EP1563551A2 - Organische elektrolumineszente lichtquelle mit antireflexionsschicht - Google Patents

Organische elektrolumineszente lichtquelle mit antireflexionsschicht

Info

Publication number
EP1563551A2
EP1563551A2 EP03758561A EP03758561A EP1563551A2 EP 1563551 A2 EP1563551 A2 EP 1563551A2 EP 03758561 A EP03758561 A EP 03758561A EP 03758561 A EP03758561 A EP 03758561A EP 1563551 A2 EP1563551 A2 EP 1563551A2
Authority
EP
European Patent Office
Prior art keywords
organic electroluminescent
light source
layer
organic
electroluminescent light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03758561A
Other languages
English (en)
French (fr)
Inventor
Horst Philips Int. Pro. & Standards GmbH GREINER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1563551A2 publication Critical patent/EP1563551A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices

Definitions

  • the invention relates to an organic electroluminescent light source, in particular an organic electroluminescent diode for illuminated displays, lights, solid-state image intensifiers or screens.
  • the organic electroluminescent light source comprises a transparent front panel, a front electrode component (member), a counter electrode component, an organic electroluminescent component (member) between the front electrode component and the counter electrode component and an antireflection layer made of a pore material.
  • An electroluminescent light source is characterized in that it emits light when an electrical voltage is applied under current flow.
  • the following light-generating processes take place: If electrons are injected into a p-doped semiconductor, light can be generated if the electron recombines with the hole while emitting radiation. Conversely, light can be generated in a hole injection into n-doped semiconductor material if the holes recombine with the electrons while emitting light.
  • Prior art LEDs are generally inorganic semiconductor diodes, that is to say diodes for their construction, inorganic semiconductors such as doped zinc sulfide, silicon, germanium or III-N semiconductors, e.g. B. InP, GaAs, GaAlAs, GaP or Ga ⁇ can be used with appropriate doping. Punctiform display elements can be produced on the basis of such substances. Large-scale arrangements are not possible.
  • Electroluminescent light sources with luminous layers that come from organic materials are built, light sources from inorganic materials are clearly superior in some properties.
  • One advantage is their easy formability and high elasticity, which enables novel applications for lighting, illuminated displays and screens.
  • These luminous layers can easily be produced as large, flat and very thin layers, for which the use of materials is also low. They are also characterized by a remarkably high brightness with a low control voltage.
  • the luminous efficiency of an electroluminescent light source is determined by the quantum efficiency of all light-generating processes.
  • the internal quantum yield is obtained from the percentage of the injected charge carriers that recombine under radiation emission.
  • the outer quantum yield results from the inner quantum yield, multiplied by the percentage of the light actually emerging from the semiconductor.
  • One of the loss factors is the low light output, which is caused by the complex layer structure of the electroluminescent light sources from several layers with different refractive indices.
  • the different optical refractive indices of the materials in organic electroluminescent light sources have the effect that the light generated in the active layer of the light source due to the high refractive index of the organic electroluminescent materials is totally reflected at the exit and is only coupled out to a few percent in the exterior, typically air, with a lower refractive index. For a given electric current that flows through the electroluminescent light source to generate the light, the brightness of the light source is limited.
  • EP 1153739 discloses an electroluminescent optical component whose substrate contains a functional layer, an airgel layer and an intermediate layer between the functional layer and the airgel layer.
  • the airgel can be a silica gel with a refractive index between 1.008 and 1.3.
  • the object of the present invention is to provide an electroluminescent light source suitable for mass production for different material systems, which is capable of coupling out as much light as possible and which is resistant to environmental influences.
  • an organic electroluminescent light source with a front panel, a front electrode component, a counter electrode component, an organic electroluminescent component between the front electrode component and the counter electrode component and an antireflection layer made of an organic polymeric material that contains mesopores, between the front panel and the front electrode component solved.
  • the pore size of the mesopores is in the range of 50 to 100 nm. This pore size guarantees that the evanescent waves present at the interface between the front electrode components and the anti-reflective layer are different from those in the electroluminescent component trapped photons originate, can be effectively coupled into the anti-reflection layer.
  • the mesoporous antireflection layer has a low effective refractive index so that the coupling out of the light from the mesoporous antireflection layer into the subsequent front panel is advantageously improved.
  • the anti-reflection layer according to the invention fulfills the requirement for sufficient optical transparency, long-term stability against atmospheres and against temperature changes. According to a preferred embodiment of the invention, the
  • the organic polymeric material of the anti-reflection layer is a hydrophobic polymer.
  • Antireflection layers made of a hydrophobic organic polymer and with closed-cell pores prevent the absorption of oxygen and water in the organic electroluminescent light source. In doing so, they prevent the oxidation of the organic semiconductor layers and the electrodes made of base metal, which reduces the lifespan of the organic electroluminescent light sources.
  • the pores can also
  • the pores in the antireflection layer are preferably produced by means of a porogen.
  • the light-emitting surfaces of the organic electroluminescent light source are essentially two-dimensionally emitting surfaces.
  • Fig. 1 shows the schematic structure of an organic electroluminescent light source according to the invention.
  • An organic electroluminescent light source according to the invention is generally constructed as follows:
  • the core is an organic electroluminescent component between a positive electrode as front electrode components and a negative electrode as counter electrode components, it being possible for one or both electrode components to be transparent and / or segmented.
  • the organic electroluminescent light source is equipped with a front electrode as front electrode components and a negative electrode as counter electrode components, it being possible for one or both electrode components to be transparent and / or segmented.
  • the organic electroluminescent light source is equipped with a front electrode as front electrode components and a negative electrode as counter electrode components, it being possible for one or both electrode components to be transparent and / or segmented.
  • the organic electroluminescent light source is equipped with a front
  • Panel and usually also a rear panel.
  • an anti-reflection layer made of a porous, polymeric organic material that contains mesopores is arranged between the front electrode component and the front panel.
  • organic electroluminescent component can be divided into individual layers with different functions such as hole-injecting layer, hole-transporting layer, light-emitting layer, electron-transporting layer, electron-injecting layer.
  • one or more electron injection and / or electron transport layers can be arranged between the electroluminescent layer and the positive electrode.
  • one or more hole injection and / or hole transport layers can be arranged between the electroluminescent layer and the negative electrode.
  • a complete organic electroluminescent light source can further include contacts, cladding, and encapsulation.
  • Such a light source typically consists of a layer composite of individual layers applied one above the other and partially next to one another. All layer structures and materials known to those skilled in the art for these layers are suitable for the structure.
  • This layered composite can be built from the front panel made of glass, quartz, ceramic, synthetic resin or a transparent, flexible plastic film.
  • Preferred materials for the production of the front panel are glass and plastic.
  • the special advantages of glass are that it is chemically and also photochemically inert, is optically isotropic, is temperature-resistant, is mechanically stable and also has a hard surface. However, glass has a relatively high density, is brittle and therefore very sensitive to breakage.
  • Plastics z.
  • polyimides, polyethylene terephthalates and polytretrafluoroethylenes have a lower density and are elastic and unbreakable.
  • the negative electrode supplies electrons which combine with the holes in the organic electroluminescent layer to form excitons and emit photons during recombination.
  • At least one of the electrode components should be transparent or at least translucent.
  • the positive electrode is the front electrode and is made of a non-stoichiometric or doped tin oxide, e.g. B. ITO, or a metal with a high work function, e.g. B. made of gold or silver. These electrode materials can be easily manufactured as transparent layers. ITO is particularly suitable due to the fact that it has good electrical conductivity and is transparent.
  • a layer made of a conductive polyaniline or poly-3,4-ethylene dioxythiophene can be used alone or together with an ITO layer as a transparent positive electrode.
  • the negative electrode that injects electrons into the organic electroluminescent layer is said to have a low work function.
  • Suitable materials for the negative electrode are e.g. B. indium, aluminum, calcium, barium or magnesium. If the negative electrode is made from the reactive barium, it is advisable to cover this electrode layer with a further protective layer made of an epoxy resin or an inert metal. The advantage of these layers is that they do not reflect as strongly as metallic layers.
  • Aromatic, conjugated conductor polymers of the poly (para-phenylene) type (LPPPs), which are chemically similar to oligo- or polyphenylene, have proven to be particularly suitable as organic electroluminescent components for use in organic electroluminescent light sources.
  • LPPPs have a continuous chain of conjugated double bonds.
  • Z are particularly suitable.
  • Such conductor polymers are easy to process and result in layers with an amorphous structure.
  • suitable polyphenylene vinyls are poly (2-methyl-5- (n-dodecyl) -p-phenylene vinylene, poly (2-methyl-5-
  • Components that contain two different electroluminescent layers function significantly better than organic electroluminescent light sources with a single electroluminescent layer.
  • a layer effectively transports holes, e.g. B. PPV, a layer effectively transports electrons, e.g. B. oxadiazole. This makes it easier to recombine holes and electrons.
  • Polyethylene dioxythiophene PEDOT and polyethylene dioxythiophene polystyrene sulfonate PEDOT-SS are particularly advantageous for the transport of the positive charge carriers.
  • 4,4 ', 4 "-Tris [N- (l-naphthyl) -N ⁇ phenylamino] -triphenylamine together with hydroxyquinoline-aluminum-III salt Alq 3 is also particularly advantageous for the transport of the positive charge carriers as emission Occasionally, a distinction is made in the literature regarding organic electroluminescent optical components between polyleds and OLEDs.
  • OLEDs contain an organic electroluminescent component based on vapor-deposited low-molecular organic compounds.
  • Polyleds contain an organic electroluminescent component based on long-chain organic electroluminescent polymers applied by dipping, spin coating or printing.
  • the organic electroluminescent light source contains an antireflection layer made of an organic polymeric material into which mesoporous, preferably uniformly dispersed, pores are introduced.
  • an antireflection layer made of an organic polymeric material into which mesoporous, preferably uniformly dispersed, pores are introduced.
  • Invention can organic polymers, copolymers and polymer mixtures, such as.
  • poly (meth) acrylic acid derivatives, polystyrene derivatives, polyesters, polyamides or polyethylenes can also be used.
  • Organic polymeric materials in the sense of the present invention are in particular also synthetic hydrophobic and non-degrading polymers, copolymers and polymer mixtures of polymethyl methacrylates, polycarbonates, polypropylene oxides, polyamides, polyvinylidene fluorides, polybutylenes and polyacrylonitriles.
  • polymers can e.g. B. generated by radical, ionic or thermal polymerization from the monomers.
  • monomers are not used as starting compounds, but oligomeric or polymeric compounds.
  • the term monomers therefore also includes oligomeric or low-polymer compounds which are polymerizable and which can be used as starting compounds for the polymerization of organic materials.
  • the monomers to be used accordingly are known to the person skilled in the art in the field of organic polymers.
  • Porous materials can be characterized by their pore size.
  • micropores very small pores with a diameter ⁇ 2 nm are called micropores, while very large pores with a diameter> 50 nm are called macropores
  • mesopores Intermediate diameter pores with a diameter between 2 and 50 nm are called mesopores and form an aspect of the present invention.
  • Mesoporous organic and hydrophobic materials which exclusively contain uniformly dispersed closed-cell mesopores are preferably used for the layers according to the invention, although porous materials with proportions of macropores can also be suitable.
  • a network of open pores can also be suitable.
  • the pore diameter can be determined by gas adsorption and electron microscopy.
  • the mesopores should have a diameter with a median value of at least 1 nm and at most 50 m, preferably at least 30 nm and at most 50 nm.
  • the size of the pores influences the transparency of the coating.
  • Particularly transparent coatings are achieved with small mesopores, which for example have a diameter of at most 100 nm, more preferably 50 nm.
  • the refractive index of the antireflection layer is determined by the size and number of pores present.
  • the antireflection layer additionally has macropores, preferably also macropores, in an amount in the same order of magnitude as that of the mesopores.
  • the antireflection layer can be produced by a method for producing porous organic polymers with defined porosity using a pore-forming agent.
  • porogen an inert material to the polymer, which is often referred to as porogen. After the polymerization, the porogen is dissolved out of the polymer. This creates voids in the polymer.
  • the material of the porogen can be selected from natural and synthetic materials that either retain their shape during the polymerization or form a stable phase of their own and can then be removed again.
  • porogens that are water-soluble or that can be dissolved in solvents that do not attack the polymer are suitable.
  • Porogens suitable for the invention can be water soluble Salts such as sodium chloride, potassium chloride, sodium fluoride, potassium fluoride, sodium iodide, sodium nitrate, sodium sulfate, sodium iodate, and mixtures thereof, other water-soluble chemical compounds such as sodium hydroxide, and various water-soluble sugars such as saccharin, glucose, fructose.
  • the water-soluble porogen can be in any desired geometric
  • Form can be used, for example in the form of spheres, fibers, platelets, in the usual regular and irregular forms of crystals.
  • the porogen may also be another organic polymer that is incompatible with the first organic polymer that forms the anti-reflective layer and forms an incompatible, dispersed liquid phase with it.
  • the morphology and porosity of the anti-reflective layer can be controlled by the ratio of incompatible porogen to the first organic polymer.
  • a high proportion of porogen creates an open spongy structure, a medium proportion a network of more or less linked pores. With a small proportion of porogen, a closed-cell defined pore structure is obtained.
  • the coating solution for producing the antireflection layer usually contains the organic polymer or a precursor of the polymer and the porogen in a solvent.
  • the coating solution typically contains 30 to 80% by volume of porogen.
  • the first polymer typically contains at least 50% of the porogen, so that an open-cell network of pores forms after the polymerization
  • the person skilled in the art is able to combine the various polymers or monomers accordingly, optionally to choose a suitable free-radical initiator or initiator and thus to put together a monomer solution.
  • the duration and temperature of the polymerization are reduced to the usual rules matched each monomer solution.
  • the coating solution is applied to the inside of the front panel by known spin coating methods, or by simply immersing the entire sample. After the polymerization step has ended, the resulting solution
  • Coating which consists of the organic matrix polymer and the porogen, detached the material of the porogen.
  • the solution process can also include evaporation, solvent extraction or leaching, depending on the type of porogen selected. After further washing steps to remove the washing solution, the mesoporous organic polymeric anti-reflection layer is obtained.
  • the embodiment of the organic electroluminescent light source shown in FIG. 1 with an antireflection layer made of a mesoporous organic polymeric material essentially consists of a front panel 1, to which a transparent and conductive ITO layer 8 with contact connections 3 is applied as a front electrode.
  • An electroluminescent layer 7 made of PDOT and a second electroluminescent layer 6 made of PPV and a counter electrode made of aluminum 5 lie on the ITO layer.
  • the structure is completed by a rear rear panel 4.
  • the organic electroluminescent light source further comprises the mesoporous antireflection layer 2 between the optically transparent front panel 1 and the electroluminescent layers 6, 7.
  • the organic electroluminescent layers 6.7 have a refractive index of 1.8, the ITO electrode layer has a refractive index of 1.7.
  • the mesoporous anti-reflective layer has a thickness of a few micrometers and a refractive index of ⁇ 1.25, the glass of the front panel has a refractive index of 1.46 to 1.5.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Organische elektrolumineszente Lichtquelle mit einem Front-Paneel 1, einer Frontelektrodenkomponente 8, 3, einer Gegenelektrodenkomponente 5, einer organischen elektrolumineszente Komponente 6, 7 zwischen der Frontelektrodenkomponente und der Gegenelektrodenkomponente und einer Antireflexionsschicht 2 aus einem organischen polymeren Material, das Mesoporen enthält.

Description

Organische elektrolumineszente Lichtquelle mit Antireflexionsschicht
Die Erfindung betrifft eine organische elektrolumineszente Lichtquelle, insbesondere eine organische Elektrolumineszensdiode für Leuchtanzeigen, Leuchten, Festkörperbildverstärker oder Bildschirme. Die organische elektrolumineszente Lichtquelle umfasst ein transparentes Front-Paneel, eine Frontelektrodenkomponente (member), eine Gegenelektrodenkomponente, eine organische elektrolumineszente Komponente (member) zwischen der Frontelektrodenkomponente und der Gegenelektrodenkomponente und eine Antireflexionsschicht aus einem Poren aufweisenden Material.
Eine elektrolumineszierende Lichtquelle ist dadurch charakterisiert, dass sie bei Anlegen einer elektrischen Spannung unter Stromfluss Licht aussendet. Dabei laufen die folgenden lichterzeugende Prozesse ab: Wenn Elektronen in einen p-dotierten Halbleiter injiziert werden, kann Licht erzeugt werden, wenn das Elektron unter Strahlungsabgabe mit dem Loch rekombiniert. Umgekehrt kann bei einer Löcherinjektion in n-dotiertes Halbleitermaterial Licht erzeugt werden, wenn die Löcher unter Aussendung von Licht mit den Elektronen rekombinieren.
LEDs nach dem Stand der Technik sind in der Regel anorganische Halbleiterdioden, also Dioden für deren Aufbau anorganische Halbleiter wie dotiertes Zinksulfid, Silizium, Germanium oder III-N-Halbleiter, z. B. InP, GaAs, GaAlAs, GaP oder GaΝ mit entsprechenden Dotierungen verwendet werden. Auf Basis derartiger Substanzen können punlctförmige Anzeigeelemente hergestellt werden. Großflächige Anordnungen sind nicht möglich.
Seit einigen Jahren wird an der Entwicklung von Lumineszensstrahlungsquellen gearbeitet, deren Emittermaterial kein anorganischer Halbleiter, sondern ein organisches elektrolumineszierendes Material ist. Elektrolumineszente Lichtquellen mit leuchtenden Schichten, die aus organischen Materialien aufgebaut sind, sind Lichtquellen aus anorganischen Materialien in einigen Eigenschaften deutlich überlegen. Ein Vorteil ist ihre leichte Formbarkeit und hohe Elastizität, die etwa für Beleuchtung, Leuchtanzeigen und Bildschirme neuartige Anwendungen ermöglicht. Diese leuchtenden Schichten können leicht als großflächige, flache und sehr dünne Schichten hergestellt werden, für die zudem der Materialeinsatz gering ist. Sie zeichnen sich auch durch eine bemerkenswert große Helligkeit bei gleichzeitig kleiner Ansteuerspannung aus.
Die Lichtausbeute einer elektrolumineszenten Lichtquelle wird durch die Quantenausbeute aller lichterzeugender Prozess bestimmt. Dabei geht die innere Quantenausbeute geht aus dem Prozentsatz der unter Strahlungsabgabe rekombinierenden injizierten Ladungsträger hervor. Die äußere Quantenausbeute ergibt sich aus der inneren Quantenausbeute, multipliziert mit dem Prozentsatz des tatsächlich aus dem Halbleiter austretenden Lichtes.
Im Gegensatz zu den lichterzeugenden Prozessen in konventionellen Lichtquellen, die durch Gasentladung oder Plasmaentladung initiiert werden, ist der eigentliche lichterzeugende Prozess in elektrolumineszenten Lichtquellen fast verlustfrei.
Während al so die innere Quantenausbeute von elektrolumineszenten Lichtquellen sehr hoch ist, gibt es bezüglich der äußeren Quantenausbeute eine Reihe von Verlustfaktoren.
Einer der Verlustfaktor ist die geringe Lichtauskopplung, die durch den komplexen Schichtaufbau der elektrolumineszenten Lichtquellen aus mehreren Schichten mit unterschiedlichen Brechungsindizes bewirkt wird.
Wenn Licht mit einem Einfallswinkel R auf die Grenzflächen zwischen zwei Schichten mit unterschiedlichen Brechungsindizes von der Schicht mit höherem Brechungsindex (n 2 > n ) kommend auftrifft, werden ein reflektierter Lichtstrahl und ein gebeugter Lichtstrahl erzeugt. Unter ungünstigen Bedingungen tritt kein gebeugter Lichtstrahl, sondern lediglich ein reflektierter Lichtstrahl auf.
Tatsächlich bewirken die unterschiedlichen optischen Brechungsindices der Materialien in organischen elektrolumineszenten Lichtquellen, dass das in der aktiven Schicht der Lichtquelle erzeugte Licht aufgrund des hohen Brechungsindex der organischen elektrolumineszenten Materialien beim Austritt totalreflektiert wird und nur zu einigen Prozent in den Außenraum, typischerweise Luft, mit niedrigerem Brechungsindex ausgekoppelt wird. Bei vorgegebenem elektrischen Strom, der die elektrolumineszente Lichtquelle zur Erzeugung des Lichts durchfließt, ist damit die Helligkeit der Lichtquelle begrenzt.
Um die Lichtauskoppelung zu verbessern, ist es bekannt, Schichten mit einem niedrigeren Brechungsindex in den Schichtaufbau der elektrolumineszenten Lichtquelle einzufügen.
Beispielsweise ist aus EP 1153739 ein elektrolumineszierendes optisches Bauteil bekannt, dessen Substrat eine funktionale Schicht, eine Aerogelschicht und eine Zwischenschicht zwischen der funktionalen Schicht und der Aerogel-Schicht enthält. Das Aerogel kann ein Silicagel mit einem Brechungsindex zwischen 1.008 und 1.3 sein.
Problematisch ist die starke Absorptionsfähigkeit von Silicagel für Flüssigkeiten und Gase. Die Wasser- und Dampfdurchlässigkeit solcher Aerogel- Schichten hat zur Folge, dass die Qualität und die Lebensdauer des elektrolumineszenten optischen Bauteils begrenzt ist.
Aufgabe der vorliegenden Erfindung ist es, eine für die Massenproduktion geeignete elektrolumineszente Lichtquelle für unterschiedliche Materialsysteme anzugeben, die in der Lage ist, möglichst viel Licht auszukoppeln und die beständig gegen Umwelteinflüsse ist.
Erfindungsgemäß wird die Aufgabe durch eine organische elelctrolumineszente Lichtquelle mit einem Front-Paneel, einer Frontelektrodenkomponente, einer Gegenelektrodenkomponente, einer organischen elektrolumineszente Komponente zwischen der Frontelektrodenkomponente und der Gegenelektrodenkomponente und einer Antireflexionsschicht aus einem organischen polymeren Material, das Mesoporen enthält, zwischen dem Front-Paneel und der Frontelektrodenkomponente gelöst.
Die Porengröße der Mesoporen liegt im Bereich 50 bis lOOnm. Diese Porengröße garantiert, dass die an der Grenzfläche zwischen der Frontelektrodenkomponenten und der Antireflexionsschicht vorhandenen evaneszenten Wellen, die von denen in der elektrolumineszenten Komponente gefangenen Photonen herrühren, effektiv in die Antireflexionsschicht eingekoppelt werden können.
Die mesoporöse Antireflexionsschicht besitzt einen niedrigen effektiven Brechungsindex so dass auch die Auskoppelung des Lichtes von der mesoporösen Antireflexionsschicht in das anschließende Front-Paneel vorteilhaft verbessert wird.
Die erfϊndungsgemäße Antireflexionsschicht erfüllt die Forderung nach hinreichender optische Transparenz, Langzeitstabilität gegen Atmosphärilien sowie gegen Temperaturwechsel. Nach einer bevorzugten Ausfuhrungsform der Erfindung sind die
Mesoporen geschlossenzellig und gleichmäßig in der Antireflexionsschicht dispergiert.
Nach einer weiteren Ausführungsform der Erfindung ist das organische polymere Material der Antireflexionsschicht ein hydrophobes Polymer.
Antireflexionsschichten aus einem hydrophoben organischen Polymer und mit geschlossenzelligen Poren verhüten die Absorption von Sauerstoff und Wasser in der organischen elektrolumineszenten Lichtquelle. Sie verhüten damit die Oxidation der organischen Halbleiterschichten und der aus unedlen Metallen bestehenden Elektroden, die zu einer Herabsetzung der Lebensdauer der organischen elektrolumineszenten Lichtquellen fühlt. Im Rahmen der vorliegenden Erfindung können die Poren auch
Makroporen umfassen.
Die Poren in der Antireflexionsschicht sind bevorzugt mittels eines Porogens hergestellt.
Es ist weiterhin bevorzugt, dass die lichtausstrahlenden Flächen der organischen elektrolumineszenten Lichtquelle im wesentlichen zweidimensional ausstrahlende Flächen sind.
Nachfolgend wird die Erfindung anhand einer Figur weiter erläutert.
Fig. 1 zeigt den schematischen Aufbau einer organischen elektrolumineszenten Lichtquelle nach der Erfindung. Eine organische elektrolumineszente Lichtquelle nach der Erfindung ist im allgemeinen folgendermaßen aufgebaut: Das Kernstück ist eine organische elektrolumineszente Komponente zwischen einer positiven Elektrode als Frontelektrodenkomponenten und einer negativen Elektrode als Gegenelektrodenkomponenten, wobei eine oder beide Elektrodenkomponenten transparent und/oder segmentiert sein können. Die organische elektrolumineszente Lichtquelle ist mit einem Front-
Paneel und meistens auch einem Rück-Paneel versehen.
Erfindungsgemäß ist zwischen der Frontelektrodenkomponente und dem Front-Paneel eine Antireflexionsschicht aus einem porösen, polymeren organischen Material, das Mesoporen enthält, angeordnet. Dieser Aufbau stellt den allgemeinsten Fall dar und kann durch weitere
Schichten ergänzt werden, beispielsweise kann die organische elektrolumineszente Komponente in einzelne Schichten mit unterschiedlichen Funktionen aufgeteilt sein wie Löcher-injizierende Schicht, Löcher- transportierende Schicht, Licht-emittierende Schicht, Elektronen-transportierende Schicht, Elektronen-injizierende Schicht.
Beispielsweise können zwischen der elektrolumineszierenden Schicht und der positiven Elektrode eine oder mehrere Elektroneninjektions- und/oder Elektronentransportschichten angeordnet werden. Ebenso können zwischen der elektrolumineszierenden Schicht und der negativen Elektrode eine oder mehrere Löcherinjektions- und/oder Löchertransportschichten angeordnet werden.
Eine komplette organische elektrolumineszente Lichtquelle kann weiterhin Kontakte, Umhüllung und Verkapselung umfassen.
Typischerweise besteht eine derartige Lichtquelle aus einem Schichtverbund von übereinander und teilweise nebeneinander aufgetragenen Einzelschichten. Für den Aufbau kommen alle dem Fachmann bekannten Schichtstrukturen und Materialien für diese Schichten in Frage.
Dieser Schichtverbund kann ausgehend von dem Front-Paneel aus Glas, Quarz, Keramik, Kunstharz oder einer durchsichtigen, flexiblen Plastikfolie aufgebaut werden. Bevorzugte Materialien für die Herstellung des Front-Paneels sind Glas und Kunststoff. Die besonderen Vorteile von Glas bestehen darin, dass es chemisch und auch photochemisch inert ist, optisch isotrop ist, temperaturbeständig ist, mechanisch stabil ist und außerdem eine harte Oberfläche besitzt. Allerdings hat Glas eine relativ hohe Dichte, ist spröde und daher sehr bruchempfindlich. Kunststoffe z. B. Polyimide, Polyethylenterephtalate und Polytretrafluoroethylene weisen eine geringere Dichte auf und sind elastisch und bruchfest.
Die negative Elektrode liefert Elektronen, die sich mit den von der positiven Elektrode ausgehenden Löchern in der organischen elektrolumineszenten Schicht zu Excitonen vereinigen und bei der Rekombination Photonen ausstrahlen. Wenigstens eine der Elektrodenkomponenten sollte transparent oder wenigstens transluzent sein. Üblicherweise ist die positive Elektrode die Frontelektrode und ist aus einem nichtstöchiometrischen oder dotierten Zinnoxid, z. B. ITO, oder einem Metall mit hoher Austrittsarbeit, z. B. Gold oder Silber hergestellt. Diese Elektrodenmaterialien können leicht als transparente Schichten hergestellt werden. Besonders ITO ist geeignet, aufgrund der Tatsache, dass es gute elektrische Leitfähigkeit hat und transparent ist.
Ebenso kann eine Schicht aus einem leitfähigen Polyanilin oder Poly-3,4- ethylen dioxythiophen allein oder zusammen mit einer ITO-Schicht als transparente positive Elektrode verwendet werden. Die negative Elektrode, die Elektronen in die organische elektrolumineszente Schicht injiziert, soll eine niedrige Austrittsarbeit haben. Geeignet als Material für die negative Elektrode sind z. B. Indium, Aluminium, Calcium, Barium oder Magnesium. Wenn die negative Elektrode aus dem reaktiven Barium gefertigt wird, empfiehlt es sich, diese Elektrodenschicht mit einer weiteren Schutzschicht aus einem Epoxydharz oder einem inerten Metall zu bedecken. Diese Schichten haben den Vorteil, dass sie nicht so stark reflektieren wie metallische Schichten.
Als organische elektrolumineszente Komponente für die Anwendung in organischen elektrolumineszenten Lichtquellen haben sich aromatische, konjugierte Leiterpolymere vom Poly(para-phenylen)-Typ (LPPPs), die chemisch den Oligo- oder Polyphenylen ähnlich sind, als besonders geeignet herausgestellt. LPPPs weisen eine durchgehende Kette von konjugierten Doppelbindungen auf. Besonders geeignet sind z. B. lösliche Polyphenylenethylenvinylene und lösliche Polythiophene, insbesondere Polyphenylvinylene, die am Phenylring in 2- und 5-Position weiter mit Alkyl- oder Alkoxy-Resten substituiert sind. Derartige Leiterpolymere sind leicht verarbeitbar und ergeben Schichten mit amorpher Struktur. Beispiele für geeignete Polyphenylenvinyle sind Poly(2-methyl-5-(n-dodecyl)-p-Phenylenvinylen, Poly(2-methyl-5-
(3,5,dimethyloctyl)-p-Phenylenvinylen, Poly(2-methyl-5-(4,6,6,-trimethylheptyl)-p- Phenylenvinylen, Poly(2-methoxy-5-dodecyloxy-p-Phenylenvinylen und Poly(2- methoxy-5-(ethylhexyloxy)-p-Phenylenvinylen (MEH-PPV).
Deutlich besser als organische elektrolumineszente Lichtquellen mit einer einzigen Elektrolumineszenzschicht ftmlctionieren Bauteilen, die zwei verschiedene Elektrolumineszenzschichten enthalten. Eine Schicht transportiert Löcher effektiv, z. B. PPV, eine Schicht transportiert Elektronen effektiv, z. B. Oxadiazol. Dadurch können nun Löcher und Elektronen leichter rekombinieren.
Besonders vorteilhaft für den Transport der positiven Ladungsträger ist Polyethylendioxythiophen PEDOT und Polyethylendioxythiophen-Polystyrensulfonat PEDOT-SS. Besonders vorteilhaft wird für den Transport der positiven Ladungsträger auch 4,4',4"-Tris[N-(l-naphtyl)-N~phenyl-amino]-triphenylamin zusammen mit Hydroxychinolin-Aluminium-III-Salz Alq3 als Emissions- und Elektronentransportmaterial eingesetzt. Gelegentlich unterscheidet man in der Literatur bezüglich der organischen elektrolumineszierenden optischen Bauteile zwischen Polyleds und OLEDs. OLEDs enthalten eine organische elektrolumineszierende Komponente auf Basis aufgedampfter niedermolekularer organischer Verbindungen. Polyleds enthalten eine organische elektrolumineszierende Komponente auf der Basis von langkettigen organischen elektrolumineszierenden Polymeren, die durch Tauchen, Spincoaten oder Drucken aufgebracht werden.
Gemäß der Erfindung enthält die organische elektrolumineszente Lichtquelle eine Antireflexionsschicht aus einem organischen polymeren Material, in das mesoporöse, vorzugsweise gleichmäßig dispergierte Poren eingebracht sind. Als organische polymere Materialien im Sinne der vorliegenden
Erfindung können organische Polymere, Copolymere und Polymerengemische, wie z. B. Polyacrylamide, Polyacrylate, Vinylpolymere oder Polystyrol/Divinylbenzol- Copolymere. Es können auch beispielsweise Poly(meth)acrylsäurederivate, Polystyrolderivate, Polyester, Polyamide oder Polyethylene verwendet werden.
Organische polymere Materialien im Sinne der vorliegenden Erfindung sind insbesondere auch synthetische hydrophobe und nicht degradierende Polymere, Copolymere und Polymerengemische aus Polymethylmethacrylate, Polycarbonate, Polypropyleneoxide, Polyamide, Polyvinylidenefluoride, Polybutylene und Polyacrylonitrile.
Diese Polymeren können z. B. durch radikalische, ionische oder thermische Polymerisation aus den Monomeren erzeugt werden. In manchen Verfahren zur Herstellung von Polymeren werden als Ausgangsverbindungen keine Monomeren eingesetzt, sondern oligomere oder polymere Verbindungen. Erfindungsgemäß fallen unter den Begriff Monomere daher auch oligomere oder niederpolymere Verbindungen, die polymerisierbar sind und die als Ausgangsverbindungen zur Polymerisierung von organischen Materialien verwendet werden können.
Die entsprechend einzusetzenden Monomeren sind dem Fachmann auf dem Gebiet der organischen Polymere bekannt.
Um den Brechungsindex des organischen polymeren Materials zu erniedrigen, werden in das Material Mesoporen eingebracht. Poröse Materialien können durch ihre Porengröße charakterisiert werden.
Nach der IUPAC-Nomenklatur werden sehr kleine Poren mit einem Durchmesser < 2nm als Mikroporen bezeichnet, während sehr große Poren mit einem Durchmesser > 50 nm als Makroporen bezeichnet werden
Poren von intermediärem Durchmesser mit einem Durchmesser zwischen 2 und 50 nm werden Mesoporen genannt und bilden einen Aspekt der vorliegenden Erfindung. Für die erfindungsgemäßen Schichten werden bevorzugt mesoporöse organische und hydrophobe Materialien, die ausschließlich gleichmäßig dispergierte geschlossenzellige Mesoporen enthalten, verwendet, obwohl poröse Materialien mit Anteilen von Makroporen auch geeignet sein können. Ein Netzwerk von offenen Poren kann auch geeignet sein.
Je höher die Anzahl und je geringer die Größe der vorhandenen Poren ist, umso niedriger ist der Brechungsindex und umso besser ist die optische Transmission.
Der Porendurchmesser kann durch Gasadsorption und Elelctronenmikroskopie bestimmt werden. Die Mesoporen sollten einen Durchmesser mit einem Medianwert von mindestens 1 nm und höchstens 50 m, bevorzugt mindestens 30 nm und höchstens 50 nm aufweisen. Die Größe der Poren beeinflusst die Transparenz der Beschichtung.
Besonders transparente Beschichtungen werden mit kleinen Mesoporen erzielt, die beispielsweise einen Durchmesser von höchstens 100 nm, stärker bevorzugt 50 nm aufweisen. Der Brechungsindex der Antireflexionsschicht wird durch Größe und Anzahl der vorhandenen Poren bestimmt.
Nach einer Ausführungsform der Erfindung besitzt die Antireflexionsschicht zusätzlich auch Makroporen, bevorzugt auch Makroporen in einer Menge in der gleichen Größenordnung wie die der Mesoporen.
Die Antireflexionsschicht kann durch ein Verfahren zur Herstellung von porösen organischen Polymeren mit definierter Porosität unter Anwendung eines porenbildenden Agens hergestellt werden.
Als porenbildende Agentien sind physikalisch wirkende Schaumbildner, chemisch wirkende Treibmittel und Blähmittel sowie Porogene geeignet. Im Rahmen der vorliegenden Erfindung ist es bevorzugt, die
Beschichtungen aus einem polymeren Material mit Mesoporen dadurch zu erzeugen, dass die Polymerisation in Gegenwart eines gegen das Polymere inerten Materials, das oft als Porogen bezeichnet wird, durchgeführt wird. Anschließend an die Polymerisation wird das Porogen aus dem Polymeren herausgelöst. Dadurch entstehen Hohlräume in dem Polymeren.
Das Material des Porogens kann aus natürlichen und synthetischen Materialien ausgewählt werden, die während der Polymerisation entweder ihre Form behalten oder eine formstabile eigene Phase bilden und sich anschließend wieder entfernen lassen. Beispielsweise sind Porogene geeignet, die wasserlöslich sind oder sich in Lösungsmitteln lösen lassen, die das Polymere nicht angreifen.
Porogene, die für die Erfindung geeignet sind, können wasserlösliche Salze wie Natriumchlorid, Kaliumchlorid, Natriumfluorid, Kaliumfluorid, Natriumiodid, Natriumnitrat, Natriumsulfat, Natriumiodat, und Gemische davon, andere wasserlösliche chemische Verbindungen wie Natriumhydroxid, sowie verschiedene wasserlösliche Zucker wie Saccharin, Glucose, Fructose sein. Das wasserlösliche Porogen kann in jeder gewünschten geometrischen
Form verwendet werden, z, B. in Form von Kugeln, Fasern, Plättchen, in den üblichen regulären und irregulären Formen von Kristallen.
Das Porogen kann auch ein weiteres organisches Polymer sein, das mit dem ersten organischen Polymer, das die Antireflexionsschicht bildet, inkompatibel ist und mit ihm eine inkompatible, dispergierte flüssige Phase formt.
Die Morphologie und die Porosität der Antireflexionsschicht können durch das Verhältnis von inlcompatiblen Porogen zu dem ersten organischen Polymeren kontrolliert werden. Ein hoher Anteil von Porogen bewirkt eine offene schwammartige Struktur, ein mittlerer Anteil ein Netzwerk von mehr oder weniger verknüpften Poren. Mit einem geringen Anteil von Porogen wird eine geschlossenzellige definierte Porenstruktur erhalten.
Die Beschichtungslösung zur Herstellung der Antireflexionsschicht enthält üblicherweise das organische Polymer oder einen Vorläufer des Polymers sowie das Porogen in einem Lösungsmittel. Typischerweise enthält die Beschichtungslösung 30 bis 80 Vol.-% Porogen.
Wenn ein Porogen in Form eines organischen inkompatiblen Polymeren verwendet wird, dann bleibt bei der Herstellung der Beschichtungslösung aus den beiden inkompatiblen Polymeren in einem Lösungsmittel ein wesentlicher Teil des Porogens als diskrete Phase erhalten und bildet mit dem ersten Polymeren eine Dispersion, bevor die Polymerisation gestartet wird. Typischerweise enthält das erste Polymer mindestens 50% des Porogens, so dass sich nach der Polymerisation ein offenzelliges Netzwerk von Poren bildet
Der Fachmann ist in der Lage, die verschiedenen Polymeren oder Monomeren entsprechend zu kombinieren, gegebenenfalls einen geeigneten Radikalstarter oder Initiator zu wählen und so eine Monomerlösung zusammen zustellen. Die Polymerisationsdauer und -temperatur wird nach üblichen Regeln auf die jeweilige Monomerlösung abgestimmt.
Die Beschichtungslösung wird durch bekannte Aufschleuderverfahren, oder durch simples Eintauchen der gesamten Probe auf die Innenseite des Frontpaneels aufgebracht.. Nach Beendigung des Polymerisationsschritts wird aus der entstandenen
Beschichtung, die aus dem organischen Matrizenpolymer und dem Porogen besteht, das Material des Porogens herausgelöst. Der Lösungsprozess kann auch ein Ausdampfen, Lösungsmittelextraktion oder Auslaugen umschließen, je nach Art de gewählten Porogens. Nach weiteren Waschschritten zur Entfernung der Waschlösung erhält man die mesoporöse organischen polymeren Antireflexionsschicht. Ausführungsbeispiel :
Die in Fig. 1 gezeigte Ausführungsform der organischen elektrolumineszenten Lichtquelle mit einer Antireflexionsschicht aus einem mesoporösen organischen polymeren Material besteht im wesentlichen aus einem Front-Paneel 1, auf das eine durchsichtige und leitende ITO-Schicht 8 mit Kontaktanschlüssen 3 als Frontelektrode aufgebracht ist. Auf der ITO-Schicht liegt eine elektrolumineszente Schicht 7 aus PDOT und eine zweite elektrolumineszente Schicht 6 aus PPV und eine Gegenelektrode aus Aluminium 5. Der Aufbau wird durch ein rückwärtiges Rück-Paneel 4 abgeschlossen. Die organische elektrolumineszente Lichtquelle umfasst weiterhin die mesoporöse Antireflexionsschicht 2 zwischen dem optisch transparenten Front-Paneel 1 und den elektrolumineszenten Schichten 6,7.
Die organischen elektrolumineszenten Schichten 6,7 besitzen einen Brechungsindex von 1.8, die ITO-Elektrodenschicht einen Brechungsindex von 1.7. Die mesoporöse Antireflexionsschicht hat eine Dicke von einigen Mikrometern und einem Brechungsindex von < 1.25, das Glas des Front-Paneels einen Brechungsindex von 1.46 bis 1.5.
Auch ohne weitere Ausführungen wird davon ausgegangen, dass ein
Fachmann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausiuhrungsformen und das Beispiel sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.

Claims

PATENTANSPRÜCHE
1. Organische elektrolumineszente Lichtquelle mit einem Front-Paneel 1 , einer Frontelektrodenkomponente8, 3, einer Gegenelektrodenkomponente 5, einer organischen elektrolumineszente Komponente 6,7 zwischen der Frontelektrodenkomponente und der Gegenelektrodenkomponente und einer Antireflexionsschicht 2 aus einem organischen polymeren Material, das Mesoporen enthält.
2. Organische elektrolumineszente Lichtquelle gemäß Anspruch 1, dadurch gekennzeichnet, dass die Mesoporen geschlossenzellig und gleichmäßig in der
Antireflexionsschicht dispergiert sind.
3. Organische elektrolumineszente Lichtquelle gemäß Anspruch 1, dadurch gekennzeichnet, dass die Poren Makroporen umfassen.
4. Organische elektrolumineszente Lichtquelle gemäß Anspruch 1, dadurch gekennzeichnet, dass das organische polymere Material hydrophob ist.
5. Organische elektrolumineszente Lichtquelle gemäß Anspruch 1, dadurch gekennzeichnet, dass die Poren in der Antireflexionsschicht mittels eines Porogens hergestellt sind.
6. Organische elektrolumineszente Lichtquelle gemäß Anspruch 1, dadurch gekennzeichnet, dass die lichtausstrahlenden Flächen im wesentlichen zweidimensional ausstrahlende Flächen sind.
EP03758561A 2002-11-12 2003-11-03 Organische elektrolumineszente lichtquelle mit antireflexionsschicht Withdrawn EP1563551A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10252903 2002-11-12
DE10252903A DE10252903A1 (de) 2002-11-12 2002-11-12 Organische elektrolumineszente Lichtquelle mit Antireflexionsschicht
PCT/IB2003/004954 WO2004044999A2 (de) 2002-11-12 2003-11-03 Organische elektrolumineszente lichtquelle mit antireflexionsschicht

Publications (1)

Publication Number Publication Date
EP1563551A2 true EP1563551A2 (de) 2005-08-17

Family

ID=32115490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03758561A Withdrawn EP1563551A2 (de) 2002-11-12 2003-11-03 Organische elektrolumineszente lichtquelle mit antireflexionsschicht

Country Status (7)

Country Link
US (1) US7237920B2 (de)
EP (1) EP1563551A2 (de)
JP (1) JP2006505909A (de)
CN (1) CN100573966C (de)
AU (1) AU2003274586A1 (de)
DE (1) DE10252903A1 (de)
WO (1) WO2004044999A2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026688A (ja) * 2003-06-30 2005-01-27 Osram Opto Semiconductors Gmbh 放射放出半導体チップ、該半導体チップの作製方法および該半導体チップの明るさの調整設定方法
DE102004029412A1 (de) * 2004-02-27 2005-10-13 Osram Opto Semiconductors Gmbh Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines solchen Halbleiterchips
TWI323728B (en) * 2004-08-31 2010-04-21 Ind Tech Res Inst Polymer film with three-dimensional nanopores and fabrication method thereof
US20060138946A1 (en) * 2004-12-29 2006-06-29 Jian Wang Electrical device with a low reflectivity layer
US7646144B2 (en) * 2006-12-27 2010-01-12 Eastman Kodak Company OLED with protective bi-layer electrode
KR101148886B1 (ko) * 2009-05-13 2012-05-29 네오뷰코오롱 주식회사 유기전계발광소자 및 그 제조방법
US20120119641A1 (en) * 2009-05-14 2012-05-17 Yijian Shi Output efficiency of organic light emitting devices
EP2681970B1 (de) * 2011-03-03 2018-01-17 Nitto Denko Corporation Poröse folien zur verwendung für lichtemittierende vorrichtungen
US9853220B2 (en) 2011-09-12 2017-12-26 Nitto Denko Corporation Efficient organic light-emitting diodes and fabrication of the same
TWI453255B (zh) * 2011-12-29 2014-09-21 Ind Tech Res Inst 具光取出層之光學元件結構
DE102013013129B4 (de) * 2013-08-07 2023-05-04 Osram Oled Gmbh Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
CN105098095B (zh) 2015-07-27 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管器件及其制作方法、显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674585B2 (ja) * 1999-11-10 2005-07-20 松下電工株式会社 エアロゲル基板及びその製造方法
US6762553B1 (en) * 1999-11-10 2004-07-13 Matsushita Electric Works, Ltd. Substrate for light emitting device, light emitting device and process for production of light emitting device
DE60026778T2 (de) * 1999-11-10 2007-02-08 Matsushita Electric Works, Ltd., Kadoma Substrat für lichtemittierende Vorrichtung, lichtemittierende Vorrichtung und Herstellungsverfahren
EP1271227A1 (de) * 2001-06-26 2003-01-02 Nanomat Limited Elektrochrome Anzeige mit hoher Auflösung und Verfahren zu deren Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004044999A2 *

Also Published As

Publication number Publication date
US7237920B2 (en) 2007-07-03
CN100573966C (zh) 2009-12-23
DE10252903A1 (de) 2004-05-19
JP2006505909A (ja) 2006-02-16
CN1711651A (zh) 2005-12-21
WO2004044999A2 (de) 2004-05-27
AU2003274586A1 (en) 2004-06-03
WO2004044999A3 (de) 2004-10-21
US20060220518A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
DE102004035965B4 (de) Top-emittierendes, elektrolumineszierendes Bauelement mit zumindest einer organischen Schicht
DE69710781T2 (de) Elektrolumineszierende anordnungen mit elektrodenschutz
DE102011086168B4 (de) Organisches Licht emittierendes Bauelement und Verfahren zur Herstellung eines organischen optoelektronischen Bauelements
DE69908522T2 (de) Fluoren enthaltende polymere und deren elektrolumineszierende vorrichtungen
DE69822480T2 (de) Transportschichten in self-assembly-technik für oled&#39;s
EP1798785B1 (de) Transparente polymere Elektrode für elektro-optische Aufbauten
DE10164016B4 (de) Organische Leuchtdiode (OLED) und Verfahren zu ihrer Herstellung
EP1738423A1 (de) Organisches, elektro-optisches element mit erhöhter auskoppeleffizienz
DE10261609B4 (de) Lichtemittierende Anordnung
EP1505664A2 (de) Transparente Elektrode für elektro-optische Aufbauten
DE102007000791A1 (de) Verfahren zur Herstellung einer organischen Leuchtdiode oder einer organischen Solarzelle und hergestellte organische Leuchtdioden oder Solarzellen
DE112009002490T5 (de) Organische Elektrolumineszierende Vorrichtung
EP1563551A2 (de) Organische elektrolumineszente lichtquelle mit antireflexionsschicht
WO2006024278A1 (de) Top-emittierendes, elektrolumineszierendes bauelement mit frequenzkonversionszentren
DE69523065T2 (de) Verfahren zur herstellung einer electrolumineszierende vorrichtung
DE102013013129B4 (de) Optoelektronisches Bauelement und Verfahren zur Herstellung eines optoelektronischen Bauelements
EP2342771B1 (de) Verfahren zur herstellung eines organischen strahlungsemittierenden bauelements
JP2013089501A (ja) 有機エレクトロルミネッセンス素子
DE10123115B4 (de) Löcherinjektionsschicht einer organischen Leuchtdiode und Verfahren zu deren Herstellung
KR102648058B1 (ko) 페로브스카이트 나노섬유를 이용한 고성능 신축성 페로브스카이트 광전소자 및 그 제조방법
DE10326725A1 (de) OLED-Bauelement und Display auf Basis von OLED-Bauelementen mit verbesserter Effizienz
EP1283554A2 (de) Organische elektrolumineszente Anzeigevorrichtung mit Schutzschicht
DE20320925U1 (de) OLED-Bauelement und Display auf Basis von OLED-Bauelementen mit verbesserter Effizienz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050613

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01L0051200000

Ipc: H01L0051520000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H01L0051200000

Ipc: H01L0051520000

Effective date: 20140526