EP1554734B1 - Stabilisierte superparamagnetische teilchen - Google Patents

Stabilisierte superparamagnetische teilchen Download PDF

Info

Publication number
EP1554734B1
EP1554734B1 EP02782706A EP02782706A EP1554734B1 EP 1554734 B1 EP1554734 B1 EP 1554734B1 EP 02782706 A EP02782706 A EP 02782706A EP 02782706 A EP02782706 A EP 02782706A EP 1554734 B1 EP1554734 B1 EP 1554734B1
Authority
EP
European Patent Office
Prior art keywords
particles
superparamagnetic
iron
ions
single domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02782706A
Other languages
English (en)
French (fr)
Other versions
EP1554734A1 (de
Inventor
Herbert Pilgrimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilgrimm Helga
Original Assignee
Pilgrimm Helga
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilgrimm Helga filed Critical Pilgrimm Helga
Publication of EP1554734A1 publication Critical patent/EP1554734A1/de
Application granted granted Critical
Publication of EP1554734B1 publication Critical patent/EP1554734B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • A61K51/1251Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles micro- or nanospheres, micro- or nanobeads, micro- or nanocapsules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Definitions

  • the invention relates to superparamagnetic particles consisting of superparamagnetic single-domain particles and aggregates of superparamagnetic single-domain particles of iron oxides, iron mixed oxides or iron stabilized on their surface and which can be used in medicine or medical diagnostics.
  • the superparamagnetic particles are composed of a mixture of small superparamagnetic single-domain particles having a particle size in the range of 3 to 50 nanometers and stable, degradable aggregates of small superparamagnetic single-domain particles having a particle size in the range of 10 to 1000 nanometers, consisting of iron hydroxide, iron oxide hydrate, iron oxide -, Eisenmischoxid- or iron containing on its surface mono- and / or polyhydroxyl phenomenon brave aromatic substances, polyglycerols, amino acid-containing substances, silicate-containing substances of orthosilicic acid and their condensation products and phosphat tendency pasn substances of ortho- or metaphosphoric acid and their condensation products bound having additional binding sites can.
  • superparamagnetic single domain particles having increased R1 relaxivity and surface stabilizer substances whose particles are composed of iron hydroxide, iron oxide hydrate, iron oxide, iron mixed oxide or iron are described as having a particle size in the range between 1 and 10 nanometers, with a mean particle diameter d 50 of 2 to 4 nanometers, and have an increased R 1 -Relaxicide in the range of 2 to 50 and a ratio of the relaxivities R 2 / R 1 less than 5.
  • low molecular weight stabilizer substances such as citric acid bound, which prevent aggregation and sedimentation in the gravitational field or in a magnetic field.
  • the object of the invention is to expand the range of substances which can be bound to the surface of the single-domain particles in order to optimally adapt the physical, chemical and physiological properties of the resulting magnetic particles to the respective fields of application, these substances being stable and light should be produced.
  • the in the EP 0772776 B1 described superparamagnetic particles which have bound from superparamagnetic Einomänenteilchenchen on their surface organic substances, can also be with the in the EP 0888545 B1 described low molecular weight aliphatic di- and polycarboxylic acids, such as malic acid, tartaric acid, citric acid, aspartic acid, stabilized against sedimentation in the gravitational field of the earth or a magnetic field.
  • Aggregates of superparamagnetic single-domain particles described above can also be used against sedimentation in the gravitational field of the earth, eg by the in the EP 0888545 B1 stabilize described low molecular weight citric acid.
  • stabilized superparamagnetic particles consisting of superparamagnetic single-domain particles of iron hydroxide, iron oxide hydrate, iron oxide-iron mixed oxide or iron, which have a particle size in the range of 2 and 50 nanometers, or aggregates thereof having a particle size in the range of 10 to 1000 nanometers, or mixtures thereof, each stabilized on their surface by aliphatic di- or polycarboxylic acids or derivatives thereof, which ions are bonded to their surface, wherein the ions are bound to a metal ion content of 5 mole% of the iron content of the single domain particles and are positively charged metal ions selected from the group consisting of ions of the chemical elements copper, silver , Gold, iron, nickel, cobalt, gallium, thallium, bismuth, palladium, rhenium, rhodium, ruthenium, platinum, technetium, indium, iridium, osmium, radium, selenium, vanadium, Yttrium
  • the stability properties of the metal ion-containing dispersions were investigated up to a content of metal ions of up to 10 mol% of the iron content of the magnetic particles.
  • the stability of the dispersions was not changed in all investigated cation types up to a metal ion content of 5 mol% of the iron content of the magnetic particles.
  • the ion concentrations of the added metal ions in the ultrafiltrate of the dispersions measured by atomic absorption spectroscopy (AAS) were surprisingly high in all. Samples below the respective detection limit of the measuring method. Only above a metal ion content of 5 mol% of the iron content of the magnetic particles, the stability of the dispersions is reduced depending on the element type and the content of added metal ions and the measured ion concentration in the ultrafiltrate of the dispersions was in the range of AAS.
  • the metal ions are selected from the group of radioactive isotopes consisting of 52 Fe, 67 Ga, 99m Tc, 113 In, 188 Rh, 192 Ir, 198 Au, 201 Tl and 223 Ra.
  • a preferred group of positively charged metal ions are selected from the group consisting of metal ions of the chemical elements copper, silver, gold, platinum, palladium, osmium, rhenium, rhodium, ruthenium, vanadium, and mixtures thereof.
  • the invention also relates to stabilized superparamagnetic particles consisting of superparamagnetic single-domain particles of iron hydroxide, iron oxide hydrate, iron oxide, iron mixed oxide or iron having a particle size in the range of 2 to 50 nanometers, or aggregates thereof having a particle size in the range of 10 to 1000 Having nanometers, or mixtures thereof, each stabilized on their surface by aliphatic di- or polycarboxylic acids or derivatives thereof, which prevent aggregation and sedimentation in the gravitational field, characterized in that the superparamagnetic Einomänenteilchen carry on its surface bonded ions bound to chemical elements, said charged ions are non-metal ions bound to the surface of the superparamagnetic single-domain particles via a polyethyleneimine bridge, preferably the radioactive isotopes 13 N, 15 O, 18 F, 123 J or mixtures thereof are attached to the rod bonded to superimposed paramagnetic particles.
  • tissue-specific binding substances may optionally be bound to the surfaces of the superparamagnetic particles as a further advantageous embodiment of the invention.
  • These substances may be selected from the group consisting of antigens, antibodies, ribonucleic acids, deoxyribonucleic acids, ribonucleic acid sequences, deoxyribonucleic acid sequences, haptens, avidin, streptavidin, protein A, protein G, Endotoxin-binding proteins, lectins, selectins, surface proteins of organelles, viruses, microbes, algae, fungi;
  • pharmacologically active substances may still be bound to the surfaces of the superparamagnetic particles selected from the group consisting of antitumor proteins, enzymes, antitumor enzymes, antibiotics, plant alkaloids, alkylating reagents, antimetabolites, hormones and hormone antagonists, interleukins, interferons, growth factors, tumor necrosis factors, endotoxins, lymphotoxins, urokinase, streptokinase, plasminogen streptokinase activator complex, tissue plasminogen activators, desmode plasminogen activators, macrophage activating bodies, antisera, blood and cell components and their degradation products and derivatives, cell wall components of organelles, viruses, microbes, algae, fungi and their degradation products and derivatives, protease inhibitors, alkylphosphocholines, radioactive isotope-containing substances, surfactants, cardiovascular pharmaceuticals, Chemotherapeutic
  • derivatives of aliphatic di- or polycarboxylic acids are meant in particular monofunctional esters in the case of dicarboxylic acids or mono- or difunctional esters in the case of polycarboxylic acids which contain C 1 -C 18 -alkyl moieties, preferably C 1 -C 4 -alkyl moieties.
  • the preparation of the superparamagnetic particles is carried out in a known manner by precipitation from an iron salt solution with, for example, ammonia water and subsequent targeted agglomeration of the resulting superparamagnetic single-domain particles.
  • the superparamagnetic single-domain particles are stirred in water and brought to aggregation at a pH of 1 to 7 by heating to 80 to 120 ° C, at temperatures above 100 ° C in an autoclave. After the dispersion has cooled, the particles are washed until the electrical conductivity of the filtrate is less than 10 ⁇ S / cm.
  • the superparamagnetic particles thus produced immediately form a rapidly sedimenting precipitate, which can not be converted into a stable dispersion even by vigorous stirring or by ultrasound treatment.
  • the mixture of the dispersion of the superparamagnetic particles which may have an iron content in the range from 0.001 mol Fe / l to 10 mol Fe / l, and which may be dispersed in water or a low-boiling organic polar solvent, is then mixed with an aqueous solution of Ions of chemical elements.
  • concentration range of the solutions of the ions of chemical elements is in the range of 0.001 mmolar to 1 molar.
  • the ratio of ions of chemical elements to iron in the mixture should not exceed 10 mol%.
  • dilute solutions e.g. between 0.001 and 0.1 molar solutions, and adding them slowly, e.g. dropwise to avoid a localized large concentration gradient.
  • the ions of chemical elements such as the positively charged metal ions of the chemical elements copper, silver, gold, iron, nickel, cobalt, gallium, thallium, bismuth, palladium, rhenium, rhodium, ruthenium, platinum, technetium, indium, iridium, osmium, radium , Selenium, vanadium, yttrium, zirconium, and rare earths, as well as mixtures thereof, or radioactive isotopes of these metal ions, such as 52 Fe, 67 Ga, 99m Tc, 113 In, 188 Rh, 192 Ir, 198 Au, 201 Tl or 223 Ra, are dissolved before mixing with the superparamagnetic particles in water or a low-boiling organic polar solvent, preferably in water.
  • the negatively charged ions of chemical elements such as the radioactive isotopes 13 N, 15 O, 18 F, 123 J, are dissolved in an aqueous solution of polyethylenimine prior to mixing with the superparamagnetic particles.
  • concentration range of the polyethyleneimine solution to be used is in the range of 0.001 to 1 molar
  • concentration range of the solutions of the negatively charged ions of chemical elements to be used is in the range of 0.001 mmolar to 1 mmolar.
  • the mixture of the charged ions of chemical elements with the superparamagnetic particles is carried out with stirring, wherein it is important that the aqueous dispersion of the superparamagnetic particles presented and the aqueous solution of ions of chemical elements gradually, for example, added dropwise.
  • the mixture is carried out in a temperature range of 5 ° C to 70 ° C, preferably at room temperature, ie at 20-25 ° C.
  • the stabilized superparamagnetic particle dispersion contains no or only weakly aggregated superparamagnetic single-domain particles. These form a stable magnetic fluid which is easily separated from the larger superparamagnetic aggregates by their sedimentation in a magnetic field of corresponding strength and inhomogeneity.
  • a beaker with the magnetic dispersion is placed on a permanent magnet having a magnetic flux density of 0.1 T and, after a sedimentation time of about 30 minutes, the supernatant magnetic liquid is poured off.
  • the superparamagnetic aggregates which, depending on the particle size, spontaneously disperse in the dispersion or remain as a sediment in the beaker, remain behind in the sediment. Up to particle sizes of about 500 nm, the superparamagnetic aggregates distribute again spontaneously or with gentle stirring in the aqueous dispersion medium.
  • polyethyleneimines on the citric acid-stabilized surface of the superparamagnetic particles form stable bonds which do not influence the sedimentation stability of the superparamagnetic single-domain particles and superparamagnetic aggregates in specific concentration ranges.
  • Magnetic particles coated with these polyethylenimine also allow radioactive non-metal ions to bind to the surface of the superparamagnetic particles.
  • the above-mentioned short-lived radiopharmaceuticals such as 13 N, 15 O, 18 F, 123 J can then be bound to the free amine groups of the polyamine compounds.
  • polyethyleneimine on the eg citric acid-stabilized surfaces of the superparamagnetic particles also form stable bonds which do not influence the sedimentation stability of the superparamagnetic single-domain particles and superparamagnetic aggregates in certain concentration ranges, if the polyethyleneimines have been previously treated with the short-lived radiopharmaceuticals such as 13 N, 15 O, 18 F, 123 J, mixed and then bound to the surfaces of the superparamagnetic particles.
  • the stabilized superparamagnetic particles can be used for the preparation of a bacteriostatic or radiopharmaceutical, for the preparation of an agent for tumor damage, for the preparation of an agent for the prevention of restenosis, for the preparation of an agent for controlling inflammatory diseases, for the preparation of a function control agent
  • Organs or for producing a means for magnetic drug targeting or for producing an MR contrast agent Organs or for producing a means for magnetic drug targeting or for producing an MR contrast agent.
  • the particles according to the invention can also be used as magnetic ion exchangers and magnetic adsorbents for separation processes or as magnetic particles for in vitro diagnostics, optionally under the action of magnetic fields.
  • the ion-containing, preferably metal ion-containing superparamagnetic particles according to the invention can, for. B. be used for the preparation of a bacteriostat.
  • superparamagnetic particles with silver ions bound to their surface are highly bactericidal.
  • Silver-containing Eindomänen nowteilchen or their aggregates can thus be used for the preparation of a therapeutic z.
  • the silver-containing superparamagnetic particles are adsorbed at the bacterial focus of inflammation, the bacterial oxygen supply is suppressed by the effect of low silver ion concentration, the bacteria are killed.
  • Silver-containing superparamagnetic single-domain particles and aggregates as in Example 3, as shown by studies in rats, can be used to prepare an oral therapeutic for the treatment of inflammatory gastrointestinal diseases, such as Helicobacter pylori bacterial diseases.
  • Very small silver-containing superparamagnetic single-domain particles can also be used for the preparation of a parenteral therapeutic for the treatment of bacterial inflammatory processes in the body, as studies on rats have shown.
  • the toxicity of the sample was suitable for therapeutical applications with an LD 50 of 3 mmol iron / kg body weight. Reduction of the silver ion concentration is expected to reduce toxicity.
  • An advantage of these strongly bactericidal, silver-containing single-domain particles or their aggregates is that with the help of magnetic resonance tomography the adsorption site and the adsorbed amount of the magnetic particles can be diagnosed.
  • Radioactive superparamagnetic particles can be used in the preparation of a parenteral radiopharmaceutical useful for the diagnosis and therapy of vulnerable plaques as well as for the diagnosis and therapy of restenosis following balloon dilation or stenting. Due to the T1 and T2 effect of the very small superparamagnetic single-domain particles in the sense of EP 0888545 B1 (Increased R 1 -Relax technically in the range of 2 to 50 and a ratio of relaxivities R 2 / R 1 less than 5), which is also to be recorded here, is the investigation of the accumulation of the particles in the Vascular walls with the help of magnetic resonance tomography possible.
  • the therapeutic effect of the radioactive superparamagnetic particles for the diagnosis and therapy of vulnerable plaques and for the prevention of restenosis after balloon dilatation or stent implantation lies in the destruction of the cells responsible for re-growth in the plaques on the vessel walls.
  • the parenteral radiopharmaceutical is injected directly through a cannula into the vessel area being examined, so as to prevent restenosis by destroying the vascular cells responsible for plaque formation.
  • Radioactive superparamagnetic particles with tissue-specific antibodies can be used as a radiopharmaceutical to control specific types of tumors since, after parenteral injection of the particles, the tissue-specific antibodies attach to the corresponding receptors of the tumor cells and the radioactive constituents of the magnetic particles destroy the tumor cells.
  • the superparamagnetic particles can also be used for in vitro diagnostics or as magnetic ion exchangers and magnetic adsorbents for the separation of ions, organic molecules, macromolecules, cells, viruses and the like. used in biotechnology, wastewater treatment or other substance separation processes, when the corresponding ion exchange groups and adsorbents are bound to the surface of the particles.
  • Metal ion-containing superparamagnetic particles can also be used for the production of extremely small metal particles by dissolving the iron oxide particles in the presence of reducing substances by dilute acids. The production of large surface area catalysts is also possible.
  • Ferric chloride (270 g) and ferrous sulfate (153 g) are dissolved in 1 l of dist. Water dissolved. By adding sodium hydroxide solution, a pH of 9.5 is set with stirring. After precipitation, the dispersion is adjusted with stirring with hydrochloric acid to the pH of 5.0 and heated to 100 ° C. After cooling the dispersion, the precipitate is washed, until the filtrate has an electrical conductivity of ⁇ 10 ⁇ S / cm.
  • the stabilization of the superparamagnetic particles is carried out by mixing the particles with an aqueous solution of 120 g of citric acid at room temperature. The dispersion is adjusted by the addition of sodium hydroxide solution to a pH of 7.0 and the unbound salts with dist.
  • the dispersion is centrifuged for 10 minutes at 10,000 rpm and the centrifugate is concentrated by ultrafiltration with a 40 kD filter to an iron content of about 2 mol / l.
  • the superparamagnetic single-domain particles have an average particle diameter of about 16 nm.
  • the sediment of the centrifuge contains the superparamagnetic particle aggregates which have an average particle diameter of about 100 nm.
  • Typical analysis data of the very small superparamagnetic single-domain particles are: Particle diameter d50 8 nm Overall diameter with stabilizer: 16 nm Iron (II) content 16% T1 relaxivity 12 l / mmol s T2 relaxivity 25 l / mmol s Ratio of relaxivities R2 / R1 2.05
  • Ferric chloride (270 g) and iron (II) chloride (119 g) are dissolved in 1 l of dist. Water dissolved. By adding ammonia water, the pH of the solution is adjusted to 9.6 with stirring. After precipitation, the dispersion is stirred for 10 minutes, treated with a solution of 120 g of citric acid in 500 ml of water and stirred for 10 min. After cooling the dispersion, the precipitate is washed until the filtrate has an electrical conductivity of ⁇ 10 ⁇ S / cm. The solid is stirred in 300 ml of water and dispersed for 10 min with ultrasound of 100 W power.
  • the resulting dispersion is sedimented for 30 minutes on a permanent magnet having a magnetic flux density of 0.1 T and poured off the supernatant of magnetic liquid.
  • the supernatant contains predominantly stabilized superparamagnetic single-domain particles.
  • the sediment on the permanent magnet contains the superparamagnetic degradable aggregates.
  • the dispersion is adjusted to a pH of 7.0 and the unbound salts with a physiological saline solution until the dialysate has an ammonium ion content of ⁇ 0.001 g / l.
  • the dispersion 10 Centrifuged min at 10,000 rev / min and the centrifugate by ultrafiltration with a 40kD filter to an iron content of about 2 mol / l concentrated.
  • the superparamagnetic single-domain particles have a mean particle diameter of approximately 14 nm.
  • the sediment of the centrifuge contains the superparamagnetic particle aggregates which have an average particle diameter of approximately 80 nm.
  • Typical analysis data of the very small superparamagnetic single-domain particles are: Particle diameter d50 4 nm Overall diameter with stabilizer: 8 nm Iron (II) content 14% T1 Retax founded 19 l / mmol s T2 relaxivity 36 l / mmol s Ratio of relaxivities R2 / R1 1.89
  • Example 2 To 20 ml of the small superparamagnetic single-domain particles of Example 1, having an iron content of 2 mol / l, is added dropwise 2 ml of a 0.1 molar silver nitrate solution with stirring at 20 ° C. The excess electrolyte solution is distilled by dialysis with a 40kD filter. Water is dialyzed until the dialysate has an electrical conductivity of ⁇ 10 ⁇ S / cm. The resulting dispersion is sedimentation and magnetic field stable and can be used for the production of a parenteral therapeutic agent in bacterial inflammatory processes in the body. The adsorption of the superparamagnetic aggregates in the bloodstream can be observed with the help of nuclear spin tomography.
  • the superparamagnetic aggregates of Example 2 are applicable to the diagnosis and therapy of malignant liver tumors in the sense of locoregional radiotherapy (radioembolization).
  • Example 2 To 20 ml of the small superparamagnetic single-domain particles of Example 2 having an iron content of 1 mol / l are added 4 ml of a 0.1 millimolar pentaethylenehexamine solution. To this dispersion is then added radioactive iodide-123 solution having an activity of 300 MBq and an effective dose of 2.3 Sv.
  • the superparamagnetic single-domain particles have a mean particle diameter of about 14 nm.
  • the resulting dispersion is sedimentation and magnetic field stable and can serve for the production of a parenteral radiopharmaceutical.
  • tissue-specific binding substances such as antibodies of CD30 receptors of Hodgkin's lymphoma or antibodies of GD2-receptors of neuroblastomas
  • the free amine groups of pentaethylenehexamine are used.
  • the superparamagnetic single-domain particles of example 8 are admixed with 1 molar oxalic acid solution and the iron oxide contents are dissolved by heating to 70 ° C. In the yellow solution are the very small nanometer-sized platinum particles.
  • the excess electrolyte solution is made by dialysis with a 3 kD filter filter with dist. Water is dialyzed until the dialysate has an electrical conductivity of ⁇ 10 ⁇ S / cm.
  • the resulting dispersion of platinum particles is stable to sedimentation and magnetic field and can serve to produce a platinum-containing catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Hard Magnetic Materials (AREA)

Description

  • Die Erfindung betrifft superparamagnetische Teilchen, die aus superparamagnetischen Eindomänenteilchen und Aggregaten von superparamagnetischen Eindomänenteilchen aus Eisenoxiden, Eisenmischoxiden oder Eisen bestehen, die auf ihrer Oberfläche stabilisiert sind und die in der Medizin oder medizinischen Diagnostik eingesetzt werden können.
  • In der EP 0772776 B1 werden superparamagnetische Teilchen beschrieben, die aus superparamagnetischen Eindomänenteilchen und Aggregaten von superparamagnetischen Eindomänenteilchen bestehen und die auf ihrer Oberfläche organische Substanzen gebunden haben, die gegebenenfalls weitere Bindungsstellen zur Kopplung von gewebespezifischen Bindungssubstanzen, diagnostischen oder pharmakologisch wirksamen Substanzen besitzen. Die superparamagnetische Teilchen setzen sich aus einem Gemisch von kleinen superparamagnetischen Eindomänenteilchen mit einer Teilchengröße im Bereich zwischen 3 und 50 Nanometer und stabilen, abbaubaren Aggregate aus kleinen superparamagnetischen Eindomänenteilchen mit einer Teilchengröße im Bereich zwischen 10 und 1000 Nanometer zusammen und bestehen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid-, Eisenmischoxid- oder Eisen, die auf ihrer Oberfläche mono- und/oder polyhydroxylgruppenhaltige aromatische Substanzen, Polyglycerine, aminosäurenhaltige Substanzen, silikatgruppenhaltige Substanzen der Orthokieselsäure und deren Kondensationsprodukte und phosphatgruppenhaltigen Substanzen der Ortho- oder Metaphosphorsäure und deren Kondensationsprodukte gebunden tragen, die weitere Bindungsstellen aufweisen können.
  • In der EP 0888545 B1 werden superparamagnetische Eindomänenteilchen mit vergrößerter R1-Relaxivität und mit Oberflächen-Stabilisatorsubstanzen beschrieben, deren Teilchen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid, Eisenmischoxid oder Eisen bestehen, eine Teilchengröße im Bereich zwischen 1 und 10 Nanometer, mit einem mittleren Teilchendurchmesser d50 von 2 bis 4 Nanometer, besitzen und eine vergrößerte R1-Relaxivität im Bereich von 2 bis 50 und ein Verhältnis der Relaxivitäten R2/R1 kleiner 5 haben. Auf ihrer Oberfläche sind niedermolekulare Stabilisatorsubstanzen, wie Citronensäure gebunden, die eine Aggregation und Sedimentation im Schwerefeld oder in einem Magnetfeld verhindern.
  • Der Erfindung liegt die Aufgabe zugrunde, den Bereich der Substanzen, die an der Oberfläche der Eindomänenteilchen gebunden sein können, zu erweitern, um die physikalisch, chemischen und physiologischen Eigenschaften der entstehenden Magnetteilchen den jeweiligen Anwendungsgebieten optimal anpassen zu können, wobei diese Substanzen stabil und leicht herstellbar sein sollen.
  • Die in der EP 0772776 B1 beschriebenen superparamagnetische Teilchen, die aus superparamagnetischen Eindomänenteilchen die auf ihrer Oberfläche organische Substanzen gebunden haben, lassen sich auch mit den in der EP 0888545 B1 beschriebenen niedermolekularen aliphatischen Di- und Polycarbonsäuren, wie Äpfelsäure, Weinsäure, Zitronensäure, Asparaginsäure, gegen Sedimentation im Schwerefeld der Erde oder einem Magnetfeld stabilisierten. Auch die in der EP 0772776 B1 beschriebenen Aggregate von superparamagnetischen Eindomänenteilchen lassen sich ebenfalls gegen eine Sedimentation im Schwerefeld der Erde, z.B. durch die in der EP 0888545 B1 beschriebene niedermolekulare Citronensäure stabilisieren.
  • Es wurde gefunden, dass stabilisierte superparamagnetische Teilchen, bestehend aus superparamagnetischen Eindomänenteilchen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid-Eisenmischoxid- oder Eisen, die eine Teilchengröße im Bereich von 2 und 50 Nanometer haben,
    oder Aggregaten davon, die eine Teilchengröße im Bereich von10 bis 1000 Nanometer haben, oder Gemischen davon,
    die jeweils stabilisiert sind auf ihrer Oberfläche durch aliphatische Di- oder Polycarbonsäuren oder Derivate davon,
    auf ihrer Oberfläche geladene Ionen chemischer Elemente gebunden tragen können, wobei die Ionen bis zu einem Metallionengehalt von 5 Mol% des Eisengehaltes der Eindomänenteilchen gebunden sind und positiv geladene Metallionen sind, die aus der Gruppe ausgewählt sind, die aus Ionen der chemischen Elemente Kupfer, Silber, Gold, Eisen, Nickel, Kobalt, Gallium, Thallium, Bismut, Palladium, Rhenium, Rhodium, Ruthenium, Platin, Technetium, Indium, Iridium, Osmium, Radium, Selen, Vanadium,
    Yttrium, Zirkon, seltenen Erden, Gemischen davon und radioaktiven Isotopen dieser Elemente besteht. Die Ionen gehen mit der Oberfläche der superparamagnetischen Teilchen sehr stabile Bindungen ein, die die Sedimentationsstabilität der superparamagnetischen Eindomänenteilchen und Aggregate in bestimmten Konzentrationsbereichen nicht beeinflussen.
  • Die Stabilitätseigenschaften der metallionenhaltigen Dispersionen wurden bis zu einem Gehalt an Metallionen von bis zu 10 Mol-% des Eisengehaltes der Magnetteilchen untersucht.
  • Dabei wurde bei allen untersuchten Kationenarten bis zu einem Metallionengehalt von 5 Mol-% des Eisengehaltes der Magnetteilchen die Stabilität der Dispersionen nicht verändert. Die mit der Atom-Absorptions-Spektrokopie (AAS) gemessenen Ionenkonzentrationen der zugesetzten Metallionen im Ultrafiltrat der Dispersionen lagen überraschend bei allen. Proben unter der jeweiligen Nachweisgrenze der Meßmethode. Erst oberhalb von einem Metallionengehalt von 5 Mol-% des Eisengehaltes der Magnetteilchen verringert sich die Stabilität der Dispersionen in Abhängigkeit von der Elementart und dem Gehalt der zugesetzten Metallionen und die gemessene Ionenkonzentration im Ultrafiltrat der Dispersionen lag im Meßbereich der AAS.
  • In einer Ausführungsform der Erfindung sind die Metallionen aus der Gruppe der radioaktiven Isotope, bestehend aus 52Fe, 67Ga, 99mTc, 113In, 188Rh, 192Ir, 198Au, 201Tl und 223Ra ausgewählt.
  • Eine bevorzugte Gruppe von positiv geladenen Metallionen sind aus der Gruppe ausgewählt, die aus Metallionen der chemischen Elemente Kupfer, Silber, Gold, Platin, Palladium, Osmium, Rhenium, Rhodium, Ruthenium, Vanadium und Gemischen davon besteht.
  • Gegenstand der Erfindung sind auch stabilisierte superparamagnetische Teilchen, bestehend aus superparamagnetischen Eindomänenteilchen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid-, Eisenmischoxid- oder Eisen, die eine Teilchengröße im Bereich von 2 und 50 Nanometer haben, oder Aggregaten davon, die eine Teilchengröße im Bereich von10 bis 1000 Nanometer haben, oder Gemischen davon, jeweils stabilisiert auf ihrer Oberfläche durch aliphatische Di- oder Polycarbonsäuren oder Derivate davon, die eine Aggregation und Sedimentation im Schwerefeld verhindern, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen auf ihrer Oberfläche geladene Ionen chemischer Elemente gebunden tragen, wobei die geladenen Ionen Nichtmetallionen sind, die über eine Polyethylenimin-Brücke an die Oberfläche der superparamagnetischen Eindomänenteilchen gebunden sind, vorzugsweise werden die radioaktiven Isotope 13N, 15O, 18F, 123J oder Gemische davon auf diese Weise an die stabilisierten superparamagnetischen Teilchen gebunden.
  • Neben den geladenen Ionen chemischer Elemente können als weitere vorteilhafte Ausführungsform der Erfindung gegebenenfalls noch gewebespezifische Bindungssubstanzen auf den Oberflächen der superparamagnetischen Teilchen gebunden sein. Diese Substanzen können aus der Gruppe ausgewählt sein, bestehend aus Antigene, Antikörper, Ribonucleinsäuren, Desoxyribonucleinsäuren, Ribonucleinsäuresequenzen, Desoxyribonucleinsäure-sequenzen, Haptene, Avidin, Streptavidin, Protein A, Protein G, Endotoxin-bindende Proteine, Lectine, Selectine, Oberflächenproteine von Organellen, Viren, Mikroben, Algen, Pilze;
  • Neben den geladenen Ionen chemischer Elemente können als weitere vorteilhafte Ausführungsform der Erfindung gegebenenfalls noch pharmakologisch wirksamen Substanzen auf den Oberflächen der superparamagnetischen Teilchen gebunden sein, die aus der Gruppe ausgewählt sind, die Antitumorproteine, Enzyme, Antitumorenzyme, Antibiotika, Pflanzenalkaloide, Alkylierungsreagenzien, Antimetaboliten, Hormone und Hormonantagonisten, Interleukine, Interferone, Wachstumsfaktoren, Tumomekrosefaktoren, Endotoxine, Lymphotoxine, Urokinase, Streptokinase, Plasminogen-Streptokinase-Aktivator-Komplex, Gewebe- Plasminogen- Aktivatoren, Desmodus-Plasminogen-Aktivatoren, Makrophagen-Aktivierungs-Körper, Antisera, Blut und Zellbestandteile und deren Abbauprodukte und Derivate, Zellwandbestandteile von Organellen, Viren, Mikroben, Algen, Pilze und deren Abbauprodukte und Derivate, Proteaseninhibitoren, Alkylphosphocholine, radioaktive Isotope enthaltende Substanzen, Tenside, kardiovaskulare Pharmazeutika, Chemotherapeutika, gastrointestinale Pharmazeutika und Neuropharmazeutika umfasst.
  • Unter "Derivate von aliphatischen Di- oder Polycarbonsäuren" werden insbesondere monofunktionelle Ester bei Dicarbonsäuren oder mono- oder difunktionelle Ester bei Polycarbonsäuren verstanden, die C1-C18-Alkyteile, vorzugsweise C1-C4-Alkylteile enthalten.
  • Die Herstellung der superparamagnetischen Teilchen erfolgt in bekannter Weise durch eine Fällung aus einer Eisensalzlösung mit z.B. Ammoniakwasser und einer nachfolgenden gezielten Agglomeration der entstandenen superparamagnetischen Eindomänenteilchen. Dabei werden die superparamagnetischen Eindomänenteilchen in Wasser verrührt und bei einem pH-Wert von 1 bis 7 durch Erhitzen auf 80 bis 120°C, bei Temperaturen über 100°C im Autoklaven, zur Aggregation gebracht. Nach dem Abkühlen der Dispersion werden die Teilchen so lange gewaschen, bis die elektrische Leitfähigkeit des Filtrates kleiner als 10 µS/cm beträgt. Die so hergestellten superparamagnetischen Teilchen bilden sofort einen schnell sedimentierenden Niederschlag, der sich auch durch starkes Rühren oder durch Ultraschallbehandlung nicht in eine stabile Dispersion überführen läßt. Erst die Bindung von Stabilisatorsubstanzen auf der Oberfläche der superparamagnetischen Teilchen sorgt für eine Dispergierbarkeit Bei Citronensäure als Stabilisatorsubstanz reicht Rühren mit dem Glasstab, bei anderen Stabilisatorsubstanzen benötigt man einen stärkeren Energieeintrag, wie z.B. Erwärmen oder Einwirkung von Ultraschall, um stabile Dispersionen zu erhalten. Nach der Stabilisierung der superparamagnetischen Teilchen mit einer aliphatischen Di- oder Polycarbonsäure, z.B. mit Citronensäure, wird die Dispersion mit Basen, wie Natronlauge, Methylglucamin, auf einen pH-Wert von 7,0 eingestellt und gegen Wasser oder physiologische Kochsalzlösung dialysiert, um den überschüssigen Anteil an Elektrolyt zu entfernen.
  • Erfindungsgemäß erfolgt nun die Mischung der Dispersion der superparamagnetischen Teilchen, die einen Eisengehalt im Bereich von 0,001 Mol Fe/l bis 10 Mol Fe/l besitzen kann, und die in Wasser oder einem niedrigsiedenden organischen polaren Lösungsmittel dispergiert sein kann, mit einer wäßrigen Lösung von Ionen chemischer Elemente. Der anzuwendende Konzentrationsbereich der Lösungen der Ionen chemischer Elemente liegt im Bereich von 0,001 mmolar bis 1 molar. Das Mengenverhältnis von Ionen chemischer Elemente zu Eisen soll in der Mischung 10 Mol-% nicht überschreiten.
  • Es ist vorteilhaft, verdünnte Lösungen einzusetzen, z.B. zwischen 0,001 und 0,1 molare Lösungen, und diese langsam zuzusetzen, z.B. tropfenweise, um einen örtlichen großen Konzentrationsgradienten zu vermeiden.
  • Die Ionen chemischer Elemente, wie die positiv geladenen Metallionen der chemischen Elemente Kupfer, Silber, Gold, Eisen, Nickel, Kobalt, Gallium, Thallium, Bismut, Palladium, Rhenium, Rhodium, Ruthenium, Platin, Technetium, Indium, Iridium, Osmium, Radium, Selen, Vanadium, Yttrium, Zirkon, und seltene Erden, sowie Gemische davon, oder auch radioaktive Isotope dieser Metallionen, wie 52Fe, 67Ga, 99mTc, 113In, 188Rh, 192Ir, 198Au, 201Tl oder 223Ra, werden vor der Mischung mit den superparamagnetischen Teilchen in Wasser oder einem niedrigsiedenden organischen polaren Lösungsmittel, vorzugsweise in Wasser gelöst.
  • Die negativ geladenen Ionen chemischer Elemente, wie die radioaktiven Isotope 13N, 15O, 18F, 123J, werden vor der Mischung mit den superparamagnetischen Teilchen in einer wäßrigen Polyethylenimin-Lösung gelöst. Der anzuwendende Konzentrationsbereich der Polyethylenimin-Lösung liegt im Bereich von 0,001 bis 1 molar und der anzuwendende Konzentrationsbereich der Lösungen der negativ geladenen Ionen chemischer Elemente liegt im Bereich von 0,001 mmolar bis 1 mmolar.
  • Die Mischung der geladenen Ionen chemischer Elemente mit den superparamagnetischen Teilchen erfolgt unter Rühren, wobei es wichtig ist, daß die wäßrige Dispersion der superparamagnetischen Teilchen vorgelegt und die wäßrige Lösung von Ionen chemischer Elemente allmählich, z.B. tropfenweise zugegeben wird. Die Mischung erfolgt in einem Temperaturbereich von 5°C bis 70 °C, bevorzugt bei Raumtemperatur, d.h. bei 20-25 °C.
  • Die stabilisierte superparamagnetische Teilchendispersion enthält nicht oder nur schwach aggregierte superparamagnetische Eindomänenteilchen. Diese bilden eine stabile magnetische Flüssigkeit, die sich leicht von den größeren superparamagnetischen Aggregaten durch deren Sedimentation in einem Magnetfeld entsprechender Stärke und Inhomogenität abtrennen läßt.
  • In einer einfachen Ausführung der magnetischen Separation stellt man ein Becherglas mit der magnetischen Dispersion auf einen Permanentmagneten mit einer magnetischen Flußdichte von 0,1 T und gießt nach einer Sedimentationszeit von ca. 30 min die überstehende magnetische Flüssigkeit ab. In dem Sediment zurück bleiben die superparamagnetischen Aggregate, die, je nach Teilchengröße, sich wieder spontan in der Dispersion verteilen oder als Bodensatz im Becherglas zurückbleiben. Bis zu Teilchengrößen von ungefähr 500 nm verteilen sich die superparamagnetischen Aggregate wieder spontan oder unter leichtem Rühren im wäßrigen Dispersionsmittel.
  • Für das erfindungsgemäße Verfahren wurde gefunden, daß Polyethylenimine auf der z.B. mit Citronensäure stabilisierten Oberfläche der superparamagnetischen Teilchen stabile Bindungen eingehen, die die Sedimentationsstabilität der superparamagnetischen Eindomänenteilchen und superparamagnetischen Aggregate in bestimmten Konzentrationsbereichen nicht beeinflussen. Mit diesen Polyethylenimin beschichteten Magnetteilchen lassen sich auch radioaktive Nichtmetallionen auf der Oberfläche der superparamagnetischen Teilchen binden. An die freien Amingruppen der Polyaminverbindungen können dann die o.g. kurzlebigen Radiopharmaka, wie 13N, 15O, 18F, 123J, gebunden werden.
  • Ebenso wurde gefunden, daß Polyethylenimin auf den z.B. mit Citronensäure stabilisierten Oberflächen der superparamagnetischen Teilchen auch dann stabile Bindungen eingehen, die die Sedimentationsstabilität der superparamagnetischen Eindomänenteilchen und superparamagnetischen Aggregate in bestimmten Konzentrationsbereichen nicht beeinflussen, wenn die Polyethylenimine vorher mit den kurzlebigen Radiopharmaka, wie 13N, 15O, 18F, 123J, gemischt und erst dann auf der Oberflächen der superparamagnetischen Teilchen gebunden werden.
  • Die stabilisierten superparamagnetischen Teilchen können zur Herstellung eines Bakteriostaticums oder Radiopharmakons verwendet werden, zur Herstellung eines Mittels zur Tumorschädigung, zur Herstellung eines Mittels zur Verhinderung von Restenosen, zur Herstellung eines Mittels zur Bekämpfung von Entzündungskrankheiten, zur Herstellung eines Mittels zur Funktionskontrolle von
  • Organen oder zur Herstellung eines Mittels zum magnetischen drug targeting oder zur Herstellung eines MR-Kontrastmittels. Die erfindungsgemäßen Teilchen sind auch als magnetische Ionenaustauscher und magnetische Adsorbentien für Separationsverfahren oder als Magnetteilchen für die in vitro Diagnostik verwendbar, gegebenenfalls unter Einwirkung von Magnetfeldern.
  • Die erfindungsgemäßen ionenhaltigen, vorzugsweise metallionenhaltigen superparamagnetische Teilchen können z. B. zur Herstellung eines Bakteriostatikums verwendet werden. So wirken superparamagnetische Teilchen, auf deren Oberfläche Silberionen gebunden wurden, stark bakterizid. Silberhaltige Eindomänenteilchen oder deren Aggregate können somit zur Herstellung eines Therapeutikums z. B. zur Behandlung von entzündlichen Erkrankungen des Magen-Darm-Traktes eingesetzt werden. Die silberhaltigen superparamagnetischen Teilchen werden am bakteriellen Entzündungsherd adsorbiert, die bakterielle Sauerstoffversorgung wird durch die Wirkung der geringen Silberionenkonzentration unterbunden, die Bakterien werden abgetötet.
  • Silberhaltige superparamagnetische Eindomänenteilchen und Aggregate, wie nach Beispiel 3 können, wie Untersuchungen an Ratten gezeigt haben, zur Herstellung eines oralen Therapeutikums zur Behandlung entzündlicher Magen-Darm-Erkrankungen Anwendung finden, wie Erkrankungen durch die Bakterienart Helicobacter pylori.
  • Sehr kleine silberhaltige superparamagnetische Eindomänenteilchen, wie nach Beispiel 4 können, wie Untersuchungen an Ratten gezeigt haben, auch zur Herstellung eines parenteralen Therapeutikums zur Behandlung bakterieller Entzündungsprozesse im Körper Anwendung finden. Die Toxizität der Probe war mit einer LD 50 von 3 mmol Eisen/kg Körpergewicht für therapeutische Anwendungen geeignet. Bei Verringerung der Silberionenkonzentration ist mit einer Verringerung der Toxizität zu rechnen.
  • Ein Vorteil dieser stark bakteriziden, silberhaltigen Eindomänenteilchen oder deren Aggregate ist, daß mit Hilfe der Kernspin-Tomographie der Adsorptionsort und die adsorbierte Menge der Magnetteilchen diagnostizierbar sind.
  • Radioaktive superparamagnetischen Teilchen können zur Herstellung eines parenteralen Radiopharmakons dienen, das sowohl zur Diagnose und Therapie von vulnerablen Plaques als auch zur Diagnose und Therapie der Restenose nach Ballondilatation oder Stentimplantation anwendbar ist. Durch den T1- und T2-Effekt der sehr kleinen superparamagnetischen Eindomänenteilchen im Sinne der EP 0888545 B1 (vergrößerte R1-Relaxivität im Bereich von 2 bis 50 und ein Verhältnis der Relaxivitäten R2/R1 kleiner 5), der hier ebenfalls zu verzeichnen ist, ist die Untersuchung der Anreicherung der Teilchen in den Gefäßwänden mit Hilfe der Kernspin-Tomographie möglich. Die therapeutische Wirkung der radioaktiven superparamagnetischen Teilchen zur Diagnose und Therapie von vulnerablen Plaques und zur Verhinderung von Restenosen nach Ballondilatation oder Stentimplantation liegt in der Zerstörung der für das wieder wachsen verantwortliche Zellen in den Plaques an den Gefäßwänden. So wird das parenterale Radiopharmakon nach der Entfernung der Plaques und nach der Ballondilatation oder Stentimplantation direkt durch eine Kanüle in den untersuchten Gefäßbereich gespritzt, um so, durch die Zerstörung der für die Plaquebildung verantwortlichen Gefäßzellen, die Restenose zu verhindern.
  • Radioaktive superparamagnetischen Teilchen mit gewebespezifischen Antikörpern können als Radiopharmakon zur Bekämpfung spezifischer Tumorarten eingesetzt werden, da nach parenteraler Injektion der Teilchen die gewebespezifischen Antikörper an den entsprechenden Rezeptoren der Tumorzellen andocken und die radioaktiven Bestandteile der Magnetteilchen die Tumorzellen zerstören.
  • Eine Diagnose und Therapie von Glioblastomen mit radioaktiv citratbeschichteten kleinen superparamagnetischen Eindomänenteilchen wird dadurch möglich.
  • Die superparamagnetischen Teilchen können auch zur in vitro Diagnostik oder als magnetische Ionenaustauscher und magnetische Adsorbentien zur Abtrennung von Ionen, organischen Molekülen, Makromolekülen, Zellen, Viren u.s.w. in der Biotechnologie, Abwasserreinigung oder sonstigen Stofftrennungsverfahren verwendet werden, wenn auf der Oberfläche der Teilchen die entsprechenden Ionenaustauschergruppen und Adsorbentien gebunden werden. Metallionenhaltige superparamagnetische Teilchen können auch zur Herstellung von extrem kleinen Metallteilchen Verwendung finden, indem die Eisenoxidteilchen in Gegenwart reduzierend wirkender Substanzen durch verdünnte Säuren aufgelöst werden. Die Herstellung von Katalysatoren mit großen Oberflächen ist ebenfalls möglich.
  • An Beispielen sollen Herstellung und Eigenschaften der erfindungsgemäßen superparamagnetischen Teilchen erläutert werden. In den Beispielen 1 und 2 werden die Muster 1 und 2 hergestellt, auf die nachfolgend Metallionen aufgebracht werden.
  • Muster 1 (Beispiel 1):
  • Eisen (III)-chlorid (270 g) und Eisen(II)-sulfat (153 g) werden in 1 I dest. Wasser gelöst. Durch Zugabe von Natronlauge wird unter Rühren ein pH-Wert von 9,5 eingestellt. Nach erfolgter Fällung wird die Dispersion unter Rühren mit Salzsäure auf den pH-Wert von 5,0 eingestellt und auf 100°C erwärmt. Nach dem Abkühlen der Dispersion wird der Niederschlag gewaschen, bis das Filtrat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die Stabilisierung der superparamagnetischen Teilchen erfolgt durch Mischen der Teilchen mit einer wäßrigen Lösung von 120 g Citronensäure bei Raumtemperatur. Die Dispersion wird durch Zugabe von Natronlauge auf einen pH-Wert von 7,0 eingestellt und die nicht gebundenen Salze mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Zur Entfernung größerer oder schwach aggregierter superparamagnetischer Teilchen wird die Dispersion 10 min bei 10.000 U/min zentrifugiert und das Zentrifugat durch Ultrafiltration mit einem 40kD-Filter auf einen Eisengehalt von ca. 2 Mol/l aufkonzentriert.
  • Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 16 nm. Im Bodensatz der Zentrifuge befinden sich die superparamagnetischen Teilchenaggregate, die einen mittleren Teilchendurchmesser von ca. 100 nm haben.
  • Typische Analysendaten der sehr kleinen superparamagnetischen Eindomänenteilchen sind:
    Teilchendurchmesser d50 8 nm
    Gesamtdurchmesser
    mit Stabilisator: 16 nm
    Eisen(II)-Gehalt 16 %
    T1-Relaxivität 12 l/mmol s
    T2-Relaxivität 25 l/mmol s
    Verhältnis der Relaxivitäten R2/R1 2,05
  • Muster 2 (Beispiel 2):
  • Eisen(III)-chlorid (270 g) und Eisen(II)-chlorid(119 g) werden in 1 I dest. Wasser gelöst. Durch Zugabe von Ammoniakwasser wird unter Rühren der pH-Wert der Lösung auf 9,6 eingestellt. Nach erfolgter Fällung wird die Dispersion 10 Minuten gerührt, mit einer Lösung von 120 g Citronensäure in 500 ml Wasser versetzt und 10 min gerührt. Nach dem Abkühlen der Dispersion wird der Niederschlag gewaschen, bis das Filtrat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Der Feststoff wird in 300 ml Wasser Verrührt und 10 min mit Ultraschall von 100 W Leistung dispergiert. Die entstehende Dispersion wird 30 min auf einen Permanentmagneten mit einer magnetischen Flußdichte von 0,1 T sedimentiert und der Überstand von magnetischer Flüssigkeit abgegossen. Der Überstand enthält überwiegend stabilisierte superparamagnetische Eindomänenteilchen. Das Sediment auf dem Permanentmagneten enthält die superparamagnetischen abbaubaren Aggregate. Die Dispersion auf einen pH-Wert von 7,0 eingestellt und die nicht gebundenen Salze mit einer physiologischen Kochsalz-Iösung, bis das Dialysat einen Ammoniumionengehalt von <0,001g/l besitzt. Zur Entfernung größerer oder schwach aggregierter superparamagnetischer Teilchen wird die Dispersion 10 min bei 10.000 U/min zentrifugiert und das Zentrifugat durch Ultrafiltration mit einem 40kD-Filter auf einen Eisengehalt von ca. 2 Mol/l aufkonzentriert.
  • Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 14 nm. Im Bodensatz der Zentrifuge befinden sich die superparamagnetischen Teilchenaggregate, die einen mittleren Teilchendurchmesser von ca. 80 nm haben.
  • Typische Analysendaten der sehr kleinen superparamagnetischen Eindomänenteilchen sind:
    Teilchendurchmesser d50 4 nm
    Gesamtdurchmesser
    mit Stabilisator: 8 nm
    Eisen(II)-Gehalt 14 %
    T1-Retaxivität 19 l/mmol s
    T2-Relaxivität 36 l/mmol s
    Verhältnis der Relaxivitäten R2/R1 1,89
  • Beispiel 3:
  • Zu 20 ml der superparamagnetischen Aggregate von Beispiel 1, mit einem Eisengehalt von 2 Mol/l, werden tropfenweise 2 ml einer 0,1 molaren Silbernitrat-Lösung unter Rühren bei 25 °C beigemischt. Die überschüssige Elektrolytlösung wird durch Dialyse mit einem 40kD-Filter mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die entstehende Dispersion ist sedimentationsstabil und kann nach entsprechender pharmazeutischer Formulierung als Bakteriostatikum bei bakteriellen Erkrankungen des Magen-Darm-Traktes verwendet werden. Die Adsorption der superparamagnetischen Aggregate im Magen-Darm-Trakt kann mit Hilfe der Kernspin-Tomographie beobachtet werden.
  • Beispiel 4:
  • Zu 20 ml der kleinen superparamagnetischen Eindomänenteilchen von Beispiel 1, mit einem Eisengehalt von 2 Mol/l, werden tropfenweise 2 ml einer 0,1 molaren Silbemitrat-Lösung unter Rühren bei 20°C gegeben. Die überschüssige Elektrolytlösung wird durch Dialyse mit einem 40kD-Filter mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die entstehende Dispersion ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines parenteralen Therapeutikums bei bakteriellen Entzündungsprozessen im Körper Anwendung finden. Die Adsorption der superparamagnetischen Aggregate im Blutkreislauf kann mit Hilfe der Kernspin-Tomographie beobachtet werden.
  • Beispiel 5:
  • 20 ml der kleinen superparamagnetischen Eindomänenteilchen von Beispiel 2, mit einem Eisengehalt von 2 Mol/l, werden mit 2 ml einer radioaktiven Gallium-67-Citrat-Lösung mit einer Aktivität von 400 MBq (Mega Becquerel) und einer effektiven Dosis von 48 Sv (Sievert) versetzt. Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 14 nm. Die entstehende Dispersion ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines parenteralen Radiopharmakons dienen, das zur Diagnose und Therapie von vulnerablen Plaques, sowie der Restenose nach Ballondilatation oder Stentimplantation eingesetzt werden kann. Durch den T1 und T2-Effekt der sehr kleinen superparamagnetischen Eindomänenteilchen ist eine Anreicherung der Teilchen in den Gefäßwänden mit Hilfe der Kernspin-Tomographie möglich.
  • Eine Diagnose und Therapie von Glioblastomen mit diesen radioaktiv citratbeschichteten kleinen superparamagnetischen Eindomänenteilchen ist ebenfalls möglich.
  • Beispiel 6:
  • 20 ml der kleinen superparamagnetischen Aggregate von Beispiel 2, mit einem Eisengehalt von 2 Mol/l, werden mit 2 ml einer radioaktiven Gallium-67-Citrat-Lösung mit einer Aktivität von 400 MBq und einer effektiven Dosis von 48 Sv versetzt. Die superparamagnetischen Aggregate haben einen mittleren Teilchendurchmesser von ca. 80 nm. Die entstehende Dispersion ist sedimentationsstabil und kann zur Herstellung eines parenteralen Radiopharmakons dienen. Die superparamagnetischen Aggregate von Beispiel 2 sind für Diagnose und Therapie von malignen Lebertumoren im Sinne der lokoregionären Radiotherapie (Radioembolisation) anwendbar.
  • Beispiel 7:
  • 20 ml der kleinen superparamagnetischen Eindomänenteilchen von Beispiel 2, mit einem Eisengehalt von 1 Mol/l, werden mit 4 ml einer 0,1 millimolaren Pentaethylenhexamin-Lösung versetzt. Zu dieser Dispersion werden dann radioaktiven Jodid-123-Lösung mit einer Aktivität von 300 MBq und einer effektiven Dosis von 2,3 Sv gegeben. Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 14 nm. Die entstehende Dispersion ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines parenteralen Radiopharmakons dienen.
  • Für die Kopplung von gewebespezifischen Bindungssubstanzen, wie Antikörper von CD 30-Rezeptoren von Hodgkin-Lymphomen oder Antikörper von GD2- Rezeptoren von Neuroblastomen, werden die freien Amingruppen des Pentaethylenhexamins verwendet.
  • Beispiel 8:
  • 20 ml der kleinen superparamagnetischen Eindomänenteilchen von Beispiel 2, mit einem Eisengehalt von 2 Mol/l, werden mit 2 ml einer 0,1 molaren Platin II-chlorid-Lösung unter Rühren bei 20 °C tropfenweise versetzt. Die überschüssige Elektrolytlösung wird durch Dialyse mit einem 40 kD-Filter mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 10 nm. Die entstehende Dispersion ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines platinhaltigen Katalysators dienen.
  • Beispiel 9:
  • 20 ml der kleinen superparamagnetischen Eindomänenteilchen von Beispiel 2, mit einem Eisengehalt von 2 Mol/l, werden mit 1,5 ml einer Mischung von 1 ml 0,1 molaren Platin II-chlorid-Lösung und 0,5 ml 0,1 molaren Rhenium III-chlorid-Lösung unter Rühren bei 20°C tropfenweise versetzt. Die überschüssige Elektrolytlösung wird durch Dialyse mit einem 40 kD-Filter mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die superparamagnetischen Eindomänenteilchen haben einen mittleren Teilchendurchmesser von ca. 10 nm. Die entstehende Dispersion ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines platin-rhenium-haltigen Katalysators dienen.
  • Muster 10 (Beispiel 10):
  • Die superparamagnetischen Eindomänenteilchen von Beispiel 8 werden mit 1 molarer Oxalsäurelösung versetzt und unter Erwärmen auf 70°C die Eisenoxidanteile gelöst. In der gelben Lösung befinden sich die sehr kleinen nanometergroßen Platinteilchen. Die überschüssige Elektrolytlösung wird durch Dialyse mit einem 3 kD-Filter Filter mit dest. Wasser dialysiert, bis das Dialysat eine elektrische Leitfähigkeit von < 10 µS/cm besitzt. Die entstehende Dispersion von Platinteilchen ist sedimentations- und magnetfeldstabil und kann zur Herstellung eines platinhaltigen Katalysators dienen.

Claims (15)

  1. Stabilisierte superparamagnetische Teilchen, bestehend aus superparamagnetischen Eindomänenteilchen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid-, Eisenmischoxid- oder Eisen, die eine Teilchengröße im Bereich von 2 und 50 Nanometer haben, oder Aggregaten davon, die eine Teilchengröße im Bereich von10 bis 1000 Nanometer haben, oder Gemischen davon, jeweils stabilisiert auf ihrer Oberfläche durch aliphatische Di- oder Polycarbonsäuren oder Derivate davon, die eine Aggregation und Sedimentation im Schwerefeld verhindern, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen auf ihrer Oberfläche geladene Ionen chemischer Elemente gebunden tragen, wobei die Ionen bis zu einem Metallionengehalt von 5 Mol% des Eisengehaltes der Eindomänenteilchen gebunden sind und positiv geladene Metallionen sind, die aus der Gruppe ausgewählt sind, die aus Ionen der chemischen Elemente Kupfer, Silber, Gold, Eisen, Nickel, Kobalt, Gallium, Thallium, Bismut, Palladium, Rhenium, Rhodium, Ruthenium, Platin, Technetium, Indium, Iridium, Osmium, Radium, Selen, Vanadium, Yttrium, Zirkon, seltenen Erden, Gemischen davon und radioaktiven Isotopen dieser Elemente besteht.
  2. Teilchen nach Anspruch 1, dadurch gekennzeichnet, dass die Metallionen aus der Gruppe der radioaktiven Isotope, bestehend aus 52Fe, 67Ga, 99mTc, 113In, 188Rh, 192Ir, 198Au, 201Tl und 223Ra ausgewählt sind.
  3. Teilchen nach Anspruch 1, dadurch gekennzeichnet, dass die positiv geladenen Metallionen aus der Gruppe ausgewählt sind, die aus Metallionen der chemischen Elemente Kupfer, Silber, Gold, Platin, Palladium, Osmium, Rhenium, Rhodium, Ruthenium, Vanadium und Gemischen davon besteht.
  4. Stabilisierte superparamagnetische Teilchen, bestehend aus superparamagnetischen Eindomänenteilchen aus Eisenhydroxid, Eisenoxidhydrat, Eisenoxid-, Eisenmischoxid- oder Eisen, die eine Teilchengröße im Bereich von 2 und 50 Nanometer haben, oder Aggregaten davon, die eine Teilchengröße im Bereich von10 bis 1000 Nanometer haben, oder Gemischen davon, jeweils stabilisiert auf ihrer Oberfläche durch aliphatische Di- oder Polycarbonsäuren oder Derivate davon, die eine Aggregation und Sedimentation im Schwerefeld verhindern, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen auf ihrer Oberfläche geladene Ionen chemischer Elemente gebunden tragen, wobei die geladenen Ionen Nichtmetallionen sind, die über eine Polyethylenimin-Brücke an die Oberfläche der superparamagnetischen Eindomänenteilchen gebunden sind.
  5. Teilchen nach Anspruch 4, dadurch gekennzeichnet, dass die geladenen Ionen solche der radioaktiven Isotope 13N, 15O, 18F, 123J oder Gemische davon sind.
  6. Teilchen nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen auf ihrer Oberfläche stabilisiert sind durch Äpfelsäure, Weinsäure, Citronensäure, Asparaginsäure oder Gemische davon.
  7. Teilchen nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen und die Teilchen der stabilen, abbaubaren Aggregate aus Eisenhydroxid, Eisenoxidhydrat, γ-Fe2O3, Fe3O4, aus den Eisenmischoxiden der allgemeinen Formel mMO.nFe2O3, worin M die zweiwertigen Metallionen Fe, Co, Ni, Mn, Be, Mg, Ca, Ba, Sr, Cu, Zn, Pt oder Gemische davon bedeuten, oder aus den Mischoxiden der allgemeinen Formel mFe2O3.nMe2O3, worin Me die dreiwertigen Metallionen Al, Cr, Bi, seltene Erdmetalle oder Gemische davon bedeuten, oder Eisen bestehen, wobei m und n ganze Zahlen im Bereich von 1 bis 6 sind.
  8. Teilchen nach Anspruch 1 oder 4, dadurch gekennzeichnet, dass die superparamagnetischen Eindomänenteilchen auf ihrer Oberfläche zusätzlich zu den stabilisierenden Carbonsäuren und den positiv geladenen Ionen chemischer Elemente eine gewebespezifische Bindungssubstanz oder eine pharmakologisch wirksame Substanz oder ein Gemisch davon aufweisen.
  9. Teilchen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dieR1-Relaxivität der superparamagnetischen Eindomänenteilchen im Bereich von 2 bis 50 liegt und das Verhältnis der Relaxivitäten R2/R1 kleiner als 5 ist.
  10. Verfahren zur Herstellung von stabilisierten superparamagnetischen Teilchen nach Anspruch 1 aus durch Carbonsäuren stabilisierten Eindomänenteilchen oder deren Aggregaten, dadurch gekennzeichnet, dass die stabilisierten superparamagnetischen Eindomänenteilchen und Aggregate oder Gemische davon mit Lösungen vermischt werden, die positiv geladene Metallionen enthalten bei einer Konzentration der Lösungen im Bereich von 0,001 millimolar bis 1 molar und einem Verhältnis von Ionen chemischer Elemente zu Eisen von <10 Mol-% bei einer Temperatur von 5 bis 70 °C und anschließend die Teilchendispersion von überschüssigen Ionen gereinigt wird.
  11. Verfahren zur Herstellung von stabilisierten superparamagnetischen Teilchen nach Anspruch 4, aus durch Carbonsäuren stabilisierten Eindomänenteilchen oder deren Aggregaten, dadurch gekennzeichnet, dass die stabilisierten superparamagnetischen Eindomänenteilchen und Aggregate oder Gemische davon mit Lösungen vermischt werden, die Nichtmetallionen enthalten bei einer Konzentration der Lösungen im Bereich von 0,001 millimolar bis 1 molar und einem Verhältnis von Ionen chemischer Elemente zu Eisen von <10 Mol-% bei einer Temperatur von 5 bis 70 °C und anschließend die Teilchendispersion von überschüssigen Ionen gereinigt wird, wobei die Lösungen mit den Nichtmetallionen vor dem Vermischen mit den superparamagnetischen Teilchen mit einem Polyethylenimin in Kontakt gebracht werden, oder die mit Polyethylenimin behandelten superparamagnetischen Teilchen mit den Lösungen, die Nichtmetallionen enthalten, in Kontakt gebracht werden.
  12. Pharmakologisch wirksame Zubereitung, bestehend aus einem pharmakologisch annehmbaren Träger und superparamagnetischen Eindomänenteilchen oder Aggregaten nach Anspruch 1 oder 4.
  13. Zubereitung nach Anspruch 12, dadurch gekennzeichnet, dass die Eindomänenteilchen der Aggregate zusätzlich zu der stabilisierenden Carbonsäure und den Metallionen eine gewebespezifische Bindungssubstanz oder eine pharmakologisch wirksame Substanz oder ein Gemisch davon angekoppelt an die stabilisierende(n) Carbonsäure(n) enthalten.
  14. Verwendung der stabilisierten superparamagnetischen Teilchen nach Anspruch 1 oder 4 als magnetische Ionenaustauscher und magnetische Adsorbentien für Separationsverfahren, zur Herstellung von extrem kleinen Metallteilchen, als Magnetteitchen für die in vitro Diagnostik, gegebenenfalls unter Einwirkung von Magnetfeldern.
  15. Verwendung der stabilisierten superparamagnetischen Teilchen nach Anspruch 1 oder 4 zur Herstellung eines Bakteriostaticums, zur Herstellung eines Radiopharmakons, zur Herstellung eines MR-Kontrastmittels, zur Herstellung eines Mittels zur Tumorschädigung, zur Verhinderung von Restenosen, zur Bekämpfung von Entzündungskrankheiten, zur Funktionskontrolle von Organen, zum magnetischen drug targeting.
EP02782706A 2002-10-09 2002-10-09 Stabilisierte superparamagnetische teilchen Expired - Lifetime EP1554734B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2002/003862 WO2004034411A1 (de) 2002-10-09 2002-10-09 Stabilisierte superparamagnetische teilchen

Publications (2)

Publication Number Publication Date
EP1554734A1 EP1554734A1 (de) 2005-07-20
EP1554734B1 true EP1554734B1 (de) 2009-03-25

Family

ID=32078040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02782706A Expired - Lifetime EP1554734B1 (de) 2002-10-09 2002-10-09 Stabilisierte superparamagnetische teilchen

Country Status (7)

Country Link
US (1) US20060024235A1 (de)
EP (1) EP1554734B1 (de)
JP (1) JP2006502572A (de)
AT (1) ATE426906T1 (de)
AU (1) AU2002347076A1 (de)
DE (2) DE10297833D2 (de)
WO (1) WO2004034411A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19612001A1 (de) * 1996-03-18 1997-09-25 Silica Gel Gmbh Adsorptions Te Superparamagnetische Teilchen mit vergrößerter R¶1¶-Relaxivität, Verfahren zur Herstellung und deren Verwendung
JP2006261610A (ja) * 2005-03-18 2006-09-28 Hokkaido Univ 核スピンメモリセルおよび情報処理回路
DE102005059751A1 (de) * 2005-12-09 2007-06-14 Ferropharm Gmbh Forschungslabor Wässrige Dispersion von superparamagnetischen Eindomänenteilchen, deren Herstellung und Verwendung zur Diagnose und Therapie
RU2373957C2 (ru) * 2006-10-13 2009-11-27 Александр Метталинович Тишин Носитель для лекарственных средств и биологически активных веществ для лечения и диагностики и применение его для создания лекарственных средств и способа регулируемой управляемой доставки лекарственного средства или биологически активного вещества с регулируемой десорбцией его
US8852555B2 (en) * 2007-07-26 2014-10-07 Tokyo Institute Of Technology Process for production of surface-coated inorganic particles
WO2010005697A2 (en) * 2008-06-16 2010-01-14 Sloan-Kettering Institute For Cancer Research 18f-labelled three-and four-carbon acids for pet imaging
US9205155B2 (en) * 2009-10-30 2015-12-08 General Electric Company Treating water insoluble nanoparticles with hydrophilic alpha-hydroxyphosphonic acid conjugates, the so modified nanoparticles and their use as contrast agents
KR101386715B1 (ko) * 2010-10-31 2014-04-21 전북대학교산학협력단 최적의 글루콘산 도입으로 향상된 생체 적용능을 확보한 글루콘산과 비고분자 생체 존재물질이 표면개질제로 도입된 산화철 나노입자 및 이를 포함한 암 진단 및 치료용 조성물
KR101304427B1 (ko) * 2011-04-12 2013-09-05 한국과학기술연구원 재사용이 용이한 기공체 - 위성 나노입자 복합체 및 그 제조방법
DE102019134726A1 (de) * 2019-12-17 2021-06-17 Chiracon Gmbh Verfahren zur Herstellung von superparamagnetischen Kleinstpartikeln aus Eisenoxid als Kontrastmittel für die MRT-Tomographie
EP3875185A1 (de) * 2020-03-05 2021-09-08 Evonik Operations GmbH Selective superparamagnetic sintering und eine dafür geeignete tinte
DE102021115439A1 (de) 2021-06-15 2022-12-15 Chiracon Gmbh Verfahren zur Herstellung von superparamagnetischen Kleinstpartikeln aus Eisenoxid als Kontrastmittel für die MRT-Tomographie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709851A1 (de) * 1987-03-24 1988-10-06 Silica Gel Gmbh Adsorptions Te Nmr-diagnostische fluessigkeitszusammensetzungen
US4965007A (en) * 1988-05-10 1990-10-23 Eastman Kodak Company Encapsulated superparamagnetic particles
DE4309333A1 (de) * 1993-03-17 1994-09-22 Silica Gel Gmbh Superparamagnetische Teilchen, Verfahren zu ihrer Herstellung und Verwendung derselben
JPH08508721A (ja) * 1993-03-17 1996-09-17 シリカゲル ゲス.エム.ビー.エイチ 超常磁性粒子、その製法及びその用途
EP0772776B1 (de) 1994-07-27 2000-03-22 Herbert Dr. Pilgrimm Superparamagnetische teilchen, verfahren zur herstellung und deren verwendung
DE19612001A1 (de) * 1996-03-18 1997-09-25 Silica Gel Gmbh Adsorptions Te Superparamagnetische Teilchen mit vergrößerter R¶1¶-Relaxivität, Verfahren zur Herstellung und deren Verwendung

Also Published As

Publication number Publication date
JP2006502572A (ja) 2006-01-19
US20060024235A1 (en) 2006-02-02
DE50213399D1 (de) 2009-05-07
ATE426906T1 (de) 2009-04-15
EP1554734A1 (de) 2005-07-20
DE10297833D2 (de) 2005-09-01
AU2002347076A1 (en) 2004-05-04
WO2004034411A1 (de) 2004-04-22

Similar Documents

Publication Publication Date Title
EP1960002B1 (de) Wässrige dispersion von superparamagnetischen eindomänenteilchen, deren herstellung und verwendung zur diagnose und therapie
EP0888545A1 (de) Superparamagnetische teilchen mit vergrösserter r 1?-relaxivität, verfahren zur herstellung und deren verwendung
DE4428851C2 (de) Eisen enthaltende Nanopartikel, ihre Herstellung und Anwendung in der Diagnostik und Therapie
EP0772776B1 (de) Superparamagnetische teilchen, verfahren zur herstellung und deren verwendung
US4770183A (en) Biologically degradable superparamagnetic particles for use as nuclear magnetic resonance imaging agents
EP1644941B1 (de) Verfahren zur herstellung magnetischer nanopartikel mit verbesserten magneteigenschaften
DE4427821A1 (de) Superparamagnetische Teilchen und deren Verwendung
DE112006004066B4 (de) Magnetischer Träger und medizinisches Präparat zur kontrollierbaren Zuführung und Freisetzung von Wirkstoffen, Herstellungsverfahren dafür und Behandlungsverfahren unter Verwendung davon
EP1554734B1 (de) Stabilisierte superparamagnetische teilchen
EP0186616A1 (de) Magnetische Partikel für die Diagnostik
Wang et al. Controlled synthesis and assembly of ultra-small nanoclusters for biomedical applications
EP1216060A2 (de) Magnetische nanoteilchen mit biochemischer wirksamkeit und verfahren zu ihrer herstellung sowie ihre verwendung
JPH01500196A (ja) 臨床用途に使用される生物分解性超常磁性物質
DE3443251C2 (de) Eisenoxid-Komplexe für die NMR-Diagnostik, diese Verbindungen enthaltende diagnostische Mittel, ihre Verwendung und Verfahren zu deren Herstellung
DE19624426A1 (de) Magnetische Flüssigkeiten für den Transport von diagnostisch oder therapeutisch wirksamen Substanzen
EP1267843A1 (de) System für den transport von aktivstoffen in einem biologischen system
US20150165070A1 (en) Magnetic nanoparticles dispersion, its preparation and diagnostic and therapeutic use
DE102004035803B4 (de) Verfahren zur Herstellung von in Wasser dispergierten Eisenoxid-Nanoteilchen und deren Anwendung
Akram et al. Magnesium oxide in nanodimension: model for MRI and multimodal therapy
CN103040756B (zh) 一种mPEG化盐酸表阿霉素磁性脂质体的制备方法
Chokkareddy et al. Bio‐Sensing Performance of Magnetite Nanocomposite for Biomedical Applications
EP2322142B1 (de) Biokompatible, magnetische Nanopartikel zur Behandlung von Glioblastomen
KR101072666B1 (ko) 산화가돌리늄 나노입자에 생체적합성 리간드가 코팅된 나노입자체 및 이의 제조방법
JP2008266214A (ja) 金酸化鉄粒子を利用した複合粒子およびmri造影剤
KR102106897B1 (ko) 가돌리늄 산화물 나노입자 및 이의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20051020

R17C First examination report despatched (corrected)

Effective date: 20051020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 1/00 20060101AFI20080917BHEP

Ipc: A61K 51/12 20060101ALI20080917BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50213399

Country of ref document: DE

Date of ref document: 20090507

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090625

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091229

BERE Be: lapsed

Owner name: PILGRIMM, HELGA

Effective date: 20091031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091110

Year of fee payment: 8

Ref country code: GB

Payment date: 20091023

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091223

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090626

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091009

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50213399

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502