised in that the voltage prevailing at the motor and the current feeding the motor are acquired as the electrical variables determining the electrical power of the motor.
  3. A method according to one of the preceding claims, characterised in that if the presence of a fault is determined, one then further determines as to which fault it is a case of.
  4. A method according to one of the preceding claims, characterised in that the acquired hydraulic variable is the pressure produced by the pump.
  5. A method according to one of the preceding claims, characterised in that the acquired hydraulic variable is the delivery quantity of the pump.
  6. A method according to one of the preceding claims, characterised in that the acquired hydraulic variable is the differential pressure between the suction side and the pressure side of the pump.
  7. A method according to one of the preceding claims, characterised in that the electrical motor model (1) is formed by the following equations s = di sd dt = - s i sd + L m L r r ψ rd + z p ω ψ rd + v sd
    Figure imgb0047
    s = di sq dt = - s i sq + L m L r r ψ rq + z p ω ψ rd + v sq
    Figure imgb0048
    d ψ rd dt = - r ψ rd - z p ω ψ rq + r L m i sd
    Figure imgb0049
    d ψ rq dt = - r ψ rq + z p ω ψ rd + r L m i sq
    Figure imgb0050
    T e = z p 3 2 L m L r ψ rd i sq - ψ rq i sd
    Figure imgb0051

    or V s = Z s s I s
    Figure imgb0052
    ω = ω s - s ω s
    Figure imgb0053
    I r = V s Z r s
    Figure imgb0054
    T e = 3 R r I r 2 s
    Figure imgb0055
    L s di sd dt = - R s i sd + z p ω L s ψ rq + v rd
    Figure imgb0056
    L s di sq dt = - R s i sq - z p ω L s ψ rd + v sq
    Figure imgb0057
    d ψ rd dt = - z p ω ψ rq
    Figure imgb0058
    d ψ rq dt = - z p ω ψ rd
    Figure imgb0059
    T e = z p 3 2 ψ rd i sq - ψ rq i sd
    Figure imgb0060

    in which
    isd is the motor current in direction d
    isq the motor current in direction q
    ψ rd the magnetic flux of the rotor in the d-direction
    ψ rq the magnetic flux of the rotor in the q-direction
    Te the motor moment
    ν sd the supply voltage of the motor in the d-direction
    νsq the supply voltage of the motor in the q-direction
    ω the angular speed of the rotor and impeller
    R's the equivalent resistance of the stator winding
    R' r the equivalent resistance of the rotor winding
    Lm the inductive coupling resistance between the stator and the rotor winding
    L's the inductive equivalent resistance of the stator winding
    Lr the inductive resistance of the rotor winding
    zp the pole pair number
    Is the phase current
    Vs the phase voltage
    ω s the frequency of the supply voltage
    ω the actual rotor and impeller rotational speed
    s the motor slip
    Zs (s) the stator impedance
    Zr (s) the rotor impedance
    Rr the equivalent resistance of the rotor winding
    Rs the equivalent resistance of the stator winding
    Ls the inductive resistance of the stator winding
    wherein d and q are two directions perpendicular to the motor shaft and perpendicular to one another
    and wherein the mechanical-hydraulic pump/motor model is formed by the equation J dt = T e - - T P
    Figure imgb0061

    and at least one of the equations H p = - a h 2 Q 2 + a h 1 + a h 0 ω 2
    Figure imgb0062
    T p = - a t 2 Q 2 + a t 1 + a t 0 ω 2
    Figure imgb0063

    in which
    dt
    Figure imgb0064
    is the temporal derivative of the angular speed of the rotor,
    Tp the pump torque,
    J the moment of mass inertia of the rotor, impeller and the delivery fluid contained in the impeller,
    B the friction constant,
    Q the delivery flow of the pump,
    Hp the differential pressure produced by the pump,
    a h2, a h1 , a h0 the parameters which describe the relationship between the rotational speed of the impeller, the delivery flow and the differential pressure and
    a t2, a t1, a t0 the parameters which describe the relation between the rotational speed of the impeller, the delivery flow and the moment of mass inertia.
  8. A method according to claim 7, characterised in that the variables ah0- ah2 and at0 - at2 are fixed in the equations (16) and (17), as well as the variables B and J in the equation (15), that a motor moment (Te) is determined from the electrical motor model (1) according to the equations (1) - (5) or (6) - (9) or (10) - (14), and the rotational speed is either computed according to the equations (1) - (5) or (6) - (9) or (10) - (14) or measured, whereupon with the help of the equations (16) and/or (17), one determines a relationship between pressure and delivery quantity on the one hand and/or between power/moment and delivery quantity on the other hand, whereupon preferably one checks with equation (15) as to whether the variables computed with the help of the motor model (1) agree or not with those variables computed with the help of the pump model (3) after the substitution of the measured hydraulic variables, wherein a fault is registered should there be no agreement.
  9. A method according to claim 7, characterised in that a tolerance band is fixed by way of variance of at least one of the variables ah0- ah2 and at0- at2 and B and J.
  10. A method according to one of the preceding claims, characterised in that for determining the type of fault, additionally to the two electrical variables, two hydraulic variables are determined, preferably by way of measurement, and the determined values are substituted into the equations according to claim 8, in a manner such that several fault variables (r1 - r4) result, wherein by way of the combination of fault variables, one determines the type of fault by way of predefined boundary value combinations.
  11. A method according to one of the preceding claims, characterised in that for determining the type of fault, additionally to the two electrical variables, two hydraulic variables are determined, preferably by way of measurement, and the determined values or values derived therefrom are compared to predefined values, wherein the predefined values in each case define a surface, wherein one determines whether the determined variables or those derived therefrom lie on one of these surfaces (r*1 - r*4) or not, and by way of the combination of the fault variables, one determines the type of fault by way of predefined boundary value combinations.
  12. A method according to one of the preceding claims, characterised in that the evaluation of the fault type is effected by way of the following table: fault type fault variable r 1 , r 1* r 2, r 2 * r 3 , r 3 * r 4, r 4 * comparative surface increased friction on account of mechanical defects 1 0 1 1 reduced delivery/ absent pressure 0 1 1 1 defect in suction region/ absent delivery quantity 1 1 0 1 delivery stoppage 1 1 1 1
  13. A method according to one of the preceding claims, characterised in that on determining a fault, the pump assembly is activated with a changed rotational speed, in order by way of the measurement results which then set in, to more accurately specify the determined fault.
  14. A method according to one of the preceding claims, characterised in that the mechanical-hydraulic pump model / motor model (3) also includes at least parts of the hydraulic system (4) affected by the pump, in a manner such that faults of the hydraulic system (4) may also be determined.
  15. A method according to claim 14, characterised in that the hydraulic system (4) is defined by the equation K J dQ dt = H p - p out + ρgz out - p in - ρgz in K v + K l Q 2
    Figure imgb0065

    in which
    K J is the constant which describes the mass inertia of the fluid column in the pipe system,
    KV the constant which describes the flow-dependent pressure losses in the valve, and
    KL the constant which describes the flow-dependent pressure losses in the pipe system,
    Hp the differential pressure of the pump,
    Pout the pressure at the consumer-side end of the installation,
    Pin the supply pressure,
    Zout the static pressure level at the consumer-side end of the installation,
    Zin the static pressure level at the pump entry,
    p the density of the delivery medium
    g the gravitational constant
  16. A method according to one of the preceding claims, characterised in that the variables r1 - r4 are defined by the equations { J d ω ^ 1 dt = - B ω ^ 1 - - a t 2 Q 2 + a t 1 + a t 0 ω 2 + T e + k e ω - ω ^ 1 r 1 = q 1 ( ω - ω ^ 1 )
    Figure imgb0066
    { r 2 = q 2 ( - a h 2 Q 2 + a h 1 + a h 0 ω 2 - H p )
    Figure imgb0067
    { = a h 1 ω + a h 1 2 ω 2 - 4 a h 2 H p + a h 0 ω 2 2 a h 2 J d ω ^ 3 dt = - B ω ^ 3 - - a t 2 2 + a t 1 Qʹω + a t 0 ω 2 + T e + k 3 ω - ω ^ 3 r 3 = q 3 ( ω - ω ^ 3 )
    Figure imgb0068
    { ωʹ = - a h 1 H p + a h 1 2 H p 2 - 4 a h 2 H p + a h 0 Q 2 2 a h 2 J d ω ^ 4 dt = - B ω ^ 4 - - a t 2 Q 2 + a t 1 Qωʹ + a t 0 ωʹ 2 + T e + k 4 ωʹ - ω ^ 4 r 4 = q 4 ( ωʹ - ω ^ 4 )
    Figure imgb0069

    in which
    k1,k3,k4 represent constants,
    q 1,q 2,q 3,q 4 constants,
    Q' the computed delivery quantity on the basis of current rotational speed and measured pressure,
    1 the computed rotor rotational speed on the basis of the mechanical-hydraulic equations (15) and (17),
    3 the computed rotor rotational speed on the basis of the equations (15), (16) and (17),
    ω' the computed rotor rotational speed on the basis of the measured delivery pressure and measured delivery quantity
    r 1 - r 4 fault variables, and
    r 1 *- r 4 * surfaces determined by three variables, which represent a fault-free operation of the pump.
EP04002979.5A 2004-02-11 2004-02-11 Method for detecting operation errors of a pump aggregate Expired - Lifetime EP1564411B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502004006565T DE502004006565D1 (en) 2004-02-11 2004-02-11 Method for determining errors in the operation of a pump unit
EP04002979.5A EP1564411B2 (en) 2004-02-11 2004-02-11 Method for detecting operation errors of a pump aggregate
AT04002979T ATE389807T1 (en) 2004-02-11 2004-02-11 METHOD FOR DETERMINING ERRORS DURING THE OPERATION OF A PUMP UNIT
US10/597,892 US8070457B2 (en) 2004-02-11 2005-02-05 Method for determining faults during the operation of a pump unit
PCT/EP2005/001193 WO2005078287A1 (en) 2004-02-11 2005-02-05 Method for determining faults during the operation of a pump unit
CN200580008075.3A CN1938520B (en) 2004-02-11 2005-02-05 Method for detecting operation errors of a pump aggregate
US13/284,049 US8353676B2 (en) 2004-02-11 2011-10-28 Method for determining faults during the operation of a pump unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04002979.5A EP1564411B2 (en) 2004-02-11 2004-02-11 Method for detecting operation errors of a pump aggregate

Publications (3)

Publication Number Publication Date
EP1564411A1 EP1564411A1 (en) 2005-08-17
EP1564411B1 true EP1564411B1 (en) 2008-03-19
EP1564411B2 EP1564411B2 (en) 2015-08-05

Family

ID=34684659

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04002979.5A Expired - Lifetime EP1564411B2 (en) 2004-02-11 2004-02-11 Method for detecting operation errors of a pump aggregate

Country Status (6)

Country Link
US (2) US8070457B2 (en)
EP (1) EP1564411B2 (en)
CN (1) CN1938520B (en)
AT (1) ATE389807T1 (en)
DE (1) DE502004006565D1 (en)
WO (1) WO2005078287A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218565B2 (en) 2013-12-18 2015-12-22 International Business Machines Corporation Haptic-based artificial neural network training
RU2743866C1 (en) * 2020-06-30 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" (ОмГТУ) Method for determination of the centrifugal pump pressure with asynchronous electric drive

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7690897B2 (en) * 2006-10-13 2010-04-06 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
GB2447867B (en) * 2007-03-29 2010-01-27 Byzak Ltd Sewage pump blockage detection
EP2039939B2 (en) * 2007-09-20 2020-11-18 Grundfos Management A/S Method for monitoring an energy conversion device
DE102008063132B4 (en) * 2008-12-24 2011-02-17 Oerlikon Leybold Vacuum Gmbh Method for identifying a type of vacuum pump
DE102009009231B9 (en) * 2009-02-17 2013-06-27 Human Med Ag Apparatus and method for delivering a fluid to a surgical site for medical purposes
DE102009022107A1 (en) * 2009-05-20 2010-11-25 Ksb Ag Method and device for determining the operating point of a work machine
ITTO20090598A1 (en) * 2009-07-31 2011-02-01 Sema Elettronica S R L DEVICE FOR EXTRACTION OF WATER FROM THE SUBSUBLE
CA2793482C (en) * 2011-11-01 2019-09-24 Regal Beloit Epc Inc. Entrapment detection for variable speed pump system using load coefficient
AU2013204013B2 (en) 2013-03-15 2015-09-10 Franklin Electric Company, Inc. System and method for operating a pump
GB2512084A (en) * 2013-03-19 2014-09-24 Control Tech Ltd Pump control
DE102013211345B4 (en) 2013-06-18 2022-12-01 Robert Bosch Gmbh Procedure for condition monitoring on displacer units
DE102013109411A1 (en) * 2013-08-29 2015-03-05 Prominent Gmbh Method for the determination of hydraulic parameters
CN106066621A (en) * 2016-07-27 2016-11-02 霍州煤电集团有限责任公司 The anticipation maintenance of a kind of colliery Central Pump Room water pump and long-range control method
WO2018075944A1 (en) 2016-10-21 2018-04-26 Franklin Electric Co., Inc. Motor drive system and method
EP4365453A2 (en) * 2016-12-30 2024-05-08 Grundfos Holding A/S Method for operating an electronically controlled pump unit
USD872245S1 (en) 2018-02-28 2020-01-07 S. C. Johnson & Son, Inc. Dispenser
USD872847S1 (en) 2018-02-28 2020-01-14 S. C. Johnson & Son, Inc. Dispenser
USD880670S1 (en) 2018-02-28 2020-04-07 S. C. Johnson & Son, Inc. Overcap
USD881365S1 (en) 2018-02-28 2020-04-14 S. C. Johnson & Son, Inc. Dispenser
KR102103151B1 (en) * 2018-03-14 2020-04-22 (주)아이티공간 Predictive maintenance method of driving device
KR102103146B1 (en) * 2018-03-14 2020-04-22 (주)아이티공간 Predictive maintenance method of driving device
USD853548S1 (en) 2018-05-07 2019-07-09 S. C. Johnson & Son, Inc. Dispenser
USD852938S1 (en) 2018-05-07 2019-07-02 S. C. Johnson & Son, Inc. Dispenser
EP3567256A1 (en) * 2018-05-11 2019-11-13 Grundfos Holding A/S A monitoring module and method for identifying an operating scenario in a wastewater pumping station
CN111089819B (en) * 2019-12-17 2023-05-02 重庆南方数控设备股份有限公司 Blood detection method for prejudging and detecting working state of pump based on hemorheology instrument
US11454225B2 (en) 2020-04-29 2022-09-27 Halliburton Energy Services, Inc. Single motor-driven dual pump detachment monitoring algorithm
EP4019779A1 (en) 2020-12-23 2022-06-29 Grundfos Holding A/S A pump monitoring system and method for associating a current operating state of a pump system with one or more fault scenarios
CN112983844B (en) * 2021-03-01 2021-10-08 合肥恒大江海泵业股份有限公司 Submersible electric pump monitoring control system
CN114876782B (en) * 2022-05-13 2024-03-12 三一汽车制造有限公司 Hydraulic pump fault detection method and device and working machine
DE102022113913A1 (en) 2022-06-02 2023-12-07 Liebherr-Aerospace Lindenberg Gmbh Device and method for monitoring the condition of an electric motor pump

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987000898A1 (en) 1985-08-07 1987-02-12 Edward Howell Marr Rope terminating device
US4913625A (en) 1987-12-18 1990-04-03 Westinghouse Electric Corp. Automatic pump protection system
JPH02206469A (en) * 1989-02-03 1990-08-16 Aisin Seiki Co Ltd Pumping apparatus
KR910006616A (en) * 1989-09-29 1991-04-29 이헌조 Operation control circuit of pump motor
US5447414A (en) * 1994-05-27 1995-09-05 Emerson Electric Co. Constant air flow control apparatus and method
US5725357A (en) * 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
JPH10147236A (en) * 1996-11-20 1998-06-02 Aisin Seiki Co Ltd Fluid pressure source device
DE19725074C2 (en) * 1997-06-13 2001-10-18 Ekl Ag Alarm module
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
US6144178A (en) * 1999-08-05 2000-11-07 International Business Machines Corporation Disk drive with controlled reduced internal pressure
ATE283077T1 (en) * 2000-03-27 2004-12-15 Cleveland Clinic Foundation CHRONIC POWER CONTROL SYSTEM FOR ROTODYNAMIC BLOOD PUMP
DE10116339B4 (en) * 2001-04-02 2005-05-12 Danfoss Drives A/S Method for operating a centrifugal pump
EP1255174A1 (en) * 2001-04-30 2002-11-06 Starite S.p.A. Electric Pump with automatic on-off device
US6655922B1 (en) 2001-08-10 2003-12-02 Rockwell Automation Technologies, Inc. System and method for detecting and diagnosing pump cavitation
SE0104317L (en) * 2001-12-20 2002-11-26 Itt Mfg Enterprises Inc Liquid flow sensing device in a pump outlet intended to control the power supply to the electrically driven pump motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9218565B2 (en) 2013-12-18 2015-12-22 International Business Machines Corporation Haptic-based artificial neural network training
US9230208B2 (en) 2013-12-18 2016-01-05 International Business Machines Corporation Haptic-based artificial neural network training
US9530092B2 (en) 2013-12-18 2016-12-27 International Business Machines Corporation Haptic-based artificial neural network training
RU2743866C1 (en) * 2020-06-30 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" (ОмГТУ) Method for determination of the centrifugal pump pressure with asynchronous electric drive

Also Published As

Publication number Publication date
CN1938520A (en) 2007-03-28
CN1938520B (en) 2011-07-20
EP1564411A1 (en) 2005-08-17
WO2005078287A1 (en) 2005-08-25
US8070457B2 (en) 2011-12-06
US20080240931A1 (en) 2008-10-02
US8353676B2 (en) 2013-01-15
EP1564411B2 (en) 2015-08-05
US20120101788A1 (en) 2012-04-26
DE502004006565D1 (en) 2008-04-30
ATE389807T1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
EP1564411B1 (en) Method for detecting operation errors of a pump aggregate
EP2145112B1 (en) Device and method for fault monitoring
EP3449132B1 (en) Method for detecting an abnormal operating state of a pump unit
EP2702272B1 (en) Pump system
EP2024712A1 (en) Device for transmitting measured values
EP1825147B1 (en) Method for operation of a compressor supplied by a power converter
WO2019233859A1 (en) Method for determining or monitoring the state of an eccentric screw pump
DE102011050017A1 (en) Control means for driving a frequency converter and driving method
DE102011010218B4 (en) A method of regulating the pressure of a fluid delivered by a variable speed pump
EP1286240A1 (en) Method of determining a pump-characteristic
EP3169903B1 (en) Determining the delivery rate of a pump
EP0943805B1 (en) Process and sensor for cavitation detection as well as a device comprising such sensor
EP2696175A1 (en) Method for detecting the flow rate of a centrifugal pump
EP2122177B1 (en) Pump unit
EP0967475A1 (en) Method for the determination of the viscosity of a liquid
WO2016173896A1 (en) Pump device and methods for operating a pump for liquids
WO2016166114A1 (en) Pump and method for operating a pump for liquids
DE102005045284A1 (en) Speed monitoring device
EP2500579A1 (en) Detection of cavitation and gas entrainment in an electric rotary pump
EP3058650B1 (en) Method for controlling an electric motor of a vehicle pump
EP3458201B1 (en) Coating agent pump
EP1198871B1 (en) Malfunction detection of a machine driven by an electric motor
DE102022116603B4 (en) Method for operating a concrete pump and concrete pump
DE102004044185A1 (en) Method and device for determining a fault condition of a rotating compressor
WO2024022786A1 (en) Method for determining or monitoring the delivery flow of an eccentric screw pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051221

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060502

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004006565

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E003577

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

ET Fr: translation filed
PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: WILO SE

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

BERE Be: lapsed

Owner name: GRUNDFOS A/S

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PLAP Information related to despatch of examination report in opposition + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20150805

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004006565

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPEO

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20220205

Year of fee payment: 19

Ref country code: GB

Payment date: 20220221

Year of fee payment: 19

Ref country code: FI

Payment date: 20220215

Year of fee payment: 19

Ref country code: DE

Payment date: 20220221

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220128

Year of fee payment: 19

Ref country code: SE

Payment date: 20220221

Year of fee payment: 19

Ref country code: IT

Payment date: 20220228

Year of fee payment: 19

Ref country code: FR

Payment date: 20220221

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004006565

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006565

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230212

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230211

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901