EP1550481A1 - Inertisierungsverfahren zur Minderung des Risikos eines Brandes - Google Patents
Inertisierungsverfahren zur Minderung des Risikos eines Brandes Download PDFInfo
- Publication number
- EP1550481A1 EP1550481A1 EP03029927A EP03029927A EP1550481A1 EP 1550481 A1 EP1550481 A1 EP 1550481A1 EP 03029927 A EP03029927 A EP 03029927A EP 03029927 A EP03029927 A EP 03029927A EP 1550481 A1 EP1550481 A1 EP 1550481A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- concentration
- protected area
- oxygen
- area
- oxygen content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C99/00—Subject matter not provided for in other groups of this subclass
- A62C99/0009—Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
Definitions
- the present invention relates to an inertization method for reducing the risk a fire in an enclosed protected area, where the oxygen content in the protection area with a predeterminable control range by introducing a Oxygen displacing gas from a primary source for a certain time is maintained at a control concentration below an operating concentration, and a device for carrying out the method.
- the oxygen-displacing gases used in this inert gas extinguishing technique are usually stored in special ancillary rooms in steel cylinders compressed. It is also conceivable, a device for generating an oxygen-displacing To use gas. These steel bottles or this device for the production of oxygen displacing gas constitute the so-called primary source of Inertgasfeuerlöschstrom. If necessary, then the gas from this primary source via piping systems and directed corresponding outlet nozzles in the space in question.
- the associated inert gas fire extinguishing system usually has at least over a facility for the sudden introduction of the oxygen displacing gas from the Primary source in the room to be monitored and a fire detection device for detecting a fire characteristic in the room air.
- the highest possible level of safety includes a technical and logistic system Planning in the event of plant shutdown as a result of incidents to the to meet safety requirements. Even if during the Designing the fire prevention or inert gas fire extinguishing system all measures be considered, which allow a restart of the system To achieve as fast and seamless, brings the inerting by means of However, inert gas technology has certain problems and points in terms of reliability clear boundaries.
- the re-ignition phase is the period after the fire-fighting phase, in which the oxygen concentration in the protected area a certain Value, the so-called re-ignition prevention value, must not exceed to avoid reignition of the materials in the protected area.
- the re-ignition prevention level is an oxygen concentration that depends on the fire load of the protected area and determined on the basis of tests becomes. According to the VdS guidelines, the oxygen concentration must flood when the protection zone is flooded in the protection area, the re-ignition prevention level of, for example 13.8 Vol .-% achieved within the first 60 seconds from the start of flooding (firefighting phase). Furthermore, the re-ignition prevention level within 10 minutes after the end of the firefighting phase be crossed, be exceeded, be passed. It is envisaged that within the firefighting phase the fire in the protected area is completely extinguished.
- inerting is at a Detection signal the oxygen concentration as quickly as possible to a so-called Shut down operating concentration.
- the required inert gas comes from the primary source of the inert gas fire extinguishing system.
- Oxiational concentration is understood to mean a level below a so-called Design concentration is.
- the design concentration is an oxygen concentration in the protected area, in which the inflammation of everyone in the protected area existing substance is effectively prevented.
- a protection range is usually added by the limit value an ignition of any materials in the protected area is prevented, nor a deducted for security deduction. After reaching the operating concentration in the protected area usually the oxygen concentration is on a held at an operating concentration control concentration.
- the control concentration is a control range of the residual oxygen concentration in the inertized Protection range within which the oxygen concentration during the Reflux phase is held. That control range is defined by an upper limit, the switch-on threshold for the primary source of inert gas fire extinguishing system, and a lower limit, the switch-off threshold of the primary source of the inert gas fire extinguishing system, limited.
- the control concentration becomes held by repeated introduction of inert gas in this control range.
- That Inert gas usually comes from serving as the primary source reservoir of the Inertgasfashionmaschineschstrom, i.e., either the device for generating oxygen displacing gas (e.g., a nitrogen generator), gas cylinders or others Buffer means.
- the danger that the oxygen concentration in the protected area rises early and the Rebound prevention level exceeds thereby reducing the reignition phase is shortened and successful firefighting in the protected area is not more can be guaranteed.
- the present invention is based on the object from the state to further develop the inertization process known to the art and explained above, that even when one of the primary source is concerned Incidentally, the emergency operation phase is sufficiently long to cause inflammation or re-ignition effectively prevent combustible materials in the protected area.
- Another object is to provide a corresponding inert gas fire extinguishing system for Specify the execution of the procedure.
- the technical problem underlying the present invention is further solved by an apparatus for carrying out the above-mentioned method, which is characterized in that the primary source and / or the secondary source an oxygen displacing gas generating machine, a bottle battery, a buffer volume or an oxygen depriving or similar machine is.
- the advantages of the invention are, in particular, that an easy to implement and very effective inerting method for reducing the risk of Brandes is achievable in an enclosed protection area, whereby even in an accident, i.
- the primary source from which the Adjusting the control concentration used in the protected area is inert gas
- the Maintain control concentration for an emergency operating time by means of a secondary source will (alternative 1).
- the term "primary source” is in this context to understand any inert gas reservoir, e.g. a nitrogen generator, a gas cylinder battery in which the inert gas is in compressed form, or another buffer volume.
- the term "secondary source" a redundant from the primary source reservoir, which in turn, for example may be a nitrogen generator, a bottle battery or any buffer volume, to understand.
- An essential aspect of the present invention is that that the secondary source is designed to be redundant from the primary source, thus to decouple both systems from each other and the susceptibility of the inertization process to reduce. It is provided that the secondary source in such a way is designed to the control concentration in case of failure of the primary source for an emergency operating time maintain, which is sufficiently long, for example, at least a 10-minute re-ignition phase or an 8-hour emergency operation phase in the To be able to provide protection in which the oxygen content in the protected area does not rise above the reburn prevention level.
- the secondary source according to any emergency operating time interpreted.
- the limit concentration is around the re-ignition prevention level of the shelter.
- it is an oxygen concentration, which ensures that flammable substances of the protection zone can no longer be ignited.
- the operating concentration from the beginning to reduce so much that the increase curve the oxygen concentration reaches the limit only after a certain time.
- This predetermined time is for example 10, 30 or 60 minutes for a fire extinguishing system and 8, 24, or 36 hours for a fire prevention facility to service personnel arrives with spare parts, and thus enables a realization of a Reflux phase or emergency operation phase in which the oxygen content is not rises above a rebound prevention level, and thus effectively ignites or reignition of fires in the protected area prevented. Because of this so-called "lowering" the operating concentration, i.
- Embodiments of the inertization process according to the invention which also ensures that if the primary source fails an emergency operating time the oxygen concentration below a specified value, in advantageously below the re-ignition prevention level.
- additional Measures such as the imposition of operating restrictions, such as the temporary reduction of the commission.
- the Primary source and / or the secondary source any reservoir, such as a machine, which produces an oxygen-displacing gas, a bottle-type battery in which the inert gas is in compressed form, another buffer volume, or else is also an oxygen depriving or similar machine.
- a machine which produces an oxygen-displacing gas
- a bottle-type battery in which the inert gas is in compressed form, another buffer volume, or else is also an oxygen depriving or similar machine.
- oxygen it is also conceivable to generate oxygen in the room air withdraw, for example with the help of fuel cells.
- secondary sources both stationary and mobile devices in question, such as Extinguishing agent tanks with evaporator on a truck. Switching between the Primary and secondary sources are either manual or automatic.
- the operating concentration is the same or approximately equal to a design concentration set for the protection zone is.
- the failure safety distance is determined taking into account a valid for the protection area air exchange rate, in particular an n 50 - value of the protection area, and / or the pressure difference between the protection area and the environment.
- a valid for the protection area air exchange rate in particular an n 50 - value of the protection area, and / or the pressure difference between the protection area and the environment.
- the failure safety distance is greater, the greater the n 50 value of the target area.
- the design concentration be lowered by a safety margin below the limit concentration determined for the protection zone.
- a detector for detecting further a fire characteristic provided, the oxygen content in the protected area when detecting an incipient fire or a fire quickly on the control concentration is lowered if the oxygen content previously at a higher Level was.
- the oxygen content in the protected area to a certain basic inerting level lowered, for example, 17 vol .-% and in case of fire the oxygen content to a certain Vollinertmaschinesplace further on the control concentration is lowered.
- a basic inertization level of 17% by volume oxygen concentration means no danger to persons or animals, so that they can still easily enter the room. Setting the Vollinertleitershous or the rule concentration can either after detection an incipient fire are set, but it would be conceivable here also, that this level is set, for example, at night, when no people enter the room in question.
- At the control concentration is the flammability of all the materials in the shelter so much degraded that they themselves can not ignite anymore.
- the control range is about ⁇ 0.2 vol.%, And preferably at most ⁇ 0.2 Vol .-% oxygen content around the control concentration in the shelter. in this connection it is an area covered by an upper and a lower one Threshold is defined, which is about 0.4 vol .-% and preferably at most 0.4 vol .-% apart.
- the two thresholds indicate the residual oxygen concentrations, in which the secondary source is turned on or off to the To maintain or reach setpoint if the primary source fails. Of course But here also other orders of magnitude for the control range are conceivable.
- the regulation of the oxygen content in the protected area takes into account the air exchange rate, in particular the n 50 value of the protected area and / or the pressure difference between protected area and environment.
- This is a value that describes the ratio of the generated leakage volume flow in relation to the existing volume of space at a pressure difference to the environment of 50 Pa generated.
- the n 50 value is thus a measure of the tightness of the protected area and thus a decisive factor for dimensioning the inert gas fire extinguishing system or for the design of the inertization process with regard to the reliability of the primary source.
- the n 50 value is determined by means of a so-called BlowerDoor measurement, in order to be able to assess the tightness of the enclosing components bounding the protected area.
- a so-called BlowerDoor measurement in order to be able to assess the tightness of the enclosing components bounding the protected area.
- a standardized overpressure or underpressure of 10 to 60 Pa is generated in the protected area.
- the air escapes through the leakage surfaces of the enclosing components to the outside or penetrates there.
- a corresponding measuring device measures the required volume flow to maintain the pressure difference of, for example, 50 Pa required for the measurement.
- a measuring program calculates the n 50 value, which refers to the generated pressure difference of 50 Pa in a standardized manner.
- the BlowerDoor measurement is to be carried out before the concrete design of the inertization method according to the invention, in particular before the design of the inventively provided, redundant from the primary source secondary source or before the design of the fail-safe distance in the alternative
- the calculation of the extinguishing agent quantity for maintaining the control concentration in the protected area takes place taking into account the air exchange rate n 50 . Accordingly, it is possible to design the size or the capacity of the primary source and / or the secondary source as a function of the n 50 value and thus adapted exactly to the protected area.
- Fig. 1 shows a section of a time course of the oxygen concentration in a protection range, wherein the operating concentration BK and the control concentration RK of the oxygen content according to the first alternative of the invention Inertleitersvons be maintained by means of a secondary source.
- the ordinate axis represents the oxygen content in the Protective area and the abscissa axis is the time.
- the oxygen content in the protected area to a so-called Vollinertmaschinescuit lowered, i. to a control concentration below an operating concentration BK RK.
- FIG. 1 corresponds to the Operating concentration BK exactly the design concentration AK.
- the design concentration AK is an oxygen concentration value in the protected area, basically below a limit concentration specific to the protection area GK is lying.
- the limit concentration GK which is also often called “rebound prevention level” is called, refers to the oxygen content in the atmosphere the scope of protection, where a defined substance with a defined Ignition source just can not be ignited.
- the respective value of Limit concentration GK must be determined experimentally and forms the basis for the determination of the design concentration AK. This is done by the limit concentration GK deducted a haircut.
- the operating concentration BK must not be greater than the design concentration AK.
- the operating concentration BK results under consideration the safety concept for the inert gas fire extinguishing system or the inerting process used.
- a control concentration RK specified the center in a control range is, where the upper limit of the control range is identical to the operating concentration BK is.
- the control concentration RK represents a concentration value by which the oxygen concentration fluctuates within the protection range. It is intended that the fluctuations take place in the control area.
- the upper limit here the operating concentration BK
- the oxygen content in the protected area by introducing inert gas again lowered until the lower limit of the control range is reached, whereupon a further introduction of inert gas is stopped in the protection area.
- the upper limit of the control range is an upper threshold for the Introducing the inert gas and the lower limit of the control range a lower Threshold, in which a further supply of the inert gas in the protected area is omitted.
- the Oxygen concentration in the control range around the control concentration RK around for a sufficiently long time can be maintained. It is intended that the secondary source is redundant from the primary source.
- the time in which by introducing the inert gas from a primary source and the emergency operating time, in which in case of failure of the primary source, the control concentration RK by the Secondary source is maintained, is advantageously so long that an emergency phase is provided, in which the oxygen content in the protected area the design concentration does not exceed AK and thus ignition of Materials in the protected area continue to be prevented.
- FIG. 2 shows a section of a time profile of the oxygen concentration in FIG a protection range, wherein the operating concentration BK and the control concentration RK of the oxygen content according to the second alternative of the invention Inerting process below the design concentration AK of the protected area be lowered.
- the difference to Fig. 1 lies in the fact that in this case the Design concentration AK no longer coincides with the operating concentration BK. Instead, the operating concentration is BK and thus the control concentration RK with the associated control range moved down, where the Spacing between the design concentration AK and the operating concentration BK corresponds to a fail-safe distance ASA.
- the oxygen concentration in the protected area by alternately Turning on or off the primary source in the control area around the Control concentration RK held around.
- the Ausfallsconcesabstand ASA is chosen such that in case of failure of the primary source, the rise curve of the oxygen content in the protected area, the limiting concentration BK or reaches the re-ignition prevention level only in a predetermined time.
- Those Time is preferably selected such that an emergency operating phase ensured long enough to be restarted before restarting Fire prevention or fire extinguishing an ignition or re-ignition of Materials in the protected area continue to prevent.
- Fig. 3 shows a profile of the oxygen content in a protection area, wherein here the second alternative of the method according to the invention in the inerting process is implemented.
- the ordinate axis represents here the oxygen content in the protected area and the abscissa axis is the time.
- an oxygen concentration is initially within the scope of protection of 21% by volume present.
- a fire prevention system begins at time t 0 , the oxygen content in the protection area is rapidly lowered to the control concentration RK. As shown, the oxygen concentration in the protection region reaches the re-ignition prevention level GK at time t 1 and the control concentration RK at time t 2 .
- the period from t 0 to t 2 is referred to as Clearabsenkung.
Landscapes
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
- Fire-Extinguishing Compositions (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Description
- Fig. 1
- einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration und die Regelkonzentration des Sauerstoffgehalts gemäß der ersten Alternative des erfindungsgemäßen Inertisierungsverfahrens mittels einer Sekundärquelle aufrechterhalten werden;
- Fig. 2
- einen Ausschnitt eines zeitlichen Verlaufs der Sauerstoffkonzentration in einem Schutzbereich, wobei die Betriebskonzentration und die Regelkonzentration des Sauerstoffgehalts gemäß der zweiten Alternative des erfindungsgemäßen Inertisierungsverfahrens unter die Auslegungskonzentration des Schutzbereichs gesenkt werden; und
- Fig. 3
- einen Verlauf des Sauerstoffgehalts in einem Schutzbereich, wobei die zweite Alternative des erfindungsgemäßen Verfahrens in dem zugrundeliegenden Inertiserungsverfahren implementiert ist.
Claims (10)
- Inertisierungsverfahren zur Minderung des Risikos eines Brandes in einem umschlossenen Schutzbereich, bei dem der Sauerstoffgehalt im Schutzbereich mit einem vorgebbaren Regelbereich durch Einleiten eines Sauerstoff verdrängenden Gases aus einer Primärquelle für eine bestimmte Zeit auf einer unter einer Betriebskonzentration (BK) liegenden Regelkonzentration (RK) gehalten wird,
dadurch gekennzeichnet, dass
die Regelkonzentration (RK) bei Ausfall der Primärquelle für eine Notbetriebszeit durch eine Sekundärquelle aufrechterhalten wird. - Inertisierungsverfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Betriebskonzentration (BK) gleich oder in etwa gleich einer für den Schutzbereich festgelegten Auslegungskonzentration (AK) ist. - Inertisierungsverfahren nach dem Oberbegriff des Anspruchs 1,
dadurch gekennzeichnet, dass
die Regelkonzentration (RK) und die Betriebskonzentration (BK) unter Bildung eines Ausfallsicherheitsabstandes (ASA) so weit unter die für den Schutzbereich festgelegte Auslegungskonzentration (AK) gesenkt werden, dass die Anstiegskurve des Sauerstoffgehalts bei Ausfall der Primärquelle eine für den Schutzbereich ermittelte Grenzkonzentration (GK) erst in einer vorgegebenen Zeit erreicht. - Inertisierungsverfahren nach Anspruch 3,
dadurch gekennzeichnet, dass
der Ausfallsicherheitsabstand (ASA) unter Berücksichtigung einer für den Schutzbereich geltenden Luftwechselrate, insbesondere eines n50 - Wertes des Schutzbereiches, und /oder der Druckdifferenz zwischen Schutzbereich und Umgebung ermittelt wird. - Inertisierungsverfahren nach Anspruch 3 oder 4,
dadurch gekennzeichnet, dass
die Auslegungskonzentration (AK) um einen Sicherheitsabschlag (S) unter die für den Schutzbereich ermittelte Grenzkonzentration (GK) gesenkt wird. - Inertisierungsverfahren nach einem der Ansprüche 2 bis 5, mit einem Detektor zum Erkennen einer Brandkenngröße,
dadurch gekennzeichnet, dass
der Sauerstoffgehalt im Schutzbereich beim Detektieren eines Entstehungsbrandes oder eines Brandes rasch auf die Regelkonzentration abgesenkt wird, wenn der Sauerstoffgehalt vorher auf einem höheren Niveau lag. - Inertisierungsverfahren nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
der Regelbereich etwa ± 0,2 Vol.-% Sauerstoffgehalt um die Regelkonzentration (RK) beträgt. - Inertisierungsverfahren nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Regelung des Sauerstoffgehalts im Schutzbereich unter Berücksichtigung der Luftwechselrate, insbesondere des n50 - Wertes des Schutzbereiches, und /oder der Druckdifferenz zwischen Schutzbereich und Umgebung erfolgt. - Inertisierungsverfahren nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
die Berechnung der Löschmittelmenge für das Halten der Regelkonzentration (RK) im Schutzbereich unter Berücksichtigung der Luftwechselrate des Zielraumes, insbesondere des n50 - Wertes des Zielraums, und /oder der Druckdifferenz zwischen Zielraum und Umgebung erfolgt. - Vorrichtung zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
die Primärquelle und/oder die Sekundärquelle eine das Sauerstoff verdrängende Gas erzeugende Maschine, eine Flaschenbatterie, ein Puffervolumen oder eine sauerstoffentziehende oder ähnliche Maschine ist.
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03029927A EP1550481B1 (de) | 2003-12-29 | 2003-12-29 | Inertisierungsverfahren zur Minderung des Risikos eines Brandes |
ES03029927T ES2399215T3 (es) | 2003-12-29 | 2003-12-29 | Procedimiento de inertización para la disminución del riesgo de un incendio |
DK03029927.5T DK1550481T3 (da) | 2003-12-29 | 2003-12-29 | Fremgangsmåde til inertisering for at mindske risikoen for brand |
UAA200606995A UA86045C2 (uk) | 2003-12-29 | 2004-11-23 | Спосіб інертизації для зниження ризику пожежі |
US10/584,905 US7854270B2 (en) | 2003-12-29 | 2004-11-23 | Inertization method for reducing the risk of fire |
PCT/EP2004/013285 WO2005063337A1 (de) | 2003-12-29 | 2004-11-23 | Inertisierungsverfahren zur minderung des risikos eines brandes |
AU2004308568A AU2004308568B2 (en) | 2003-12-29 | 2004-11-23 | Inertisation method for reducing the risk of fire |
RU2006123037/12A RU2318560C1 (ru) | 2003-12-29 | 2004-11-23 | Способ инертизации для уменьшения риска пожара |
CA2551226A CA2551226C (en) | 2003-12-29 | 2004-11-23 | Inertisation method for reducing the risk of fire |
CN200480035850XA CN1889999B (zh) | 2003-12-29 | 2004-11-23 | 降低火灾风险的非活性化方法 |
JP2006545948A JP4818932B2 (ja) | 2003-12-29 | 2004-11-23 | 火災の危険性を減少させるための不活性化方法 |
TW093138311A TWI302843B (en) | 2003-12-29 | 2004-12-10 | Inertisierungsverfahren zur minderung des risikos eines brandes |
HK05108473.4A HK1076415A1 (en) | 2003-12-29 | 2005-09-26 | Inerting method for decreasing the risk of a fire |
NO20063302A NO20063302L (no) | 2003-12-29 | 2006-07-17 | Inertiseringsfremgangsmate for reduksjon av brannrisiko |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03029927A EP1550481B1 (de) | 2003-12-29 | 2003-12-29 | Inertisierungsverfahren zur Minderung des Risikos eines Brandes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1550481A1 true EP1550481A1 (de) | 2005-07-06 |
EP1550481B1 EP1550481B1 (de) | 2012-12-19 |
Family
ID=34560176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03029927A Revoked EP1550481B1 (de) | 2003-12-29 | 2003-12-29 | Inertisierungsverfahren zur Minderung des Risikos eines Brandes |
Country Status (14)
Country | Link |
---|---|
US (1) | US7854270B2 (de) |
EP (1) | EP1550481B1 (de) |
JP (1) | JP4818932B2 (de) |
CN (1) | CN1889999B (de) |
AU (1) | AU2004308568B2 (de) |
CA (1) | CA2551226C (de) |
DK (1) | DK1550481T3 (de) |
ES (1) | ES2399215T3 (de) |
HK (1) | HK1076415A1 (de) |
NO (1) | NO20063302L (de) |
RU (1) | RU2318560C1 (de) |
TW (1) | TWI302843B (de) |
UA (1) | UA86045C2 (de) |
WO (1) | WO2005063337A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1911498A1 (de) * | 2006-10-11 | 2008-04-16 | Amrona AG | Mehrstufiges Inertisierungsverfahren zur Brandverhütung und Brandlöschung in geschlossenen Räumen |
EP3111999A1 (de) * | 2015-07-02 | 2017-01-04 | Amrona AG | Sauerstoffreduzierungsanlage und verfahren zum auslegen einer sauerstoffreduzierungsanlage |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101547722B (zh) * | 2007-08-01 | 2012-07-18 | 艾摩罗那股份公司 | 用于降低封闭空间中火灾爆发的风险的惰化方法以及实现该方法的设备 |
SI2136148T1 (sl) | 2008-06-18 | 2010-11-30 | Amrona Ag | Naprava in postopek za nastavitev stopnje prepuščanja skozi tesnilne reže rotacijskega toplotnega izmenjevalca |
EP2724754B1 (de) * | 2012-10-29 | 2016-11-30 | Amrona AG | Verfahren und Vorrichtung zum Bestimmen und/oder Überwachen der Luftdichtigkeit eines umschlossenen Raumes |
EP2881149B1 (de) * | 2013-12-04 | 2018-02-28 | Amrona AG | Sauerstoffreduzierungsanlage sowie Verfahren zum Betreiben einer Sauerstoffreduzierungsanlage |
CN115382348A (zh) * | 2022-08-26 | 2022-11-25 | 苏州班顺工业气体设备有限公司 | 一种节能型制氮方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19811851A1 (de) * | 1998-03-18 | 1999-09-23 | Wagner Alarm Sicherung | Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen |
US6341572B1 (en) * | 1999-03-03 | 2002-01-29 | Fmc Corporation | Explosion prevention system for internal turret mooring system |
US20020070035A1 (en) * | 2000-10-18 | 2002-06-13 | Thomas Grabow | Method and system for extinguishing fire in an enclosed space |
US20030094288A1 (en) * | 1998-03-18 | 2003-05-22 | Wagner Ernst Werner | Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces |
US20030226669A1 (en) * | 2001-01-11 | 2003-12-11 | Wagner Ernst Werner | Inert rendering method with a nitrogen buffer |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3467349A (en) * | 1967-11-09 | 1969-09-16 | Robert A Gautier | System and method for freeing aircraft fuels of moisture,micro-organisms and other contaminants |
US3840667A (en) * | 1968-06-12 | 1974-10-08 | Atlantic Res Corp | Oxygen-containing atmospheres |
US4807706A (en) * | 1987-07-31 | 1989-02-28 | Air Products And Chemicals, Inc. | Breathable fire extinguishing gas mixtures |
US5759430A (en) * | 1991-11-27 | 1998-06-02 | Tapscott; Robert E. | Clean, tropodegradable agents with low ozone depletion and global warming potentials to protect against fires and explosions |
JP3397382B2 (ja) * | 1993-08-03 | 2003-04-14 | 能美防災株式会社 | 二酸化炭素消火設備 |
JPH09276428A (ja) * | 1996-04-08 | 1997-10-28 | Sekiko Ryo | 火災の予防と消火方法及びシステム |
JP2000153004A (ja) * | 1998-11-19 | 2000-06-06 | Kawasaki Safety Service Industries Ltd | 酸素欠乏防止式不活性ガス消火設備 |
JP3929214B2 (ja) * | 1999-10-04 | 2007-06-13 | 株式会社コーアツ | ガス系消火設備 |
JP2003102858A (ja) * | 2001-09-28 | 2003-04-08 | Nohmi Bosai Ltd | 閉鎖空間の防火システム |
CN1431027A (zh) * | 2002-01-11 | 2003-07-23 | 廖赤虹 | 一种用于非开放空间的火灾灭火方法及系统 |
US7337856B2 (en) * | 2003-12-02 | 2008-03-04 | Alliant Techsystems Inc. | Method and apparatus for suppression of fires |
-
2003
- 2003-12-29 EP EP03029927A patent/EP1550481B1/de not_active Revoked
- 2003-12-29 ES ES03029927T patent/ES2399215T3/es not_active Expired - Lifetime
- 2003-12-29 DK DK03029927.5T patent/DK1550481T3/da active
-
2004
- 2004-11-23 WO PCT/EP2004/013285 patent/WO2005063337A1/de active Application Filing
- 2004-11-23 JP JP2006545948A patent/JP4818932B2/ja not_active Expired - Fee Related
- 2004-11-23 AU AU2004308568A patent/AU2004308568B2/en not_active Ceased
- 2004-11-23 CN CN200480035850XA patent/CN1889999B/zh not_active Expired - Fee Related
- 2004-11-23 RU RU2006123037/12A patent/RU2318560C1/ru not_active IP Right Cessation
- 2004-11-23 UA UAA200606995A patent/UA86045C2/uk unknown
- 2004-11-23 CA CA2551226A patent/CA2551226C/en not_active Expired - Fee Related
- 2004-11-23 US US10/584,905 patent/US7854270B2/en active Active
- 2004-12-10 TW TW093138311A patent/TWI302843B/zh not_active IP Right Cessation
-
2005
- 2005-09-26 HK HK05108473.4A patent/HK1076415A1/xx not_active IP Right Cessation
-
2006
- 2006-07-17 NO NO20063302A patent/NO20063302L/no unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19811851A1 (de) * | 1998-03-18 | 1999-09-23 | Wagner Alarm Sicherung | Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen |
US20030094288A1 (en) * | 1998-03-18 | 2003-05-22 | Wagner Ernst Werner | Inerting method and apparatus for preventing and extinguishing fires in enclosed spaces |
US6341572B1 (en) * | 1999-03-03 | 2002-01-29 | Fmc Corporation | Explosion prevention system for internal turret mooring system |
US20020070035A1 (en) * | 2000-10-18 | 2002-06-13 | Thomas Grabow | Method and system for extinguishing fire in an enclosed space |
US20030226669A1 (en) * | 2001-01-11 | 2003-12-11 | Wagner Ernst Werner | Inert rendering method with a nitrogen buffer |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1911498A1 (de) * | 2006-10-11 | 2008-04-16 | Amrona AG | Mehrstufiges Inertisierungsverfahren zur Brandverhütung und Brandlöschung in geschlossenen Räumen |
WO2008043586A1 (de) * | 2006-10-11 | 2008-04-17 | Amrona Ag | Mehrstufiges inertisierungsverfahren zur brandverhütung und brandlöschung in geschlossenen räumen |
US7726410B2 (en) | 2006-10-11 | 2010-06-01 | Amrona Ag | Multi-stage inertization process for preventing and extinguishing fires within enclosed spaces |
AU2007306567B2 (en) * | 2006-10-11 | 2012-03-29 | Amrona Ag | Multistage inerting method for preventing and extinguishing fires in enclosed spaces |
CN101378811B (zh) * | 2006-10-11 | 2012-12-05 | 艾摩罗那股份有限公司 | 封闭空间内用于防火和灭火的多阶段惰性化过程 |
KR101359885B1 (ko) * | 2006-10-11 | 2014-02-06 | 암로나 아게 | 폐쇄 공간 내에서의 화재 예방 및 진화를 위한 멀티 스테이지 불활성화 방법 |
NO339386B1 (no) * | 2006-10-11 | 2016-12-05 | Amrona Ag | Flertrinns-inertieringsfremgangsmåte til forebygging og slukking av branner i lukkede rom |
EP3111999A1 (de) * | 2015-07-02 | 2017-01-04 | Amrona AG | Sauerstoffreduzierungsanlage und verfahren zum auslegen einer sauerstoffreduzierungsanlage |
WO2017001222A1 (de) * | 2015-07-02 | 2017-01-05 | Amrona Ag | Sauerstoffreduzierungsanlage und verfahren zum auslegen einer sauerstoffreduzierungsanlage |
CN107847777A (zh) * | 2015-07-02 | 2018-03-27 | 艾摩罗那股份公司 | 氧气降低系统和用于配置氧气降低系统的方法 |
US10456611B2 (en) | 2015-07-02 | 2019-10-29 | Amrona Ag | Oxygen reduction system and method for configuring an oxygen reduction system |
RU2710630C2 (ru) * | 2015-07-02 | 2019-12-30 | Амрона Аг | Система снижения кислорода и способ конфигурирования системы снижения кислорода |
AU2016288367B2 (en) * | 2015-07-02 | 2020-12-03 | Amrona Ag | Oxygen reduction plant and method for configuring an oxygen reduction plant |
Also Published As
Publication number | Publication date |
---|---|
US20080011492A1 (en) | 2008-01-17 |
TW200534894A (en) | 2005-11-01 |
WO2005063337A1 (de) | 2005-07-14 |
US7854270B2 (en) | 2010-12-21 |
DK1550481T3 (da) | 2013-02-11 |
CN1889999A (zh) | 2007-01-03 |
TWI302843B (en) | 2008-11-11 |
JP4818932B2 (ja) | 2011-11-16 |
RU2318560C1 (ru) | 2008-03-10 |
CA2551226C (en) | 2011-10-11 |
JP2007516755A (ja) | 2007-06-28 |
CN1889999B (zh) | 2012-11-14 |
NO20063302L (no) | 2006-09-28 |
CA2551226A1 (en) | 2005-07-14 |
EP1550481B1 (de) | 2012-12-19 |
ES2399215T3 (es) | 2013-03-26 |
AU2004308568B2 (en) | 2010-08-26 |
HK1076415A1 (en) | 2006-01-20 |
UA86045C2 (uk) | 2009-03-25 |
AU2004308568A1 (en) | 2005-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1683548B1 (de) | Inertisierungsverfahren zur Brandvermeidung | |
EP1550482B1 (de) | Inertisierungsverfahren zum Löschen eines Brandes | |
EP2173440B1 (de) | Vorrichtung und verfahren zur brandverhütung und zur löschung eines in einem umschlossenen raum ausgebrochenen brandes | |
EP1941932B1 (de) | Verfahren zum Bestimmen der Luftdichtigkeit von umschlossenen Räumen | |
EP1062005B2 (de) | Inertisierungsverfahren zur brandverhütung und -löschung in geschlossenen räumen | |
DE102017005287B3 (de) | Sicherheitsschrank für aktive elektrische und/oder elektronische Komponenten | |
DE10205373B4 (de) | Brandschutz | |
WO2010040771A1 (de) | Inertgasfeuerlöschanlage zur minderung des risikos und zum löschen von bränden in einem schutzraum | |
EP1913980B1 (de) | Inertisierungsvorrichtung mit Sicherheitseinrichtung | |
EP2881149B1 (de) | Sauerstoffreduzierungsanlage sowie Verfahren zum Betreiben einer Sauerstoffreduzierungsanlage | |
EP2724754A1 (de) | Verfahren und Vorrichtung zum Bestimmen und/oder Überwachen der Luftdichtigkeit eines umschlossenen Raumes | |
CN101732811B (zh) | 核岛厂房安全防火分区方法 | |
EP2602006B1 (de) | Verfahren zum Löschen eines Brandes in einem umschlossenen Raum sowie Feuerlöschanlage | |
EP1550481B1 (de) | Inertisierungsverfahren zur Minderung des Risikos eines Brandes | |
EP3042698B1 (de) | Verfahren und System zum Vorbeugen und/oder Löschen eines Brandes | |
DE102015013145A1 (de) | Einrichtung zur Vermeidung von Explosion und Brand eines ölisolierten Transformators | |
EP0070037A2 (de) | Verfahren zum Vermeiden oder Hemmen einer Durchmischung der in einem abgeschlossenen Raum vorhandenen Atmosphäre mit einem sich in dem Raum befindenden gasförmigen Stoff | |
Klaffenböck et al. | Automatic fire‐fighting systems in tunnels | |
DE102014210032B4 (de) | Brandschutzeinrichtung zum Absenken einer Luftsauerstoffkonzentration in einem Schutzbereich eines Gebäudes | |
DE102015002024A1 (de) | Vorrichtung zur Druckbegrenzung | |
EP3184152B1 (de) | Sauerstoffreduzierungsanlage und verfahren zum betreiben einer sauerstoffreduzierungsanlage | |
DE20118598U1 (de) | Vorrichtung zur Brandprävention |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040108 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET. |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1076415 Country of ref document: HK |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: AMRONA AG |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET. |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 50314616 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: A62C0039000000 Ipc: A62C0099000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A62C 99/00 20100101AFI20120730BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 589055 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: IPRIS AG, CH |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: IPRIS AG, CH |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50314616 Country of ref document: DE Effective date: 20130221 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2399215 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130326 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1076415 Country of ref document: HK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130319 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130419 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: MINIMAX GMBH & CO KG Effective date: 20130829 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 50314616 Country of ref document: DE Effective date: 20130829 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20131125 Year of fee payment: 11 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121219 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: MINIMAX GMBH & CO. KG Effective date: 20130829 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 50314616 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 50314616 Country of ref document: DE |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20151221 Year of fee payment: 13 Ref country code: IE Payment date: 20151223 Year of fee payment: 13 Ref country code: FI Payment date: 20151211 Year of fee payment: 13 Ref country code: GB Payment date: 20151221 Year of fee payment: 13 Ref country code: DE Payment date: 20151210 Year of fee payment: 13 Ref country code: CH Payment date: 20151221 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20151221 Year of fee payment: 13 Ref country code: NL Payment date: 20151221 Year of fee payment: 13 Ref country code: CZ Payment date: 20151228 Year of fee payment: 13 Ref country code: AT Payment date: 20151222 Year of fee payment: 13 Ref country code: SE Payment date: 20151221 Year of fee payment: 13 Ref country code: ES Payment date: 20151214 Year of fee payment: 13 Ref country code: BE Payment date: 20151221 Year of fee payment: 13 Ref country code: LU Payment date: 20151224 Year of fee payment: 13 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PLX |
|
27W | Patent revoked |
Effective date: 20151109 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20151109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20121219 Ref country code: CH Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20121219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151228 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 589055 Country of ref document: AT Kind code of ref document: T Effective date: 20151109 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |