EP1557632A2 - Assemblage d'échange de chaleur - Google Patents

Assemblage d'échange de chaleur Download PDF

Info

Publication number
EP1557632A2
EP1557632A2 EP05290174A EP05290174A EP1557632A2 EP 1557632 A2 EP1557632 A2 EP 1557632A2 EP 05290174 A EP05290174 A EP 05290174A EP 05290174 A EP05290174 A EP 05290174A EP 1557632 A2 EP1557632 A2 EP 1557632A2
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger assembly
corner
assembly
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05290174A
Other languages
German (de)
English (en)
Other versions
EP1557632A3 (fr
Inventor
Lavoyce Dey
Jonathan Fitzgerald
Michael Powers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Inc
Original Assignee
Valeo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Inc filed Critical Valeo Inc
Publication of EP1557632A2 publication Critical patent/EP1557632A2/fr
Publication of EP1557632A3 publication Critical patent/EP1557632A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates generally to a heat exchanger and heat exchanger assembly, and, particularly, leak tight heat exchanger assemblies with coined or extruded corners.
  • Heat exchangers are used in the automotive industry as essential parts of a vehicle cooling system.
  • Modern heat exchangers usually consist of a fin and tube assembly called a core, with variations to the basic design including tube attachments to manifold components on opposite ends of the core.
  • the heat exchanger can be placed in an oven along with other attachments and components to 'bake' or braze individual them together, yielding a resultant product that combines fins, tubes, and manifolds bonded together to form a single integrated heat exchanger assembly.
  • heat exchangers assemblies are subject to pressure variations and act as pressure vessels.
  • vessels can take many shapes and require specific contours in order to deal with the constraints of limited space packaging, etc. of the motor vehicle. They must, however, at the same time, be able to maintain their structural integrity (remain 'leak tight') in often extremely high and /or low pressure environments.
  • Compound bonding joints are joints commonly made up of at least two flat intersecting planes forming a sharp corner, mated with two flat intersecting planes connected by a radius. The fit yields a form of bonding joint, and, particularly, a joint that may be bonded or brazed in an oven or the like. Compound bonding joints often have the disadvantage of developing leaks at points where the greatest gap occurs between the radius and sharp corner in the bonding joint. The same problem exists in the prior art in similar designs involving at least three intersecting planes.
  • bonding joints are often comprised of various bonding materials of somewhat differing natures, including added bonding materials to increase material mass, addition of other components parts near or around the joint area, or otherwise compensate for structural weakness.
  • These manufacturing variations may comprise good joint fitup, or joint integrity and the like. Addition of increased mass or volume of materials near or around the joint area may be a way of providing thicker gage base material to get better bonding results, but is not an ideal way to compensate for poor bonding joint design, as it does not assure the joint will be leak free, and usually results in resultant higher manufacturing costs.
  • An object of the present invention is to provide an improved joint, and, in particularly, a "bonded" or bonding joint that would be used in a 'leak tight' heat exchanger assembly. It is further an object of the present invention to provide for a improved heat exchanger assembly that retains its leak tight features while additionally maintaining heat exchanger assembly structural integrity and durability.
  • the present invention in its preferred embodiments, eliminates the radius found in the prior art, while maintaining structural integrity and providing for leak tight bonds in the bonding joint area, particularly for heat exchanger assemblies that have brazed bonding joints.
  • the heat exchanger assembly is designed to provide for a leak tight seal or connection between heat exchanger assembly components, without the need for a radius for increased structural integrity.
  • Preferred aspects of the present invention provide for a leak tight joint or joints at areas of contact between elements of the manifold assembly.
  • Particularly preferred aspects of the present invention provide for a leak tight joint at the point of contact or 'intersection' of plane surfaces in a manifold assembly.
  • Preferred aspects of the present invention also provide for a method of making a heat exchanger assembly providing leak tight features while maintaining heat exchanger structural integrity and durability by 'coining' or extruding matching component intersecting surfaces in a local area to preferably create shaped contour areas that match or mate with each other at the binding joints.
  • More preferred aspects provide for a method a making and a heat exchanger assembly wherein the local area comprises a localized brazing zone at the point or points of contact or mating fits found at or near the intersection of the manifold assembly intersecting planes, creating a so-called 'mating' or 'pairing' surface or surfaces where consistent bonding may occur.
  • Even more preferred aspects of the present invention provide for a heat exchanger assembly, with manifold, having corner bonding joint between the header or manifold, formed from a channel, a tube, or a cap, or any combination of the above.
  • Also more preferred aspects provide for at least one corner bonding joint that is sharp or angled, and, preferably straight angled corner; in most preferred aspects, the corner comprising the bonding joint is a coined corner.
  • heat exchanger assemblies are found with localized transition zone bonds provide for optimized seal formation without compromising structural or braze seal integrity.
  • the advantage of this strengthened bond design is components designed for strength also have a properly designed bond joint which provides superior quality bond joints for leak free service, improved fitup of components, no impact to durability of the assembly, and reduced cost to manufacture.
  • a coined corner is a corner formed by at two or more straight planes at some angle of intersection.
  • three or more straight planes meet at straight (uncurved) angles at a zone of intersection.
  • corner bonding joint is meant a joint capable of being bonded, formed at a corner, the corner formed with straight angles, and not utilizing a radius between connecting planes of the bonding joint area.
  • coined corner is mean a comer formed by extrusion or press fit, or, preferably, by extrusion and press fitting.
  • the coined corner is formed at a localized zone of junction of the tube and header and more preferred, formed at a localized zone between the tube and header. More preferably, it is formed at the transition wherein the tube, or tube and header, all have mating surfaces where a bond joint can be formed. More preferably, the tube at the area of the bond joint has the approximately the same or similar dimension (is equal to or less then twice the size of the tube at the corner area), or is unsplit.
  • a method of producing an heat exchanger assembly that is designed for strength and durability, with components that have a strength/bond transition zone for providing proper joint clearances to oven bond leak tight heat exchangers, is provided.
  • the heat exchanger assembly is subsequently tested prior to other procedures or immediately leak tested and shipped to the customer thereby shortening the manufacturing process and reducing overall cost.
  • the present invention provides for preferred embodiments whose design promotes the use of a single material or materials that have approximately the same metallurgical composition as the bonding material to make the complete heat exchanger thereby supporting recycling mandates.
  • this invention reduces cost, and rework, while shortening manufacturing time.
  • This invention provides a manifold designed for durability, where needed, and designing proper bond joints, where needed, without compromising either durability or bond joint design.
  • the present invention therefore, provides a method of making a heat exchanger assembly wherein maximum durability of the heat exchanger coexists with best practices, i.e. efficient and leak tight assemblies utilizing bond joint designs.
  • various materials may be used in the manufacture of the heat exchanger assembly.
  • the present invention provides for use of clad or unclad materials. These materials made be metallic or non-metallic materials. Preferred is when the materials used in the heat exchanger are either metallic or non-metallic. Preferred is when at least one of the materials used in the heat exchanger assembly is metallic at a point of surface contact or bonding, or at a joint. Also preferred is when at least one of the materials used in the heat exchanger assembly is non-metallic.
  • a heat exchanger assembly using combination of metallic and non-metallic materials. Even more preferred is a heat exchanger assembly wherein the joints and/or surface areas or zones where bonding occur are comprised of metallic or non-metallic materials. Most preferred is wherein the joints and/or surface areas or zones where bonding occur are of essentially the same material. Also preferred is wherein the joints and/or surface areas or zones where bonding occur are more than 90% metallic and are essentially the same material.
  • the bond joint uses standard materials (i.e. materials used in normal quantity and of normal quality during assembly and brazing, and not including additional material or products such as glues or resins or other such additional materials) in the construction of heat exchangers comprising the embodiments of the present invention, resulting in reduced overall production costs per unit of the heat exchanger.
  • the adjacent surface area is maximized for bonding.
  • the present invention uses 'simplified' bond joint designs to provide adjacent surface areas or a zone of a relatively greater nature than those in the prior art designs described hereinabove.
  • a standardized method of producing a bond joint is provided.
  • the heat exchangers produced thereby provide a substantially or essentially leak tight heat exchanger assembly joint or bond.
  • the surfaces that form the joint or bond are 'coined' or extruded contiguous with a transition surface to provide for a long durability bonding between components of the heat exchanger assembly , and , particularly, brazed components.
  • additional process steps of component manufacturing found in the prior art are eliminated via the integrality of form tooling, thereby reducing assembly complexity.
  • additional formed features such as 'fillers' or other 'gap closers' that have been used to close gaps of normal bend radii at the joint area, are eliminated.
  • the present invention provides for a heat exchanger and heat exchanger assembly, particularly a 'one shot' or similar material brazed heat exchanger assembly wherein braze closure is uniform or practically achieved over the entire surface of the joint areas or zone, to form essentially leak proof joints.
  • the present invention further provides a multiple component interface braze closure uniform or practically achieved over the entire surfaces of the joint areas or zone at multiple component interfaces.
  • the present invention further provides a sealed multiple component assembly useful in a variety of bonding process.
  • the present invention preferably provides a braze sealed with a bend radius.
  • Preferred embodiments of the present invention provide a light weight heat exchanger, essentially without additional material to ensure braze leak tight joints or correct for joint deficiencies.
  • all metal heat exchanger or manifold assembly it is meant a heat exchanger or assembly where all or most parts or components capable of being brazed or joined together in a device such as an oven, are based on metallic materials.
  • Preferred are so called 'one shot braze' all metal heat exchanger with manifold assemblies wherein the part or components , as well as any brazing or joining materials, are of a similar or like substance, so as to be capable of being brazed or joined together in an oven while providing for leak tight seals amongst the components at the joints.
  • More preferred are all metal heat exchanger or manifold assemblies wherein coining or extrusion features appear at the areas of contact or zones of the joint.
  • heat exchanger or manifold assemblies where the edges or surfaces of joints that occur at the junctures of planes in the assembly are coined or extruded.
  • the coining or extrusion feature is only done at the naturally reinforced juncture of multiple planes so as it does not impact the durability of the heat exchanger.
  • naturally reinforced it is meant that multiple thicknesses of the mating surfaces in the area of the coined corner are bonded together to form a single zone or area, a so called 'single assembly'.
  • the present invention provides for structual sections designed for strength and durability with formed sections having two or more planes unconnected by a radius, that increase or enhance the leak proof or leak tight nature of the assembly at the area of the angle and joint formed at the intersection of the two or more planes.
  • the heat exchanger comprises a core composed of tubes and fins, with manifolds preferably formed of flat sheet stock, the manifold having a header portion with at least one opening or openings connecting to the at least one tube end or ends; a first and second component portion comprising or consisting of an header or tubes or tanks or channels within or near a corner area with each portion having an extended planer bonding surface that are closely aligned to each other; and, a more preferably third component portion.
  • the third component portion has an extended planar bonding surface being adjoined or affixed to the first bonding surface forming intersecting bonding surfaces located near the terminal end of the first and second portion surfaces bonding surfaces.
  • the second component portion has matching intersecting surfaces such that the transition contour of the second portion is locally deformed to create a shaped contour that matches the transition area of the first component portion intersecting surface transition area forming bonding joints. More preferably, the bonding joints are bonded with a bonding material.
  • a first part of the bonding joint is formed into one section where two or more planes are at an angle with each other (a structural part or section)
  • a second part is formed out of the structural section and is coined to form a small section where the planes are at an angle with each other and mate with the first part of the bonding joint to form an improved complete bonding joint.
  • the preferred bonding joints of the present invention can be formed with intersection planar surfaces from various components of the heat exchanger assembly.
  • the bonding joint preferably occurs at an area where a heat exchanger core tube and header meet at the header ferrule, where a heat exchanger core tube and tank meet , where a tank and a header meet, where a tube and a header meet, or where a bonding joint is itself included as part of a mounting structure to a tank.
  • Caps, walls, pans, channels and other such components where flat planes are capable of intersection in a corner transition area are intended as unlimiting examples useful in embodiments of the present invention.
  • the first and second component portion within or near a corner area are found, with each portion having an extended planer bonding surface that closely follows or runs in parallel to each other.
  • one of the component portions forms a single plane in the area of the bonding joint, and the two other component portions (two structural members) abutt and are parallel to the bonding joint adjacent to the single plane; even more preferred are two component portions parallel to one another and a third forming an angle relative to the two at the intersection area of the joint.
  • embodiments of the present invention further have a third component portion having an extended planar bonding surface adjoined or affixed to the first component portion bonding surface, the bonding surfaces intersecting near terminal ends of the first and second component portions planar bonding surfaces, the terminal ends of the bonding surfaces being within or near a corner area.
  • the first and second component portion are formed in a "U" channel shape such that the second portion is more narrow and sits or rests within and between the first portion. Also preferred are embodiments wherein the heat exchanger first and second component portion has symmetrically opposed formed transition comers. Even more preferred is wherein the transition area approximately forms a sharp comer.
  • a heat exchanger assembly comprising a manifold assembly having at least one tube and a header and, a heat exchanger core, wherein the manifold assembly has at least one coined corner and wherein the assembly is essentially leak tight at the area of the corner.
  • Fig 1 shows a design wherein tank 12 forms a braze joint between tank 12 and header wall 11 to form the manifold assembly. Header wall 11 has an additional form 13 to fill a gap caused by fitting the flat side of tank 12 against a formed radius on tank end 14 .
  • Fig. 2 refers to an all-metal heat exchanger assembly, for example, wherein a plurality of components is assembled together to create the manifold assembly.
  • Sealing Cap 23 , Header Wall 22 , Header Pan 21 , and Cap Crimp Tab 25 are 'baked' of oven 'brazed' to form an integral manifold 26 for an heat exchanger assembly.
  • Fig. 2 is a prior art design where header wall 22 butts against header pan 21 and against sealing cap 23 forming the manifold assembly. Header wall 22 , sealing cap 23 , and header pan 21 form a joint where the radius of the header pan 21 fits against the square edges of header wall 22 and sealing cap 23 at location 24 .
  • Fig. 3 is an embodiment of the present invention wherein combined header and channel 32 is assembled to a cap 32 to form a manifold assembly with the coined area 33 providing a proper braze joint between header and channel 32 and cap 31 at the junction shown at section A (35).
  • Fig 3 shows a preferred embodiment of the present invention wherein header and channel 32 are combined and assembled to a cap 31 to form a manifold assembly.
  • Coined area 33 provides a proper braze joint between header and channel 32 and cap 31 at the junction shown at section A 35 .
  • a transition or transition zones 42 is created in a component between the area 43 designed for durability and the somewhat small area 44 wherein bonding occurs at the intersection of intersecting planes 47 .
  • one half of the bond joint will consist of one or more components.
  • Fig. 4 further illustrates intersecting on different planes with a sharp corner 47 at the intersection of said planes.
  • Planar component portion P1 and planar component portion P2 has a radius that connects the plane for strength.
  • Area 47 of intersecting planes is coined to improve the braze joint by having a sharp or straight angled corner fit into another sharp or straight angled corner.
  • Fig. 5 shows a preferred embodiment of the present invention wherein formed components with intersecting planes 65 are connected with a radius 62 , which provides a transition zone for stresses between planes.
  • Fig. 5 further illustrates an embodiment wherein the design is particularly suitable for bond joint fitup.
  • Intersecting planes 65 include a sharp corner at intersection localized section or zone 64 , to assure appropriate levels of material adjacent to the mating portion or zone of the bond joint over the maximum surface.
  • Fig. 5 shows Fig.
  • cap 45 has bend radius 43 for strength with connecting transition 42 to coined area 44 which enable proper design for durability and proper design for bonding at the intersection of the intersecting planes 47 .
  • Fig 5 is Fig 4 cap 45 rotated 90 degrees, cap 63 is comprised of features of intersecting planes 65 , radius 62 for durability, coined corner 64 for bonding, and transition 61 connecting radius 62 to coined corner 64 .
  • Plane demarcations A1 and B1 show a structural strengthening joint area.
  • Plan demarcations A1 and B2 show a joint area that allows for improved brazing while surprisingly maintaining structural integrity and providing for reduced possibility for leakage (leak tight joint).
  • the mating component Fig. 5 will have matching planes 65 formed into said component with a radius 62 connecting said planes.
  • This invention utilizes a coining or extrusion process to reform and remold a localized portion 64 of a component from intersecting planes connected by a radius 62 to intersection planes with a sharp comer at the localized portion 64 at the intersection of the intersecting plane with transition 61 as a key feature.
  • the reformed section 44 of the component Fig 4 will then fit adjacent to the mating portion of the bond joint 46 , 41 , 48 , maximizing the surface area of the bond joint and minimizing the gaps between components. This enables the bond joint 47 to be fused in an oven for leak tight service.
  • the coining or extrusion process would typically be part of the component form tooling, thereby providing this feature with minimal cost.
  • part of the transition area between the two planar component portions forms a radius 62 and part of the transition area forms a sharp or coined corner 64 .
  • the total bonding joint is improved by the structural strength sections as well as the leak tight coined corner sections.
  • FIG. 6a and 6b is shown typical prior art corner 600 , 601 showing un-sharp 603 and non -coined 604 corner in area 602 .
  • First plane component 605 and second plane component 606 meet at intervening radius 607 to form structural feature.
  • Gap 608 partially filled by feature 609 .
  • Gap 610 for potential leak path not filled during bonding.
  • FIGs. 7a and 7b is shown sharp 701 and coined 702 corners, with improved leak tight areas 703 , 704 , illustrated.
  • Coined corner 705 has, preferably, all bonding surfaces at a constant distance apart 707 .
  • components of the heat exchanger manifold, after assembly, are bonded together using a heating means such as a 'furnace' or 'oven'.
  • a heating means such as a 'furnace' or 'oven'.
  • the first or second component is made of material that has essentially the same metallurgical composition as the bonding material. It is possible, however, that depending on materials, component material can differ in metallurgical composition from the bonding material.
  • a method of providing for a heat exchanger assembly with manifold and first and second component portions at the area of at least one corner by: coining the manifold and portions in the area of the corner by press fitting or extrusion; forming a bond joint at the area of the corner between surfaces at their mating areas; brazing the heat exchanger assembly; so that the heat exchanger assembly two component portions meet at a sharp angle to one another in at least one coined corner that is essentially leak tight after brazing.
  • heat exchangers in accordance with the present invention preferably have a joint or joints bonded by an oven baking or brazing process. In particularly preferred embodiments in accordance with the present invention, the joints are bonded by a flame braze process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
EP05290174A 2004-01-26 2005-01-26 Assemblage d'échange de chaleur Withdrawn EP1557632A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53936804P 2004-01-26 2004-01-26
US539368P 2004-01-26

Publications (2)

Publication Number Publication Date
EP1557632A2 true EP1557632A2 (fr) 2005-07-27
EP1557632A3 EP1557632A3 (fr) 2008-04-02

Family

ID=34633033

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290174A Withdrawn EP1557632A3 (fr) 2004-01-26 2005-01-26 Assemblage d'échange de chaleur

Country Status (2)

Country Link
US (1) US20050161207A1 (fr)
EP (1) EP1557632A3 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798206B2 (en) * 2006-02-07 2010-09-21 Showa Denko K.K. Heat exchanger and method of manufacturing the same
US20080156455A1 (en) * 2006-12-14 2008-07-03 Powers Michael V Heat exchanger manifolds with retention tabs
JP5741470B2 (ja) * 2012-02-10 2015-07-01 株式会社デンソー 熱交換器、およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327278A (ja) * 1995-05-30 1996-12-13 Sanden Corp 熱交換器のタンク
EP0838652A2 (fr) * 1996-10-23 1998-04-29 Denso Corporation Echangeur de chaleur
US20030217838A1 (en) * 2002-05-23 2003-11-27 Valeo Engine Cooling, Inc. Heat exchanger header assembly

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488627A (en) * 1946-02-28 1949-11-22 Young Radiator Co Tube and header-plate assembly for heat-exchange units
US4960169A (en) * 1989-06-20 1990-10-02 Modien Manufacturing Co. Baffle for tubular heat exchanger header
US5172761A (en) * 1992-05-15 1992-12-22 General Motors Corporation Heat exchanger tank and header
JP3624486B2 (ja) * 1994-12-20 2005-03-02 株式会社デンソー 熱交換器およびその製法
US5842515A (en) * 1995-09-30 1998-12-01 Halla Climate Control Corporation Heat exchanger and method of manufacturing header pipe for the same
JP3857791B2 (ja) * 1996-11-19 2006-12-13 カルソニックカンセイ株式会社 熱交換器用タンク
DE10103570A1 (de) * 2001-01-26 2002-08-01 Modine Mfg Co Wärmetauscher und Herstellungsverfahren
US20030159813A1 (en) * 2002-02-28 2003-08-28 Norsk Hydro Heat exchanger manifold and method of assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327278A (ja) * 1995-05-30 1996-12-13 Sanden Corp 熱交換器のタンク
EP0838652A2 (fr) * 1996-10-23 1998-04-29 Denso Corporation Echangeur de chaleur
US20030217838A1 (en) * 2002-05-23 2003-11-27 Valeo Engine Cooling, Inc. Heat exchanger header assembly

Also Published As

Publication number Publication date
US20050161207A1 (en) 2005-07-28
EP1557632A3 (fr) 2008-04-02

Similar Documents

Publication Publication Date Title
US6988544B2 (en) Heat exchanger and method of manufacturing core plate
US7640971B2 (en) Heat exchanger manifold sealing system
MXPA05005637A (es) Tubo resistente de ciclacion termica para junta de cabezal para intercambiadores de calor.
US7954543B2 (en) Heat exchanger header with deformations
US6263570B1 (en) Heat exchanger and method of producing the same
JP3449897B2 (ja) 熱交換器及びその製造方法
JPH09170895A (ja) 熱交換器と熱交換器を形成する方法
US20080053645A1 (en) Heat exchanger and manufacture method for the same
JPH07227631A (ja) 積層型熱交換器の熱交換用導管及びその製造方法
US20040007040A1 (en) Method and tool for folding a metal strip
CN101135544A (zh) 热交换器及其制造方法
US20070181291A1 (en) Heat exchanger and method of manufacturing the same
EP1557632A2 (fr) Assemblage d'échange de chaleur
JPH0735491A (ja) 熱交換器のヘッダタンク
US4982784A (en) Composite heat exchanger tube
CN103851949A (zh) 热交换器用集流管及具有该集流管的平行流热交换器
US20020157816A1 (en) Metal heat exchanger tank and method of forming same
KR19990075364A (ko) 열교환기의 보강대 및 그 제조방법
EP2975354B1 (fr) Connecteur pour un échangeur de chaleur
JPH0989477A (ja) 熱交換器の製造方法
JPH1130493A (ja) 熱交換器用チューブ及びその製造方法
JP2000039284A (ja) 積層型熱交換器
CN221278185U (zh) 一种车用管梁榫卯结构
JP2624108B2 (ja) 熱交換器
JP2508545Y2 (ja) 熱交換器用チュ―ブエレメント

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

17P Request for examination filed

Effective date: 20081216

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090211

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100605